1
|
Asakura T, Shimokawatoko H, Nakazawa Y. Characterization and promotion of endothelialization of Bombyx mori silk fibroin functionalized with REDV peptide. Int J Biol Macromol 2024; 261:129746. [PMID: 38302025 DOI: 10.1016/j.ijbiomac.2024.129746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
In the development of small-diameter vascular grafts, it is crucial to achieve early-stage endothelialization to prevent thrombus formation and intimal hyperplasia. Silk fibroin (SF) from Bombyx mori is commonly used for such grafts. However, there is a need to expedite endothelialization post-implantation. In this study, we functionalized SF with Arg-Glu-Asp-Val (REDV) (SF + REDV) using cyanuric chloride to enhance endothelialization. The immobilization of REDV onto SF was confirmed and the amount of immobilized REDV could be calculated by 1H NMR. Furthermore, the conformational changes in Tyr, Ser, and Ala residues in [3-13C]Tyr- and [3-13C]Ser-SF due to REDV immobilization were monitored using 13C solid-state NMR. The REDV immobilized onto the SF film was found to be exposed on the film's surface, as confirmed by biotin-avidin system. Cell culture experiments, including adhesiveness, proliferation, and extensibility, were conducted using normal human umbilical vein endothelial cells (HUVEC) and normal human aortic smooth muscle cells (HAoSMC) on both SF and SF + REDV films to evaluate the impact of REDV on endothelialization. The results indicated a trend towards promoting HUVEC proliferation while inhibiting HAoSMC proliferation. Therefore, these findings suggest that SF + REDV may be more suitable than SF alone for coating small-diameter SF knitted tubes made of SF threads.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Haruka Shimokawatoko
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yasumoto Nakazawa
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
2
|
Shah DD, Raghani NR, Chorawala MR, Singh S, Prajapati BG. Harnessing three-dimensional (3D) cell culture models for pulmonary infections: State of the art and future directions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2861-2880. [PMID: 37266588 PMCID: PMC10235844 DOI: 10.1007/s00210-023-02541-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Pulmonary infections have been a leading etiology of morbidity and mortality worldwide. Upper and lower respiratory tract infections have multifactorial causes, which include bacterial, viral, and rarely, fungal infections. Moreover, the recent emergence of SARS-CoV-2 has created havoc and imposes a huge healthcare burden. Drug and vaccine development against these pulmonary pathogens like respiratory syncytial virus, SARS-CoV-2, Mycobacteria, etc., requires a systematic set of tools for research and investigation. Currently, in vitro 2D cell culture models are widely used to emulate the in vivo physiologic environment. Although this approach holds a reasonable promise over pre-clinical animal models, it lacks the much-needed correlation to the in vivo tissue architecture, cellular organization, cell-to-cell interactions, downstream processes, and the biomechanical milieu. In view of these inadequacies, 3D cell culture models have recently acquired interest. Mammalian embryonic and induced pluripotent stem cells may display their remarkable self-organizing abilities in 3D culture, and the resulting organoids replicate important structural and functional characteristics of organs such the kidney, lung, gut, brain, and retina. 3D models range from scaffold-free systems to scaffold-based and hybrid models as well. Upsurge in organs-on-chip models for pulmonary conditions has anticipated encouraging results. Complexity and dexterity of developing 3D culture models and the lack of standardized working procedures are a few of the setbacks, which are expected to be overcome in the coming times. Herein, we have elaborated the significance and types of 3D cell culture models for scrutinizing pulmonary infections, along with the in vitro techniques, their applications, and additional systems under investigation.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
| |
Collapse
|
3
|
Tunning the Microstructure and Mechanical Properties of Lyophilized Silk Scaffolds by Pre-freezing Treatment of Silk Hydrogel and Silk Solution. J Colloid Interface Sci 2022; 631:46-55. [DOI: 10.1016/j.jcis.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
|
4
|
Li X, You R, Zhang Q, Yan S, Luo Z, Qu J, Li M. Engineering vascularized dermal grafts by integrating a biomimetic scaffold and Wharton's jelly MSC-derived endothelial cells. J Mater Chem B 2021; 9:6466-6479. [PMID: 34364307 DOI: 10.1039/d1tb00857a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tissue engineering aims to generate functional tissue constructs with the necessary scaffold properties for cell colonization and the establishment of a vascular network. However, treatment of tissue defects using synthetic scaffolds remains a challenge mainly due to insufficient and slow vascularization. Our previous study developed a macroporous silk fibroin scaffold with a nanofibrous microstructure, and demonstrated that the nanofibrous structure can promote the viability of endothelial cells (ECs) and guide cell migration. Further studies are needed to clarify the effect of scaffold microstructures on cell-mediated vascularization. Here, we investigated the efficacy of EC-seeded nanofibrous scaffolds in improving vascularization in vivo. ECs derived from induced human Wharton's Jelly mesenchymal stem cells served as a potential source for cell transplantation. The cell-seeded scaffolds were implanted into dermal defects of SD rats, demonstrating that the multiscale hierarchical design significantly improved the capacity of transplanted cells to promote and accelerate neovascularization and dermal reconstruction via enhancing cell infiltration, collagen deposition and growth factor expression. Our findings provide new insight into the development of degradable macroporous composite materials with 3D microstructures as tissue engineering scaffolds with enhanced vascularization functions, and also provide new treatment options for cell transplantation.
Collapse
Affiliation(s)
- Xiufang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Ding Z, Cheng W, Mia MS, Lu Q. Silk Biomaterials for Bone Tissue Engineering. Macromol Biosci 2021; 21:e2100153. [PMID: 34117836 DOI: 10.1002/mabi.202100153] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Silk is a natural fibrous polymer with application potential in regenerative medicine. Increasing interest remains for silk materials in bone tissue engineering due to their characteristics in biocompatibility, biodegradability and mechanical properties. Plenty of the in vitro and in vivo studies confirmed the advantages of silk in accelerating bone regeneration. Silk is processed into scaffolds, hydrogels, and films to facilitate different bone regenerative applications. Bioactive factors such as growth factors and drugs, and stem cells are introduced to silk-based matrices to create friendly and osteogenic microenvironments, directing cell behaviors and bone regeneration. The recent progress in silk-based bone biomaterials is discussed and focused on different fabrication and functionalization methods related to osteogenesis. The challenges and potential targets of silk bone materials are highlighted to evaluate the future development of silk-based bone materials.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Md Shipan Mia
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
6
|
|
7
|
Wang Y, Zheng Z, Cheng Q, Kaplan DL, Li G, Wang X. Ductility and Porosity of Silk Fibroin Films by Blending with Glycerol/Polyethylene Glycol and Adjusting the Drying Temperature. ACS Biomater Sci Eng 2020; 6:1176-1185. [PMID: 33464844 DOI: 10.1021/acsbiomaterials.9b01567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ductility and porosity of biofunctional films (BFFs) are critical properties for mechanical compliance and intercellular communication in tissue engineering. However, it remains a significant challenge to integrate these two key properties into BFFs. Herein, silk fibroin (SF) films with tunable ductility and porosity were prepared by adjusting the protein self-assembly process through combinations with glycerol (Gly) and polyethylene glycol 400 (PEG400) and regulating the film-casting temperature. Typically, among various conditions screened, the BFFs with a mass ratio of SF/PEG400/Gly of 10:5:3 (SPG1053) prepared at 4 °C exhibited remarkable ductility with a tensile strength of 2.7 ± 0.2 MPa and an elongation at break of 164.24 ± 24.20%, superior to films prepared from SF alone, SF/Gly, or SF/PEG400, demonstrating a synergistic plasticizing effect. Furthermore, the SPG1053 films prepared at 4 °C had a permeation efficiency of 56.32 ± 0.85% for fluorescently labeled dextran (dextran-TMR, MW: 10 kDa) after 204 h, significantly higher than films prepared at 20 °C (34.67 ± 3.63%) and 60 °C (15.4 ± 1.16%). Finally, the ductile and porous SPG1053 had excellent cell compatibility with human fibroblasts (Hs 865.SK). Given the demonstrated ductility, molecule-sieving property, and cytocompatibility, these new SPG films should offer new options for cell culture and tissue engineering.
Collapse
Affiliation(s)
- Yongfeng Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, P.R. China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, P.R. China
| | - Qingqing Cheng
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Gang Li
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
8
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Onak G, Karaman O. Accelerated mineralization on nanofibers via non-thermal atmospheric plasma assisted glutamic acid templated peptide conjugation. Regen Biomater 2019; 6:231-240. [PMID: 31404337 PMCID: PMC6683955 DOI: 10.1093/rb/rbz014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Surface modification by non-thermal atmospheric plasma (NTAP) treatment can produce significantly higher carboxylic groups on the nanofibers (NF) surface, which potentially can increase biomineralization of NF via promoting glutamic acid (GLU) templated peptide conjugation. Herein, electrospun poly(lactide-co-glycolide) (PLGA) scaffolds were treated with NTAP and conjugated with GLU peptide followed by incubation in simulated body fluids for mineralization. The effect of NTAP treatment and GLU peptide conjugation on mineralization, surface wettability and roughness were investigated. The results showed that NTAP treatment significantly increased GLU peptide conjugation which consequently enhanced mineralization and mechanical properties of NTAP treated and peptide conjugated NF (GLU-pNF) compared to neat PLGA NF, NTAP treated NF (pNF) and GLU peptide conjugated NF (GLU-NF). The effect of surface modification on human bone marrow derived mesenchymal stem cells adhesion, proliferation and morphology was evaluated by cell proliferation assay and fluorescent microscopy. Results demonstrated that cellular adhesion and proliferation were significantly higher on GLU-pNF compared to NF, pNF and GLU-NF. In summary, NTAP treatment could be a promising modification technique to induce biomimetic peptide conjugation and biomineralization for bone tissue engineering applications.
Collapse
Affiliation(s)
- Günnur Onak
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
- Bonegraft Biomaterials Co., Ege University Technopolis, Bornova, İzmir, Turkey
| |
Collapse
|
10
|
Fan Z, Xiao L, Lu G, Ding Z, Lu Q. Water-insoluble amorphous silk fibroin scaffolds from aqueous solutions. J Biomed Mater Res B Appl Biomater 2019; 108:798-808. [PMID: 31207049 DOI: 10.1002/jbm.b.34434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 12/25/2022]
Abstract
Regenerated silk fibroin (RSF) is emerging as promising biomaterial for regeneration, drug delivery and optical devices, with continued demand for mild, all-aqueous processes to control microstructure and the performance. Here, temperature control of assembly kinetics was introduced to prepare the water-insoluble scaffolds from neutral aqueous solutions of RSF protein. Higher temperatures were used to accelerate the assembly rate of the silk fibroin protein chains in aqueous solution and during the lyophilization process, resulting in water-insoluble scaffold formation. The scaffolds were mainly composed of amorphous states of the silk fibroin chains, endowing softer mechanical properties. These scaffolds also showed nanofibrous structures, improved cell proliferation in vitro and enhanced neovascularization and tissue regeneration in vivo than previously reported silk fibroin scaffolds. These results suggest utility of silk scaffolds in soft tissue regeneration.
Collapse
Affiliation(s)
- Zhihai Fan
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, People's Republic of China.,Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
11
|
Yang M, Guo Z, Li T, Li J, Chen L, Wang J, Wu J, Wu Z. Synergetic effect of chemical and topological signals of gingival regeneration scaffold on the behavior of human gingival fibroblasts. J Biomed Mater Res A 2019; 107:1875-1885. [PMID: 31034755 DOI: 10.1002/jbm.a.36708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Moyang Yang
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Zhenzhao Guo
- Department of OrthopedicThe First Affiliated Hospital, Jinan University Guangzhou China
| | - Tong Li
- Department of ProsthodonticsHospital of Stomatology, Jilin University Changchun China
| | - Jing Li
- Department of ProsthodonticsHospital of Stomatology, Jilin University Changchun China
| | - Liyu Chen
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Junmei Wang
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Jincheng Wu
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Zhe Wu
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| |
Collapse
|
12
|
Cruz-Maya I, Guarino V, Almaguer-Flores A, Alvarez-Perez MA, Varesano A, Vineis C. Highly polydisperse keratin rich nanofibers: Scaffold design and in vitro characterization. J Biomed Mater Res A 2019; 107:1803-1813. [PMID: 31004452 DOI: 10.1002/jbm.a.36699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Accepted: 04/16/2019] [Indexed: 02/03/2023]
Abstract
The use of bioactive proteins such as keratin has been successfully explored to improve the biological interface of scaffolds with cells during the tissue regeneration. In this work, it is optimized the fabrication of nanofibers combining wool keratin extracted by sulfitolysis, with polycaprolactone (PCL) in order to design bicomponent fibrous matrices able to exert a self-adapting pattern of signals-morphological, chemical, or physical-confined at the single fiber level, to influence cell and bacteria interactions. It is demonstrated that the blending of highly polydisperse keratin with PCL (50:50) improves the stability of the electrospinning process, promoting the formation of nanofibers-144.1 ± 43.9 nm-without the formation of defects (i.e., beads, ribbons) typically recognized in the fabrication of keratin ones. Moreover, keratin drastically increases the fiber hydrophilicity-compared with PCL fiber alone-thus improving the hMSC adhesion and in vitro proliferation until 14 days. Moreover, the growth of bacterial strains (i.e., Escherichia coli and Staphylococcus aureus) seems to be not specifically inhibited by the contribution of keratin, so that the integration of further selected compounds (i.e., metal ions) is suggested to more efficiently fight against bacteria resistance, to make them suitable for the regeneration of different interfaces and soft tissues (i.e., skin and cornea). © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1803-1813, 2019.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- IPCB/CNR, Institute of Polymers, Composites and Biomaterials - Consiglio Nazionale delle Ricerche, Mostra D'Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125, Naples, Italy.,Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Vincenzo Guarino
- IPCB/CNR, Institute of Polymers, Composites and Biomaterials - Consiglio Nazionale delle Ricerche, Mostra D'Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125, Naples, Italy
| | - Argelia Almaguer-Flores
- Tissue Bioengineering Laboratory, DEPeI, School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n C.P., 04510, Coyoacán, Mexico, DF, Mexico
| | - Marco A Alvarez-Perez
- Tissue Bioengineering Laboratory, DEPeI, School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n C.P., 04510, Coyoacán, Mexico, DF, Mexico
| | - Alessio Varesano
- ISMAC/CNR, Institute for Macromolecular Studies - Consiglio Nazionale delle Ricerche, C.so G. Pella 16, Biella, Italy
| | - Claudia Vineis
- ISMAC/CNR, Institute for Macromolecular Studies - Consiglio Nazionale delle Ricerche, C.so G. Pella 16, Biella, Italy
| |
Collapse
|
13
|
Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109688. [PMID: 31349405 DOI: 10.1016/j.msec.2019.04.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/16/2019] [Accepted: 04/21/2019] [Indexed: 02/07/2023]
Abstract
In order to regenerate bone defects, bioactive hierarchically scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced nutrient transport and diffusion. In this study, novel hierarchically porous silk fibroin (SF) and silk fibroin-bioactive glass (SF-BG) composite were fabricated with controlled architecture and interconnected structure, by combining indirect three-dimensional (3D) inkjet printing and freeze-drying methods. Further, the effect of 45S5 Bioactive glass particles of different sizes (<100 nm and 6 μm) on mechanical strength and cell behavior was investigated. The results demonstrated that the hierarchical structure in this scaffold was composed of two levels of pores in the order of 500-600 μm and 10-50 μm. The prepared SF-BG composite scaffolds utilized by nano and micro particles possessed mechanical properties with a compressive strength of 0.94 and 1.2 MPa, respectively, in dry conditions. In a wet condition, the hierarchically porous scaffolds did not exhibit any fluctuation after compression load cell and were incredibly flexible, with excellent mechanical stability. The SF-BG composite scaffold with nanoparticles presented a significant 50% increase in attachment of human bone marrow stem cells in comparison with SF and SF-BG scaffold with microparticles. Moreover, SF-BG scaffolds promoted alkaline phosphatase activity as compared to SF scaffolds without BG particles on day 14. In brief, the 3D porous silk fibroin-based composites containing BG nanoparticles with excellent mechanical properties are promising scaffolds for bone tissue regeneration in high load-bearing applications.
Collapse
|
14
|
Yan R, Chen Y, Gu Y, Tang C, Huang J, Hu Y, Zheng Z, Ran J, Heng B, Chen X, Yin Z, Chen W, Shen W, Ouyang H. A collagen-coated sponge silk scaffold for functional meniscus regeneration. J Tissue Eng Regen Med 2019; 13:156-173. [PMID: 30485706 DOI: 10.1002/term.2777] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/09/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Tissue engineering is a promising solution for meniscal regeneration after meniscectomy. However, in situ reconstruction still poses a formidable challenge due to multifunctional roles of the meniscus in the knee. In this study, we fabricate a silk sponge from 9% (w/v) silk fibroin solution through freeze drying and then coat its internal space and external surface with collagen sponge. Subsequently, various characteristics of the silk-collagen scaffold are evaluated, and cytocompatibility of the construct is assessed in vitro and subcutaneously. The efficacy of this composite scaffold for meniscal regeneration is evaluated through meniscus reconstruction in a rabbit meniscectomy model. It is found that the internally coated collagen sponge enhances the cytocompatibility of the silk sponge, and the external layer of collagen sponge significantly improves the initial frictional property. Additionally, the silk-collagen composite group shows more tissue ingrowth and less cartilage wear than the pure silk sponge group at 3 months postimplantation in situ. These findings thus demonstrate that the composite scaffold had less damage to the joint surface than the silk alone through promoting functional meniscal regeneration after meniscectomy, which indicates its clinical potential in meniscus reconstruction.
Collapse
Affiliation(s)
- Ruijian Yan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Yanjia Gu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Yejun Hu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China.,Department of Orthopedic Surgery, The Children's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Boonchin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China.,China Orthopaedic Regenerative Medicine (CORMed), Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China.,China Orthopaedic Regenerative Medicine (CORMed), Zhejiang University, Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China.,China Orthopaedic Regenerative Medicine (CORMed), Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Lu G, Ding Z, Wei Y, Lu X, Lu Q, Kaplan DL. Anisotropic Biomimetic Silk Scaffolds for Improved Cell Migration and Healing of Skin Wounds. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44314-44323. [PMID: 30507148 DOI: 10.1021/acsami.8b18626] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Improved and more rapid healing of full-thickness skin wounds remains a major clinical need. Silk fibroin (SF) is a natural protein biomaterial that has been used in skin repair. However, there has been little effort aimed at improving skin healing through tuning the hierarchical microstructure of SF-based matrices and introducing multiple physical cues. Recently, enhanced vascularization was achieved with SF scaffolds with nanofibrous structures and tunable secondary conformation of the matrices. We hypothesized that anisotropic features in nanofibrous SF scaffolds would promote cell migration, neovascularization, and tissue regeneration in wounds. To address this hypothesis, SF nanofibers were aligned in an electric field to form anisotropic porous scaffolds after lyophilization. In vitro and in vivo studies indicated good cytocompatibility, and improved cell migration and vascularization than nanofibrous scaffolds without these anisotropic features. These improvements resulted in more rapid wound closure, tissue ingrowth, and the formation of new epidermis, as well as higher collagen deposition with a structure similar to the surrounding native tissue. The new epidermal layers and neovascularization were achieved by day 7, with wound healing complete by day 28. It was concluded that anisotropic SF scaffolds alone, without a need for growth factors and cells, promoted significant cell migration, vascularization, and skin regeneration and may have the potential to effectively treat dermal wounds.
Collapse
Affiliation(s)
- Guozhong Lu
- Department of Burns and Plastic Surgery , The Third Affiliated Hospital of Nantong University , Wuxi 214041 , People's Republic of China
| | - ZhaoZhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , People's Republic of China
| | - Yuanyuan Wei
- Department of Maternity and Child Care Hospital , Lanzhou 730050 , Gansu Province , People's Republic of China
| | - Xiaohong Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
16
|
Onak G, Şen M, Horzum N, Ercan UK, Yaralı ZB, Garipcan B, Karaman O. Aspartic and Glutamic Acid Templated Peptides Conjugation on Plasma Modified Nanofibers for Osteogenic Differentiation of Human Mesenchymal Stem Cells: A Comparative Study. Sci Rep 2018; 8:17620. [PMID: 30514892 PMCID: PMC6279782 DOI: 10.1038/s41598-018-36109-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022] Open
Abstract
Optimization of nanofiber (NF) surface properties is critical to achieve an adequate cellular response. Here, the impact of conjugation of biomimetic aspartic acid (ASP) and glutamic acid (GLU) templated peptides with poly(lactic-co-glycolic acid) (PLGA) electrospun NF on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) was evaluated. Cold atmospheric plasma (CAP) was used to functionalize the NF surface and thus to mediate the conjugation. The influence of the CAP treatment following with peptide conjugation to the NF surface was assessed using water contact angle measurements, Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The effect of CAP treatment on morphology of NF was also checked using Scanning Electron Microscopy (SEM). Both the hydrophilicity of NF and the number of the carboxyl (-COOH) groups on the surface increased with respect to CAP treatment. Results demonstrated that CAP treatment significantly enhanced peptide conjugation on the surface of NF. Osteogenic differentiation results indicated that conjugating of biomimetic ASP templated peptides sharply increased alkaline phosphatase (ALP) activity, calcium content, and expression of key osteogenic markers of collagen type I (Col-I), osteocalcin (OC), and osteopontin (OP) compared to GLU conjugated (GLU-pNF) and CAP treated NF (pNF). It was further depicted that ASP sequences are the major fragments that influence the mineralization and osteogenic differentiation in non-collagenous proteins of bone extracellular matrix.
Collapse
Affiliation(s)
- Günnur Onak
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Mustafa Şen
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Nesrin Horzum
- Department of Engineering Sciences, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Ziyşan Buse Yaralı
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, 34684, İstanbul, Turkey
| | - Ozan Karaman
- Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey.
- Bonegraft Biomaterials Co., Ege University Technopolis, 35100, Bornova, İzmir, Turkey.
| |
Collapse
|
17
|
Green process to prepare water-insoluble silk scaffolds with silk I structure. Int J Biol Macromol 2018; 117:144-151. [PMID: 29803750 DOI: 10.1016/j.ijbiomac.2018.05.175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023]
Abstract
Silk porous scaffolds have shown promising applications in tissue regenerations as cellular scaffolds to incorporate cells in vitro and in vivo, and facilitate cell proliferation and production of extracellular matrix. It remains strong needs to optimize the microstructures and performances of silk scaffolds for better biocompatibility. Here, a green process was developed to form water-insoluble scaffolds. Repeated freezing-dissolving procedures and silk nanofibers were introduced to tune the performances of the scaffolds, resulting in amorphous conformations and nanofibrous structures. Controllable degradation and mechanical properties as well as improved cell compatibility were then achieved for these scaffolds, suggesting their promising future in tissue regenerations. Our present results confirmed the possibility of actively designing silk scaffolds with preferable properties used in various tissue regenerations.
Collapse
|
18
|
Fabrication of porous three-dimensional fibroin structures through a freezing process. J Appl Polym Sci 2018. [DOI: 10.1002/app.46537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Sang Y, Li M, Liu J, Yao Y, Ding Z, Wang L, Xiao L, Lu Q, Fu X, Kaplan DL. Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9290-9300. [PMID: 29485270 DOI: 10.1021/acsami.7b19204] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fine tuning physical cues of silk fibroin (SF) biomaterials to match specific requirements for different soft tissues would be advantageous. Here, amorphous SF nanofibers were used to fabricate scaffolds with better hierarchical extracellular matrix (ECM) mimetic microstructures than previous silk scaffolds. Kinetic control was introduced into the scaffold forming process, resulting in the direct production of water-stable scaffolds with tunable secondary structures and thus mechanical properties. These biomaterials remained with amorphous structures, offering softer properties than prior scaffolds. The fine mechanical tunability of these systems provides a feasible way to optimize physical cues for improved cell proliferation and enhanced neovascularization in vivo. Multiple physical cues, such as partly ECM mimetic structures and optimized stiffness, provided suitable microenvironments for tissue ingrowth, suggesting the possibility of actively designing bioactive SF biomaterials. These systems suggest a promising strategy to develop novel SF biomaterials for soft tissue repair and regenerative medicine.
Collapse
Affiliation(s)
| | - Meirong Li
- Healing and Cell Biology Laboratory, Institute of Basic Medicine Science , Chinese PLA General Hospital , Beijing 100853 , People's Republic of China
| | - Jiejie Liu
- Healing and Cell Biology Laboratory, Institute of Basic Medicine Science , Chinese PLA General Hospital , Beijing 100853 , People's Republic of China
| | | | | | | | | | | | - Xiaobing Fu
- Healing and Cell Biology Laboratory, Institute of Basic Medicine Science , Chinese PLA General Hospital , Beijing 100853 , People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
20
|
Advances in Nanotechnologies for the Fabrication of Silk Fibroin-Based Scaffolds for Tissue Regeneration. EXTRACELLULAR MATRIX FOR TISSUE ENGINEERING AND BIOMATERIALS 2018. [DOI: 10.1007/978-3-319-77023-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf B Biointerfaces 2017; 160:704-714. [PMID: 29035818 DOI: 10.1016/j.colsurfb.2017.10.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022]
Abstract
A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin. A novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) was synthesized and self-assembled into polymeric nanoparticles. The nanoparticles of VES-g-ε-PLL exhibiting an ultra-small hydrodynamic diameter (24.4nm) and a positive Zeta potential (19.6mV) provided a strong skin-penetrating ability in vivo. Moreover, curcumin could effectively be encapsulated in the polymeric nanoparticles with a drug loading capacity of 3.49% and an encapsulating efficiency of 78.45%. In order to prolong the retention time of the ultra-small curcumin-loaded nanoparticles (CUR-NPs) in the skin, silk fibroin was used as a hydrogel-based matrix to further facilitate topical delivery of the model drug. In vitro studies showed that CUR-NPs incorporated in silk fibroin hydrogel (CUR-NPs-gel) exhibited a slower release profile of curcumin than the plain CUR-gel, without compromising the skin penetration ability of CUR-NPs. In vivo studies on miquimod-induced psoriatic mice showed that CUR-NPs-gel exhibited a higher therapeutic effect than CUR-NPs as the former demonstrated a more powerful skin-permeating capability and a more effective anti-keratinization process. CUR-NPs-gel was therefore able to inhibit the expression of inflammatory cytokines (TNF-α, NF-κB and IL-6) to a greater extent. In conclusion, the permeable nanoparticle-gel system may be a potential carrier for the topical delivery of lipophilic anti-psoriatic drugs.
Collapse
|
22
|
Chen CH, Chen SH, Kuo CY, Li ML, Chen JP. Response of Dermal Fibroblasts to Biochemical and Physical Cues in Aligned Polycaprolactone/Silk Fibroin Nanofiber Scaffolds for Application in Tendon Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E219. [PMID: 28800110 PMCID: PMC5575701 DOI: 10.3390/nano7080219] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 01/12/2023]
Abstract
Silk fibroin (SF) and fiber alignment were introduced into polycaprolactone (PCL)-based electrospun nanofibers as chemical and physical cues for tendon tissue engineering applications. The physicochemical properties of random PCL (RP) nanofibers, random PCL/SF (RPSF) nanofibers and aligned PCL/SF (APSF) nanofibers were characterized for fiber orientation and SF blending effects. An in vitro cell culture with rabbit dermal fibroblasts (RDFBs) on nanofibers indicated that SF promotes cell proliferation to a higher extent than fiber alignment. Cells aligned in the direction of fiber axes could be confirmed through scanning electron microscopy (SEM) observation and cytoskeleton staining. The quantitative real-time polymerase chain reaction (qRT-PCR) experiments indicated up-regulated gene expression of tendon marker proteins (type I collagen (Col I), fibronectin and biglycan) on APSF nanofibers and tendon reconstruction was confirmed from Col III gene expression. Animal experiments with Achilles tendon defect repairs in rabbits were carried out with RPSF and APSF scaffolds. The beneficial effects of fiber alignment were verified from histological and immunohistochemical staining, where cell migration and extracellular matrix protein deposition tend to stretch in a parallel direction along the axial direction of APSF nanofibers with enhanced Col I and tenascin C production. Biomechanical testing indicated the tensile stiffness and maximum load of cell-seeded APSF scaffolds were 60.2 and 81.3% of normal tendon values, respectively, which are significantly higher than cell-seeded RPSF or acellular APSF and RPSF scaffolds. These results suggest that APSF nanofiber scaffolds combined with RDFBs have the potential to repair the gap defects of Achilles tendons in vivo and to effectively restore the function and structure of tendons.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
| | - Shih-Hsien Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Meng-Lun Li
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
- Institute Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
23
|
Ding ZZ, Ma J, He W, Ge ZL, Lu Q, Kaplan DL. Simulation of ECM with Silk and Chitosan Nanocomposite Materials. J Mater Chem B 2017; 5:4789-4796. [PMID: 29098078 PMCID: PMC5662207 DOI: 10.1039/c7tb00486a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular matrix (ECM) is a system used to model the design of biomaterial matrices for tissue regeneration. Various biomaterial systems have been developed to mimic the composition or microstructure of the ECM. However, emulating multiple facets of the ECM in these systems remains a challenge. Here, a new strategy is reported which addresses this need by using silk fibroin and chitosan (CS) nanocomposite materials. Silk fibroin was first assembled into ECM-mimetic nanofibers in water and then blended with CS to introduce the nanostructural cues. Then the ratios of silk fibroin and CS were optimized to imitate the protein and glycosaminoglycan compositions. These biomaterial scaffolds had suitable compositions, hierarchical nano-to-micro structures, and appropriate mechanical properties to promote cell proliferation in vitro, and vascularization and tissue regeneration in vivo. Compared to previous silk-based scaffolds, these scaffolds achieved improvements in biocompatibility, suggesting promising applications in the future in tissue regeneration.
Collapse
Affiliation(s)
- Z. Z. Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - J. Ma
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People’s Republic of China
| | - W. He
- Department of Maxillofacial Surgery, The People’s Hospital, Qinghai 4000115-4, People’s Republic of China
| | - Z. L. Ge
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People’s Republic of China
| | - Q. Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - D. L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
24
|
Xiao L, Liu S, Yao D, Ding Z, Fan Z, Lu Q, Kaplan DL. Fabrication of Silk Scaffolds with Nanomicroscaled Structures and Tunable Stiffness. Biomacromolecules 2017; 18:2073-2079. [DOI: 10.1021/acs.biomac.7b00406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shanshan Liu
- School
of Medicine, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Danyu Yao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhihai Fan
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People’s Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
25
|
Preparation, physicochemical properties and biocompatibility of PBLG/PLGA/bioglass composite scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:118-124. [DOI: 10.1016/j.msec.2016.09.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022]
|
26
|
Osteogenic signaling on silk-based matrices. Biomaterials 2016; 97:133-53. [DOI: 10.1016/j.biomaterials.2016.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
|
27
|
Han H, Ning H, Liu S, Lu Q, Fan Z, Lu H, Lu G, Kaplan DL. Silk Biomaterials with Vascularization Capacity. ADVANCED FUNCTIONAL MATERIALS 2016; 26:421-436. [PMID: 27293388 PMCID: PMC4895924 DOI: 10.1002/adfm.201504160] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Functional vascularization is critical for the clinical regeneration of complex tissues such as kidney, liver or bone. The immobilization or delivery of growth factors has been explored to improve vascularization capacity of tissue engineered constructs, however, the use of growth factors has inherent problems such as the loss of signaling capability and the risk of complications such as immunological responses and cancer. Here, a new method of preparing water-insoluble silk protein scaffolds with vascularization capacity using an all aqueous process is reported. Acid was added temporally to tune the self-assembly of silk in lyophilization process, resulting in water insoluble scaffold formation directly. These biomaterials are mainly noncrystalline, offering improved cell proliferation than previously reported silk materials. These systems also have appropriate softer mechanical property that could provide physical cues to promote cell differentiation into endothelial cells, and enhance neovascularization and tissue ingrowth in vivo without the addition of growth factors. Therefore, silk-based degradable scaffolds represent an exciting biomaterial option, with vascularization capacity for soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hongyan Han
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Hongyan Ning
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Shanshan Liu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, College of Textile and ClothingEngineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Haijun Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The third Affiliated Hospital of Nantong University, Wuxi 214041, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
28
|
Jin Y, Kundu B, Cai Y, Kundu SC, Yao J. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Koebley SR, Thorpe D, Pang P, Chrisochoides P, Greving I, Vollrath F, Schniepp HC. Silk Reconstitution Disrupts Fibroin Self-Assembly. Biomacromolecules 2015; 16:2796-804. [DOI: 10.1021/acs.biomac.5b00732] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean R. Koebley
- The College of William & Mary, Department of Applied Science, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| | - Daniel Thorpe
- The College of William & Mary, Department of Applied Science, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| | - Pei Pang
- The College of William & Mary, Department of Applied Science, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| | - Panos Chrisochoides
- The College of William & Mary, Department of Applied Science, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| | - Imke Greving
- Oxford Silk Group, Department of Zoology, Oxford University, Tinbergen
Building, South Parks Road, Oxford, Oxfordshire OX1 3PS, United Kingdom
| | - Fritz Vollrath
- Oxford Silk Group, Department of Zoology, Oxford University, Tinbergen
Building, South Parks Road, Oxford, Oxfordshire OX1 3PS, United Kingdom
| | - Hannes C. Schniepp
- The College of William & Mary, Department of Applied Science, P.O. Box 8795, Williamsburg, Virginia 23187-8795, United States
| |
Collapse
|
30
|
Bai S, Han H, Huang X, Xu W, Kaplan DL, Zhu H, Lu Q. Silk scaffolds with tunable mechanical capability for cell differentiation. Acta Biomater 2015; 20:22-31. [PMID: 25858557 DOI: 10.1016/j.actbio.2015.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an "inert" material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells toward myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features.
Collapse
|
31
|
Wang D, Liu H, Fan Y. Silk fibroin for vascular regeneration. Microsc Res Tech 2015; 80:280-290. [PMID: 26097014 DOI: 10.1002/jemt.22532] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 11/11/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality in today's world. Due to the lack of healthy autologous vessels, more tissue-engineered blood vessels are needed to repair or replace the damaged arteries. Biomaterials play an indispensable role in creating a living neovessel with biological responses. Silk fibroin produced by silkworms possesses good cytocompatibility, tailorable biodegradability, suitable mechanical properties, and minimal inflammatory reactions. In addition, regenerated silk fibroin solutions can be processed into various forms of scaffolds such as films, fibers, tubes, and porous sponges. These features make silk fibroin a promising biomaterial for small-diameter vascular grafts. The present article focuses on the applications of silk fibroin for vascular regeneration. A brief overview of the properties of silk fibroin is provided, following which the current research status and future directions of the main types of silk fibroin scaffolds for vascular regeneration are reviewed and discussed. Microsc. Res. Tech. 80:280-290, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Danyan Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
32
|
Yuan X, Huang Y, Guo Y, Wang L, Guo Q, Xu T, Wu D, Zhou P, Zhu S, Wang Y, Fan X, Zhu M, Lu Y, Wang Z. Controlling the blood glucose of type 1 diabetes mice by co-culturing MIN-6 β cells on 3D scaffold. Pediatr Transplant 2015; 19:371-9. [PMID: 25677260 DOI: 10.1111/petr.12443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2015] [Indexed: 01/26/2023]
Abstract
T1D is an autoimmune disease, which may be caused by lack of insulin-secreting β cells due to damage of autoimmune system. Living with T1D is a challenge for the child and the family; cell transplantation is a treatment option for diabetes in children. To establish a microenvironment suitable for cell growth and proliferation as well as for sustained cellular function, we used MIN-6 β cells as seed cells and SF-IV collagen as a 3D composite scaffold to construct artificial pancreas in this experiment. The cell viabilities were determined by MTT assay, and the response of cells to different glucose concentrations was observed by glucose stimulation test. Artificial pancreas was transplanted into the abdominal cavity of T1D mice, and the changes of blood glucose were monitored. After 10 days, insulin expression was detected by immunohistochemical method, and the claybank stained area showed effectiveness of insulin secretion. A series of experiments showed that implantation of 3D cell scaffold into the abdominal cavity can effectively control the blood glucose level of T1D mice. It also had longer-lasting hypoglycemic effects than simple cell transplantation, which was expected to become a new method for the treatment of T1D.
Collapse
Affiliation(s)
- Xiaoqi Yuan
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Department of General Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu B, Song YW, Jin L, Wang ZJ, Pu DY, Lin SQ, Zhou C, You HJ, Ma Y, Li JM, Yang L, Sung KLP, Zhang YG. Silk structure and degradation. Colloids Surf B Biointerfaces 2015; 131:122-8. [PMID: 25982316 DOI: 10.1016/j.colsurfb.2015.04.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
To investigate the structure of silk and its degradation properties, we have monitored the structure of silk using scanning electron microscopy and frozen sections. Raw silk and degummed raw silk were immersed in four types of degradation solutions for 156 d to observe their degradation properties. The subcutaneous implants in rats were removed after 7, 14, 56, 84, 129, and 145 d for frozen sectioning and subsequent staining with hematoxylin and eosin (H.E.), DAPI, Beta-actin and Collagen I immunofluorescence staining. The in vitro weight loss ratio of raw silk and degummed raw silk in water, PBS, DMEM and DMEM containing 10% FBS (F-DMEM) were, respectively, 14%/11%, 12.5%/12.9%, 11.1%/14.3%, 8.8%/11.6%. Silk began to degrade after 7 d subcutaneous implantation and after 145 d non-degraded silk was still observed. These findings suggest the immunogenicity of fibroin and sericin had no essential difference. In the process of in vitro degradation of silk, the role of the enzyme is not significant. The in vivo degradation of silk is related to phagocytotic activity and fibroblasts may be involved in this process to secrete collagen. This study also shows the developing process of cocoons and raw silk.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Yu-wei Song
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Zhi-jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - De-yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Shao-qiang Lin
- Core Laboratory of the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chan Zhou
- Chongqing Academy of Animal Science, Chongqing 400015, China
| | - Hua-jian You
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Yan Ma
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Jin-min Li
- Department of Obstetrics, the Ninth People's Hospital of Chongqing, 400700, China
| | - Li Yang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - K L Paul Sung
- College of Bioengineering, Chongqing University, Chongqing 400044, China; Department of Orthopaedics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Yao-guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
34
|
Bai S, Zhang W, Lu Q, Ma Q, Kaplan DL, Zhu H. Silk Nanofiber Hydrogels with Tunable Modulus to Regulate Nerve Stem Cell Fate. J Mater Chem B 2014; 2:6590-6600. [PMID: 25530851 PMCID: PMC4269376 DOI: 10.1039/c4tb00878b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reconstruction of damaged nerves remains a significant unmet challenge in clinical medicine. To foster improvements, the control of neural stem cell (NSC) behaviors, including migration, proliferation and differentiation are critical factors to consider. Topographical and mechanical stimulation based on the control of biomaterial features is a promising approach, which are usually studied separately. The synergy between topography and mechanical rigidity could offer new insights into the control of neural cell fate if they could be utilized concurrently in studies. To achieve this need, silk fibroin self-assembled nanofibers with a beta-sheet-enriched structure are formed into hydrogels. Stiffness is tuned using different annealing processes to enable mechanical control without impacting the nanofiber topography. Compared with nonannealed nanofibers, NSCs on methanol annealed nanofibers with stiffness similar to nerve tissues differentiate into neurons with the restraint of glial differentiation, without the influence of specific differentiation biochemical factors. These results demonstrate that combining topographic and mechanical cues provides the control of nerve cell behaviors, with potential for neurogenerative repair strategies.
Collapse
Affiliation(s)
- ShuMeng Bai
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - WenMin Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, the Second Affiliated Hospital, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006, People’s Republic of China
| | - QuanHong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, the Second Affiliated Hospital, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L. Kaplan
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - HeSun Zhu
- Research Center of Materials Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| |
Collapse
|