1
|
Aslan TN. Cationic Micelle-like Nanoparticles as the Carrier of Methotrexate for Glioblastoma Treatment. Molecules 2024; 29:5977. [PMID: 39770065 PMCID: PMC11678594 DOI: 10.3390/molecules29245977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In the present study, ultra-small, magnetic, oleyl amine-coated Fe3O4 nanoparticles were synthesized and stabilized with a cationic ligand, cetyltrimethylammonium bromide, and an anticancer drug, methotrexate, was incorporated into a micelle-like nanoparticle structure for glioblastoma treatment. Nanoparticles were further characterized for their physicochemical properties using spectroscopic methods. Drug incorporation efficiency, drug loading, and drug release profile of the nanoparticles were investigated. According to the results, max incorporation efficiency% of 89.5 was found for 25 µg/mL of methotrexate-loaded nanoparticles. The cumulative amount of methotrexate released reached 40% at physiological pH and 85% at a pH of 5.0 up to 12 h. The toxicity and anticancer efficacy of the nanoparticles were also studied on U87 cancer and L929 cells. IC50 concentration of nanoparticles reduced cell viability to 49% in U87 and 72% in L929 cells. The cellular uptake of nanoparticles was found to be 1.92-fold higher in U87 than in L929 cells. The total apoptosis% in U87 cells was estimated to be ~10-fold higher than what was observed in the L929 cells. Nanoparticles also inhibited the cell motility and prevented the metastasis of U87 cell lines. Overall, designed nanoparticles are a promising controlled delivery system for methotrexate to the cancer cells to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
- Tuğba Nur Aslan
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Necmettin Erbakan University, Konya 42090, Turkey;
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42140, Turkey
| |
Collapse
|
2
|
Keleş S, Alakbarli J, Akgül B, Baghirova M, Imamova N, Barati A, Shikhaliyeva I, Allahverdiyev A. Nanotechnology based drug delivery systems for malaria. Int J Pharm 2024; 666:124746. [PMID: 39321903 DOI: 10.1016/j.ijpharm.2024.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Malaria, caused by Plasmodium parasites transmitted through Anopheles mosquitoes, remains a global health burden, particularly in tropical regions. The most lethal species, Plasmodium falciparum and Plasmodium vivax, pose significant threats to human health. Despite various treatment strategies, malaria continues to claim lives, with Africa being disproportionately affected. This review explores the advancements in drug delivery systems for malaria treatment, focusing on polymeric and lipid-based nanoparticles. Traditional antimalarial drugs, while effective, face challenges such as toxicity and poor bio-distribution. To overcome these issues, nanocarrier systems have been developed, aiming to enhance drug efficacy, control release, and minimize side effects. Polymeric nanocapsules, dendrimers, micelles, liposomes, lipid nanoparticles, niosomes, and exosomes loaded with antimalarial drugs are examined, providing a comprehensive overview of recent developments in nanotechnology for malaria treatment. The current state of antimalarial treatment, including combination therapies and prophylactic drugs, is discussed, with a focus on the World Health Organization's recommendations. The importance of nanocarriers in malaria management is underscored, highlighting their role in targeted drug delivery, controlled release, and improved pharmacological properties. This review bridges the gap in the literature, consolidating the latest advancements in nanocarrier systems for malaria treatment and offering insights into potential future developments in the field.
Collapse
Affiliation(s)
- Sedanur Keleş
- Faculty of Engineering, Department of Metallurgical and Materials Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Jahid Alakbarli
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan; Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Buşra Akgül
- Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Malahat Baghirova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Nergiz Imamova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Ana Barati
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Inji Shikhaliyeva
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Adil Allahverdiyev
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan.
| |
Collapse
|
3
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
4
|
Nadaf S, Savekar P, Bhagwat D, Gurav S. Polyurethane-Based Drug Delivery Applications: Current Progress and Future Prospectives. ACS SYMPOSIUM SERIES 2023:191-214. [DOI: 10.1021/bk-2023-1454.ch009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Site: Chinchewadi 416503, Maharashtra, India
| | - Pranav Savekar
- Shivraj College of Pharmacy, Gadhinglaj 416502, Maharashtra, India
| | | | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa 403001, India
| |
Collapse
|
5
|
Li X, Tan TTY, Lin Q, Lim CC, Goh R, Otake KI, Kitagawa S, Loh XJ, Lim JYC. MOF-Thermogel Composites for Differentiated and Sustained Dual Drug Delivery. ACS Biomater Sci Eng 2023; 9:5724-5736. [PMID: 37729089 DOI: 10.1021/acsbiomaterials.3c01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In recent years, multidrug therapy has gained increasing popularity due to the possibility of achieving synergistic drug action and sequential delivery of different medical payloads for enhanced treatment efficacy. While a number of composite material release platforms have been developed, few combine the bottom-up design versatility of metal-organic frameworks (MOFs) to tailor drug release behavior, with the convenience of temperature-responsive hydrogels (or thermogels) in their unique ease of administration and formulation. Yet, despite their potential, MOF-thermogel composites have been largely overlooked for simultaneous multidrug delivery. Herein, we report the first systematic study of common MOFs (UiO-66, MIL-53(Al), MIL-100(Fe), and MOF-808) with different pore sizes, geometries, and hydrophobicities for their ability to achieve simultaneous dual drug release when embedded within PEG-containing thermogel matrices. After establishing that MOFs exert small influences on the rheological properties of the thermogels despite the penetration of polymers into the MOF pores in solution, the release profiles of ibuprofen and caffeine as model hydrophobic and hydrophilic drugs, respectively, from MOF-thermogel composites were investigated. Through these studies, we elucidated the important role of hydrophobic matching between MOF pores and loaded drugs in order for the MOF component to distinctly influence drug release kinetics. These findings enabled us to identify a viable MOF-thermogel composite containing UiO-66 that showed vastly different release kinetics between ibuprofen and caffeine, enabling temporally differentiated yet sustained simultaneous drug release to be achieved. Finally, the MOF-thermogel composites were shown to be noncytotoxic in vitro, paving the way for these underexploited composite materials to find possible clinical applications for multidrug therapy.
Collapse
Affiliation(s)
- Xin Li
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Tristan T Y Tan
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Qianyu Lin
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chen Chuan Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Rubayn Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| |
Collapse
|
6
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
7
|
Cai L, Gan M, Regenstein JM, Luan Q. Improving the biological activities of astaxanthin using targeted delivery systems. Crit Rev Food Sci Nutr 2023; 64:6902-6923. [PMID: 36779336 DOI: 10.1080/10408398.2023.2176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.
Collapse
Affiliation(s)
- Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Guliy OI, Staroverov SA, Fomin AS, Zhnichkova EG, Kozlov SV, Lovtsova LG, Dykman LA. Polymeric Micelles for Targeted Drug Delivery System. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Liu M, Liu S, Zhu X, Sun Y, Su L, Yu H, Liu D, Li Y, Du Y, Liu R, Sun K. Tanshinone IIA-Loaded Micelles Functionalized with Rosmarinic Acid: A Novel Synergistic Anti-Inflammatory Strategy for Treatment of Atherosclerosis. J Pharm Sci 2022; 111:2827-2838. [PMID: 35580692 DOI: 10.1016/j.xphs.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
Rosmarinic acid (RA) and tanshinone IIA (TA) which are effective components in Salvia miltiorrhiza show anti-inflammatory potential against atherosclerosis. Based on polysulfated propylene-polyethylene glycol (PPS-PEG), RA was grafted onto this polymer via amide bonds to form a micelle carrier for TA encapsulation: PPS-PEG-RA@TA. A potent inhibitory effect on lipopolysaccharide (LPS) -induced proliferation of endothelial cells with significant intracellular uptake was observed with this system. This could have been the result of release of TA in a reactive oxygen species (ROS) environment and stronger antioxidant effect of RA. The synergistic effect was optimized when the combination was used in a molar ratio of 1:1. Mechanistic studies showed that, compared with PPS-PEG-RA and TA+RA, PPS-PEG-RA@TA micelles could more effectively regulate the nuclear factor-kappa B (NF-κB) pathway to reduce expression of vascular cell adhesion molecule-1 (VCAM-1), inhibit the inflammatory cascade and reduce endothelial-cell injury. One month after intravenous injection of PPS-PEG-RA@TA micelles, the plaque area in murine aortic vessels was reduced significantly, and serious toxic side-effects were not observed in vivo, along with excellent biocompatibility. In summary, PPS-PEG-RA@TA micelles could achieve synergistic treatment of atherosclerosis.
Collapse
Affiliation(s)
- Meixuan Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Sha Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Xiaosu Zhu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Yiying Sun
- Shandong International Biotechnology Park Development Co.,Ltd, Yantai, 264005, PR China
| | - Linyu Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Hairong Yu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Deshuai Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Ying Li
- Department of Emergency, The Affiliated Yantai Yuhuangding hospital of Qingdao University, Yantai, 264000, PR China
| | - Yuan Du
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Rongxia Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Kaoxiang Sun
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
10
|
Alonso-Estrada D, Ochoa-Viñals N, Pacios-Michelena S, Ramos-González R, Núñez-Caraballo A, Michelena Álvarez LG, Martínez-Hernández JL, Neira-Vielma AA, Ilyina A. No Solid Colloidal Carriers: Aspects Thermodynamic the Immobilization Chitinase and Laminarinase in Liposome. Front Bioeng Biotechnol 2022; 9:793340. [PMID: 35198549 PMCID: PMC8860326 DOI: 10.3389/fbioe.2021.793340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The present review describes the basic properties of colloidal and vesicular vehicles that can be used for immobilization of enzymes. The thermodynamic aspects of the immobilization of enzymes (laminarinase and chitinase) in liposomes are discussed. These systems protect enzymes against environmental stress and allow for a controlled and targeted release. The diversity of colloidal and vesicular carriers allows the use of enzymes for different purposes, such as mycolytic enzymes used to control phytopathogenic fungi.
Collapse
Affiliation(s)
- Dania Alonso-Estrada
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Nayra Ochoa-Viñals
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Sandra Pacios-Michelena
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Rodolfo Ramos-González
- CONACYT- Autonomous University of Coahuila, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | | | | | - José Luis Martínez-Hernández
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Alberto Antonio Neira-Vielma
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Anna Ilyina
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| |
Collapse
|
11
|
Khazaei Monfared Y, Mahmoudian M, Cecone C, Caldera F, Zakeri-Milani P, Matencio A, Trotta F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers (Basel) 2022; 14:polym14030594. [PMID: 35160583 PMCID: PMC8840141 DOI: 10.3390/polym14030594] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
The great variability of cancer types demands novel drugs with broad spectrum, this is the case of Nisin, a polycyclic antibacterial peptide that recently has been considered for prevention of cancer cells growth. As an accepted food additive, this drug would be very useful for intestinal cancers, but the peptide nature would make easier its degradation by digestion procedures. For that reason, the aim of present study to investigate the protective effect of two different β-cyclodextrin-based nanosponges (carbonyl diimidazole and pyromellitic dianhydride) and their anti-cancer enhancement effect of Nisin-Z encapsulated with against colon cancer cells (HT-29). To extend its possible use, a comparison with breast (MCF-7) cancer cell was carried out. The physicochemical properties, loading efficiency, and release kinetics of Nisin complex with nanosponges were studied. Then, tricin-SDS-PAGE electrophoresis was used to understand the effect of NSs on stability of Nisin-Z in the presence of gastric peptidase pepsin. In addition, the cytotoxicity and cell membrane damage of Nisin Z were evaluated by using the MTT and LDH assay, which was complemented via Annexin-V/ Propidium Iodide (PI) by using flowcytometry. CD-NS are able to complex Nisin-Z with an encapsulation efficiency around 90%. A protective effect of Nisin-Z complexed with CD-NSs was observed in presence of pepsin. An increase in the percentage of apoptotic cells was observed when the cancer cells were exposed to Nisin Z complexed with nanosponges. Interestingly, Nisin Z free and loaded on PMDA/CDI-NSs is more selectively toxic towards HT-29 cells than MCF-7 cancer cells. These results indicated that nanosponges might be good candidates to protect peptides and deliver drugs against intestinal cancers.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran;
| | - Claudio Cecone
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Fabrizio Caldera
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Centre and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| | - Adrián Matencio
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| | - Francesco Trotta
- Dipartimento Di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy; (Y.K.M.); (C.C.); (F.C.)
- Correspondence: (P.Z.-M.); or (A.M.); (F.T.)
| |
Collapse
|
12
|
Abstract
For the past few years, there has been a surge in the use of nutraceuticals. The global nutraceuticals market in 2020 was USD 417.66 billion, and the market value is expected to increase by 8.9% compound annual growth rate from 2020 to 2028. This is because nutraceuticals are used to treat and prevent various diseases such as cancer, skin disorders, gastrointestinal, ophthalmic, diabetes, obesity, and central nervous system-related diseases. Nutritious food provides the required amount of nutrition to the human body through diet, whereas most of the bioactive agents present in the nutrients are highly lipophilic, with low aqueous solubility leading to poor dissolution and oral bioavailability. Also, the nutraceuticals like curcumin, carotenoids, anthocyanins, omega-3 fatty acids, vitamins C, vitamin B12, and quercetin have limitations such as poor solubility, chemical instability, bitter taste, and an unpleasant odor. Additionally, the presence of gastrointestinal (GIT) membrane barriers, varied pH, and reaction with GIT enzymes cause the degradation of some of the nutraceuticals. Nanotechnology-based nutrient delivery systems can be used to improve oral bioavailability by increasing nutraceutical stability in foods and GIT, increasing nutraceutical solubility in intestinal fluids, and decreasing first-pass metabolism in the gut and liver. This article has compiled the properties and applications of various nanocarriers such as polymeric nanoparticles, micelles, liposomes, niosomes, solid lipid nanocarriers, nanostructured lipid carrier, microemulsion, nanoemulsion, dendrimers in organic nanoparticles, and nanocomposites for effective delivery of bioactive molecules.
Collapse
|
13
|
Interplay of distributions of multiple guest molecules in block copolymer micelles: A dissipative particle dynamics study. J Colloid Interface Sci 2021; 607:1142-1152. [PMID: 34571301 DOI: 10.1016/j.jcis.2021.09.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS Delivery of multiple payloads using the same micelle is of significance to achieve multifunctional or synergistic effects. The interacting distribution of different payloads in micelles is expected to influence the loading stability and capacity. It is highly desirable to explore how intermolecular interactions affect the joint distribution of multi-payloads. EXPERIMENTS Dissipative Particle Dynamics simulations were performed to probe the loading of three payloads: decane with a linear carbon chain, butylbenzene with an aromatic ring connected to carbon chain, and naphthalene with double aromatic rings, within poly(β-amino ester)-b-poly(ethylene glycol) micelles. Properties of core-shell micelles, e.g., morphological evolution, radial density distribution, mean square displacement, and contact statistics, were analyzed to reveal payloads loading stability and capacity. Explorations were extended to vesicular, multi-compartment, double helix, and layer-by-layer micelles with more complex inner structures. FINDINGS Different payloads have their own preferred locations. Decane locates at the hydrophilic/hydrophobic interface, butylbenzene occupies both the hydrophilic/hydrophobic interface and the hydrophobic core, while naphthalene enters the hydrophobic core. More efficient delivery of multi-payloads is achieved since the competition of payloads occupying preferred locations is minimized. The fusion of micelles encapsulating different payloads suggests that specific payloads will move to their preferred positions without interfering other payloads.
Collapse
|
14
|
Helal HM, Samy WM, Kamoun EA, El-Fakharany EM, Abdelmonsif DA, Aly RG, Mortada SM, Sallam MA. Potential Privilege of Maltodextrin-α-Tocopherol Nano-Micelles in Seizing Tacrolimus Renal Toxicity, Managing Rheumatoid Arthritis and Accelerating Bone Regeneration. Int J Nanomedicine 2021; 16:4781-4803. [PMID: 34290503 PMCID: PMC8286967 DOI: 10.2147/ijn.s317409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Tacrolimus (TAC) is a powerful immunosuppressive agent whose therapeutic applicability is confined owing to its systemic side effects. Objective Herein, we harnessed a natural polymer based bioconjugate composed of maltodextrin and α-tocopherol (MD-α-TOC) to encapsulate TAC as an attempt to overcome its biological limitations while enhancing its therapeutic anti-rheumatic efficacy. Methods The designed TAC loaded maltodextrin-α-tocopherol nano-micelles (TAC@MD-α-TOC) were assessed for their physical properties, safety, toxicological behavior, their ability to combat arthritis and assist bone/cartilage formation. Results In vitro cell viability assay revealed enhanced safety profile of optimized TAC@MD-α-TOC with 1.6- to 2-fold increase in Vero cells viability compared with free TAC. Subacute toxicity study demonstrated a diminished nephro- and hepato-toxicity accompanied with optimized TAC@MD-α-TOC. TAC@MD-α-TOC also showed significantly enhanced anti-arthritic activity compared with free TAC, as reflected by improved clinical scores and decreased IL-6 and TNF-α levels in serum and synovial fluids. Unique bone formation criteria were proved with TAC@MD-α-TOC by elevated serum and synovial fluid levels of osteocalcin and osteopontin mRNA and proteins expression. Chondrogenic differentiation abilities of TAC@MD-α-TOC were proved by increased serum and synovial fluid levels of SOX9 mRNA and protein expression. Conclusion Overall, our designed bioconjugate micelles offered an excellent approach for improved TAC safety profile with enhanced anti-arthritic activity and unique bone formation characteristics.
Collapse
Affiliation(s)
- Hala M Helal
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Wael M Samy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt.,Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El- Sherouk City, Cairo, 11837, Egypt
| | - Esmail M El-Fakharany
- Proteins Research Dep., Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt.,Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Sana M Mortada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
15
|
Lv C, Gao J, An K, Nie J, Xu J, Du B. Self-assembly of the Thermosensitive and pH-Sensitive Pentablock Copolymer PNIPAM x- b-P( tBA- co-AA) 90- b-PPO 36- b-P( tBA- co-AA) 90- b-PNIPAM x in Dilute Aqueous Solutions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kun An
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Junting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Niosomes modified with cationic surfactants to increase the bioavailability and stability of indomethacin. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3129-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
18
|
Tokarska K, Lamch Ł, Piechota B, Żukowski K, Chudy M, Wilk KA, Brzózka Z. Co-delivery of IR-768 and daunorubicin using mPEG-b-PLGA micelles for synergistic enhancement of combination therapy of melanoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 211:111981. [PMID: 32862088 DOI: 10.1016/j.jphotobiol.2020.111981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Malignant melanoma is an emerging problem worldwide due to the high degree of lethalness. Its aggressiveness and the ability to metastasize along with the heterogeneity at the molecular and cellular levels, limit the overall therapeutic efficacy. Despite significant advances in melanoma treatment over the last decade, there is still a need for improved therapeutic modalities. Thus, we demonstrate here a combinatorial approach that targets multiple independent therapeutic pathways, in which polymeric micelles (PMs) were used as efficacious colloidal nanocarriers loaded with both daunorubicin (DRB) as a cytotoxic drug and IR-768 as a photosensitizer. This afforded the dual drug loaded delivery system IR-768 + DRB in PMs. The fabricated mPEG-b-PLGA micelles (hydrodynamic diameters ≈ 25 nm) had a relatively narrow size distribution (PdI > ca. 0.3) with uniform spherical shapes. CLSM study showed that mPEG-b-PLGA micelles were uptaken by mitochondria, which further contributed to excellent singlet oxygen generation capacity for PDT in A375 melanoma cells. Furthermore, the PMs were efficiently internalized by tested cells through endocytosis, resulting in much higher cellular uptake comparing to the free drug. As a result of these properties, IR-768 + DRB in PMs exhibited very potent and synergistically enhanced anticancer activity against A375 cells. Additionally, this combination approach allowed to reduce drug doses and provided low side effects towards normal HaCaT. This study indicates excellent properties of mPEG-b-PLGA micelles resulting in great therapeutic potential possessed by the developed nanoscale drug delivery system for combined chemo-photodynamic therapy of melanoma.
Collapse
Affiliation(s)
- Katarzyna Tokarska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND; Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, POLAND
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, POLAND
| | - Beata Piechota
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND
| | - Kamil Żukowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, POLAND
| | - Michał Chudy
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, POLAND.
| | - Zbigniew Brzózka
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND.
| |
Collapse
|
19
|
Peng Y, Chen L, Ye S, Kang Y, Liu J, Zeng S, Yu L. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020; 15:220-236. [PMID: 32373201 PMCID: PMC7193453 DOI: 10.1016/j.ajps.2020.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the continuous occurrence of multi-drug resistance in the clinic has made people pay more attention to the transporter. Changes in the expression and activity of transporters can cause corresponding changes in drug pharmacokinetics and pharmacodynamics. The drug-drug interactions (DDI) caused by transporters can seriously affect drug effectiveness and toxicity. In the development of pharmaceutical preparations, people have increasingly concerned about the effects and regulation of transporters in drug effects. To improve the targeting and physicochemical properties of drugs, the development of targeted agents is very rapid. Among them, novel nano-formulations are the best. With the continuous innovation and development of nano-formulation, its application has become more and more extensive. Nano-formulation has exerted certain advantages in the drug development based on transporters, and is also involved in the combination of targeted transporters. This review focuses on the application of novel nano-agents targeting transporters and the introduction of drug-transporter-based nano-formulations.
Collapse
Affiliation(s)
- Yi Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Negi P, Sharma G, Verma C, Garg P, Rathore C, Kulshrestha S, Lal UR, Gupta B, Pathania D. Novel thymoquinone loaded chitosan-lecithin micelles for effective wound healing: Development, characterization, and preclinical evaluation. Carbohydr Polym 2019; 230:115659. [PMID: 31887940 DOI: 10.1016/j.carbpol.2019.115659] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
While the wound healing activity of thymoquinone (TQ) is well known, its clinical effectiveness remains limited due to the inherently low aqueous solubility, resulting in suboptimal TQ exposure in the wound sites. To address these problems, TQ loaded chitosan-lecithin micelles for wound healing were prepared and its efficacy was determined in vivo in the excision wound model. Firstly, the co-block polymer of chitosan and soya lecithin was synthesized which has low critical micelle concentration (CMC). Its employment in the development of TQ loaded polymeric micelles by Self-assembly method resulted in the stable polymeric micelle composition having requisite small particle size (<100 nm), narrow size distribution (close to zero) and high entrapment efficiency (98.77 %) of TQ. The designed nano-carriers not only substantially entrapped the drug but also controlled the release rate of TQ. The TQ-polymeric micelle hydrogel exhibited superior wound healing efficacy to the native TQ and Silver Sulphadiazine.
Collapse
Affiliation(s)
- Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173 212, India.
| | - Gulshan Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173 212, India
| | - Chetna Verma
- School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Solan, 173 212, India; Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Prakrati Garg
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Charul Rathore
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173 212, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Uma Ranjan Lal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173 212, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Deepak Pathania
- Department of Environmental Science, Central University of Jammu, India.
| |
Collapse
|
21
|
Pashirova TN, Zhukova NA, Lukashenko SS, Valeeva FG, Burilova EA, Sapunova AS, Voloshina AD, Mirgorodskaya AB, Zakharova LY, Sinyashin OG, Mamedov VA. Multi-targeted approach by 2-benzimidazolylquinoxalines-loaded cationic arginine liposomes against сervical cancer cells in vitro. Colloids Surf B Biointerfaces 2019; 178:317-328. [PMID: 30884347 DOI: 10.1016/j.colsurfb.2019.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 01/04/2023]
Abstract
Multi-targeted approaches for inhibition of сervical cancer cells in vitro were developed by implementing two different strategies and drug combination for creation of new therapeutic target agents and for nanotechnological-enhancement of intracellular delivery. New 2-benzimidazolylquinoxalines derivatives were synthesized and characterized by combining two different pharmacophores - benzimidazole and quinoxaline rings directly bonded in their structures. Spectrophotometric technique for determination of content of compounds in various media was developed to evaluate their solubility in water and micellar solutions of surfactants. The bioavailability of poorly water-soluble 2-benzimidazolylquinoxalines was improved by PEGylated liposomes as antitumor drug delivery carriers. 2-benzimidazolylquinoxalines-loaded PEGylated liposomes, with size close to 100 nm and negative zeta potential ranging from -13 mV to -27 mV, were time-stable at room temperature. The design of liposomal formulations for improving cellular uptake and in vitro antitumor efficacy was performed by modification of liposome surface with the new arginine surfactant. The cell viability of 2-benzimidazolylquinoxalines-loaded arginine liposomes on human cancer M-Hela cells was 16% at the concentration 0.15 mg/ml. Moreover, these liposomes showed a lower toxicity (40%) against normal human Gang liver cells both at the lowest and highest tested concentrations.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation.
| | - Nataliya A Zhukova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Farida G Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Anastasia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alla B Mirgorodskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Lucia Y Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx St., 68, Kazan, 420015, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Vakhid A Mamedov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
22
|
Yang T, Lan Y, Cao M, Ma X, Cao A, Sun Y, Yang J, Li L, Liu Y. Glycyrrhetinic acid-conjugated polymeric prodrug micelles co-delivered with doxorubicin as combination therapy treatment for liver cancer. Colloids Surf B Biointerfaces 2019; 175:106-115. [DOI: 10.1016/j.colsurfb.2018.11.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
|
23
|
Di Prima G, Bongiovì F, Palumbo FS, Pitarresi G, Licciardi M, Giammona G. Mucoadhesive PEGylated inulin-based self-assembling nanoparticles: In vitro and ex vivo transcorneal permeation enhancement of corticosteroids. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Yang H, Wang M, Huang Y, Qiao Q, Zhao C, Zhao M. In vitro and in vivo evaluation of a novel mitomycin nanomicelle delivery system. RSC Adv 2019; 9:14708-14717. [PMID: 35516345 PMCID: PMC9064152 DOI: 10.1039/c9ra02660f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 01/07/2023] Open
Abstract
Mitomycin C (MMC), naturally synthesized by Streptomyces caespitosus, is a potent antineoplastic antibiotic for the treatment of various solid tumors. However, the defects of conventional MMC injections have greatly limited its clinical application due to its toxic side effects and non-specific interactions. To solve this problem, the PEG2k-Fmoc-Ibuprofen (PEG-FIbu) micellar nanocarrier was synthesized and the MMC-loaded micelles (PEG-FIbu/MMC) were prepared by thin film hydration method and characterized. Ibuprofen was used as a hydrophobic domain of PEG-FIbu nanocarrier, and we expect it to synergize with codelivered MMC in the overall antitumor activity. The in vitro release of PEG-FIbu/MMC was examined by dialysis method using MMC injection as a control. Our data suggested that PEG-FIbu/MMC micelles presented appropriate particle size, low CMC value, good stability, high drug loading efficiency and sustained release properties. In vitro cytotoxicity studies with several tumor cell lines showed that the carrier was effective in mediating intracellular delivery of MMC to tumor cells. In vivo pharmacokinetics, tissue distribution and therapeutic study proved that PEG-FIbu/MMC micelles prolonged blood circulation, significantly improved the tumor accumulation and therapeutic efficacy, and reduced undesirable side effect on normal tissues compared to MMC injection. In general, PEG-FIbu/MMC micelles represented an effective strategy to improve the performance for the delivery of MMC and safety of medication. The introduction of a micellar delivery system of MMC increase efficiency, reduce toxicity and enhance specific interactions in tumor.![]()
Collapse
Affiliation(s)
- Hongmei Yang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Miao Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yihe Huang
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
- Shenyang Medical College
| | - Qiaoyu Qiao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Chunjie Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Min Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
25
|
Mixed systems based on the cationic surfactant with a butyl carbamate fragment and nonionic surfactant Tween 80: Aggregation behavior and solubilization properties. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2319-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Charlie-Silva I, Fraceto LF, de Melo NFS. Progress in nano-drug delivery of artemisinin and its derivatives: towards to use in immunomodulatory approaches. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S611-S620. [DOI: 10.1080/21691401.2018.1505739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin Drug Deliv 2018; 15:1127-1142. [DOI: 10.1080/17425247.2018.1537261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Siddharth S. Kesharwani
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Shamandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Abhay T. Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| |
Collapse
|
28
|
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf B Biointerfaces 2018; 173:581-590. [PMID: 30352379 DOI: 10.1016/j.colsurfb.2018.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/28/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
The concerns impeding the success of chemotherapy in cancer is descending efficacy of drugs due to the development of multiple drug resistance (MDR). The current efforts employed to overcome MDR have failed or are limited to only preliminary in-vitro investigations. Nanotechnology is at the forefront of the drug delivery research, playing pivotal role in chemotherapy and diagnosis, thereby providing innovative approaches for the management of the disease with minimal side effects. Recently, polymeric micelles (PMs) have witnessed significant developments in cancer therapy. PMs are self-assembled colloidal particles, with a hydrophilic head and a long hydrophobic tail, which enhance the solubility, permeability and bioavailability of drugs, due to the unique features of reaching higher concentration in the biological system, above critical micellar concentration. One of the effective approaches to improve the efficacy of chemotherapy and overcome drug resistance would be to employ multifunctional approach (combination of stimuli-responsive, utilization of drug resistance modulators and combination therapy) using PMs as drug delivery systems. Actively targeted, stimuli-sensitive and multifunctional approaches involve using single and/or combination of approaches (pH-responsive, temperature regulated, reduction-sensitive, ultrasound etc.) to combat drug resistant. The review will describe PMs, types of copolymers used in PMs, preparation and characterization of PMs. A comprehensive list of PMs tested in clinical trials is discussed. Lastly, this review covers stimuli-sensitive and multifunctional approaches to overcome MDR in cancer utilizing PMs.
Collapse
Affiliation(s)
- Siddharth S Kesharwani
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, 57007, USA
| | - Shamandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab, 160062, India
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, 57007, USA
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab, 160062, India.
| |
Collapse
|
29
|
Rompicharla SVK, Trivedi P, Kumari P, Muddineti OS, Theegalapalli S, Ghosh B, Biswas S. Evaluation of Anti-Tumor Efficacy of Vorinostat Encapsulated Self-Assembled Polymeric Micelles in Solid Tumors. AAPS PharmSciTech 2018; 19:3141-3151. [PMID: 30132129 DOI: 10.1208/s12249-018-1149-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Vorinostat (VOR), a potent HDAC inhibitor, suffers from low solubility and poor absorption, which hinders its successful application in therapy, especially in the treatment of solid tumors. In this study, an effort to improve the physicochemical characteristics of VOR was made by encapsulating it in PEG-PLGA copolymeric micelles. VOR-loaded PEG-PLGA micelles (VOR-PEG-PLGA) were produced by thin-film hydration and physicochemically characterized. The PEG-PLGA micelles had an average size of 124.06 ± 2.6 nm, polydispersity index of 0.27 ± 0.1, and entrapment efficiency of 90 ± 2.1%. Micelles were characterized by TEM, DSC, and drug release studies. The drug release occurred in a sustained manner up to 72 h from PEG-PLGA micelles. In the in vitro cell-based studies using human breast cancer (MDA MB 231) and murine melanoma (B16F10) cell lines, VOR-PEG-PLGA micelles exhibited superior cellular internalization, enhanced cytotoxic activity, and greater apoptosis compared to free drug. Percent cell killing of 54.9% for VOR-PEG-PLGA-treated cells was observed after 24 h compared to 36% for free VOR in MDA MB 231 cell line. Further, significant tumor suppression was witnessed in B16F10 tumor-bearing mice treated with VOR-PEG-PLGA micelles with a 1.78-fold reduction in tumor volume compared to free VOR-treated animals. Overall, the VOR-PEG-PLGA micelles improved the biopharmaceutical properties of VOR, which resulted in enhanced anti-tumor efficacy. Therefore, the newly developed nano-formulation of VOR could be considered as an effective treatment option in solid tumors.
Collapse
|
30
|
Davaran S, Fazeli H, Ghamkhari A, Rahimi F, Molavi O, Anzabi M, Salehi R. Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1265-1286. [DOI: 10.1080/09205063.2018.1456026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Soodabeh Davaran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Fazeli
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fariborz Rahimi
- Department of Electrical Engineering, University of Bonab, Bonab, Iran
| | - Ommoleila Molavi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Anzabi
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Indexed: 06/08/2023]
Abstract
Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways, and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature's complexity and sophistication in this regard. Herein, success stories and challenges in the field of layer-by-layer, composite, self-assembly, and core-shell technologies are discussed for the development of multidomain/multicargo delivery vehicles.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| |
Collapse
|
32
|
Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: nanostructures and bioapplications. Chem Soc Rev 2018; 45:5985-6012. [PMID: 27722321 DOI: 10.1039/c6cs00013d] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polypeptide copolymers can self-assemble into diverse aggregates. The morphology and structure of aggregates can be varied by changing molecular architectures, self-assembling conditions, and introducing secondary components such as polymers and nanoparticles. Polypeptide self-assemblies have gained significant attention because of their potential applications as delivery vehicles for therapeutic payloads and as additives in the biomimetic mineralization of inorganics. This review article provides an overview of recent advances in nanostructures and bioapplications related to polypeptide self-assemblies. We highlight recent contributions to developing strategies for the construction of polypeptide assemblies with increasing complexity and novel functionality that are suitable for bioapplications. The relationship between the structure and properties of the polypeptide aggregates is emphasized. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
33
|
Mirgorodskaya AB, Mamedov VA, Zakharova LY, Valeeva FG, Mamedova VL, Galimullina VR, Kushnasarova RA, Sinyashin OG. Surfactant solutions for enhancing solubility of new arylquinolin-2-ones. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Mirgorodskaya AB, Valeeva FG, Gabdrakhmanov DR, Mustakimova LV, Zakharova LY, Sinyashin OG, Mamedov VA. Novel quinoxaline derivative: Solubilization by surfactant solutions and membranotropic properties. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Long H, Li X, Sang Z, Mei L, Yang T, Li Z, Zhou L, Zheng Y, He G, Guo G, Wang Z, Deng Y, Luo Y. Improving the pharmacokinetics and tissue distribution of pyrinezolid by self-assembled polymeric micelles. Colloids Surf B Biointerfaces 2017; 156:149-156. [PMID: 28527358 DOI: 10.1016/j.colsurfb.2017.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 02/05/2023]
Abstract
Antibiotic-resistance by bacteria is a growing global concern within the healthcare field, and it has provided an impetus for continued antimicrobial development. Pyrinezolid (PZ), a novel oxazolidinone compound, can effectively inhibit most gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Though PZ is a promising antimicrobial candidate, the druggability of PZ is limited by its poor water solubility. Therefore, the amphipathic mPEG-PLLA copolymer was used to prepare the pyrinezolid micelles (PZ-M). Herein, we described the preparation, pharmacokinetic properties, tissue distribution, efficacy and toxicity of PZ-M. In vivo studies show that PZ-M possess prolonged blood circulation time and increased oral bioavailability compared with free PZ. Meanwhile, PZ-M increase lung PZ exposure and reduce liver and kidney exposure, which indicates that PZ-M may enhance the efficacy in vivo in MRSA-related pneumonia patients and decrease potential renal and hepatic toxicities.
Collapse
Affiliation(s)
- Haiyue Long
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zitai Sang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zicheng Li
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yu Zheng
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yong Deng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
36
|
Hao Y, Dong M, Zhang T, Peng J, Jia Y, Cao Y, Qian Z. Novel Approach of Using Near-Infrared Responsive PEGylated Gold Nanorod Coated Poly(l-lactide) Microneedles to Enhance the Antitumor Efficiency of Docetaxel-Loaded MPEG-PDLLA Micelles for Treating an A431 Tumor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15317-15327. [PMID: 28418236 DOI: 10.1021/acsami.7b03604] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The combination of chemotherapy and photothermal therapy (PTT) plays a significant role in synergistic tumor therapy. However, a high dosage of chemotherapy drugs or photothermal agents may cause series side effects. To overcome these challenges, we designed a near-infrared (NIR) responsive PEGylated gold nanorod (GNR-PEG) coated poly(l-lactide) microneedle (PLLA MN) system (GNR-PEG@MN) to enhance antitumor efficiency of docetaxel-loaded MPEG-PDLLA (MPEG-PDLLA-DTX) micelles for treating an A431 tumor. The as-made GNR-PEG@MNs contained only 31.83 ± 1.22 μg of GNR-PEG per patch and exhibited excellent heating efficacy both in vitro and in vivo. Meanwhile, GNR-PEG@MN with the height of 480 μm had good skin insertion ability and was harmless to the skin. On the other hand, GNR-PEG@MN had good heating transfer ability in vivo, and the tumor sites could reach 50 °C within 5 min. In comparison with chemotherapy and PTT alone, the combination of low dosage MPEG-PDLLA-DTX micelles (5 mg/kg) and GNR-PEG@MNs completely eradicated the A431 tumor without recurrence in vivo, demonstrating a remarkable synergetic effect. Hence, GNR-PEG@MN could be a promising carrier to enhance the antitumor effect of MPEG-PDLLA-DTX micelles for treating superficial tumors and is expected to have a great potential in clinical translation for human epidermoid cancer therapy.
Collapse
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University , Chengdu 610041, PR China
| | - MingLing Dong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University , Chengdu 610041, PR China
| | - TaoYe Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University , Wuhan 430056, PR China
| | - JinRong Peng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University , Chengdu 610041, PR China
| | - YanPeng Jia
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University , Chengdu 610041, PR China
| | - YiPing Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University , Wuhan 430056, PR China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University , Chengdu 610041, PR China
| |
Collapse
|
37
|
Wang N, Wang Z, Nie S, Song L, He T, Yang S, Yang X, Yi C, Wu Q, Gong C. Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: a strategy for breast cancer therapy in vitro and in vivo. Int J Nanomedicine 2017; 12:1499-1514. [PMID: 28260895 PMCID: PMC5328141 DOI: 10.2147/ijn.s124843] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The combination of chemotherapy drugs attracts more attention in clinical cancer trials. However, the poor water solubility of chemotherapeutic drugs restricts their anticancer application. In order to improve antitumor efficiency and reduce side effects of free drugs, we prepared paclitaxel (PTX) and honokiol (HK) combination methoxy poly(ethylene glycol)–poly(caprolactone) micelles (P–H/M) by solid dispersion method against breast cancer. The particle size of P–H/M was 28.7±2.5 nm, and transmission electron microscope image confirmed that P–H/M were spherical in shape with small particle size. After being encapsulated in micelles, the release of PTX or HK showed a sustained behavior in vitro. In addition, both the cytotoxicity and the cellular uptake of P–H/M were increased in 4T1 cells, and P–H/M induced more apoptosis than PTX-loaded micelles or HK-loaded micelles, as analyzed by flow cytometry assay and Western blot. Furthermore, the antitumor effect of P–H/M was significantly improved compared with PTX-loaded micelles or HK-loaded micelles in vivo. P–H/M were more effective in inhibiting tumor proliferation, inducing tumor apoptosis, and decreasing the density of microvasculature. Moreover, bioimaging analysis showed that drug-loaded polymeric micelles could accumulate more in tumor tissues compared with the free drug. Our results suggested that P–H/M may have potential applications in breast cancer therapy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shihong Nie
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Linjiang Song
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Suleixin Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xi Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cheng Yi
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
38
|
Application of nonionic amphiphiles for increasing solubility in water of alkylated bibenzimidazole derivatives. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1443-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Erucar I, Keskin S. Computational investigation of metal organic frameworks for storage and delivery of anticancer drugs. J Mater Chem B 2017; 5:7342-7351. [DOI: 10.1039/c7tb01764b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The potential of metal organic frameworks (MOFs) as binary drug carriers was computationally investigated for storage and delivery of two anticancer drug molecules, methotrexate (MTX) and 5-fluorouracil (5-FU).
Collapse
Affiliation(s)
- Ilknur Erucar
- Department of Natural and Mathematical Sciences
- Faculty of Engineering
- Ozyegin University
- Cekmekoy
- Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering
- Koc University
- Rumelifeneri Yolu
- Sariyer
- Turkey
| |
Collapse
|
40
|
Lamch Ł, Tylus W, Jewgiński M, Latajka R, Wilk KA. Location of Varying Hydrophobicity Zinc(II) Phthalocyanine-Type Photosensitizers in Methoxy Poly(ethylene oxide) and Poly(l-lactide) Block Copolymer Micelles Using 1H NMR and XPS Techniques. J Phys Chem B 2016; 120:12768-12780. [PMID: 27973818 DOI: 10.1021/acs.jpcb.6b10267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrophobic zinc(II) phthalocyanine-type derivatives, solubilized in polymeric micelles (PMs), provide a befitting group of so-called nanophotosensitizers, suitable for a variety of photodynamic therapy (PDT) protocols. The factors that influence the success of such products in PDT are the location of the active cargo in the PMs and the nanocarrier-enhanced ability to safely interact with biological systems and fulfill their therapeutic functions. Therefore, the aim of this work was to determine the solubilization loci of three phthalocyanines of varying hydrophobicity, i.e., zinc(II) phthalocyanine (ZnPc), along with its tetrasulfonic acid (ZnPc-sulfo4) and perfluorinated (ZnPcF16) derivatives, loaded in polymeric micelles of methoxy poly(ethylene oxide)-b-poly(l-lactide) (mPEG-b-PLLA), by means of 1H nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) combined with ion sputtering. Furthermore, the microenvironment influence upon the chemical and physical status of the solubilized cargo in PMs, expressed by photobleaching and reactive oxygen species (ROS) generation comparing to the same properties of native cargoes in solution, was also evaluated and discussed in regards to the probing location data. The studied phthalocyanine-loaded PMs exhibited good physical stability, high drug-loading efficiency, and a size of less than ca. 150 nm with low polydispersity indices. The formation of polymeric micelles and the solubilization locus were investigated by 1H NMR and XPS. ZnPc localized within the PM core, whereas both ZnPcF16 and ZnPc-sulfo4 - in the corona of PMs. We proved that the cargo locus is crucial for the photochemical properties of the studied phthalocyanines; the increase in photostability and ability to generate ROS in micellar solution compared to free photosensitizer was most significant for the photosensitizer in the PM core. Our results indicate the role of the cargo location in the PM microenvironment and demonstrate that such attempts are fundamental for improving the properties of photosensitizers and their assumed efficiency as nanophotosensitizers in PDT.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Włodzimierz Tylus
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Jewgiński
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Latajka
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
41
|
Mirgorodskaya A, Ya Zakharova L, Khairutdinova E, Lukashenko S, Sinyashin O. Supramolecular systems based on gemini surfactants for enhancing solubility of spectral probes and drugs in aqueous solution. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Yadav S, Deka SR, Jha D, Gautam HK, Sharma AK. Amphiphilic azobenzene-neomycin conjugate self-assembles into nanostructures and transports plasmid DNA efficiently into the mammalian cells. Colloids Surf B Biointerfaces 2016; 148:481-486. [PMID: 27665381 DOI: 10.1016/j.colsurfb.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 11/08/2022]
|
43
|
Pillai SA, Bharatiya B, Casas M, Lage EV, Sandez-Macho I, Pal H, Bahadur P. A multitechnique approach on adsorption, self-assembly and quercetin solubilization by Tetronics® micelles in aqueous solutions modulated by glycine. Colloids Surf B Biointerfaces 2016; 148:411-421. [DOI: 10.1016/j.colsurfb.2016.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/25/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
|
44
|
Andrzejewska W, Pietralik Z, Skupin M, Kozak M. Structural studies of the formation of lipoplexes between siRNA and selected bis-imidazolium gemini surfactants. Colloids Surf B Biointerfaces 2016; 146:598-606. [DOI: 10.1016/j.colsurfb.2016.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/27/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
45
|
Functional mesoporous silica nanoparticles (MSNs) for highly controllable drug release and synergistic therapy. Colloids Surf B Biointerfaces 2016; 145:217-225. [DOI: 10.1016/j.colsurfb.2016.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 12/23/2022]
|
46
|
Petrov PD, Yoncheva K, Gancheva V, Konstantinov S, Trzebicka B. Multifunctional block copolymer nanocarriers for co-delivery of silver nanoparticles and curcumin: Synthesis and enhanced efficacy against tumor cells. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Wegmann M, Parola L, Bertera FM, Taira CA, Cagel M, Buontempo F, Bernabeu E, Höcht C, Chiappetta DA, Moretton MA. Novel carvedilol paediatric nanomicelle formulation: in-vitro characterization and in-vivo evaluation. J Pharm Pharmacol 2016; 69:544-553. [DOI: 10.1111/jphp.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
Abstract
Objectives
Carvedilol (CAR) is a poorly water-soluble beta-blocker. Its encapsulation within nanomicelles (NMs) could improve drug solubility and its oral bioavailability, allowing the development of a paediatric liquid CAR formulation with commercially available copolymers: D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and poly(vinyl caprolactam)-poly(vinyl acetate)-poly(ethylene glycol) (Soluplus®).
Methods
Drug-loaded NMs were prepared by copolymer and CAR dispersion in distilled water. Micellar size and morphology were characterized by dynamic light scattering and transmission electron microscopy, respectively. In-vitro drug permeation studies were evaluated by conventional gut sac method. In-vivo CAR oral bioavailability from NMs dispersions and drug control solution was evaluated in Wistar rats.
Key findings
Carvedilol apparent aqueous solubility was increased (up to 60.4-folds) after its encapsulation within NMs. The micellar size was ranged between 10.9 and 81.9 nm with a monomodal size distribution. There was a significant enhancement of CAR relative oral bioavailability for both copolymers vs a micelle-free drug solution (P < 0.05). This improvement was higher for TPGS-based micelles (4.95-fold) in accordance with the in-vitro CAR permeation results.
Conclusions
The present investigation demonstrates the development of highly concentrated CAR liquid micellar formulation. The improvement on drug oral bioavailability contributes to the potential of this NMs formulation to enhance CAR paediatric treatment.
Collapse
Affiliation(s)
- Marcel Wegmann
- Faculty of Medical and Life Sciences, Hochschule Furtwangen University, Baden-Württemberg, Germany
| | - Luciano Parola
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Facundo M Bertera
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Carlos A Taira
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- National Science Research Council (CONICET), Buenos Aires, Argentina
| | - Maximiliano Cagel
- National Science Research Council (CONICET), Buenos Aires, Argentina
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Fabian Buontempo
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Ezequiel Bernabeu
- National Science Research Council (CONICET), Buenos Aires, Argentina
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Christian Höcht
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Diego A Chiappetta
- National Science Research Council (CONICET), Buenos Aires, Argentina
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Marcela A Moretton
- National Science Research Council (CONICET), Buenos Aires, Argentina
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Luque-Michel E, Imbuluzqueta E, Sebastián V, Blanco-Prieto MJ. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin Drug Deliv 2016; 14:75-92. [PMID: 27339650 DOI: 10.1080/17425247.2016.1205585] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cancer is a leading cause of death worldwide and efficient new strategies are urgently needed to combat its high mortality and morbidity statistics. Fortunately, over the years, nanotechnology has evolved as a frontrunner in the areas of imaging, diagnostics and therapy, giving the possibility of monitoring, evaluating and individualizing cancer treatments in real-time. Areas covered: Polymer-based nanocarriers have been extensively studied to maximize cancer treatment efficacy and minimize the adverse effects of standard therapeutics. Regarding diagnosis, nanomaterials like quantum dots, iron oxide nanoparticles or gold nanoparticles have been developed to provide rapid, sensitive detection of cancer and, therefore, facilitate early treatment and monitoring of the disease. Therefore, multifunctional nanosystems with both imaging and therapy functionalities bring us a step closer to delivering precision/personalized medicine in the cancer setting. Expert opinion: There are multiple barriers for these new nanosystems to enter the clinic, but it is expected that in the near future, nanocarriers, together with new 'targeted drugs', could replace our current treatments and cancer could become a nonfatal disease with good recovery rates. Joint efforts between scientists, clinicians, the pharmaceutical industry and legislative bodies are needed to bring to fruition the application of nanosystems in the clinical management of cancer.
Collapse
Affiliation(s)
- Edurne Luque-Michel
- a Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition , University of Navarra , Pamplona , Spain.,b IdiSNA, Fundación Instituto de Investigación Sanitaria de Navarra , Recinto del Complejo Hospitalario de Navarra , Pamplona , Spain
| | - Edurne Imbuluzqueta
- a Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition , University of Navarra , Pamplona , Spain.,b IdiSNA, Fundación Instituto de Investigación Sanitaria de Navarra , Recinto del Complejo Hospitalario de Navarra , Pamplona , Spain
| | - Víctor Sebastián
- c Institute of Nanoscience of Aragon (INA) and Department of Chemical, Engineering and Environmental Technology , University of Zaragoza , Zaragoza , Spain.,d CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Centro de Investigación Biomédica en Red , Madrid , Spain
| | - María J Blanco-Prieto
- a Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition , University of Navarra , Pamplona , Spain.,b IdiSNA, Fundación Instituto de Investigación Sanitaria de Navarra , Recinto del Complejo Hospitalario de Navarra , Pamplona , Spain
| |
Collapse
|
49
|
Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discov Today 2016; 21:481-90. [DOI: 10.1016/j.drudis.2016.02.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/14/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
50
|
Wang N, He T, Shen Y, Song L, Li L, Yang X, Li X, Pang M, Su W, Liu X, Wu Q, Gong C. Paclitaxel and Tacrolimus Coencapsulated Polymeric Micelles That Enhance the Therapeutic Effect of Drug-Resistant Ovarian Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4368-77. [PMID: 26809267 DOI: 10.1021/acsami.5b09340] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ning Wang
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Tao He
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Yangmei Shen
- Department of Gynecology and Obstetrics, Second West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Linjiang Song
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Ling Li
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Xi Yang
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Xia Li
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Mengru Pang
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Xinyu Liu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Qinjie Wu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Changyang Gong
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| |
Collapse
|