1
|
Badgujar P, Malik AK, Mehata AK, Setia A, Verma N, Randhave N, Shukla VN, Kande V, Singh P, Tiwari P, Mahto SK, Muthu MS. Polyvinyl alcohol-chitosan based oleanolic acid nanofibers against bacterial infection: In vitro studies and in vivo evaluation by optical and laser Doppler imaging modalities. Int J Biol Macromol 2024; 279:135532. [PMID: 39265903 DOI: 10.1016/j.ijbiomac.2024.135532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The present work focuses on the fabrication of polyvinyl alcohol-chitosan-loaded oleanolic acid-nanofibers (PVA-CS-OLA-NFs) for bacterial infection. The prepared PVA-CS-OLA-NFs were characterized for contact angle, SEM, AFM, XRD, FTIR, and TGA. The solid-state characterization and in vitro performance evaluation of nanofibers reveal consistent interconnection and diameters ranging from 102 ± 9.5 to 386 ± 11.6 nm. The nanofibers have a flat surface topography and exhibit efficient drug entrapment. Moreover, the in vitro release profile of PVA-CS-OLA-NFs was found to be 51.82 ± 1.49 % at 24 h. Furthermore, the hemocompatibility study showed that the developed PVA-CS-OLA-NFs are non-hemolytic to human blood. The PVA-CS-OLA-NFs demonstrate remarkable antibacterial capabilities, as evidenced by their MBC and MIC values, which range from 128 and 32 μg/mL, against the strains of S. aureus. The in-vivo fluorescence optical imaging showed the sustained PVA-CS-OLA-NFs release at the wound site infected with S. aureus for a longer duration of time. Moreover, the PVA-CS-OLA-NFs showed superior wound healing performance against S. aureus infected wounds compared to the marketed formulation. Further, the laser Doppler imaging system improved oxygen saturation, blood supply, and wound healing by providing real-time blood flow and oxygen saturation information.
Collapse
Affiliation(s)
- Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Vishwa Nath Shukla
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Vilas Kande
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Priya Singh
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Khodabandeh A, Yousefi AA, Jafarzadeh-Holagh S, Vasheghani-Farahani E. Fabrication of 3D microfibrous composite polycaprolactone/hydroxyapatite scaffolds loaded with piezoelectric poly (lactic acid) nanofibers by sequential near-field and conventional electrospinning for bone tissue engineering. BIOMATERIALS ADVANCES 2024; 166:214053. [PMID: 39342781 DOI: 10.1016/j.bioadv.2024.214053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Near-field electrospinning (NFES) has recently gained considerable interest in fabricating tissue engineering scaffolds. This technique combines the advantages of both 3D printing and electrospinning. It allows for the production of fibers with smaller resolution and the ability to make regular structures with suitable pores. In this study, a microfibrous composite scaffold of polycaprolactone (PCL)/hydroxyapatite (HA) was prepared by NFES in the first step. The microfibrous scaffold had a fiber spacing of 414.674 ± 24.9 μm with an average fiber diameter of 94.695 ± 16.149 μm. However, due to the large fiber spacing, the surface area was insufficient for cell adhesion. Therefore, the hybrid scaffold was prepared by adding aligned and random electrospun poly (L-lactic acid) (PLLA) nanofibers to the microfibrous scaffold. Cellular studies showed that cell adhesion to the hybrid scaffold increased by 334 % compared to the microfibrous scaffold. These nanofibers also exhibited piezoelectric properties, which helped stimulate bone regeneration. Aligned nanofibers in the hybrid scaffold enhanced alkaline phosphatase activity and the intensity of alizarin red staining 1.5 and 1.6 times, respectively, compared to the microfibrous scaffold. Furthermore, the elastic modulus and ultimate tensile strength increased by 268 % and 130 %, respectively, by adding aligned nanofibers to the microfibrous scaffold. Therefore, the hybrid microfibrous composite scaffold of PCL/HA containing aligned electrospun PLLA nanofibers with improved properties showed the potential for bone regeneration.
Collapse
Affiliation(s)
- Alireza Khodabandeh
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, 14115-336 Tehran, Iran
| | - Ali Akbar Yousefi
- Department of Plastics Engineering, Faculty of Polymer Processing, Polymer and Petrochemical Institute, 14965-115 Tehran, Iran
| | - Samira Jafarzadeh-Holagh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-143 Tehran, Iran
| | - Ebrahim Vasheghani-Farahani
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, 14115-336 Tehran, Iran; Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-143 Tehran, Iran.
| |
Collapse
|
3
|
Aliakbarshirazi S, Ghobeira R, Asadian M, Narimisa M, Nikiforov A, De Baere I, Van Paepegem W, De Geyter N, Declercq H, Morent R. Advanced Hollow Cathode Discharge Plasma Treatment of Unique Bilayered Fibrous Nerve Guidance Conduits for Enhanced/Oriented Neurite Outgrowth. Biomacromolecules 2024; 25:1448-1467. [PMID: 38412382 DOI: 10.1021/acs.biomac.3c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.
Collapse
Affiliation(s)
- Sheida Aliakbarshirazi
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Mehrnoush Narimisa
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Ives De Baere
- Mechanics of Materials and Structures (MMS), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark-Zwijnaarde 903, 9052 Zwijnaarde, Belgium
| | - Wim Van Paepegem
- Mechanics of Materials and Structures (MMS), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark-Zwijnaarde 903, 9052 Zwijnaarde, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Kim D, Youn J, Lee J, Kim H, Kim DS. Recent Progress in Fabrication of Electrospun Nanofiber Membranes for Developing Physiological In Vitro Organ/Tissue Models. Macromol Biosci 2023; 23:e2300244. [PMID: 37590903 DOI: 10.1002/mabi.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Nanofiber membranes (NFMs), which have an extracellular matrix-mimicking structure and unique physical properties, have garnered great attention as biomimetic materials for developing physiologically relevant in vitro organ/tissue models. Recent progress in NFM fabrication techniques immensely contributes to the development of NFM-based cell culture platforms for constructing physiological organ/tissue models. However, despite the significance of the NFM fabrication technique, an in-depth discussion of the fabrication technique and its future aspect is insufficient. This review provides an overview of the current state-of-the-art of NFM fabrication techniques from electrospinning techniques to postprocessing techniques for the fabrication of various types of NFM-based cell culture platforms. Moreover, the advantages of the NFM-based culture platforms in the construction of organ/tissue models are discussed especially for tissue barrier models, spheroids/organoids, and biomimetic organ/tissue constructs. Finally, the review concludes with perspectives on challenges and future directions for fabrication and utilization of NFMs.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jisang Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Chen J, Xing Y, Bai X, Xue M, Shi Q, Li B. Strong Bioactive Glass-Based Hybrid Implants with Good Biomineralization Activity Used to Reduce Formation Duration and Improve Biomechanics of Bone Regeneration. Polymers (Basel) 2023; 15:3497. [PMID: 37688122 PMCID: PMC10489730 DOI: 10.3390/polym15173497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Developing bioactive implants with strong mechanical properties and biomineralization activity is critical in bone repair. In this work, modified cellulose nanofiber (mCNF)-reinforced bioactive glass (BG)-polycaprolactone (PCL) hybrids (mCNF-BP) with strong biomechanics and good apatite formation ability were reported. Incorporating mCNFs shortens the forming duration of the hybrid films and enhances the biomechanical performance and in vitro apatite-formation capability. The optimized biomechanical performance of the optimal hybrid materials is produced at a relatively high mCNF content (1.0 wt%), including a considerably higher modulus of elasticity (948.65 ± 74.06 MPa). In addition, the biomineralization activity of mCNF-BP hybrids is also tailored with the increase in the mCNF contents. The mCNF-BP with 1.5 wt% and 2.0 wt% mCNFs demonstrate the best biomineralization activity after immersing in simulated body fluid for 3 days. This study suggests that mCNFs are efficient bioactive additive to reinforce BG-based hybrids' mechanical properties and biomineralization activity.
Collapse
Affiliation(s)
- Jing Chen
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| | - Yonglei Xing
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaozhuan Bai
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| | - Min Xue
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| | - Qi Shi
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| | - Beibei Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| |
Collapse
|
6
|
Wang MT, Pang SW. Enhancing Nasopharyngeal Carcinoma Cell Separation with Selective Fibronectin Coating and Topographical Modification on Polydimethylsiloxane Scaffold Platforms. Int J Mol Sci 2023; 24:12409. [PMID: 37569784 PMCID: PMC10418797 DOI: 10.3390/ijms241512409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The extracellular matrix (ECM) serves as a complex scaffold with diverse physical dimensions and surface properties influencing NPC cell migration. Polydimethylsiloxane (PDMS), a widely used biocompatible material, is hydrophobic and undesirable for cell seeding. Thus, the establishment of a biomimetic model with varied topographies and surface properties is essential for effective NPC43 cell separation from NP460 cells. This study explored how ECM surface properties influence NP460 and NPC43 cell behaviors via plasma treatments and chemical modifications to alter the platform surface. In addition to the conventional oxygen/nitrogen (O2/N2) plasma treatment, O2 and argon plasma treatments were utilized to modify the platform surface, which increased the hydrophilicity of the PDMS platforms, resulting in enhanced cell adhesion. (3-aminopropyl)triethoxysilane and fibronectin (FN) were used to coat the PDMS platforms uniformly and selectively. The chemical coatings significantly affected cell motility and spreading, as cells exhibited faster migration, elongated cell shapes, and larger spreading areas on FN-coated surfaces. Furthermore, narrower top layer trenches with 5 µm width and a lower concentration of 10 µg/mL FN were coated selectively on the platforms to limit NP460 cell movements and enhance NPC43 cell separation efficiency. A significantly high separation efficiency of 99.4% was achieved on the two-layer scaffold platform with 20/5 µm wide ridge/trench (R/T) as the top layer and 40/10 µm wide R/T as the bottom layer, coupling with 10 µg/mL FN selectively coated on the sidewalls of the top and bottom layers. This work demonstrated an innovative application of selective FN coating to direct cell behavior, offering a new perspective to probe into the subtleties of NPC cell separation efficiency. Moreover, this cost-effective and compact microsystem sets a new benchmark for separating cancer cells.
Collapse
Affiliation(s)
| | - S. W. Pang
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China;
| |
Collapse
|
7
|
Janů L, Dvořáková E, Polášková K, Buchtelová M, Ryšánek P, Chlup Z, Kruml T, Galmiz O, Nečas D, Zajíčková L. Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric. Polymers (Basel) 2023; 15:polym15071686. [PMID: 37050300 PMCID: PMC10097108 DOI: 10.3390/polym15071686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Excellent adhesion of electrospun nanofiber (NF) to textile support is crucial for a broad range of their bioapplications, e.g., wound dressing development. We compared the effect of several low- and atmospheric pressure plasma modifications on the adhesion between two parts of composite—polycaprolactone (PCL) nanofibrous mat (functional part) and polypropylene (PP) spunbond fabric (support). The support fabrics were modified before electrospinning by low-pressure plasma oxygen treatment or amine plasma polymer thin film or treated by atmospheric pressure plasma slit jet (PSJ) in argon or argon/nitrogen. The adhesion was evaluated by tensile test and loop test adapted for thin NF mat measurement and the trends obtained by both tests largely agreed. Although all modifications improved the adhesion significantly (at least twice for PSJ treatments), low-pressure oxygen treatment showed to be the most effective as it strengthened adhesion by a factor of six. The adhesion improvement was ascribed to the synergic effect of high treatment homogeneity with the right ratio of surface functional groups and sufficient wettability. The low-pressure modified fabric also stayed long-term hydrophilic (ten months), even though surfaces usually return to a non-wettable state (hydrophobic recovery). In contrast to XPS, highly surface-sensitive water contact angle measurement proved suitable for monitoring subtle surface changes.
Collapse
Affiliation(s)
- Lucie Janů
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Correspondence: (L.J.); (L.Z.)
| | - Eva Dvořáková
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Kateřina Polášková
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Martina Buchtelová
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Petr Ryšánek
- Faculty of Science, J.E. Purkyně University, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
| | - Zdeněk Chlup
- Institute of Physics of Materials, The Czech Academy of Sciences, Žižkova 22, 616 00 Brno, Czech Republic
| | - Tomáš Kruml
- Institute of Physics of Materials, The Czech Academy of Sciences, Žižkova 22, 616 00 Brno, Czech Republic
| | - Oleksandr Galmiz
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - David Nečas
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Lenka Zajíčková
- Plasma Technologies for Materials, Central European Institute of Technology—CEITEC, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Department of Theoretical and Experimental Electrical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 12, 616 00 Brno, Czech Republic
- Correspondence: (L.J.); (L.Z.)
| |
Collapse
|
8
|
Optimization of Parylene C and Parylene N thin films for use in cellular co-culture and tissue barrier models. Sci Rep 2023; 13:4262. [PMID: 36918711 PMCID: PMC10015097 DOI: 10.1038/s41598-023-31305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Parylene has been used widely used as a coating on medical devices. It has also been used to fabricate thin films and porous membranes upon which to grow cells. Porous membranes are integral components of in vitro tissue barrier and co-culture models, and their interaction with cells and tissues affects the performance and physiological relevance of these model systems. Parylene C and Parylene N are two biocompatible Parylene variants with potential for use in these models, but their effect on cellular behavior is not as well understood as more commonly used cell culture substrates, such as tissue culture treated polystyrene and glass. Here, we use a simple approach for benchtop oxygen plasma treatment and investigate the changes in cell spreading and extracellular matrix deposition as well as the physical and chemical changes in material surface properties. Our results support and build on previous findings of positive effects of plasma treatment on Parylene biocompatibility while showing a more pronounced improvement for Parylene C compared to Parylene N. We measured relatively minor changes in surface roughness following plasma treatments, but significant changes in oxygen concentration at the surface persisted for 7 days and was likely the dominant factor in improving cellular behavior. Overall, this study offers facile and relatively low-cost plasma treatment protocols that provide persistent improvements in cell-substrate interactions on Parylene that match and exceed tissue culture polystyrene.
Collapse
|
9
|
Ghobeira R, Wieringa P, Van Vrekhem S, Aliakbarshirazi S, Narimisa M, Onyshchenko Y, De Geyter N, Moroni L, Morent R. Multifaceted polymeric nerve guidance conduits with distinctive double-layered architecture and plasma-induced inner chemistry gradient for the repair of critical-sized defects. BIOMATERIALS ADVANCES 2022; 143:213183. [PMID: 36371971 DOI: 10.1016/j.bioadv.2022.213183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Despite tissue engineering advances, current nerve guidance conduits (NGCs) are still failing in repairing critical-sized defects. This study aims, therefore, at tackling large nerve gaps (2 cm) by designing NGCs possessing refined physicochemical properties enhancing the activity of Schwann cells (SCs) that support nerve regeneration over long distances. As such, a combinatorial strategy adopting novel plasma-induced surface chemistry and architectural heterogeneity was considered. A mechanically suitable copolymer (Polyactive®) was electrospun to produce nanofibrous NGCs mimicking the extracellular matrix. An innovative seamless double-layered architecture consisting of an inner wall comprised of bundles of aligned fibers with intercalated random fibers and an outer wall fully composed of random fibers was conceived to synergistically provide cell guidance cues and sufficient nutrient inflow. NGCs were subjected to argon plasma treatments using a dielectric barrier discharge (DBD) and a plasma jet (PJ). Surface chemical changes were examined by advanced X-ray photoelectron spectroscopy (XPS) micro-mappings. The DBD homogeneously increased the surface oxygen content from 17 % to 28 % on the inner wall. The PJ created a gradient chemistry throughout the inner wall with an oxygen content gradually increasing from 21 % to 30 %. In vitro studies revealed enhanced primary SC adhesion, elongation and proliferation on plasma-treated NGCs. A cell gradient was observed on the PJ-treated NGCs thus underlining the favorable oxygen gradient in promoting cell chemotaxis. A gradual change from circular to highly elongated SC morphologies mimicking the bands of Büngner was visualized along the gradient. Overall, plasma-treated NGCs are promising candidates paving the way towards critical nerve gap repair.
Collapse
Affiliation(s)
- Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium.
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands
| | - Stijn Van Vrekhem
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Sheida Aliakbarshirazi
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Mehrnoush Narimisa
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Yuliia Onyshchenko
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Imashiro C, Mei J, Friend J, Takemura K. Quantifying cell adhesion through forces generated by acoustic streaming. ULTRASONICS SONOCHEMISTRY 2022; 90:106204. [PMID: 36257212 PMCID: PMC9583098 DOI: 10.1016/j.ultsonch.2022.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The strength of cell adhesion is important in understanding the cell's health and in culturing them. Quantitative measurement of cell adhesion strength is a significant challenge in bioengineering research. For this, the present study describes a system that can measure cell adhesion strength using acoustic streaming induced by Lamb waves. Cells are cultured on an ultrasound transducer using a range of preculture and incubation times with phosphate-buffered saline (PBS) just before the measurement. Acoustic streaming is then induced using several Lamb wave intensities, exposing the cells to shear flows and eventually detaching them. By relying upon a median detachment rate of 50 %, the corresponding detachment force, or force of cell adhesion, was determined to be on the order of several nN, consistent with previous reports. The stronger the induced shear flow, the more cells were detached. Further, we employed a preculture time of 8 to 24 h and a PBS incubation time of 0 to 60 min, producing cell adhesion forces that varied from 1.2 to 13 nN. Hence, the developed system can quantify cell adhesion strength over a wide range, possibly offering a fundamental tool for cell-based bioengineering.
Collapse
Affiliation(s)
- Chikahiro Imashiro
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Jiyang Mei
- Medically Advanced Devices Laboratory, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California, San Diego, CA 92093, USA
| | - James Friend
- Medically Advanced Devices Laboratory, Center for Medical Devices, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Kenjiro Takemura
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
11
|
Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022; 14:polym14122307. [PMID: 35745883 PMCID: PMC9229900 DOI: 10.3390/polym14122307] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Changes of a material biointerface allow for specialized cell signaling and diverse biological responses. Biomaterials incorporating immobilized bioactive ligands have been widely introduced and used for tissue engineering and regenerative medicine applications in order to develop biomaterials with improved functionality. Furthermore, a variety of physical and chemical techniques have been utilized to improve biomaterial functionality, particularly at the material interface. At the interface level, the interactions between materials and cells are described. The importance of surface features in cell function is then examined, with new strategies for surface modification being highlighted in detail.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
| | - Stefan Ursache
- Innovative Green Power, No. 5 Iancu Bacalu Street, 700029 Iasi, Romania;
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- Correspondence:
| |
Collapse
|
12
|
Cheesbrough A, Sciscione F, Riccio F, Harley P, R'Bibo L, Ziakas G, Darbyshire A, Lieberam I, Song W. Biobased Elastomer Nanofibers Guide Light-Controlled Human-iPSC-Derived Skeletal Myofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110441. [PMID: 35231133 PMCID: PMC9131876 DOI: 10.1002/adma.202110441] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/25/2022] [Indexed: 05/07/2023]
Abstract
Generating skeletal muscle tissue that mimics the cellular alignment, maturation, and function of native skeletal muscle is an ongoing challenge in disease modeling and regenerative therapies. Skeletal muscle cultures require extracellular guidance and mechanical support to stabilize contractile myofibers. Existing microfabrication-based solutions are limited by complex fabrication steps, low throughput, and challenges in measuring dynamic contractile function. Here, the synthesis and characterization of a new biobased nanohybrid elastomer, which is electrospun into aligned nanofiber sheets to mimic the skeletal muscle extracellular matrix, is presented. The polymer exhibits remarkable hyperelasticity well-matched to that of native skeletal muscle (≈11-50 kPa), with ultimate strain ≈1000%, and elastic modulus ≈25 kPa. Uniaxially aligned nanofibers guide myoblast alignment, enhance sarcomere formation, and promote a ≈32% increase in myotube fusion and ≈50% increase in myofiber maturation. The elastomer nanofibers stabilize optogenetically controlled human induced pluripotent stem cell derived skeletal myofibers. When activated by blue light, the myofiber-nanofiber hybrid constructs maintain a significantly higher (>200%) contraction velocity and specific force (>280%) compared to conventional culture methods. The engineered myofibers exhibit a power density of ≈35 W m-3 . This system is a promising new skeletal muscle tissue model for applications in muscular disease modeling, drug discovery, and muscle regeneration.
Collapse
Affiliation(s)
- Aimee Cheesbrough
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Fabiola Sciscione
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Federica Riccio
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Peter Harley
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Lea R'Bibo
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Georgios Ziakas
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Arnold Darbyshire
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Ivo Lieberam
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| |
Collapse
|
13
|
Can‐Herrera LA, Oliva AI, Cervantes‐Uc JM. Enhancement of chemical, physical, and surface properties of electrospun
PCL
/
PLA
blends by means of air plasma treatment. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Andrés Iván Oliva
- Departamento de Física Aplicada CINVESTAV‐IPN, Unidad Mérida Mérida Yucatán Mexico
| | | |
Collapse
|
14
|
Capuana E, Lopresti F, Ceraulo M, La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers (Basel) 2022; 14:1153. [PMID: 35335484 PMCID: PMC8955974 DOI: 10.3390/polym14061153] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering (TE) field, both for in vitro and in vivo application. Among them, poly-l-lactic acid (PLLA) has been highlighted as a biomaterial with tunable mechanical properties and biodegradability that allows for the fabrication of porous scaffolds with different micro/nanostructures via various approaches. In this review, we discuss the structure of PLLA, its main properties, and the most recent advances in overcoming its hydrophobic, synthetic nature, which limits biological signaling and protein absorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combined with other biomaterials, such as natural or synthetic polymers and bioceramics. Further, various fabrication technologies, such as phase separation, electrospinning, and 3D printing, of PLLA-based scaffolds are scrutinized along with the in vitro and in vivo applications employed in various tissue repair strategies. Overall, this review focuses on the properties and applications of PLLA in the TE field, finally affording an insight into future directions and challenges to address an effective improvement of scaffold properties.
Collapse
Affiliation(s)
- Elisa Capuana
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Manuela Ceraulo
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (M.C.); (V.L.C.)
- ATeN Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
15
|
Abdel Khalek MA, Abdel Gaber SA, El-Domany RA, El-Kemary MA. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ciprofloxacin nanofibers for chronic wound healing. Int J Biol Macromol 2021; 193:1752-1766. [PMID: 34774864 DOI: 10.1016/j.ijbiomac.2021.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to synthesize cellulose acetate (CA)-based electrospun nanofibers as drug delivery dressings for chronic wound healing. For the first time, CA was blended with polyethylene oxide (PEO) using acetone and formic acid. Methylene blue (MB) was incorporated into monolayered random CA/PEO nanofibers. They had a diameter of 400-600 nm, were hydrophilic, and generated reactive oxygen species upon irradiation. Thus, they mediated antimicrobial photodynamic inactivation (aPDI) against isolated biofilm-forming Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Bacterial survival, biofilm mass, and produced pyocyanin of the treated groups declined by 90%, 80%, and 3 folds, respectively. On the other hand, ciprofloxacin (Cipro) was loaded into an innovative trilayered aligned nanofiber consisting of CA/PEO surrounding a blank layer of silk fibroin. Cipro and MB release followed the Korsmeyer-Peppas model. An infected diabetic wound mouse model was established and treated with either MB-aPDI or Cipro. A combined therapy group of MB-aPDI followed by Cipro was included. The combined therapy showed significantly better results than monotherapies delineated by elevation in re-epithelization, collagen deposition, CD34, and TGF-β expression, along with a decline in CD95+ cells. This study deduced that drug-loaded CA electrospun nanofibers might be exploited in multimodal chronic wound healing.
Collapse
Affiliation(s)
- Mohamed A Abdel Khalek
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Maged A El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
16
|
Abstract
Abstract
Chitosan is a biopolymer originating from renewable resources, with great properties which make it an attractive candidate for plenty of applications of contemporary interest. By manufacturing chitosan into nanofibers using the electrospinning method, its potential is amplified due to the enhancement of the active surface and the low preparation cost. Many attempts were made with the aim of preparing chitosan-based nanofibers with controlled morphology targeting their use for tissue engineering, wound healing, food packaging, drug delivery, air and water purification filters. This was a challenging task, which resulted in a high amount of data, sometimes with apparent contradictory results. In this light, the goal of the paper is to present the main routes reported in the literature for chitosan electrospinning, stressing the advantages and disadvantages of each of them. Special emphasis is placed on the influence of various electrospinning parameters on the morphological characteristics of the fibers and their suitability for distinct applications.
Collapse
|
17
|
Morelli A, Hawker MJ. Utilizing Radio Frequency Plasma Treatment to Modify Polymeric Materials for Biomedical Applications. ACS Biomater Sci Eng 2021. [PMID: 33913325 DOI: 10.1021/acsbiomaterials.0c01673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studies that utilize radio frequency plasma modification as a strategy to tune the surface properties of polymeric constructs with the goal of enhancing their use as biomedical devices have grown considerably in number over the past decade. In this Review, we present the importance of plasma surface treatment to biomedical applications, including tissue engineering and wound healing. First, we introduce several key polymeric materials of interest for use as biomaterials, including those that are naturally derived and synthetic. We, then, provide an overview of possible outcomes of plasma modification, such as surface activation, etching, and deposition of a thin film, all of which can be used to alter the surface properties of a given polymer. Following this discussion, we review the methods used to characterize plasma-treated polymer surface properties, as well as the techniques used to evaluate their interactions with biological species of interest such as mammalian cells, bacteria, and blood components. To close, we provide a perspective on future outlooks of this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Alyssa Morelli
- Department of Chemistry and Biochemistry, California State University Fresno, 2555 East San Ramon Avenue, MS SB70 Fresno, California 93740, United States
| | - Morgan J Hawker
- Department of Chemistry and Biochemistry, California State University Fresno, 2555 East San Ramon Avenue, MS SB70 Fresno, California 93740, United States
| |
Collapse
|
18
|
Sarkhosh H, Nourany M, Noormohammadi F, Ranjbar HA, Zakizadeh M, Javadzadeh M. Development of a semi-crystalline hybrid polyurethane nanocomposites for hMSCs cell culture and evaluation of body- temperature shape memory performance and isothermal crystallization kinetics. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02522-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Birhanu G, Doosti-Telgerd M, Zandi-Karimi A, Karimi Z, Porgham Daryasari M, Akbari Javar H, Seyedjafari E. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells by diopside coated Poly-L-lactic Acid-Based nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1879078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gebremariam Birhanu
- Department of Biotechnology, University of Tehran, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, International campus (TUMS-IC), Tehran, Iran
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mehdi Doosti-Telgerd
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zohreh Karimi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Porgham Daryasari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, International campus (TUMS-IC), Tehran, Iran
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, International campus (TUMS-IC), Tehran, Iran
| | | |
Collapse
|
20
|
Esbah Tabaei PS, Asadian M, Ghobeira R, Cools P, Thukkaram M, Derakhshandeh PG, Abednatanzi S, Van Der Voort P, Verbeken K, Vercruysse C, Declercq H, Morent R, De Geyter N. Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering. Carbohydr Polym 2021; 253:117211. [DOI: 10.1016/j.carbpol.2020.117211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
|
21
|
Abstract
Tissue engineering refers to the attempt to create functional human tissue from cells in a laboratory. This is a field that uses living cells, biocompatible materials, suitable biochemical and physical factors, and their combinations to create tissue-like structures. To date, no tissue engineered skeletal muscle implants have been developed for clinical use, but they may represent a valid alternative for the treatment of volumetric muscle loss in the near future. Herein, we reviewed the literature and showed different techniques to produce synthetic tissues with the same architectural, structural and functional properties as native tissues.
Collapse
|
22
|
Park S, Kim JE, Han J, Jeong S, Lim JW, Lee MC, Son H, Kim HB, Choung YH, Seonwoo H, Chung JH, Jang KJ. 3D-Printed Poly(ε-Caprolactone)/Hydroxyapatite Scaffolds Modified with Alkaline Hydrolysis Enhance Osteogenesis In Vitro. Polymers (Basel) 2021; 13:257. [PMID: 33466736 PMCID: PMC7830212 DOI: 10.3390/polym13020257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/22/2023] Open
Abstract
The 3D-printed bioactive ceramic incorporated Poly(ε-caprolactone) (PCL) scaffolds show great promise as synthetic bone graft substitutes. However, 3D-printed scaffolds still lack adequate surface properties for cells to be attached to them. In this study, we modified the surface characteristics of 3D-printed poly(ε-caprolactone)/hydroxyapatite scaffolds using O2 plasma and sodium hydroxide. The surface property of the alkaline hydrolyzed and O2 plasma-treated PCL/HA scaffolds were evaluated using field-emission scanning microscopy (FE-SEM), Alizarin Red S (ARS) staining, and water contact angle analysis, respectively. The in vitro behavior of the scaffolds was investigated using human dental pulp-derived stem cells (hDPSCs). Cell proliferation of hDPSCs on the scaffolds was evaluated via immunocytochemistry (ICC) and water-soluble tetrazolium salt (WST-1) assay. Osteogenic differentiation of hDPSCs on the scaffolds was further investigated using ARS staining and Western blot analysis. The result of this study shows that alkaline treatment is beneficial for exposing hydroxyapatite particles embedded in the scaffolds compared to O2 plasma treatment, which promotes cell proliferation and differentiation of hDPSCs.
Collapse
Affiliation(s)
- Sangbae Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; (S.P.); (S.J.); (J.W.L.); (M.C.L.); (H.S.); (H.B.K.)
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.E.K.); (J.H.)
| | - Jinsub Han
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.E.K.); (J.H.)
- BK21 Global Smart Farm Educational Research Center, Seoul National University, Seoul 08826, Korea
| | - Seung Jeong
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; (S.P.); (S.J.); (J.W.L.); (M.C.L.); (H.S.); (H.B.K.)
| | - Jae Woon Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; (S.P.); (S.J.); (J.W.L.); (M.C.L.); (H.S.); (H.B.K.)
| | - Myung Chul Lee
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; (S.P.); (S.J.); (J.W.L.); (M.C.L.); (H.S.); (H.B.K.)
| | - Hyunmok Son
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; (S.P.); (S.J.); (J.W.L.); (M.C.L.); (H.S.); (H.B.K.)
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea; (S.P.); (S.J.); (J.W.L.); (M.C.L.); (H.S.); (H.B.K.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Korea
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.E.K.); (J.H.)
- BK21 Global Smart Farm Educational Research Center, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyoung-Je Jang
- Division of Agro-System Engineering, College of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
23
|
Narrow pH response multilayer films with controlled release of ibuprofen on magnesium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111414. [PMID: 33255016 DOI: 10.1016/j.msec.2020.111414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/28/2022]
Abstract
An intelligent narrow pH-triggered multilayer film was prepared on magnesium alloys, aiming to solve the implant infections during the implantation period and improve the corrosion resistance of magnesium alloys. The encapsulation of ibuprofen by chitosan (IBU@CS) makes the release of IBU sensitive to narrow pH (pH 6.8-7.4). Positive charged IBU@CS was assembled with heparin (Hep) to fabricate (Hep/IBU@CS)10 film on AZ31 alloys using layer-by-layer method. The microstructure, composition and anticorrosion properties of the film were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and electrochemical experiments. Cellular activity was studied by MTT cell viability assay. The results showed that the Hep/IBU@CS multilayer films improved the corrosion resistance of magnesium alloys. The in vitro test demonstrated that the release of IBU in the film presented narrow pH sensitivity. The films showed no obvious signs of cytotoxicity conformed by the MTT assay and presented antibacterial properties. These preliminary results demonstrate the potential use of the Hep/IBU@CS multilayer films on magnesium-based implants.
Collapse
|
24
|
Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Wang
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
25
|
El Khatib M, Mauro A, Wyrwa R, Di Mattia M, Turriani M, Di Giacinto O, Kretzschmar B, Seemann T, Valbonetti L, Berardinelli P, Schnabelrauch M, Barboni B, Russo V. Fabrication and Plasma Surface Activation of Aligned Electrospun PLGA Fiber Fleeces with Improved Adhesion and Infiltration of Amniotic Epithelial Stem Cells Maintaining their Teno-inductive Potential. Molecules 2020; 25:E3176. [PMID: 32664582 PMCID: PMC7396982 DOI: 10.3390/molecules25143176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this study, electrospun PLGA with highly aligned microfibers were cold atmospheric plasma (CAP)-treated by varying the treatment exposure time (30, 60, and 90 s) and the working distance (1.3 and 1.7 cm) and characterized by their physicochemical, mechanical and bioactive properties on ovine amniotic epithelial cells (oAECs). CAP improved the hydrophilic properties of the treated materials due to the incorporation of new oxygen polar functionalities on the microfibers' surface especially when increasing treatment exposure time and lowering working distance. The mechanical properties, though, were affected by the treatment exposure time where the optimum performance was obtained after 60 s. Furthermore, CAP treatment did not alter oAECs' biocompatibility and improved cell adhesion and infiltration onto the microfibers especially those treated from a distance of 1.3 cm. Moreover, teno-inductive potential of highly aligned PLGA electrospun microfibers was maintained. Indeed, cells cultured onto the untreated and CAP treated microfibers differentiated towards the tenogenic lineage expressing tenomodulin, a mature tendon marker, in their cytoplasm. In conclusion, CAP treatment on PLGA microfibers conducted at 1.3 cm working distance represent the optimum conditions to activate PLGA surface by improving their hydrophilicity and cell bio-responsiveness. Since for tendon tissue engineering purposes, both high cell adhesion and mechanical parameters are crucial, PLGA treated for 60 s at 1.3 cm was identified as the optimal construct.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Björn Kretzschmar
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Thomas Seemann
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| |
Collapse
|
26
|
Černochová P, Blahová L, Medalová J, Nečas D, Michlíček M, Kaushik P, Přibyl J, Bartošíková J, Manakhov A, Bačáková L, Zajíčková L. Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Sci Rep 2020; 10:9357. [PMID: 32518261 PMCID: PMC7283471 DOI: 10.1038/s41598-020-65889-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023] Open
Abstract
Our previously-obtained impressive results of highly increased C2C12 mouse myoblast adhesion to amine plasma polymers (PPs) motivated current detailed studies of cell resistance to trypsinization, cell proliferation, motility, and the rate of attachment carried out for fibroblasts (LF), keratinocytes (HaCaT), rat vascular smooth muscle cells (VSMC), and endothelial cells (HUVEC, HSVEC, and CPAE) on three different amine PPs. We demonstrated the striking difference in the resistance to trypsin treatment between endothelial and non-endothelial cells. The increased resistance observed for the non-endothelial cell types was accompanied by an increased rate of cellular attachment, even though spontaneous migration was comparable to the control, i.e., to the standard cultivation surface. As demonstrated on LF fibroblasts, the resistance to trypsin was similar in serum-supplemented and serum-free media, i.e., medium without cell adhesion-mediating proteins. The increased cell adhesion was also confirmed for LF cells by an independent technique, single-cell force spectroscopy. This method, as well as the cell attachment rate, proved the difference among the plasma polymers with different amounts of amine groups, but other investigated techniques could not reveal the differences in the cell behaviour on different amine PPs. Based on all the results, the increased resistance to trypsinization of C2C12, LF, HaCaT, and VSMC cells on amine PPs can be explained most probably by a non-specific cell adhesion such as electrostatic interaction between the cells and amine groups on the material surface, rather than by the receptor-mediated adhesion through serum-derived proteins adsorbed on the PPs.
Collapse
Affiliation(s)
- P Černochová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - L Blahová
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - J Medalová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - D Nečas
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Central European Institute of Technology - CEITEC, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - M Michlíček
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - P Kaushik
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - J Přibyl
- Core Facility Nanobiotechnology, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - J Bartošíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - A Manakhov
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,Research Institute of Clinical and Experimental Lymphology- Branch of the ICG SB RAS, 2 Timakova str., 630060, Novosibirsk, Russian Federation
| | - L Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 20, Czech Republic
| | - L Zajíčková
- RG Plasma Technologies, Central European Institute of Technology - CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic. .,Central European Institute of Technology - CEITEC, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic. .,Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| |
Collapse
|
27
|
Functional Micro- and Nanofibers Obtained by Nonwoven Post-Modification. Polymers (Basel) 2020; 12:polym12051087. [PMID: 32397603 PMCID: PMC7285086 DOI: 10.3390/polym12051087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Micro- and nanofibers are historically-known materials that are continuously reinvented due to their valuable properties. They display promise for applications in many fields, from tissue engineering to catalysis or sensors. In the first application, micro- and nanofibers are mainly produced from a limited library of biomaterials with properties that need alteration before use. Post-modification is a very effective method for attaining on-demand features and functions of nonwovens. This review summarizes and presents methods of functionalization of nonwovens produced by electrostatic means. The reviewed modifications are grouped into physical methods, chemical modification, and mixed methods.
Collapse
|
28
|
Krysiak ZJ, Gawlik MZ, Knapczyk-Korczak J, Kaniuk Ł, Stachewicz U. Hierarchical Composite Meshes of Electrospun PS Microfibers with PA6 Nanofibers for Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1974. [PMID: 32340243 PMCID: PMC7216289 DOI: 10.3390/ma13081974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023]
Abstract
One of the most frequently applied polymers in regenerative medicine is polystyrene (PS), which is commonly used as a flat surface and requires surface modifications for cell culture study. Here, hierarchical composite meshes were fabricated via electrospinning PS with nylon 6 (PA6) to obtain enhanced cell proliferation, development, and integration with nondegradable polymer fibers. The biomimetic approach of designed meshes was verified with a scanning electron microscope (SEM) and MTS assay up to 7 days of cell culture. In particular, adding PA6 nanofibers changes the fibroblast attachment to meshes and their development, which can be observed by cell flattening, filopodia formation, and spreading. The proposed single-step manufacturing of meshes controlled the surface properties and roughness of produced composites, allowing governing cell behavior. Within this study, we show the alternative engineering of nondegradable meshes without post-treatment steps, which can be used in various applications in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | - Urszula Stachewicz
- International Center of Electron Microscopy for Material Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Cracow, Poland; (Z.J.K.); (M.Z.G.); (J.K.-K.); (Ł.K.)
| |
Collapse
|
29
|
Keirouz A, Radacsi N, Ren Q, Dommann A, Beldi G, Maniura-Weber K, Rossi RM, Fortunato G. Nylon-6/chitosan core/shell antimicrobial nanofibers for the prevention of mesh-associated surgical site infection. J Nanobiotechnology 2020; 18:51. [PMID: 32188479 PMCID: PMC7081698 DOI: 10.1186/s12951-020-00602-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The state-of-the-art hernia meshes, used in hospitals for hernia repair, are predominantly polymeric textile-based constructs that present high mechanical strength, but lack antimicrobial properties. Consequently, preventing bacterial colonization of implanted prosthetic meshes is of major clinical relevance for patients undergoing hernia repair. In this study, the co-axial electrospinning technique was investigated for the development of a novel mechanically stable structure incorporating dual drug release antimicrobial action. Core/shell structured nanofibers were developed, consisting of Nylon-6 in the core, to provide the appropriate mechanical stability, and Chitosan/Polyethylene oxide in the shell to provide bacteriostatic action. The core/shell structure consisted of a binary antimicrobial system incorporating 5-chloro-8-quinolinol in the chitosan shell, with the sustained release of Poly(hexanide) from the Nylon-6 core of the fibers. Homogeneous nanofibers with a "beads-in-fiber" architecture were observed by TEM, and validated by FTIR and XPS. The composite nanofibrous meshes significantly advance the stress-strain responses in comparison to the counterpart single-polymer electrospun meshes. The antimicrobial effectiveness was evaluated in vitro against two of the most commonly occurring pathogenic bacteria; S. aureus and P. aeruginosa, in surgical site infections. This study illustrates how the tailoring of core/shell nanofibers can be of interest for the development of active antimicrobial surfaces.
Collapse
Affiliation(s)
- Antonios Keirouz
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Alex Dommann
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Visceral Surgery, Inselspital University Hospital Bern and University Bern, Freiburgstrasse 18, CH-3010, Bern, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - René M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| |
Collapse
|
30
|
Asadian M, Chan KV, Norouzi M, Grande S, Cools P, Morent R, De Geyter N. Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E119. [PMID: 31936372 PMCID: PMC7023287 DOI: 10.3390/nano10010119] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
This paper provides a comprehensive overview of nanofibrous structures for tissue engineering purposes and the role of non-thermal plasma technology (NTP) within this field. Special attention is first given to nanofiber fabrication strategies, including thermally-induced phase separation, molecular self-assembly, and electrospinning, highlighting their strengths, weaknesses, and potentials. The review then continues to discuss the biodegradable polyesters typically employed for nanofiber fabrication, while the primary focus lies on their applicability and limitations. From thereon, the reader is introduced to the concept of NTP and its application in plasma-assisted surface modification of nanofibrous scaffolds. The final part of the review discusses the available literature on NTP-modified nanofibers looking at the impact of plasma activation and polymerization treatments on nanofiber wettability, surface chemistry, cell adhesion/proliferation and protein grafting. As such, this review provides a complete introduction into NTP-modified nanofibers, while aiming to address the current unexplored potentials left within the field.
Collapse
Affiliation(s)
- Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Ke Vin Chan
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Mohammad Norouzi
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada;
| | - Silvia Grande
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Pieter Cools
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, B-9000 Ghent, Belgium; (K.V.C.); (S.G.); (P.C.); (R.M.); (N.D.G.)
| |
Collapse
|
31
|
Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids Surf B Biointerfaces 2019; 188:110713. [PMID: 31884080 DOI: 10.1016/j.colsurfb.2019.110713] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
Electrospinning is a common method to prepare nanofiber scaffolds for tissue engineering. One of the common cellulose esters, cellulose acetate butyrate (CAB), has been electrospun into nanofibers and studied. However, the intrinsic hydrophobicity of CAB limits its application in tissue engineering as it retards cell adhesion. In this study, the properties of CAB nanofibers were improved by fabricating the composite nanofibers made of CAB and hydrophilic polyethylene glycol (PEG). Different ratios of CAB to PEG were tested and only the ratio of 2:1 resulted in smooth and bead-free nanofibers. The tensile test results show that CAB/PEG composite nanofibers have 2-fold higher tensile strength than pure CAB nanofibers. The hydrophobicity of the composite nanofibers was also reduced based on the water contact angle analysis. As the hydrophilicity increases, the swelling ability of the composite nanofiber increases by 2-fold with more rapid biodegradation. The biocompatibility of the nanofibers was tested with normal human dermal fibroblasts (NHDF). The cell viability assay results revealed that the nanofibers are non-toxic. In addition to that, CAB/PEG nanofibers have better cell attachment compared to pure CAB nanofibers. Based on this study, CAB/PEG composite nanofibers could potentially be used as a nanofiber scaffold for applications in tissue engineering.
Collapse
Affiliation(s)
- Hui-Li Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Pooria Pasbakhsh
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Yau-Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Janarthanan Pushpamalar
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
32
|
Nemati S, Kim SJ, Shin YM, Shin H. Current progress in application of polymeric nanofibers to tissue engineering. NANO CONVERGENCE 2019; 6:36. [PMID: 31701255 PMCID: PMC6838281 DOI: 10.1186/s40580-019-0209-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
Tissue engineering uses a combination of cell biology, chemistry, and biomaterials to fabricate three dimensional (3D) tissues that mimic the architecture of extracellular matrix (ECM) comprising diverse interwoven nanofibrous structure. Among several methods for producing nanofibrous scaffolds, electrospinning has gained intense interest because it can make nanofibers with a porous structure and high specific surface area. The processing and solution parameters of electrospinning can considerably affect the assembly and structural morphology of the fabricated nanofibers. Electrospun nanofibers can be made from natural or synthetic polymers and blending them is a straightforward way to tune the functionality of the nanofibers. Furthermore, the electrospun nanofibers can be functionalized with various surface modification strategies. In this review, we highlight the latest achievements in fabricating electrospun nanofibers and describe various ways to modify the surface and structure of scaffolds to promote their functionality. We also summarize the application of advanced polymeric nanofibrous scaffolds in the regeneration of human bone, cartilage, vascular tissues, and tendons/ligaments.
Collapse
Affiliation(s)
- Sorour Nemati
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
| | - Se-jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
| | - Young Min Shin
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
| |
Collapse
|
33
|
Szewczyk PK, Metwally S, Krysiak ZJ, Kaniuk Ł, Karbowniczek JE, Stachewicz U. Enhanced osteoblasts adhesion and collagen formation on biomimetic polyvinylidene fluoride (PVDF) films for bone regeneration. Biomed Mater 2019; 14:065006. [DOI: 10.1088/1748-605x/ab3c20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110085. [PMID: 31546386 PMCID: PMC6892254 DOI: 10.1016/j.msec.2019.110085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/22/2022]
Abstract
Bone and cartilage craniofacial defects due to trauma or congenital deformities pose a difficult problem for reconstructive surgeons. Human adipose stem cells (ADSCs) can differentiate into bone and cartilage and together with suitable scaffolds could provide a promising system for skeletal tissue engineering. It has been suggested that nanomaterials can direct cell behavior depending on their surface nanotopographies. Thus, this study examined whether by altering a nanoscaffold surface using radiofrequency to excite gases, argon (Ar), nitrogen (N2) and oxygen (O2) with a single step technique, we could enhance the osteogenic and chondrogenic potential of ADSCs. At 24 h, Ar modification promoted the highest increase in ADSCs adhesion as indicated by upregulation of vinculin and focal adhesion kinase (FAK) expression compared to O2 and N2 scaffolds. Furthermore, ADSCs on Ar-modified nanocomposite polymer POSS-PCU scaffolds upregulated expression of bone markers, alkaline phosphatase, collagen I and osteocalcin after 3 weeks. Cartilage markers, aggrecan and collagen II, were also upregulated on Ar-modified scaffolds at the mRNA and protein level. Finally, all plasma treated scaffolds supported tissue ingrowth and angiogenesis after grafting onto the chick chorioallantoic membrane. Ar promoted greater expression of vascular endothelial growth factor and laminin in ovo compared to O2 and N2 scaffolds as shown by immunohistochemistry. This study provides an important understanding into which surface chemistries best support the osteogenic and chondrogenic differentiation of ADSCs that could be harnessed for regenerative skeletal applications. Argon surface modification is a simple tool that can promote ADSC skeletal differentiation that is easily amenable to translation into clinical practice. Bone and cartilage craniofacial defects due to trauma or congenital deformities pose a challenging problem for reconstructive surgeons. Nanomaterials can direct adipose derived stem cell (ADSC) differentiation depending on their surface nanotopographies. This study demonstrates that Argon surface modification improve the chondrogenesis and osteogenesis of ADSCs. Argon surface modification is a tool that can upregulate ADSC skeletal differentiation and is amenable to translation into clinical practice.
Collapse
|
35
|
Roi A, Ardelean LC, Roi CI, Boia ER, Boia S, Rusu LC. Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2296. [PMID: 31323766 PMCID: PMC6679077 DOI: 10.3390/ma12142296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
The advancements made in biomaterials have an important impact on oral tissue engineering, especially on the bone regeneration process. Currently known as the gold standard in bone regeneration, grafting procedures can sometimes be successfully replaced by a biomaterial scaffold with proper characteristics. Whether natural or synthetic polymers, biomaterials can serve as potential scaffolds with major influences on cell adhesion, proliferation and differentiation. Continuous research has enabled the development of scaffolds that can be specifically designed to replace the targeted tissue through changes in their surface characteristics and the addition of growth factors and biomolecules. The progress in tissue engineering is incontestable and research shows promising contributions to the further development of this field. The present review aims to outline the progress in oral tissue engineering, the advantages of biomaterial scaffolds, their direct implication in the osteogenic process and future research directions.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania.
| | - Ciprian Ioan Roi
- Department of Anaesthesiology and Oral Surgery, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Eugen-Radu Boia
- Department of Ear, Nose and Throat, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Boia
- Department of Periodontology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
36
|
Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109947. [PMID: 31499970 DOI: 10.1016/j.msec.2019.109947] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022]
Abstract
Due to its good biodegradability and mechanical properties, magnesium alloys are considered as the ideal candidate for the cardiovascular stents. However, the rapid degradation in human physiological environment and the poor biocompatibility seriously limit its application for biomaterials. In the present study, a chitosan/heparinized graphene oxide (Chi/HGO) multilayer coating was constructed on the AZ31B magnesium alloy surface using layer-by-layer (LBL) method to improve the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectrum (RAMAN), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that a dense and compact Chi/HGO multilayer coating was fabricated on the magnesium alloy surface. The results of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), pH value changes and magnesium ion release suggested that the multilayer coating can significantly enhance the corrosion resistance of the magnesium alloy. Moreover, the Chi/HGO multilayer coating could not only significantly reduce the hemolysis rate and platelet adhesion, but also promote the adhesion and proliferation of endothelial cells. Therefore, the Chi/HGO multilayer coating can simultaneously improve the corrosion resistance and biocompatibility of the magnesium alloys.
Collapse
|
37
|
Pohan G, Chevallier P, Anderson DEJ, Tse JW, Yao Y, Hagen MW, Mantovani D, Hinds MT, Yim EKF. Luminal Plasma Treatment for Small Diameter Polyvinyl Alcohol Tubular Scaffolds. Front Bioeng Biotechnol 2019; 7:117. [PMID: 31192200 PMCID: PMC6541113 DOI: 10.3389/fbioe.2019.00117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/07/2019] [Indexed: 12/04/2022] Open
Abstract
Plasma-based surface modification is recognized as an effective way to activate biomaterial surfaces, and modulate their interactions with cells, extracellular matrix proteins, and other materials. However, treatment of a luminal surface of a tubular scaffold remains non-trivial to perform in small diameter tubes. Polyvinyl alcohol (PVA) hydrogel, which has been widely used for medical applications, lacks functional groups to mediate cell attachment. This poses an issue for vascular applications, as endothelialization in a vascular graft lumen is crucial to maintain long term graft patency. In this study, a Radio Frequency Glow Discharges (RFGD) treatment in the presence of NH3 was used to modify the luminal surface of 3-mm diameter dehydrated PVA vascular grafts. The grafted nitrogen containing functional groups demonstrated stability, and in vitro endothelialization was successfully maintained for at least 30 days. The plasma-modified PVA displayed a higher percentage of carbonyl groups over the untreated PVA control. Plasma treatment on PVA patterned with microtopographies was also studied, with only the concave microlenses topography demonstrating a significant increase in platelet adhesion. Thus, the study has shown the possibility of modifying a small diameter hydrogel tubular scaffold with the RFGD plasma treatment technique and demonstrated stability in ambient storage conditions for up to 30 days.
Collapse
Affiliation(s)
- Grace Pohan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering, CHU de Québec Research Center, Regenerative Medicine, Laval University, Québec City, QC, Canada
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - John W Tse
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Matthew W Hagen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering, CHU de Québec Research Center, Regenerative Medicine, Laval University, Québec City, QC, Canada
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
38
|
Ghorbani F, Zamanian A. Physicochemical and biological investigation of oxygen plasma modified electrospun polyurethane scaffolds for connective tissue engineering application. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, electrospinning was selected to fabricate randomly oriented polyurethane (PU) nanofibers for tissue engineering application, and the surface of scaffolds was exposed to oxygen plasma flow. The morphology structure of the PU scaffolds before and after oxygen plasma treatment was observed using scanning electron microscopy (SEM) micrographs, and the fiber diameter distribution was measured using Image J software. The results demonstrated that oxygen plasma modification reduces the fiber diameter without any other special effects on fiber microstructure. Water drop contact angle and swelling ratio of PU constructs were performed to estimate the water-scaffolds interactions. The results revealed improvement of hydrophilicity by oxygen plasma treatment. Atomic force microscopy test was done to analyze a topological characteristic of the scaffolds, and it was found out that oxygen plasma treatment decreases the roughness of the scaffolds. The biological behavior of the scaffolds was investigated by SEM observation and MTT assay after L-929 fibroblast cells culture. In vitro assays demonstrated biocompatibility, cellular attachments, and filopodia formation on plasma modified samples. These results suggest that oxygen plasma treatment improves the physicochemical and biological properties of PU scaffolds to create a more hydrophilic surface which facilitates cell attachments and proliferation.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials , Materials and Energy Research Center , Karaj , Iran
- Department of Biomaterials , Aprin Advanced Technologies Development Company , Tehran , Iran
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials , Materials and Energy Research Center , Karaj , Iran
- Department of Biomaterials , Aprin Advanced Technologies Development Company , Tehran , Iran
| |
Collapse
|
39
|
Ura DP, Karbowniczek JE, Szewczyk PK, Metwally S, Kopyściański M, Stachewicz U. Cell Integration with Electrospun PMMA Nanofibers, Microfibers, Ribbons, and Films: A Microscopy Study. Bioengineering (Basel) 2019; 6:E41. [PMID: 31075876 PMCID: PMC6630608 DOI: 10.3390/bioengineering6020041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023] Open
Abstract
Tissue engineering requires properly selected geometry and surface properties of the scaffold, to promote in vitro tissue growth. In this study, we obtained three types of electrospun poly(methyl methacrylate) (PMMA) scaffolds-nanofibers, microfibers, and ribbons, as well as spin-coated films. Their morphology was imaged by scanning electron microscopy (SEM) and characterized by average surface roughness and water contact angle. PMMA films had a smooth surface with roughness, Ra below 0.3 µm and hydrophilic properties, whereas for the fibers and the ribbons, we observed increased hydrophobicity, with higher surface roughness and fiber diameter. For microfibers, we obtained the highest roughness of 7 µm, therefore, the contact angle was 140°. All PMMA samples were used for the in vitro cell culture study, to verify the cells integration with various designs of scaffolds. The detailed microscopy study revealed that higher surface roughness enhanced cells' attachment and their filopodia length. The 3D structure of PMMA microfibers with an average fiber diameter above 3.5 µm, exhibited the most favorable geometry for cells' ingrowth, whereas, for other structures we observed cells growth only on the surface. The study showed that electrospinning of various scaffolds geometry is able to control cells development that can be adjusted according to the tissue needs in the regeneration processes.
Collapse
Affiliation(s)
- Daniel P Ura
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Joanna E Karbowniczek
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Piotr K Szewczyk
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Sara Metwally
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Mateusz Kopyściański
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Urszula Stachewicz
- International Centre of Electron Microscopy for Materials Science, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| |
Collapse
|
40
|
Lerman MJ, Muramoto S, Arumugasaamy N, Van Order M, Lembong J, Gerald AG, Gillen G, Fisher JP. Development of surface functionalization strategies for 3D-printed polystyrene constructs. J Biomed Mater Res B Appl Biomater 2019; 107:2566-2578. [PMID: 30821930 DOI: 10.1002/jbm.b.34347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/18/2019] [Accepted: 02/10/2019] [Indexed: 01/17/2023]
Abstract
There is a growing interest in 3D printing to fabricate culture substrates; however, the surface properties of the scaffold remain pertinent to elicit targeted and expected cell responses. Traditional 2D polystyrene (PS) culture systems typically require surface functionalization (oxidation) to facilitate and encourage cell adhesion. Determining the surface properties which enhance protein adhesion from media and cellular extracellular matrix (ECM) production remains the first step to translating 2D PS systems to a 3D culture surface. Here we show that the presence of carbonyl groups to PS surfaces correlated well with successful adhesion of ECM proteins and sustaining ECM production of deposited human mesenchymal stem cells, if the surface has a water contact angle between 50° and 55°. Translation of these findings to custom-fabricated 3D PS scaffolds reveals carbonyl groups continued to enhance spreading and growth in 3D culture. Cumulatively, these data present a method for 3D printing PS and the design considerations required for understanding cell-material interactions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2566-2578, 2019.
Collapse
Affiliation(s)
- Max J Lerman
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland.,Surface and Trace Chemical Analysis Group, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Shin Muramoto
- Surface and Trace Chemical Analysis Group, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Navein Arumugasaamy
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Fischell Department of Bioengineerin, University of Maryland, College Park, Maryland.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia
| | - Michael Van Order
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
| | - Josephine Lembong
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Fischell Department of Bioengineerin, University of Maryland, College Park, Maryland
| | - Anushka G Gerald
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Fischell Department of Bioengineerin, University of Maryland, College Park, Maryland
| | - Greg Gillen
- Surface and Trace Chemical Analysis Group, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - John P Fisher
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland.,Fischell Department of Bioengineerin, University of Maryland, College Park, Maryland
| |
Collapse
|
41
|
Huang L, Chen J, Li X, Liu H, Li J, Ren T, Yang Y, Zhong S. Polymethacrylic acid encapsulated TiO2 nanotubes for sustained drug release and enhanced antibacterial activities. NEW J CHEM 2019. [DOI: 10.1039/c8nj04568b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A long-term antibacterial and sustained drug release system was fabricated, in which the TNTs acted as the loading platform of NOR and then encapsulated with PMAA.
Collapse
Affiliation(s)
- Ling Huang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha Hunan
- P. R. China
| | - Jian Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha Hunan
- P. R. China
| | - Xiufang Li
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha Hunan
- P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha Hunan
- P. R. China
| | - Jianbing Li
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha Hunan
- P. R. China
| | - Tao Ren
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha Hunan
- P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha Hunan
- P. R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha Hunan
- P. R. China
| |
Collapse
|
42
|
Wang M, Zhou Y, Shi D, Chang R, Zhang J, Keidar M, Webster TJ. Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core–shell nanofibers for bone tissue engineering applications. Biomater Sci 2019; 7:2430-2439. [DOI: 10.1039/c8bm01284a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coaxial electrospinning is a novel technique for producing core–shell nanofibers that provide a robust structure and deliver hydrophilic bioactive agents.
Collapse
Affiliation(s)
- Mian Wang
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
| | - Yangfang Zhou
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
| | - Di Shi
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
| | - Run Chang
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
| | - Junyan Zhang
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering
- The George Washington University
- Washington
- USA
| | | |
Collapse
|
43
|
Chernonosova VS, Gostev AA, Chesalov YA, Karpenko AA, Karaskov AM, Laktionov PP. Study of hemocompatibility and endothelial cell interaction of tecoflex-based electrospun vascular grafts. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vera S. Chernonosova
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander A. Gostev
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Yuriy A. Chesalov
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey A. Karpenko
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Alexander M. Karaskov
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Pavel P. Laktionov
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
44
|
Wang S, Hu F, Li J, Zhang S, Shen M, Huang M, Shi X. Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2505-2520. [DOI: 10.1016/j.nano.2016.12.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 01/09/2023]
|
45
|
Asadian M, Onyshchenko I, Thukkaram M, Esbah Tabaei PS, Van Guyse J, Cools P, Declercq H, Hoogenboom R, Morent R, De Geyter N. Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydr Polym 2018; 201:402-415. [PMID: 30241836 DOI: 10.1016/j.carbpol.2018.08.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022]
Abstract
In this study, chitosan (CS)/polyethylene oxide (PEO) nanofibrous mats (Ø: 166 ± 43 nm) were fabricated by electrospinning and subsequently surface-modified by a dielectric barrier discharge (DBD) sustained in argon, ammonia/helium or nitrogen. The surface properties of the CS/PEO nanofibers (NFs) before and after plasma treatment were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, the mechanical properties and PEO leaching in aqueous conditions of the different NFs under study were examined by tensile tests and nuclear magnetic resonance (1H NMR) spectroscopy respectively. Finally, cell behavior and cell morphology of human foreskin fibroblasts (HFFs) on the CS/PEO NFs were evaluated via live/dead fluorescence microscopy, MTT assays and SEM. The obtained results revealed that the surface free energy of the CS/PEO NFs was significantly increased after plasma modification, which was correlated to an enrichment in surface oxygen (Ar, N2, NH3/He) and nitrogen (N2, NH3/He) functional groups. All performed plasma treatments also led to an increase in ultimate tensile strength, most likely due to an increased fiber-to-fiber friction. Additionally, it was also observed that N2 plasma treatment resulted in a decrease in PEO release, which could be attributed to more pronounced surface cross-linking. Cellular interactions on the CS/PEO NFs also significantly increased due to the performed plasma treatments. The best cellular response was noted for the Ar plasma modification although the surface hydrophilicity was the lowest in this case. These observations thus suggest that not only the wettability characteristics but also the presence of distinct functional groups on plasma-treated CS/PEO NFs have a significant influence on the observed enhanced cellular interactions.
Collapse
Affiliation(s)
- Mahtab Asadian
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Iuliia Onyshchenko
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Monica Thukkaram
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Parinaz Saadat Esbah Tabaei
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Joachim Van Guyse
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281, S4, 9000, Ghent, Belgium.
| | - Pieter Cools
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Heidi Declercq
- Department of Basic Medical Sciences, Tissue Engineering Group, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B3, 9000, Ghent, Belgium.
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281, S4, 9000, Ghent, Belgium.
| | - Rino Morent
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000, Ghent, Belgium.
| |
Collapse
|
46
|
Electrochemical cytosensor for detection of cell surface sialic acids based on 3D biointerface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
|
48
|
Birhanu G, Tanha S, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Kiani Dehkordi B. Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery. Pharm Dev Technol 2018; 24:338-347. [PMID: 29799305 DOI: 10.1080/10837450.2018.1481429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In tissue engineering, it is common to mix drugs that can control proliferation and differentiation of cells into polymeric solutions as part of composite to get bioactive scaffolds. However, direct incorporation of drugs might potentially result in undesired burst release. To overcome this problem, here we developed electrospun multilayer drug loaded poly-l-lactic acid/pluronic P123 (PLLA-P123) composite scaffolds. The drug was loaded into the middle layer. The surface, the mechanical and physiochemical properties of the scaffolds were evaluated. The drug release profiles were monitored. Finally, the osteogenic proliferation and differentiation potential were determined. The scaffolds fabricated here have appropriate surface properties, but with different mechanical strength and osteogenic proliferation and differentiation. Multi-layer scaffolds where the drug was in the middle layer and PLLA-plasma and PLLA-P123 with cover layer showed the best osteogenic proliferation and differentiation than the other groups of scaffolds. The drug release profiles of the scaffolds were completely different: single layer scaffolds showed burst release within the first day, while multilayer scaffolds showed controlled release. Therefore, the multilayer drug loaded scaffolds prepared have dual benefits can provide both better osteogenesis and controlled release of drugs and bioactive molecules at the implant site.
Collapse
Affiliation(s)
- Gebremariam Birhanu
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences, International Campus (TUMS-IC) , Tehran , Iran.,b School of Pharmacy, College of Health Sciences , Addis Ababa University , Addis Ababa , Ethiopia
| | - Shima Tanha
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Hamid Akbari Javar
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Ehsan Seyedjafari
- d Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Ali Zandi-Karimi
- d Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Banafsheh Kiani Dehkordi
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
49
|
Arik N, Inan A, Ibis F, Demirci EA, Karaman O, Ercan UK, Horzum N. Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2409-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Bai L, Jia L, Yan Z, Liu Z, Liu Y. Plasma-etched electrospun nanofiber membrane as adsorbent for dye removal. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.01.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|