1
|
Cimino C, Bonaccorso A, Tomasello B, Alberghina GA, Musumeci T, Puglia C, Pignatello R, Marrazzo A, Carbone C. W/O/W Microemulsions for Nasal Delivery of Hydrophilic Compounds: A Preliminary Study. J Pharm Sci 2024; 113:1636-1644. [PMID: 38281664 DOI: 10.1016/j.xphs.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The administration of hydrophilic therapeutics has always been a great challenge because of their low bioavailability after administration. For this purpose, W/O/W microemulsion resulted to be a potential successful strategy for the delivery of hydrophilic compounds, interesting for the nasal mucosal therapy. Herein, an optimized biphasic W/O microemulsion was designed, through a preliminary screening, and it was inverted in a triphasic W/O/W microemulsion, intended for the nasal administration. In order to enhance the mucosal retention, surface modification of the biphasic W/O microemulsion was performed adding didodecyldimethylammonium bromide, and then converting the system into a cationic triphasic W/O/W microemulsion. The developed samples were characterized in terms of droplet size, polydispersity, zeta potential, pH and osmolality. The physical long-term stability was analyzed storing samples at accelerated conditions (40 ± 2 °C and 75 ± 5 % RH) for 6 months in a constant climate chamber, following ICH guidelines Q1A (R2). In order to verify the potential retention on the nasal mucosa, the two triphasic systems were analyzed in terms of mucoadhesive properties, measuring the in vitro interaction with mucin over time. Furthermore, fluorescein sodium salt was selected as a model hydrophilic drug to be encapsulated into the inner core of the two triphasic W/O/W microemulsions, and its release was analyzed compared to the free probe solution. The cytocompatibility of the two platforms was assessed on two cell lines, human fibroblasts HFF1 and Calu-3 cell lines, chosen as pre-clinical models for nasal and bronchial/tracheal airway epithelium.
Collapse
Affiliation(s)
- Cinzia Cimino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Barbara Tomasello
- Section of Biochemistry, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Giovanni Anfuso Alberghina
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Carmelo Puglia
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Agostino Marrazzo
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy.
| |
Collapse
|
2
|
Terescenco D, Savary G, Picard C, Hucher N. Topical pickering emulsion versus classical excipients: A study of the residual film on the human skin. Int J Pharm 2024; 657:124130. [PMID: 38631484 DOI: 10.1016/j.ijpharm.2024.124130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
The interest in Pickering emulsions is based on the possibility of replacing classical emulsifiers with solid particles. These emulsions are very attractive in the pharmaceutical field for their stability virtues and as a vehicle to deliver active ingredients. The study aimed to analyze the properties of the residual film of the Pickering emulsions on the human skin compared to conventional systems. For this project, three types of solid particles were used: titanium dioxide, zinc oxide and silicon dioxide. All of them are capable of stabilizing the oil/water interface and thus forming totally emulsified systems. To create an emulsion of reference, a classical surfactant was used as an excipient. Complementary systems containing both particles and the emulsifier were also analyzed. Then, a combined approach between physicochemical and biometrological in vivo analysis was employed. The study proved that Pickering emulsions stabilized by the metal oxides were distinct from the reference emulsion in terms of droplet sizes and organization, rheological and textural responses. Consequently, it impacted the properties of the residual film once the product was applied to the skin. The particle-stabilized emulsions formed a hydrophobic film counter to conventional excipients. Also, the Friction parameter (or the roughness of the film) was directly linked to the quantity of the particles used in the formulation and their perception on the skin surface. The use of the particles blurs the glossy effect of the oil phase. Finally, it was observed that the appearance of the residual film was impacted by the type of the particle, namely TiO2 and ZnO particles.
Collapse
Affiliation(s)
- Daria Terescenco
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France.
| | - Geraldine Savary
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France.
| | - Celine Picard
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France.
| | - Nicolas Hucher
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France.
| |
Collapse
|
3
|
Simões A, Veiga F, Vitorino C. Question-based review for pharmaceutical development: An enhanced quality approach. Eur J Pharm Biopharm 2024; 195:114174. [PMID: 38160986 DOI: 10.1016/j.ejpb.2023.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Over the last years, the pharmaceutical industry has faced real challenges regarding quality assurance. In this context, the establishment of more holistic approaches to the pharmaceutical development has been encouraged. The emergence of the Quality by Design (QbD) paradigm as systematic, scientific and risk-based methodology introduced a new concept of pharmaceutical quality. In essence, QbD can be interpreted as a strategy to maximize time and cost savings. An in-depth understanding of the formulation and manufacturing process is demanded to optimize the safety, efficacy and quality of a drug product at all stages of development. This innovative approach streamlines the pharmaceutical Research and Development (R&D) process, provides greater manufacturing flexibility and reduces regulatory burden. To assist in QbD implementation, International Conference on Harmonisation (ICH), U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) organized and launched QbD principles in their guidance for industry, identifying key concepts and tools to design and develop a high-quality drug product. Despite the undeniable advantages of the QbD approach, and the widespread information on QbD regulatory expectations, its full implementation in the pharmaceutical field is still limited. The present review aims to establish a crosswise overview on the current application status of QbD within the framework of the ICH guidelines (ICH Q8(R2) - Q14 and ICH Q2(R2)). Moreover, it outlines the way information gathered from the QbD methodology is being harmonized in Marketing Authorization Applications (MAAs) for European market approval. This work also highlights the challenges that hinder the deployment of the QbD strategy as a standard practice.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra, Portugal.
| |
Collapse
|
4
|
Badruddoza AZM, Yeoh T, Shah JC, Walsh T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J Pharm Sci 2023; 112:1772-1793. [PMID: 36966902 DOI: 10.1016/j.xphs.2023.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The emulsion-based topical semisolid dosage forms present a high degree of complexity due to their microstructures which is apparent from their compositions comprising at least two immiscible liquid phases, often times of high viscosity. These complex microstructures are thermodynamically unstable, and the physical stability of such preparations is governed by formulation parameters such as phase volume ratio, type of emulsifiers and their concentration, HLB value of the emulsifier, as well as by process parameters such as homogenizer speed, time, temperature etc. Therefore, a detailed understanding of the microstructure in the DP and critical factors that influence the stability of emulsions is essential to ensure the quality and shelf-life of emulsion-based topical semisolid products. This review aims to provide an overview of the main strategies used to stabilize pharmaceutical emulsions contained in semisolid products and various characterization techniques and tools that have been utilized so far to evaluate their long-term stability. Accelerated physical stability assessment using dispersion analyzer tools such as an analytical centrifuge to predict the product shelf-life has been discussed. In addition, mathematical modeling for phase separation rate for non-Newtonian systems like semisolid emulsion products has also been discussed to guide formulation scientists to predict a priori stability of these products.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA.
| | - Thean Yeoh
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Jaymin C Shah
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Taylor Walsh
- Eurofins Lancaster Laboratories Professional Scientific Services, 2425 New Holland Pike, Lancaster, PA 17601, USA
| |
Collapse
|
5
|
Zhang Q, Zhao Q, Zhu B, Chen R, Zhou Y, Pei X, Zhou H, An H, Tan Y, Chen C. Acetalized starch-based nanoparticles stabilized acid-sensitive Pickering emulsion as a potential antitumor drug carrier. Int J Biol Macromol 2023:125393. [PMID: 37331543 DOI: 10.1016/j.ijbiomac.2023.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Pickering emulsions are attracting increased attention owing to their therapeutic applications. However, the slow-release property of Pickering emulsions and the in vivo solid particle accumulation caused by the solid particle stabilizer film limit their applications in therapeutic delivery. In this study, drug-loaded, acid-sensitive Pickering emulsions were prepared using acetal-modified starch-based nanoparticles as stabilizers. The acetalized starch-based nanoparticles (Ace-SNPs) not only act as a solid-particle emulsifier to stabilize Pickering emulsions but also exhibit acid sensitivity and degradability, conducive to the destabilization of Pickering emulsions to release the drug and reduce the effect of particle accumulation in an acidic therapeutic environment. In vitro drug release profiles show that 50 % of curcumin was released in 12 h in an acidic medium (pH 5.4), whereas only 14 % of curcumin was released in 12 h at higher pH (7.4), indicating that the Ace-SNP stabilized Pickering emulsion possess good acid-responsive release characteristics in acidic environments. Moreover, acetalized starch-based nanoparticles and their degradation products showed good biocompatibility, and the resulting curcumin-loaded Pickering emulsions exhibited significant anticancer activity. These features suggest that the acetalized starch-based nanoparticle-stabilized Pickering emulsion has the potential for application as an antitumor drug carrier to enhance therapeutic effects.
Collapse
Affiliation(s)
- Qimeng Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Qifan Zhao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Rong Chen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yating Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xiaopeng Pei
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Hua Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Huiyong An
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Ying Tan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Chengshui Chen
- Department of Puelmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China; Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
6
|
de Carvalho-Guimarães FB, Correa KL, de Souza TP, Rodríguez Amado JR, Ribeiro-Costa RM, Silva-Júnior JOC. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals (Basel) 2022; 15:1413. [PMID: 36422543 PMCID: PMC9698490 DOI: 10.3390/ph15111413] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 09/10/2023] Open
Abstract
Pickering emulsions are systems composed of two immiscible fluids stabilized by organic or inorganic solid particles. These solid particles of certain dimensions (micro- or nano-particles), and desired wettability, have been shown to be an alternative to conventional emulsifiers. The use of biodegradable and biocompatible stabilizers of natural origin, such as clay minerals, presents a promising future for the development of Pickering emulsions and, with this, they deliver some advantages, especially in the area of biomedicine. In this review, the effects and characteristics of microparticles in the preparation and properties of Pickering emulsions are presented. The objective of this review is to provide a theoretical basis for a broader type of emulsion, in addition to reviewing the main aspects related to the mechanisms and applications to promote its stability. Through this review, we highlight the use of this type of emulsion and its excellent properties as permeability promoters of solid particles, providing ideal results for local drug delivery and use in Pickering emulsions.
Collapse
Affiliation(s)
| | - Kamila Leal Correa
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Tatiane Pereira de Souza
- Laboratory of Innovation and Development in Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - Jesus Rafael Rodríguez Amado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato-Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | | |
Collapse
|
7
|
Quality by Design (QbD) application for the pharmaceutical development process. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Lu X, Huang Q, Xiao J, Wang Y. Milled miscellaneous black rice particles stabilized Pickering emulsions with enhanced antioxidation activity. Food Chem 2022; 385:132639. [DOI: 10.1016/j.foodchem.2022.132639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/21/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
|
9
|
Toma I, Porfire AS, Tefas LR, Berindan-Neagoe I, Tomuță I. A Quality by Design Approach in Pharmaceutical Development of Non-Viral Vectors with a Focus on miRNA. Pharmaceutics 2022; 14:1482. [PMID: 35890377 PMCID: PMC9322860 DOI: 10.3390/pharmaceutics14071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer is the leading cause of death worldwide. Tumors consist of heterogeneous cell populations that have different biological properties. While conventional cancer therapy such as chemotherapy, radiotherapy, and surgery does not target cancer cells specifically, gene therapy is attracting increasing attention as an alternative capable of overcoming these limitations. With the advent of gene therapy, there is increasing interest in developing non-viral vectors for genetic material delivery in cancer therapy. Nanosystems, both organic and inorganic, are the most common non-viral vectors used in gene therapy. The most used organic vectors are polymeric and lipid-based delivery systems. These nanostructures are designed to bind and protect the genetic material, leading to high efficiency, prolonged gene expression, and low toxicity. Quality by Design (QbD) is a step-by-step approach that investigates all the factors that may affect the quality of the final product, leading to efficient pharmaceutical development. This paper aims to provide a new perspective regarding the use of the QbD approach for improving the quality of non-viral vectors for genetic material delivery and their application in cancer therapy.
Collapse
Affiliation(s)
- Ioana Toma
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| |
Collapse
|
10
|
A quality by design (QbD) approach in pharmaceutical development of lipid-based nanosystems: A systematic review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
|
12
|
Peito S, Peixoto D, Ferreira-Faria I, Margarida Martins A, Margarida Ribeiro H, Veiga F, Marto J, Cláudia Santos A. Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications. Int J Pharm 2022; 615:121455. [PMID: 35031412 DOI: 10.1016/j.ijpharm.2022.121455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Pickering emulsions are systems composed of two immiscible fluids, which are stabilized by solid organic or inorganic particles. These solid particles include a broad range of particles that can be used to stabilize Pickering emulsions. An improved resistance against coalescence and lower toxicity, against conventional emulsions stabilized by surfactants, make Pickering emulsions suitable candidates for numerous applications, such as catalysis, food, oil recovery, cosmetics, and pharmaceutical industries. In this article, we give an overview of Pickering emulsions focusing on topical applications. First, we reference the parameters that influence the stabilization of Pickering emulsions. Second, we discuss some of the already investigated topical applications of nano- and microparticles used to stabilize Pickering emulsions. Afterwards, we consider some of the most promising stabilizers of Pickering emulsions for topical applications. Ultimately, we carried out a brief analysis of toxicity and advances in future perspectives, highlighting the promising use of these emulsions in cosmetics and dermopharmaceutical formulations.
Collapse
Affiliation(s)
- Sofia Peito
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Inês Ferreira-Faria
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Margarida Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Helena Margarida Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Cao Y, Dai Y, Lu X, Li R, Zhou W, Li J, Zheng B. Formation of Shelf-Stable Pickering High Internal Phase Emulsion Stabilized by Sipunculus nudus Water-Soluble Proteins (WSPs). Front Nutr 2021; 8:770218. [PMID: 34888338 PMCID: PMC8650626 DOI: 10.3389/fnut.2021.770218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022] Open
Abstract
To form a stable emulsion system, the water-soluble proteins (WSPs) of Sipunculus nudus were prepared as the sole effective stabilizer for the high internal phase emulsion (HIPEs), of which the influence of the WSPs concentration and environmental stability was investigated. The HIPEs were fabricated using a simple one-pot homogenization process (10,000 rpm/min, 3 min) that involved blending the WSPs (0.1, 1, 2, 3, 4, and 5 wt%) with soybean oil (60, 65, 70, 75, 80, 85, and 90%). The microstructure and properties of stable HIPEs were characterized by particle size, ζ-potential, visual observations, optical microscopy, and dynamic rheology property measurements. As the concentration of WSPs increases, the mean particle diameter of HIPEs decreases, on the contrary, the apparent viscosity and storage modulus gradually increase. At a given emulsifier concentration (3 wt%), the stable and gel-like HIPEs were formed at the oil internal phase (ϕ) values of 70–75%, all the pH range in values from 3 to 9, and the ionic strength from 100 to 500 mM. Furthermore, the HIPEs that were stabilized formed a gel-like state that was relatively stable to heat and storage (30 days). And there was a new phenomenon that the destabilized HIPE of the freeze-thaw treatments could still return to a gel-like state again after homogenizing. The study results suggest that the WSPs of S. nudus as a natural emulsifier could be widely used in the food industry.
Collapse
Affiliation(s)
- Yupo Cao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.,Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Buzzo CMVDC, Converti A, da Silva JA, Apolinário AC. Quality by design enabled the development of stable and effective oil-in-water emulsions at compounding pharmacy: the case of a sunscreen formulation. Pharm Dev Technol 2021; 26:1090-1101. [PMID: 34617471 DOI: 10.1080/10837450.2021.1990946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
It is widely accepted that the use of topical sunscreens has medical importance with potential to prevent skin damage by protecting from solar ultraviolet radiation (UVR) effects. Pharmaceutical emulsions require an optimal qualitative and quantitative combination of emollients, emulsifiers and others compounds such as softening agents and, for sunscreens, a combination of chemical and physical UV filters. Herein, we applied the quality by design (QbD) concept to achieve stable and effective compounded sunscreen emulsions. By using the statistical tool of design of experiments, it was possible to identify the influence of emulsifier type (with low and high Hydrophile-Lipophile Balance) and concentrations of emollient and softening agent on the achievement of formulations with suitable organoleptic and physicochemical features. Compounded emulsions with pleasant macroscopic aspects were obtained. Three formulations with physicochemical properties in targeted ranges were selected, namely pH ∼6.0, conductivity > 0.0 µS/cm2, spreadability factor ∼1-1.5 g/mm2, viscosity ∼12000 mPa.s and sunscreen protection factor ∼30. Freeze-thaw cycle and accelerated stability study under different storage conditions allowed selecting a stable emulsion that ensured photoprotection in biological assays. The QbD approach was essential to select the best, low-cost compounded sunscreen emulsion, with targeted physicochemical parameters.
Collapse
Affiliation(s)
- Celia Maria Vargas da Costa Buzzo
- Department of Pharmacy, State University of Paraíba, Bairro Universitário - Campina Grande, Paraíba, Brazil.,Dilecta, Compounding Pharmacy, João Pessoa, João Pessoa, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Chemical Engineering Pole, Genoa, Italy
| | - José Alexsandro da Silva
- Department of Pharmacy, State University of Paraíba, Bairro Universitário - Campina Grande, Paraíba, Brazil
| | - Alexsandra Conceição Apolinário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, São Paulo, Brazil
| |
Collapse
|
15
|
Sharkawy A, Barreiro MF, Rodrigues AE. New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Pickering emulsions based on food byproducts: A comprehensive study of soluble and insoluble contents. J Colloid Interface Sci 2021; 581:226-237. [DOI: 10.1016/j.jcis.2020.07.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
|
17
|
Huc-Mathis D, Guilbaud A, Fayolle N, Bosc V, Blumenthal D. Valorizing apple by-products as emulsion stabilizers: Experimental design for modeling the structure-texture relationships. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Rattanasaikaew K, Chaiyasat A, Chaiyasat P. Secondary particle formation in suspension polymerization using a particulate surfactant. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1765386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kanlapangha Rattanasaikaew
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi , Pathumthani, Thailand
| | - Amorn Chaiyasat
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi , Pathumthani, Thailand
- Advanced Materials Design and Development (AMDD) Research Unit, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi , Pathumthani, Thailand
| | - Preeyaporn Chaiyasat
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi , Pathumthani, Thailand
- Advanced Materials Design and Development (AMDD) Research Unit, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi , Pathumthani, Thailand
| |
Collapse
|
19
|
Kouhi M, Prabhakaran MP, Ramakrishna S. Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Abstract
Pickering emulsions are systems composed of two immiscible fluids stabilized by solid organic or inorganic particles. Pickering emulsions are particularly useful in cosmetics, where the surfactants are unwanted, as well as in the pharmaceutical field, where transdermal and/or dermal drug delivery is difficult to achieve and controlled drug release is desired. Here, we studied calcium carbonate particles as stabilizers of Pickering emulsions for topical use. An optimized formulation was obtained using a Quality by Design approach. First, a screening experiment was performed to identify the formulation and process critical variables that affect the quality properties of the Pickering emulsion. The optimization of the production was then studied by establishing the design space. The final formulation was hereinafter investigated regarding the pH, rheological properties, and in vitro cytotoxicity assays. The results showed the formulation had a pH compatible with human skin and a shear thinning behavior. Moreover, this formulation showed a strong network structure, with a suitable spreadability on the skin, allowing an easy application. The in vitro assays were performed to assess the potential cytotoxicity of the calcium carbonate-stabilized emulsion and the particles themselves, and the results revealed that the formulation did not significantly affect the cell viability. In conclusion, the use of calcium carbonate particles as a stabilizer ingredient contributed to achieve an eco-friendly Pickering emulsion.
Collapse
|
21
|
Progressing Towards the Sustainable Development of Cream Formulations. Pharmaceutics 2020; 12:pharmaceutics12070647. [PMID: 32659962 PMCID: PMC7407566 DOI: 10.3390/pharmaceutics12070647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/26/2023] Open
Abstract
This work aims at providing the assumptions to assist the sustainable development of cream formulations. Specifically, it envisions to rationalize and predict the effect of formulation and process variability on a 1% hydrocortisone cream quality profile, interplaying microstructure properties with product performance and stability. This tripartite analysis was supported by a Quality by Design approach, considering a three-factor, three-level Box-Behnken design. Critical material attributes and process parameters were identified from a failure mode, effects, and criticality analysis. The impact of glycerol monostearate amount, isopropyl myristate amount, and homogenization rate on relevant quality attributes was estimated crosswise. The significant variability in product droplet size, viscosity, thixotropic behavior, and viscoelastic properties demonstrated a noteworthy influence on hydrocortisone release profile (112 ± 2–196 ± 7 μg/cm2/√h) and permeation behavior (0.16 ± 0.03–0.97 ± 0.08 μg/cm2/h), and on the assay, instability index and creaming rate, with values ranging from 81.9 to 120.5%, 0.031 ± 0.012 to 0.28 ± 0.13 and from 0.009 ± 0.000 to 0.38 ± 0.07 μm/s, respectively. The release patterns were not straightforwardly correlated with the permeation behavior. Monitoring the microstructural parameters, through the balanced adjustment of formulation and process variables, is herein highlighted as the key enabler to predict cream performance and stability. Finally, based on quality targets and response constraints, optimal working conditions were successfully attained through the establishment of a design space.
Collapse
|
22
|
Arriagada F, Ugarte C, Günther G, Larraín MA, Guarnizo-Herrero V, Nonell S, Morales J. Carminic Acid Linked to Silica Nanoparticles as Pigment/Antioxidant Bifunctional Excipient for Pharmaceutical Emulsions. Pharmaceutics 2020; 12:pharmaceutics12040376. [PMID: 32325834 PMCID: PMC7238007 DOI: 10.3390/pharmaceutics12040376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
The incorporation of pigments and natural polyphenols into inorganic matrices, resulting in a hybrid material that improves the resistance and chemical stability of the pigments and the antioxidant capacity of the materials, has been of great interest to the pharmaceutical, chemical and food industries. The aim of this work was to prepare and characterize a bifunctional pigment-antioxidant nanomaterial-based carminic acid-decorated solid core-mesoporous shell silica nanoparticles, evaluating its properties as a pigment, its antioxidant capacity and its properties as a chemical stabilizer of emulsions. The chemical stability of oil-in-water (O/W) Pickering emulsions was evaluated determining the stability of vitamin E solubilized in the oil phase. Carminic acid was attached through the action of coupling ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) agents, and the resulting spherical and homogeneous nanoparticles showed a diameter close to 175 nm. A notorious change of emulsion color was observed by the addition of the nanomaterial. Emulsions showed an attractive pink color, and when the pH was adjusted to pH 3 and pH 9, a change in color was observed, analogous to carminic acid in solution. The nanomaterial incorporation also improved chemical stability, decreasing vitamin E consumption to 9.26% of the initial value, demonstrating an important antioxidant effect of the developed nanomaterial.
Collapse
Affiliation(s)
- Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, 5110033 Valdivia, Chile;
| | - Catalina Ugarte
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile; (C.U.); (G.G.); (M.A.L.)
| | - Germán Günther
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile; (C.U.); (G.G.); (M.A.L.)
| | - María Angélica Larraín
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile; (C.U.); (G.G.); (M.A.L.)
| | | | - Santi Nonell
- Institut Químic de Sarrià (IQS), Universidad Ramon Llull. Via Augusta 390, 08017 Barcelona, Spain;
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile; (C.U.); (G.G.); (M.A.L.)
- Correspondence:
| |
Collapse
|
23
|
Terescenco D, Hucher N, Picard C, Savary G. Sensory perception of textural properties of cosmetic Pickering emulsions. Int J Cosmet Sci 2020; 42:198-207. [DOI: 10.1111/ics.12604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/25/2020] [Indexed: 01/14/2023]
Affiliation(s)
- D. Terescenco
- UNIHAVRE FR 3038 CNRS URCOM Normandie Univ. Le Havre 76600 France
| | - N. Hucher
- UNIHAVRE FR 3038 CNRS URCOM Normandie Univ. Le Havre 76600 France
| | - C. Picard
- UNIHAVRE FR 3038 CNRS URCOM Normandie Univ. Le Havre 76600 France
| | - G. Savary
- UNIHAVRE FR 3038 CNRS URCOM Normandie Univ. Le Havre 76600 France
| |
Collapse
|
24
|
Low LE, Siva SP, Ho YK, Chan ES, Tey BT. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Adv Colloid Interface Sci 2020; 277:102117. [PMID: 32035999 DOI: 10.1016/j.cis.2020.102117] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Recently, there have been increasing demand for the application of Pickering emulsions in various industries due to its combined advantage in terms of cost, quality and sustainability. This review aims to provide a complete overview of the available methodology for the physical characterization of emulsions that are stabilized by solid particles (known as Pickering emulsion). Current approaches and techniques for the analysis of the formation and properties of the Pickering emulsion were outlined along with the expected results of these methods on the emulsions. Besides, the application of modelling techniques has also been elaborated for the effective characterization of Pickering emulsions. Additionally, approaches to assess the stability of Pickering emulsions against physical deformation such as coalescence and gravitational separation were reviewed. Potential future developments of these characterization techniques were also briefly discussed. This review can act as a guide to researchers to better understand the standard procedures of Pickering emulsion assessment and the advanced methods available to date to study these emulsions, down to the minute details.
Collapse
Affiliation(s)
- Liang Ee Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, PR China
| | - Sangeetaprivya P Siva
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yong Kuen Ho
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Eng Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
25
|
Mahajan CR, Joshi LB, Varma U, Naik JB, Chaudhari VR, Mishra S. Sustainable Drug Delivery of Famotidine Using Chitosan-Functionalized Graphene Oxide as Nanocarrier. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1900002. [PMID: 31592120 PMCID: PMC6777207 DOI: 10.1002/gch2.201900002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/16/2019] [Indexed: 05/21/2023]
Abstract
This work mainly focuses on the graphene oxide (GO)-assisted sustainable drug delivery of famotidine (FMT) drug. Famotidine is loaded onto GO and encapsulated by chitosan (CH). UV-visible spectroscopy, field emission scan electron microscopy, and atomic force microscopy confirm the loading of FMT on GO. An interaction of FMT with GO and CH through amine functionalities is confirmed by Fourier-transform infrared spectroscopy. Differential scanning calorimetric and cyclic voltammetric investigations confirm the compatibility of FMT and its retaining activity within chitosan-functionalized graphene oxide (CHGO) composite. Encapsulation efficiency of FMT is determined for various CHGO-FMT combinations and found to be higher at 1:9 ratio. The in vitro drug release profile is studied using a dissolution test apparatus in 0.1 m phosphate buffer medium (pH = 4.5), which shows sustainable drug release up to 12 h, which is greater than the market product (Complete release within 2 h). Comparative study of drug encapsulated with CH and without GO elucidates that GO is responsible for the sustainable release. The "n" value obtained from slope using Korsmeyer-Peppas model suggests the super case-II transport mechanism.
Collapse
Affiliation(s)
- Chetan Ramesh Mahajan
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Lalit B. Joshi
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Umakant Varma
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Jitendra B. Naik
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Vijay Raman Chaudhari
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Satyendra Mishra
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| |
Collapse
|
26
|
Design and Characterization of a New Quercus Suber-Based Pickering Emulsion for Topical Application. Pharmaceutics 2019; 11:pharmaceutics11030131. [PMID: 30893873 PMCID: PMC6471441 DOI: 10.3390/pharmaceutics11030131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 11/22/2022] Open
Abstract
Quercus Suber Bark from Quercus suber L. is a natural, renewable and biodegradable biomaterial with multifunctional proprieties. In this study, we used it as solid particles to stabilize a Pickering emulsion. The main goal was to produce an optimized topical formulation using biocompatible organic particles as stabilizers of the emulsion instead of the common surfactants, whilst benefiting from Quercus suber L. proprieties. In this work, a Quality by Design (QbD) approach was successfully applied to the production of this emulsion. A screening design was conducted, identifying the critical variables of the formula and process, affecting the critical quality attributes of the emulsion (droplet size distribution). The optimization of the production was made through the establishment of the design space. The stability was also investigated during 30 days, demonstrating that Quercus Suber Bark-stabilized emulsions are stable since the droplet size distribution lowers. In vitro studies were performed to assess antioxidant and antiaging efficacy, which revealed that the formulation had indeed antioxidant proprieties. A physicochemical characterization demonstrated that the formulation presents a shear-thinning fluid, ideal for topical administration. The in vivo compatibility study confirmed that the final formulation is not skin irritant, being safe for human use. A sensorial analysis was also performed, using a simple sensory questionnaire, revealing very positive results. Thus, the use of Quercus Suber Bark particles as a multifunctional solid ingredient contributed to achieve a stable, effective and innovative Pickering emulsion with a meaningful synergistic protection against oxidative stress.
Collapse
|
27
|
Marto J, Duarte A, Simões S, Gonçalves LM, Gouveia LF, Almeida AJ, Ribeiro HM. Starch-Based Pickering Emulsions as Platforms for Topical Antibiotic Delivery: In Vitro and In Vivo Studies. Polymers (Basel) 2019; 11:E108. [PMID: 30960092 PMCID: PMC6401811 DOI: 10.3390/polym11010108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 11/24/2022] Open
Abstract
The present study investigated a new approach to treat superficial skin infections by topical application of minocycline hydrochloride (MH) formulated in a novel starch-based Pickering emulsion (ASt-emulsions). The emulsions were fully characterized in terms of efficacy, as well as in vitro release and permeation studies. The emulsions provided a prolonged MH release, always above its minimum inhibitory concentration against Staphylococcus aureus, although the drug did not permeate through the entire skin layer. The in vitro antibacterial activity of MHASt-emulsions against S. aureus was confirmed and their therapeutic efficacy was assessed using an in vitro skin-adapted agar diffusion test. In vivo antibacterial activity, evaluated using the tape-stripping infection model in mice, showed the topical administration of MH was effective against superficial infections caused by S. aureus. This study supports the potential of ASt-emulsions as promising platforms for topical antibiotic delivery, contributing to a new perspective on the treatment of superficial bacterial infections.
Collapse
Affiliation(s)
- Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1609-003 Lisbon, Portugal.
| | - Aida Duarte
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, 2829-511 Monte de Caparica, Portugal.
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1609-003 Lisbon, Portugal.
| | - Lídia Maria Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1609-003 Lisbon, Portugal.
| | - Luís Filipe Gouveia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1609-003 Lisbon, Portugal.
| | - António José Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1609-003 Lisbon, Portugal.
| | - Helena Margarida Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1609-003 Lisbon, Portugal.
| |
Collapse
|
28
|
Marto JM, Gouveia LF, Gonçalves LMD, Ribeiro HM, Almeida AJ. Design of minocycline-containing starch nanocapsules for topical delivery. J Microencapsul 2018; 35:344-356. [PMID: 29889598 DOI: 10.1080/02652048.2018.1487472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pharmaceutical research has been focussed on developing improved delivery systems while exploring new ways of using approved excipients. The present work investigated the potential of starch nanocapsules (StNC) as a topical delivery platform for hydrophilic antimicrobial drugs using minocycline hydrochloride (MH) as a model drug. Thus, a quality by design approach was used to assess the role of different factors that affect the main pharmaceutical properties of StNC prepared using an emulsification-solvent evaporation method. Full characterisation was performed in terms of particle size, encapsulation efficiency, morphology and physical stability at 5 ± 3 °C. Results show the surfactant and lipid contents play a major role in StNC particle size distribution. The MH loading only promoted minor changes upon StNC properties. Formulations were stable without variations on physicochemical properties. All tested formulations presented a zeta-potential of +33.6 ± 6.7 mV, indicating a good physical stability and evidencing that StNC are suitable nanocarriers for topical use.
Collapse
Affiliation(s)
- J M Marto
- a Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa) , Universidade de Lisboa , Lisboa , Portugal
| | - L F Gouveia
- a Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa) , Universidade de Lisboa , Lisboa , Portugal
| | - L M D Gonçalves
- a Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa) , Universidade de Lisboa , Lisboa , Portugal
| | - H M Ribeiro
- a Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa) , Universidade de Lisboa , Lisboa , Portugal
| | - A J Almeida
- a Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa) , Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
29
|
Mishra V, Thakur S, Patil A, Shukla A. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin Drug Deliv 2018; 15:737-758. [DOI: 10.1080/17425247.2018.1504768] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sourav Thakur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Akshay Patil
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anshuman Shukla
- Product Development Cell 2, National Institute of Immunology, New Delhi, India
| |
Collapse
|
30
|
A practical framework for implementing Quality by Design to the development of topical drug products: Nanosystem-based dosage forms. Int J Pharm 2018; 548:385-399. [PMID: 29953928 DOI: 10.1016/j.ijpharm.2018.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/16/2023]
Abstract
Skin has been increasingly recognized as an important drug administration route with topical formulations, offering a targeted approach for the treatment of several dermatological disorders. The effectiveness of this route is hampered by its natural barrier, the stratum corneum (SC), and hence, different strategies have been investigated to improve percutaneous drug transport. The design of nanodelivery systems, aiming at solving skin delivery issues, have been largely explored, due to their potential to revolutionize dermal therapies, improving therapeutic effectiveness and reducing side effects. Apart from nanosystem benefits, the fulfilment of the reproducibility requirements and quality standards still limit their industrial production. The optimization of nanosystem formulation and manufacturing process is complex, usually involving a large number of variables. Therefore, a science- and risk-oriented approach, such as Quality by Design (QbD) will provide a comprehensive and noteworthy knowledge, yielding high quality drug products without extensive regulatory burden. This review aims to set up the basis for QbD development approach, encompassing preliminary and systematic risk assessments, with critical process parameters (CPPs) and critical material attributes (CMAs) identification, of different nanosystems potentially used in dermal therapies.
Collapse
|
31
|
Simões A, Veiga F, Vitorino C, Figueiras A. A Tutorial for Developing a Topical Cream Formulation Based on the Quality by Design Approach. J Pharm Sci 2018; 107:2653-2662. [PMID: 29935297 DOI: 10.1016/j.xphs.2018.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
The pharmaceutical industry has entered in a new era, as there is a growing interest in increasing the quality standards of dosage forms, through the implementation of more structured development and manufacturing approaches. For many decades, the manufacturing of drug products was controlled by a regulatory framework to guarantee the quality of the final product through a fixed process and exhaustive testing. Limitations related to the Quality by Test system have been widely acknowledged. The emergence of Quality by Design (QbD) as a systematic and risk-based approach introduced a new quality concept based on a good understanding of how raw materials and process parameters influence the final quality profile. Although the QbD system has been recognized as a revolutionary approach to product development and manufacturing, its full implementation in the pharmaceutical field is still limited. This is particularly evident in the case of semisolid complex formulation development. The present review aims at establishing a practical QbD framework to describe all stages comprised in the pharmaceutical development of a conventional cream in a comprehensible manner.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; LAQV. REQUIMTE, Group of Pharmaceutical Technology, Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; LAQV. REQUIMTE, Group of Pharmaceutical Technology, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; LAQV. REQUIMTE, Group of Pharmaceutical Technology, Coimbra, Portugal; Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ana Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; LAQV. REQUIMTE, Group of Pharmaceutical Technology, Coimbra, Portugal.
| |
Collapse
|
32
|
Varma CAK, Jayaram Kumar K. Formulation and optimization of pH sensitive drug releasing O/W emulsions using Albizia lebbeck L. seed polysaccharide. Int J Biol Macromol 2018; 116:239-246. [PMID: 29719218 DOI: 10.1016/j.ijbiomac.2018.04.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Smart polymers, one of the class of polymers with extensive growth in the last few decades due to their wide applications in drug targeting and controlled delivery systems. With this in mind, the aim of the present study is to design and formulate smart releasing o/w emulsion by using Albizia lebbeck L. seed polysaccharide (ALPS). For this purpose, the physicochemical and drug release characteristics like emulsion capacity (EC), emulsion stability (ES), viscosity, microscopy, zeta potential, polydispersity index (PDI) and in-vitro drug release were performed. The EC and ES values were found to increase with an increased concentration of ALPS. The emulsion formulations were statistically designed by using 32 full factorial design. All the emulsions showed a shear-thinning behavior. The zeta potential and polydispersity index were found to be in the range of -35.83 mV to -19.00 mV and 0.232-1.000 respectively. Further, the percent cumulative drug release of the emulsions at 8 h was found to be in the range of 30.19-82.65%. The drug release profile exhibited zero order release kinetics. In conclusion, the ALPS can be used as a natural emulsifier and smart polymer for the preparation of pH sensitive emulsions in drug delivery systems.
Collapse
Affiliation(s)
- Chekuri Ashok Kumar Varma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - K Jayaram Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
33
|
Fabrication of chitosan gel droplets via crosslinking of inverse Pickering emulsifications. Carbohydr Polym 2018; 186:1-8. [DOI: 10.1016/j.carbpol.2017.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 11/22/2022]
|
34
|
Safety assessment of starch-based personal care products: Nanocapsules and pickering emulsions. Toxicol Appl Pharmacol 2018; 342:14-21. [PMID: 29407772 DOI: 10.1016/j.taap.2018.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/25/2018] [Indexed: 11/20/2022]
Abstract
The safety profile of the ingredients used in topical dosage forms and its evaluation is an issue of utmost importance. A suitable equilibrium between safety and efficacy is crucial before promoting a dermatological product. The aim of this work was to assess the safety and biological effects of starch-based vehicles (St-BV) used in such products. The hazard, exposure and dose-response assessment were used to characterize the risk of each ingredient. The EpiSkin™ assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the St-BV was studied using biophysical measurements in human volunteers during 28 days, showing that all ingredients and their combinations were safe for the consumer. Tissue viability determined using the EpiSkin™ testing reached values between 84.0 ± 5.0% and 98.0 ± 8.6% after application of St-BV, which were considered as non-irritant to the skin. These observations were confirmed by the in vivo studies where the St-BV did not induce any sensitization on the volunteers, being safe for human use. Moreover, St-BV increased skin hydration and microcirculation, emerging as an attractive alternative to chemical raw materials.
Collapse
|
35
|
Asfour MH, Elmotasem H, Mostafa DM, Salama AA. Chitosan based Pickering emulsion as a promising approach for topical application of rutin in a solubilized form intended for wound healing: In vitro and in vivo study. Int J Pharm 2017; 534:325-338. [DOI: 10.1016/j.ijpharm.2017.10.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 02/02/2023]
|
36
|
Chen K, Yu G, He F, Zhou Q, Xiao D, Li J, Feng Y. A pH-responsive emulsion stabilized by alginate-grafted anisotropic silica and its application in the controlled release of λ-cyhalothrin. Carbohydr Polym 2017; 176:203-213. [DOI: 10.1016/j.carbpol.2017.07.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/04/2017] [Accepted: 07/15/2017] [Indexed: 01/10/2023]
|
37
|
Synthesis of dodecylamine-functionalized graphene quantum dots and their application as stabilizers in an emulsion polymerization of styrene. J Colloid Interface Sci 2017; 505:847-857. [DOI: 10.1016/j.jcis.2017.06.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022]
|
38
|
Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery. Int J Pharm 2017; 531:134-142. [PMID: 28802793 DOI: 10.1016/j.ijpharm.2017.08.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023]
Abstract
Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process.
Collapse
|
39
|
Angkuratipakorn T, Sriprai A, Tantrawong S, Chaiyasit W, Singkhonrat J. Fabrication and characterization of rice bran oil-in-water Pickering emulsion stabilized by cellulose nanocrystals. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Yang Y, Fang Z, Chen X, Zhang W, Xie Y, Chen Y, Liu Z, Yuan W. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front Pharmacol 2017; 8:287. [PMID: 28588490 PMCID: PMC5440583 DOI: 10.3389/fphar.2017.00287] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/05/2017] [Indexed: 01/22/2023] Open
Abstract
Pickering emulsion, a kind of emulsion stabilized only by solid particles locating at oil-water interface, has been discovered a century ago, while being extensively studied in recent decades. Substituting solid particles for traditional surfactants, Pickering emulsions are more stable against coalescence and can obtain many useful properties. Besides, they are more biocompatible when solid particles employed are relatively safe in vivo. Pickering emulsions can be applied in a wide range of fields, such as biomedicine, food, fine chemical synthesis, cosmetics, and so on, by properly tuning types and properties of solid emulsifiers. In this article, we give an overview of Pickering emulsions, focusing on some kinds of solid particles commonly serving as emulsifiers, three main types of products from Pickering emulsions, morphology of solid particles and as-prepared materials, as well as applications in different fields.
Collapse
Affiliation(s)
- Yunqi Yang
- Department of Neurology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, China
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
- Zhiyuan College, Shanghai Jiao Tong UniversityShanghai, China
| | - Zhiwei Fang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Xuan Chen
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Weiwang Zhang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
41
|
Kaganyuk M, Mohraz A. Non-monotonic dependence of Pickering emulsion gel rheology on particle volume fraction. SOFT MATTER 2017; 13:2513-2522. [PMID: 28306753 DOI: 10.1039/c6sm02858f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The microstructure of Pickering emulsion gels features a tenuous network of faceted droplets, bridged together by shared monolayers of particles. In this investigation, we use standard oscillatory rheometry in conjunction with confocal microscopy to gain a more comprehensive understanding of the role particle bridged interfaces have on the rheology of Pickering emulsion gels. The zero-shear elastic modulus of Pickering emulsion gels shows a non-monotonic dependence on particle loading, with three separate regimes of power-law and linear gel strengthening, and subsequent gel weakening. The transition from power-law to linear scaling is found to coincide with a peak in the volume fraction of particles that participate in bridging, which we indirectly calculate using measureable quantities, and the transition to gel weakening is shown to result from a loss in network connectivity at high particle loadings. These observations are explained via a simple representation of how Pickering emulsion gels arise from an initial population of partially-covered droplets. Based on these considerations, we propose a combined variable related to the initial droplet coverage, to be used in reporting and rationalizing the rheology of Pickering emulsion gels. We demonstrate the applicability of this variable with Pickering emulsions prepared at variable fluid ratios and with different-sized colloidal particles. The results of our investigation have important implications for many technological applications that utilize solid stabilized multi-phase emulsions and require a priori knowledge or engineering of their flow characteristics.
Collapse
Affiliation(s)
- M Kaganyuk
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697, USA.
| | - A Mohraz
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
42
|
Pontes C, Alves M, Santos C, Ribeiro MH, Gonçalves L, Bettencourt AF, Ribeiro IAC. Can Sophorolipids prevent biofilm formation on silicone catheter tubes? Int J Pharm 2016; 513:697-708. [PMID: 27693709 DOI: 10.1016/j.ijpharm.2016.09.074] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Given the impact of biofilms in health care environment and the increasing antibiotic resistance and/or tolerance, new strategies for preventing that occurrence in medical devices are obligatory. Thus, biomaterials surface functionalization with active compounds can be a valuable approach. In the present study the ability of the biosurfactants sophorolipids to prevent biofilms formation on silicone rubber aimed for medical catheters was investigated. Sophorolipids produced by Starmerella bombicola, identified by HPLC-MS/MS were used to cover silicone and surface characterization was evaluated through contact angle measurements and FTIR-ATR. Results revealed that sophorolipids presence on silicone surface decreased the hydrophobicity of the material and biofilm formation of Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. Antibiofilm activity was evaluated through different methods and was more pronounced against S. aureus. Furthermore, biocompatibility of silicone specimens with HaCaT cells was also obtained. From this study it was possible to conclude that sophorolipids seem to be a favourable approach for coating silicone catheters. Such compounds may represent a novel source of antibiofilm agents for technological development passing through strategies of permanent functionalization of surfaces.
Collapse
Affiliation(s)
- Cristiana Pontes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Marta Alves
- CQE Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - Catarina Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal; EST Setúbal, DEM, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal, Portugal
| | - Maria H Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana F Bettencourt
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Isabel A C Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
43
|
Design of novel starch-based Pickering emulsions as platforms for skin photoprotection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:56-64. [DOI: 10.1016/j.jphotobiol.2016.06.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/03/2023]
|
44
|
Silva FC, Marto JM, Salgado A, Machado P, Silva AN, Almeida AJ. Nystatin and lidocaine pastilles for the local treatment of oral mucositis. Pharm Dev Technol 2016; 22:266-274. [DOI: 10.1080/10837450.2016.1221424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Filipa Cosme Silva
- Hospital de Santa Maria, Serviço de Gestão Técnico-Farmacêutica, Centro Hospitalar Lisboa Norte, EPE, Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana M. Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Salgado
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Machado
- Laboratório de Controlo Microbiológico, ADEIM, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra N. Silva
- Laboratório de Controlo Microbiológico, ADEIM, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
Marto J, Ascenso A, Simoes S, Almeida AJ, Ribeiro HM. Pickering emulsions: challenges and opportunities in topical delivery. Expert Opin Drug Deliv 2016; 13:1093-107. [DOI: 10.1080/17425247.2016.1182489] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Simoes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Helena M. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
46
|
Quinn MDJ, Vu K, Madden S, Notley SM. Photothermal Breaking of Emulsions Stabilized with Graphene. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10609-10616. [PMID: 27054548 DOI: 10.1021/acsami.6b00737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pristine graphene particles prepared using an aqueous phase exfoliation technique have been used to promote the stabilization of emulsions through adsorption at the oil-water interface. Highly localized phase separation of these ultrastable emulsions could, however, be induced through photothermal heating of the graphene particles at the interface exposed to near-infrared light. The graphene wettability, which is a key determinant in preventing droplet coalescence was altered through the adsorption of nonionic block copolymer surfactants. Varying the aqueous solution conditions influenced the hydration of the hydrophilic component of the surfactant providing a further opportunity to alter the overall particle wettability and, hence, stability of the emulsion. In this way, highly stable-oil-in water emulsions were produced with decane; however, water-in-oil emulsions were formed with toluene as the oil phase.
Collapse
Affiliation(s)
- Matthew D J Quinn
- Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University , Canberra 0200, Australia
| | - Khu Vu
- Laser Physics Centre, Research School of Physics and Engineering, Australian National University , Canberra 0200, Australia
| | - Stephen Madden
- Laser Physics Centre, Research School of Physics and Engineering, Australian National University , Canberra 0200, Australia
| | - Shannon M Notley
- Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University , Canberra 0200, Australia
| |
Collapse
|
47
|
Synthesis and characterization of enzymatically cross-linked feruloyl amylopectin for curcumin encapsulation. Int J Biol Macromol 2016; 85:126-32. [DOI: 10.1016/j.ijbiomac.2015.12.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 11/23/2022]
|
48
|
Marto J, Gouveia LF, Gonçalves LM, Gaspar DP, Pinto P, Carvalho FA, Oliveira E, Ribeiro HM, Almeida AJ. A Quality by design (QbD) approach on starch-based nanocapsules: A promising platform for topical drug delivery. Colloids Surf B Biointerfaces 2016; 143:177-185. [PMID: 27003468 DOI: 10.1016/j.colsurfb.2016.03.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/24/2022]
Abstract
Exploring novel applications for approved excipients with a history of safe use in therapeutics is a smart strategy to obtain improved pharmaceutical products. The present study aimed at developing a novel starch-based nanoparticulate carrier system (StNC) for topical delivery of lipophilic bioactive molecules. The role of the different factors that affect the particle size distribution and zeta potential of StNC prepared by the emulsification-solvent evaporation method was assessed using a quality by design approach. An optimal formulation was selected and fully characterized in terms of molecular interactions (DSC and FTIR), morphology (TEM and AFM), as well as in vitro and in vivo biological properties, including biological sensitivity/irritation studies performed in human volunteers. Results show the surfactant and lipid contents play a major role in StNC particle size distribution. In addition, all tested formulations presented a zeta potential of ca. +33.6±6.7 mV, indicating a good physical stability, while revealing an excellent compromise between stability, safety and cosmeticity, evidencing that StNC are suitable nanocarriers for topical use. Finally, the design planning methodology has clearly shown its usefulness for optimizing the formulation, being also crucial for the understanding of StNC formation process. The StNC proved to be a promising formulation strategy and a potential nanocarrier for topical lipophilic bioactive molecules.
Collapse
Affiliation(s)
- J Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - L F Gouveia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - L M Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - D P Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - P Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - F A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - E Oliveira
- Laboratórios Atral S.A., Vala do Carregado, Portugal
| | - H M Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - A J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
49
|
Li H, Miao H, Gao Y, Li H, Chen D. Efficient synthesis of narrowly dispersed amphiphilic double-brush copolymers through the polymerization reaction of macromonomer micelle emulsifiers at the oil–water interface. Polym Chem 2016. [DOI: 10.1039/c6py00705h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Narrowly dispersed amphiphilic PMA-g-PMMA/PDMA DBCs with high molecular weight were efficiently synthesized by Pickering emulsion template directed radical polymerization of macromonomer micelles.
Collapse
Affiliation(s)
- Heng Li
- College of Chemistry and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province
- and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province
- Xiangtan University
- China
| | - Han Miao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Yong Gao
- College of Chemistry and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province
- and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province
- Xiangtan University
- China
| | - Huaming Li
- College of Chemistry and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province
- and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province
- Xiangtan University
- China
| | - Daoyong Chen
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|