1
|
Rajendran J, Jeyaraman P, Sakthivel E, Almansour AI, Arumugam N, Raja PB. Chemical free, bio-Intercalation of selenium nanoparticles for highly accelerated photo-responsive of organic contaminants debasement and their in-vitro anti-bacterial agents, anti-oxidants effect, cyto-toxic analysis. ENVIRONMENTAL RESEARCH 2024; 259:119479. [PMID: 38964575 DOI: 10.1016/j.envres.2024.119479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
This study investigates the use of Excoecaria agallocha leaves as a bio-template for the intercalation of Selenium nanoparticles (SeNPs). The synthesized SeNPs were characterized using techniques like SEM-EDX, TEM/HR-TEM, and XRD spectroscopic studies. The study found that SeNPs showed maximum cleaning ability at a dosage of 50 μl/mL, with 95% inhibition of DPPH radicals. However, cellular absorption was limited to 55% at concentrations of 300 μg/L over a 72-h period. The synthesized SeNPs also demonstrated a strong cytotoxic effect on MCF-7 breast cancer cell lines, indicating their potential as anti-cancer agents. Further research is needed to fully explore the potential of these novel nanocomposites.
Collapse
Affiliation(s)
- Janani Rajendran
- PG and Research Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Namakkal, 637205, Tamil Nadu, India
| | - Prasanna Jeyaraman
- PG and Research Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Namakkal, 637205, Tamil Nadu, India.
| | - Elamathi Sakthivel
- PG and Research Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Namakkal, 637205, Tamil Nadu, India
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| |
Collapse
|
2
|
Moaness M, Mousa SM, Abo-Elfadl MT, El-Bassyouni GT. Doxorubicin loaded cerium substituted hydroxyapatite nanoparticles: A promising new therapeutic approach for bone regeneration, doxorubicin delivery, and cancer treatment. Int J Pharm 2024; 654:123969. [PMID: 38442795 DOI: 10.1016/j.ijpharm.2024.123969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024]
Abstract
The current study used the precipitation method to prepare pure calcium hydroxyapatite (HA) and cerium-substituted hydroxyapatite (Ce-HA) nanoparticles, where cerium ions were exchanged into the HA structure at different concentrations ranging from 3 to 7 wt%. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) surface area measurements, and zeta potential were used to examine the structural characteristics of the nanoparticles. Additionally, the antibacterial and antifungal effects of the produced materials on Gram-positive, Gram-negative, and fungal bacterial species were studied. Nanoparticles with cerium doping showed effective antibacterial and antifungal properties. All samples were tested for bioactivity in simulated body fluid (SBF), and the formation of an apatite layer on their surfaces was highlighted using SEM in conjunction with energy-dispersive X-rays (EDX).Doxorubicin (DOX) release from Ce-HA nanoparticles and pure HA was tested in phosphate-buffered saline (PBS) for up to 28 days. Both nanoparticles were able to release the drug while still being semi-fully loaded. Similarly, the cytotoxic effect of all produced samples on the MG-63 cell line was evaluated, and all samples showed good cytocompatibility. The cytotoxic effect of doxorubicin-loaded nanoparticles showed promising anticancer activity against bone cancer cells, especially samples with high cerium content. The resulting nanoparticles show excellent promising ability for the delivery of doxorubicin to bone cancer with the capacity for bone regeneration.
Collapse
Affiliation(s)
- Mona Moaness
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt.
| | - Sahar M Mousa
- Inorganic Chemistry Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mahmoud T Abo-Elfadl
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt; Cancer Biology and Genetics Laboratory Centre of Excellence for Advanced Sciences, National Research Centre, Cairo 12622, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
3
|
S SM, S S, B S, K CPD. Calcium silicate biocomposites: effects of selenium oxide on the physico-mechanical features and their in-vitrobiological assessments. Biomed Mater 2023; 19:015003. [PMID: 37972550 DOI: 10.1088/1748-605x/ad0d86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Bone tissue regenerative material serves as a prospective recovery candidate with self-adaptable biological properties of bio-activation, degradability, compatibility, and antimicrobial efficacy instead of metallic implants. Such materials are highly expensive due to chemical reagents and complex synthesis procedures, making them unaffordable for patients with financial constraints. This research produced an efficient bone tissue regenerative material using inexpensive naturally occurring source materials, including silica sand and limestone. The extracted SiO2and CaO particles (75:25 wt%) were subjected to hydrothermal synthesis (water treatment instead of chemical solvents) to produce the CaSiO3biomaterial (code: S). Selenium oxide was doped with calcium silicate at 3, 5, and 10 wt.% to enhance its properties, yielding biocomposite materials (i.e. S3, S5, and S10). The physico-mechanical properties of these materials were investigated with x-ray diffraction, Fourier transform infrared, FESEM-EDS, and micro-universal testing machine. The results revealed that the synthesized biocomposites have a crystalline wollastonite phase with a porously fused rough surface. From structural parametric calculations, we found that the biocomposites have reduced particle size and enhanced surface area due to the influence of selenium oxide. The biocomposite S10, having high SeO2content, attained the maximum compressive strength of 75.2 MPa.In-vitrostudies of bioactivity, biodegradability, biocompatibility, and antibacterial activity were performed. At 7 and 14 d of bioactivity, the synthesized biocomposites are capable of dissolving their ions into simulated body fluid (SBF) solution to precipitate hydroxyapatite and a required Ca/P ratio of 1.69 was achieved by S3. A comparative analysis has been performed on the degradation activity in Tris-HCl and the consequent pH changes during SBF treatment. The bio-analysis revealed that the biocomposite S3 shows enhanced bioactivity through a controlled degradation rate and secured cell viability of 88% at a concentration of 100 μg ml-1. It also offers significant bacterial inhibition potency againstE.coliandS.aureusbacteria.
Collapse
Affiliation(s)
- Sakthi Muthulakshmi S
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamilnadu, India
| | - Shailajha S
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamilnadu, India
| | - Shanmugapriya B
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamilnadu, India
| | | |
Collapse
|
4
|
Goltyaev MV, Varlamova EG. The Role of Selenium Nanoparticles in the Treatment of Liver Pathologies of Various Natures. Int J Mol Sci 2023; 24:10547. [PMID: 37445723 DOI: 10.3390/ijms241310547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is the body's largest gland, and regulates a wide variety of physiological processes. The work of the liver can be disrupted in a variety of pathologies, the number of which is several hundred. It is extremely important to monitor the health of the liver and develop approaches to combat liver diseases. In recent decades, nanomedicine has become increasingly popular in the treatment of various liver pathologies, in which nanosized biomaterials, which are inorganic, polymeric, liposomal, albumin, and other nanoparticles, play an important role. Given the need to develop environmentally safe, inexpensive, simple, and high-performance biomedical agents for theragnostic purposes and showing few side effects, special attention is being paid to nanoparticles based on the important trace element selenium (Se). It is known that the metabolism of the microelement Se occurs in the liver, and its deficiency leads to the development of several serious diseases in this organ. In addition, the liver is the depot for most selenoproteins, which can reduce oxidative stress, inhibit tumor growth, and prevent other liver damage. This review is devoted to the description of the results of recent years, revealing the important role of selenium nanoparticles in the therapy and diagnosis of several liver pathologies, depending on the dose and physicochemical properties. The possibilities of selenium nanoparticles in the treatment of liver diseases, disclosed in the review, will not only reveal the advantages of their hepatoprotective properties but also significantly supplement the data on the role of the trace element selenium in the regulation of these diseases.
Collapse
Affiliation(s)
- Michael V Goltyaev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
5
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
6
|
Chen J, Wen J, Fu Y, Li X, Huang J, Guan X, Zhou Y. A bifunctional bortezomib-loaded porous nano-hydroxyapatite/alginate scaffold for simultaneous tumor inhibition and bone regeneration. J Nanobiotechnology 2023; 21:174. [PMID: 37264410 DOI: 10.1186/s12951-023-01940-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Treatments of osteolytic lesions due to malignant metastasis remain one of the major clinical challenges. The residual tumor cells after surgical resections and an acidic tumor microenvironment are unfavorable for osteogenic induction. Bortezomib (BTZ), a proteasome inhibitor used in chemotherapy, also has an osteogenic potential in concentration- and Ca2+-dependent manners. In this study, controlled delivery of BTZ in a novel bifunctional scaffold based on nano-hydroxyapatite (nHA) and sodium alginate (SA) nanocomposite, namely BTZ/nHA@SA, has been explored. By smartly adjusting microenvironments, a sustainable release of Ca2+ from nHA could be achieved, which was not only able to cross-link SA but also to regulate the switch between the dual functions of tumor inhibition and bone regeneration of BTZ to promote the osteogenic pathway. The freeze-dried BTZ/nHA@SA scaffold has excellent interconnectivity, is capable to promote the attachment and proliferation of mouse embryonic osteoblast precursor cells, as well as effectively induces breast cancer cell death in vitro. Furthermore, in vivo, studies using a mouse tumor model and a rabbit femoral defect model showed that the BTZ/nHA@SA scaffold could promote tumor ablation, and also enhance bone repair. Therefore, the BTZ/nHA@SA scaffold has unique dual functions of inhibiting tumor recurrence and promoting bone tissue regeneration simultaneously. This smart bi-functional scaffold offers a promising novel approach for oncological treatments by synchronously orchestrating tumor inhibition and tissue regeneration for the repair of neoplastic bone defects.
Collapse
Affiliation(s)
- Jiafei Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Junru Wen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P.R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P.R. China.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Xiaoxu Guan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| | - Yi Zhou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
7
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
8
|
Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 2023; 205:128. [PMID: 36944830 PMCID: PMC10030434 DOI: 10.1007/s00203-023-03467-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
The utilization of living organisms for the creation of inorganic nanoscale particles is a potential new development in the realm of biotechnology. An essential milestone in the realm of nanotechnology is the process of creating dependable and environmentally acceptable metallic nanoparticles. Due to its increasing popularity and ease, use of ambient biological resources is quickly becoming more significant in this field of study. The phrase "green nanotechnology" has gained a lot of attention and refers to a variety of procedures that eliminate or do away with hazardous compounds to repair the environment. Green nanomaterials can be used in a variety of biotechnological sectors such as medicine and biology, as well as in the food and textile industries, wastewater treatment and agriculture field. The construction of an updated level of knowledge with utilization and a study of the ambient biological systems that might support and revolutionize the creation of nanoparticles (NPs) are presented in this article.
Collapse
Affiliation(s)
- Salem S Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
9
|
An insight into biofabrication of selenium nanostructures and their biomedical application. 3 Biotech 2023; 13:79. [PMID: 36778767 PMCID: PMC9908812 DOI: 10.1007/s13205-023-03476-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Evidence shows that nanoparticles exert lower toxicity, improved targeting, and enhanced bioactivity, and provide versatile means to control the release profile of the encapsulated moiety. Among different NPs, inorganic nanoparticles (Ag, Au, Ce, Fe, Se, Te, Zn, etc.) possess a considerable place owing to their unique bioactivities in nanoforms. Selenium, an essential trace element, played a vital role in the growth and development of living organisms. It has attracted great interest as a therapeutic factor without significant adverse effects in medicine at recommended dose. Selenium nanoparticles can be fabricated by physical, biological, and chemical approaches. The biosynthesis of nanoparticles is shown an advance compared to other procedures, because it is environmentally friendly, relatively reproducible, easily accessible, biodegradable, and often results in more stable materials. The effect of size, shape, and synthesis methods on their applications in biological systems investigated by several studies. This review focused on the procedures for the synthesis of selenium nanoparticles, in particular the biogenesis of selenium nanoparticles and their biomedical characteristics, such as antibacterial, antiviral, antifungal, and antiparasitic properties. Eventually, a comprehensive future perspective of selenium nanoparticles was also presented.
Collapse
|
10
|
Jeevanantham V, Tamilselvi D, Rathidevi K, Bavaji SR. Greener microwave synthesized Se nanospheres for antioxidant, cell viability, and antibacterial effect. JOURNAL OF MATERIALS RESEARCH 2023; 38:1909-1918. [PMID: 37073299 PMCID: PMC10019793 DOI: 10.1557/s43578-023-00965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/12/2023] [Indexed: 05/03/2023]
Abstract
Selenium nanocrystals (SeNPs) were developed using Coccinia grandis fruit (CGF) extract by green microwave approach. The morphological characters revealed that the quasi SeNPs with dimensions ranging from 12 to 24 nm have been arranged in encapsulated spherical geometries with dimensions ranging from 0.47 to 0.71 m. The DPPH assay revealed that SeNPs at a concentration of 70 µl of 99.2% had the greatest possible scavenging capacity. The nanoparticle concentrations were around 500 g/mL and the cellular uptake of SeNPs through living thing extracellular matrix cell lines in vitro was limited to 75.1 ± 3.8%. The biocidal activity was tested against E. coli, B. cereus, and S. aureus strains. Since it had the greatest MIC against B. cereus with 32 mm compared with the reference antibiotics. These incredible qualities of SeNPs suggest that attempting to manipulate multi-purpose nanoparticles for powerful and flexible wound and skin therapeutic innovations is very impressive. Graphical abstract
Collapse
Affiliation(s)
- V. Jeevanantham
- Department of Chemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Tiruchengode, Namakkal, Tamilnadu 637205 India
| | - D. Tamilselvi
- Department of Chemistry, Rathinam Technical Campus, Coimbatore, Tamilnadu 641021 India
| | - K. Rathidevi
- Department of Chemistry, Kumaraguru College of Technology, Coimbatore, Tamilnadu 641049 India
| | - S. R. Bavaji
- Department of Chemistry, Bharathidasan University, Trichy, Tamilnadu 620024 India
| |
Collapse
|
11
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|
12
|
Saad AM, Sitohy MZ, Sultan-Alolama MI, El-Tarabily KA, El-Saadony MT. Green nanotechnology for controlling bacterial load and heavy metal accumulation in Nile tilapia fish using biological selenium nanoparticles biosynthesized by Bacillus subtilis AS12. Front Microbiol 2022; 13:1015613. [PMID: 36620021 PMCID: PMC9816870 DOI: 10.3389/fmicb.2022.1015613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
Heavy metal accumulation and pathogenic bacteria cause adverse effects on aquaculture. The active surface of selenium (Se) nanoparticles can mitigate these effects. The present study used Se-resistant Bacillus subtilis AS12 to fabricate biological Se nanoparticles (Bio-SeNPs). The double-edged Bio-SeNPs were tested for their ability to reduce the harmful effects of heavy metals and bacterial load in Nile tilapia (Oreochromis niloticus) and their respective influences on fish growth, behavior, and health. The Bio-SeNPs have a spherical shape with an average size of 77 nm and high flavonoids and phenolic content (0.7 and 1.9 g g-1 quercetin and gallic acid equivalents, respectively), resulting in considerable antioxidant and antibacterial activity. The Bio-SeNPs (3-5 μg ml-1) in the current study resolved two serious issues facing the aquaculture industry, firstly, the population of pathogenic bacteria, especially Aeromonas hydrophilia, which was reduced by 28-45% in fish organs. Secondly, heavy metals (Cd and Hg) at two levels (1 and 2 μg ml-1) were reduced by 50-87% and 57-73% in response to Bio-SeNPs (3-5 μg ml-1). Thus, liver function parameters were reduced, and inner immunity was enhanced. The application of Bio-SeNPs (3-5 μg ml-1) improved fish gut health, growth, and behavior, resulting in fish higher weight gain by 36-52% and a 40% specific growth rate, compared to controls. Furthermore, feeding and arousal times increased by 20-22% and 28-53%, respectively, while aggression time decreased by 78% compared to the control by the same treatment. In conclusion, Bio-SeNPs can mitigate the accumulation of heavy metals and reduce the bacterial load in a concentration-dependent manner, either in the fish media or fish organs.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamad I. Sultan-Alolama
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Department of Health, Research and Innovation Center, Zayed Complex for Herbal Research and Traditional Medicine, Abu Dhabi, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates,Harry Butler Institute, Murdoch University, Murdoch, WA, Australia,*Correspondence: Khaled A. El-Tarabily,
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Muthusamy S, Mahendiran B, Nithiya P, Selvakumar R, Krishnakumar GS. Functionalization of biologically inspired scaffold through selenium and gallium ion doping to promote bone regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Menon S, Jayakodi S, Yadav KK, Somu P, Isaq M, Shanmugam VK, Chaitanyakumar A, Basavegowda N. Preparation of Paclitaxel-Encapsulated Bio-Functionalized Selenium Nanoparticles and Evaluation of Their Efficacy against Cervical Cancer. Molecules 2022; 27:7290. [PMID: 36364115 PMCID: PMC9655580 DOI: 10.3390/molecules27217290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 10/21/2024] Open
Abstract
The potentiality of nanomedicine in the cancer treatment being widely recognized in the recent years. In the present investigation, the synergistic effects of chitosan-modified selenium nanoparticles loaded with paclitaxel (PTX-chit-SeNPs) were studied. These selenium nanoparticles were tested for drug release analysis at a pH of 7.4 and 5.5, and further characterized using FTIR, DLS, zeta potential, and TEM to confirm their morphology, and the encapsulation of the drug was carried out using UPLC analysis. Quantitative evaluation of anti-cancer properties was performed via MTT analysis, apoptosis, gene expression analysis, cell cycle arrest, and over-production of ROS. The unique combination of phytochemicals from the seed extract, chitosan, paclitaxel, and selenium nanoparticles can be effectively utilized to combat cancerous cells. The production of the nanosystem has been demonstrated to be cost-effective and have unique characteristics, and can be utilized for improving future diagnostic approaches.
Collapse
Affiliation(s)
- Soumya Menon
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai 602105, India
| | - Kanti Kusum Yadav
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore 641114, India
| | - Prathap Somu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai 602105, India
| | - Mona Isaq
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga 577451, India
| | - Venkat Kumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Amballa Chaitanyakumar
- Department of Biotechnology, University Institute of Engineering and Technology, Guru Nanak University, Hyderabad 500085, India
| | | |
Collapse
|
15
|
Advances in the Study of the Mechanism by Which Selenium and Selenoproteins Boost Immunity to Prevent Food Allergies. Nutrients 2022; 14:nu14153133. [PMID: 35956310 PMCID: PMC9370097 DOI: 10.3390/nu14153133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Selenium (Se) is an essential micronutrient that functions in the body mainly in the form of selenoproteins. The selenoprotein contains 25 members in humans that exhibit a number of functions. Selenoproteins have immunomodulatory functions and can enhance the ability of immune system to regulate in a variety of ways, which can have a preventive effect on immune-related diseases. Food allergy is a specific immune response that has been increasing in number in recent years, significantly reducing the quality of life and posing a major threat to human health. In this review, we summarize the current understanding of the role of Se and selenoproteins in regulating the immune system and how dysregulation of these processes may lead to food allergies. Thus, we can explain the mechanism by which Se and selenoproteins boost immunity to prevent food allergies.
Collapse
|
16
|
Hydroxyapatite Nanoparticles for Improved Cancer Theranostics. J Funct Biomater 2022; 13:jfb13030100. [PMID: 35893468 PMCID: PMC9326646 DOI: 10.3390/jfb13030100] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond their well-known applications in bone tissue engineering, hydroxyapatite nanoparticles (HAp NPs) have also been showing great promise for improved cancer therapy. The chemical structure of HAp NPs offers excellent possibilities for loading and delivering a broad range of anticancer drugs in a sustained, prolonged, and targeted manner and thus eliciting lower complications than conventional chemotherapeutic strategies. The incorporation of specific therapeutic elements into the basic composition of HAp NPs is another approach, alone or synergistically with drug release, to provide advanced anticancer effects such as the capability to inhibit the growth and metastasis of cancer cells through activating specific cell signaling pathways. HAp NPs can be easily converted to smart anticancer agents by applying different surface modification treatments to facilitate the targeting and killing of cancer cells without significant adverse effects on normal healthy cells. The applications in cancer diagnosis for magnetic and nuclear in vivo imaging are also promising as the detection of solid tumor cells is now achievable by utilizing superparamagnetic HAp NPs. The ongoing research emphasizes the use of HAp NPs in fabricating three-dimensional scaffolds for the treatment of cancerous tissues or organs, promoting the regeneration of healthy tissue after cancer detection and removal. This review provides a summary of HAp NP applications in cancer theranostics, highlighting the current limitations and the challenges ahead for this field to open new avenues for research.
Collapse
|
17
|
Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, Morgano SM. Functional role of inorganic trace elements in dentin apatite tissue-part III: Se, F, Ag, and B. J Trace Elem Med Biol 2022; 72:126990. [PMID: 35569285 DOI: 10.1016/j.jtemb.2022.126990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Dentin hydroxyapatite possesses a unique versatile structure which allows it to undergo ionic substitutions. Trace elements play pivotal roles within the oral cavity, especially in dentin apatite tissue. Therefore, it is critical to explore the role of these elements in dentin apatite structure. The roles of other inorganic elements in dentin apatite were discussed in part I (Mg, Sr, Zn, and Fe) and part II (Cu, Mn, Si, and Li) of these series. In the last part of the review series, the role of selenium, fluorine, silver, and boron in the regulation of dentin apatite structure and function was discussed. We evaluated how these elements affect the overall size, morphology, and crystallinity of dentin apatite crystals. Moreover, we investigated the importance of these elements in regulating the solubility of dentin apatite. An electronic search was performed on the role of these trace elements in dentin apatite from January 2010 to January 2022. The concentration of selenium in teeth has been explored only recently, particularly its incorporation into dentin apatite. Silver nanomaterials inhibit the growth of cariogenic microorganisms as well as arrest the degradation of collagen. Fluorine was found to have important roles in dentin remineralization and dentinal tubule occlusion, making it widely used for hydroxyapatite doping. Boron is critical for mineralized tissues like bone, dentin, and enamel, but its exact role in dentin apatite is unknown. Therefore, understanding the impact of these elements on dentin apatite is potentially transformative, as it may help to fill a significant knowledge gap in teeth mechanics.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Director, Biomaterial Laboratory and Assistant Professor, Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, United States; Adjunct Assistant Professor, Department of Endodontics, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States.
| | - Julia Vakhnovetsky
- Visiting Researcher, Sector of Angiogenesis Regenerative Medicine, Dr. Hajar Afsar Lajevardi Research Cluster (DHAL), Hackensack, NJ, United States; Pre-Dental Student, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Anna Vakhnovetsky
- Pre-Medical Student, Johns Hopkins University, Baltimore, MD, United States
| | - Steven M Morgano
- Chair and Professor, Director and Professor, Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, United States
| |
Collapse
|
18
|
Liu Y, Nadeem A, Sebastian S, Olsson MA, Wai SN, Styring E, Engellau J, Isaksson H, Tägil M, Lidgren L, Raina DB. Bone mineral: A trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin. Mater Today Bio 2022; 14:100227. [PMID: 35265825 PMCID: PMC8898975 DOI: 10.1016/j.mtbio.2022.100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022] Open
Abstract
Efficient systemic pharmacological treatment of solid tumors is hampered by inadequate tumor concentration of cytostatics necessitating development of smart local drug delivery systems. To overcome this, we demonstrate that doxorubicin (DOX), a cornerstone drug used for osteosarcoma treatment, shows reversible accretion to hydroxyapatite (HA) of both nano (nHA) and micro (mHA) size. nHA particles functionalized with DOX get engulfed in the lysosome of osteosarcoma cells where the acidic microenvironment causes a disruption of the binding between DOX and HA. The released DOX then accumulates in the mitochondria causing cell starvation, reduced migration and apoptosis. The HA+DOX delivery system was also tested in-vivo on osteosarcoma bearing mice. Locally delivered DOX via the HA particles had a stronger tumor eradication effect compared to the controls as seen by PET-CT and immunohistochemical staining of proliferation and apoptosis markers. These results indicate that in addition to systemic chemotherapy, an adjuvant nHA could be used as a carrier for intracellular delivery of DOX for prevention of tumor recurrence after surgical resection in an osteosarcoma. Furthermore, we demonstrate that nHA particles are pivotal in this approach but a combination of nHA with mHA could increase the safety associated with particulate nanomaterials while maintaining similar therapeutic potential.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology and the Laboratory for Molecular Infection Medicine, Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sujeesh Sebastian
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin A. Olsson
- Department of Theoretical Chemistry, Chemical Centre, Lund University, Lund, Sweden
| | - Sun N. Wai
- Department of Molecular Biology and the Laboratory for Molecular Infection Medicine, Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Emelie Styring
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Jacob Engellau
- Medical Radiation Physics, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Hanna Isaksson
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Magnus Tägil
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Lidgren
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Development of thermo/redox-responsive diselenide linked methoxy poly (ethylene glycol)-block-poly(ε-caprolactone-co-p-dioxanone) hydrogel for localized control drug release. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02776-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer 2021; 1876:188621. [PMID: 34454983 DOI: 10.1016/j.bbcan.2021.188621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Liver cancer is one of the most common cancers worldwide and is also one of the most difficult cancers to treat, resulting in almost one million deaths per year, and the danger of this cancer is compounded when the tumor is nonresectable. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has the third highest mortality rate worldwide. Considering the morbid statistics surrounding this cancer it is a popular research topic to target for better therapy practices. This review summarizes the role of nanotechnology in these endeavors. Nanoparticles (NPs) are a very broad class of material and many different kinds have been used to potentially combat liver cancer. Gold, silver, platinum, metal oxide, calcium, and selenium NPs as well as less common materials are all inorganic NPs that have been used as a therapeutic, carrier, or imaging agent in drug delivery systems (DDS) and these efforts are described. Carbon-based NPs, including polymeric, polysaccharide, and lipid NPs as well as carbon dots, have also been widely studied for this purpose and the role they play in DDS for the treatment of liver cancer is illustrated in this review. The multifunctional nature of many NPs described herein, allows these systems to display high anticancer activity in vitro and in vivo and highlights the advantage of and need for combinatorial therapy in treating this difficult cancer. These works are summarized, and future directions are presented for this promising field.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
21
|
Sharifian M, Baharvand P, Moayyedkazemi A. Liver Cancer: New Insights into Surgical and Nonsurgical Treatments. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210219104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Hepatocellular carcinoma (HCC) is the most common type of liver cancer
that has increased in recent years worldwide. Primary liver cancer or HCC is considered the 5th and
7th most common cancer among men and women, respectively. It is also the second leading cause
of cancer death worldwide. Unfortunately, HCC is frequently diagnosed at an advanced stage when
the majority of the patients do not have access to remedial therapies. Furthermore, current systemic
chemotherapy shows low efficacy and minimum survival benefits. Liver cancer therapy is a multidisciplinary,
multiple-choice treatment based on the complex interaction of the tumour stage, the
degree of liver disease, and the patient's general state of health.
Methods:
In this paper, we reviewed new insights into nonsurgical and surgical treatment of liver
cancer in five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google
Scholar up to December 2019.
Results:
The results demonstrated, in addition to current therapies such as chemotherapy and surgical
resection, new approaches, including immunotherapy, viral therapy, gene therapy, new ablation
therapies, and adjuvant therapy, are widely used for the treatment of HCC. In recent years, biomaterials
such as nanoparticles, liposomes, microspheres, and nanofibers are also regarded as reliable
and innovative patents for the treatment and study of liver cancers.
Conclusion:
Multidisciplinary and multi-choice treatments and therapies are available for this liver
cancer, while there are differences in liver cancer management recommendations among specialties
and geographic areas. Current results have shown that treatment strategies have been combined
with the advancement of novel treatment modalities. In addition, the use of new approaches with
greater efficacy, such as combination therapy, biomaterials, ablation therapy, etc. can be considered
the preferred treatment for patients.
Collapse
Affiliation(s)
- Masoud Sharifian
- Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Moayyedkazemi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
22
|
Ferro C, Florindo HF, Santos HA. Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Adv Healthc Mater 2021; 10:e2100598. [PMID: 34121366 DOI: 10.1002/adhm.202100598] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Indexed: 12/11/2022]
Abstract
Selenium (Se) is an essential element to human health that can be obtained in nature through several sources. In the human body, it is incorporated into selenocysteine, an amino acid used to synthesize several selenoproteins, which have an active center usually dependent on the presence of Se. Although Se shows several beneficial properties in human health, it has also a narrow therapeutic window, and therefore the excessive intake of inorganic and organic Se-based compounds often leads to toxicity. Nanoparticles based on Se (SeNPs) are less toxic than inorganic and organic Se. They are both biocompatible and capable of effectively delivering combinations of payloads to specific cells following their functionalization with active targeting ligands. Herein, the main origin of Se intake, its role on the human body, and its primary biomedical applications are revised. Particular focus will be given to the main therapeutic targets that are explored for SeNPs in cancer therapies, discussing the different functionalization methodologies used to improve SeNPs stability, while enabling the extensive delivery of drug-loaded SeNP to tumor sites, thus avoiding off-target effects.
Collapse
Affiliation(s)
- Cláudio Ferro
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Research Institute for Medicines iMed.ULisboa Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 Portugal
| | - Helena F. Florindo
- Research Institute for Medicines iMed.ULisboa Faculty of Pharmacy Universidade de Lisboa Lisbon 1649‐003 Portugal
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| |
Collapse
|
23
|
Lin W, Zhang J, Xu JF, Pi J. The Advancing of Selenium Nanoparticles Against Infectious Diseases. Front Pharmacol 2021; 12:682284. [PMID: 34393776 PMCID: PMC8361478 DOI: 10.3389/fphar.2021.682284] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Infectious diseases, caused by the direct exposure of cellular or acellular pathogens, are found to be closely associated with multiple inflammation and immune responses, keeping one of the top threats to human health. As an indispensable trace element, Selenium (Se) plays important roles in antioxidant defence and redox state regulation along with a variety of specific metabolic pathways. In recent decades, with the development of novel nanotechnology, Selenium nanoparticles (Se NPs) emerged as a promising agent for biomedical uses due to their low toxicity, degradability and high bioavailability. Taking the advantages of the strong ability to trigger apoptosis or autophagy by regulating reactive oxygen species (ROS), Se NPs have been widely used for direct anticancer treatments and pathogen killing/clearance in host cells. With excellent stability and drug encapsulation capacity, Se NPs are now serving as a kind of powerful nano-carriers for anti-cancer, anti-inflammation and anti-infection treatments. Notably, Se NPs are also found to play critical roles in immunity regulations, such as macrophage and T effector cell activation, which thus provides new possibilities to achieve novel nano-immune synergetic strategy for anti-cancer and anti-infection therapies. In this review, we summarized the progress of preparation methods for Se NPs, followed by the advances of their biological functions and mechanisms for biomedical uses, especially in the field of anti-infection treatments. Moreover, we further provide some prospects of Se NPs in anti-infectious diseases, which would be helpful for facilitating their future research progress for anti-infection therapy.
Collapse
Affiliation(s)
- Wensen Lin
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Junai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
24
|
Hydroxyapatite nanophases augmented with selenium and manganese ions for bone regeneration: Physiochemical, microstructural and biological characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112149. [PMID: 34082960 DOI: 10.1016/j.msec.2021.112149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022]
Abstract
Hydroxyapatite (HAP) nanopowders with different manganese (Mn) and selenium (Se) contents with Mn/Ca and Se/P molar ratio of 1 mol%, 2.5 mol% and 5 mol% were synthesized by wet-co-chemical precipitation method. The results revealed that with either Mn or Se doping, ion-substituted apatite phase was achieved with good crystallographic features. The combined evidence obtained from spectrometric techniques revealed that nanocrystalline HAP was effectively doped with Mn and Se ions, where Se in form of SeO32- replaced PO43- and Mn2+ replaced Ca2+. Mn and Se doped HAP samples exhibited rod-like and needle-like morphology with strong tendency to form agglomerates. HAP enriched with Mn and Se represented a strong antibacterial effect and also showed prominent blood compatibility. From the biocompatibility testing, it was evident that Mn and Se doped HAP augmented the osteoblasts adhesion, migration and proliferation in a dose-dependent manner. To conclude from this study, it is clearly evident that the doping amount of both Mn and Se ions can determine the size and morphology of the final HAP product. Therefore, Mn and Se HAP nanopowders with molar ratio less than 5 mol% without any heat treatment can provide good crystallographic features to HAP with satisfying micro-structural, thermal and biological properties.
Collapse
|
25
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
26
|
Maqbool M, Nawaz Q, Atiq Ur Rehman M, Cresswell M, Jackson P, Hurle K, Detsch R, Goldmann WH, Shah AT, Boccaccini AR. Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite. Int J Mol Sci 2021; 22:4246. [PMID: 33921909 PMCID: PMC8072711 DOI: 10.3390/ijms22084246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, as a measure to enhance the antimicrobial activity of biomaterials, the selenium ions have been substituted into hydroxyapatite (HA) at different concentration levels. To balance the potential cytotoxic effects of selenite ions (SeO32-) in HA, strontium (Sr2+) was co-substituted at the same concentration. Selenium and strontium-substituted hydroxyapatites (Se-Sr-HA) at equal molar ratios of x Se/(Se + P) and x Sr/(Sr + Ca) at (x = 0, 0.01, 0.03, 0.05, 0.1, and 0.2) were synthesized via the wet precipitation route and sintered at 900 °C. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and cell viability were studied. X-ray diffraction verified the phase purity and confirmed the substitution of selenium and strontium ions. Acellular in vitro bioactivity tests revealed that Se-Sr-HA was highly bioactive compared to pure HA. Se-Sr-HA samples showed excellent antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus carnosus) bacterial strains. In vitro cell-material interaction, using human osteosarcoma cells MG-63 studied by WST-8 assay, showed that Se-HA has a cytotoxic effect; however, the co-substitution of strontium in Se-HA offsets the negative impact of selenium and enhanced the biological properties of HA. Hence, the prepared samples are a suitable choice for antibacterial coatings and bone filler applications.
Collapse
Affiliation(s)
- Muhammad Maqbool
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
- Lucideon Ltd., Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ, UK; (M.C.); (P.J.)
- CAM Bioceramics B.V., 2333 CL Leiden, The Netherlands
| | - Qaisar Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
| | - Muhammad Atiq Ur Rehman
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Mark Cresswell
- Lucideon Ltd., Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ, UK; (M.C.); (P.J.)
| | - Phil Jackson
- Lucideon Ltd., Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ, UK; (M.C.); (P.J.)
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
| | - Wolfgang H. Goldmann
- Department of Biophysics, University of Erlangen-Nuremberg, 91052 Erlangen, Germany;
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, Off-Raiwind Road, Lahore 54000, Pakistan;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
| |
Collapse
|
27
|
Marcello E, Maqbool M, Nigmatullin R, Cresswell M, Jackson PR, Basnett P, Knowles JC, Boccaccini AR, Roy I. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Front Bioeng Biotechnol 2021; 9:647007. [PMID: 33898403 PMCID: PMC8059794 DOI: 10.3389/fbioe.2021.647007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Due to the threat posed by the rapid growth in the resistance of microbial species to antibiotics, there is an urgent need to develop novel materials for biomedical applications capable of providing antibacterial properties without the use of such drugs. Bone healing represents one of the applications with the highest risk of postoperative infections, with potential serious complications in case of bacterial contaminations. Therefore, tissue engineering approaches aiming at the regeneration of bone tissue should be based on the use of materials possessing antibacterial properties alongside with biological and functional characteristics. In this study, we investigated the combination of polyhydroxyalkanoates (PHAs) with a novel antimicrobial hydroxyapatite (HA) containing selenium and strontium. Strontium was chosen for its well-known osteoinductive properties, while selenium is an emerging element investigated for its multi-functional activity as an antimicrobial and anticancer agent. Successful incorporation of such ions in the HA structure was obtained. Antibacterial activity against Staphylococcus aureus 6538P and Escherichia coli 8739 was confirmed for co-substituted HA in the powder form. Polymer-matrix composites based on two types of PHAs, P(3HB) and P(3HO-co-3HD-co-3HDD), were prepared by the incorporation of the developed antibacterial HA. An in-depth characterization of the composite materials was conducted to evaluate the effect of the filler on the physicochemical, thermal, and mechanical properties of the films. In vitro antibacterial testing showed that the composite samples induce a high reduction of the number of S. aureus 6538P and E. coli 8739 bacterial cells cultured on the surface of the materials. The films are also capable of releasing active ions which inhibited the growth of both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Elena Marcello
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Muhammad Maqbool
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
- Lucideon Ltd., Stoke-on-Trent, United Kingdom
- CAM Bioceramics B.V., Leiden, Netherlands
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, United Kingdom
| | | | | | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, Faculty of Medical Sciences, University College London Eastman Dental Institute, London, United Kingdom
- Department of Nanobiomedical Science and BK21 Plus NBM, Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- The Discoveries Centre for Regenerative and Precision Medicine, University College London, London, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ipsita Roy
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Department of Materials Science and Engineering, Faculty of Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Diwu W, Dong X, Nasif O, Alharbi SA, Zhao J, Li W. In-vivo Investigations of Hydroxyapatite/Co-polymeric Composites Coated Titanium Plate for Bone Regeneration. Front Cell Dev Biol 2021; 8:631107. [PMID: 33681187 PMCID: PMC7930390 DOI: 10.3389/fcell.2020.631107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
A perfect mimic of human bone is very difficult. Still, the latest advancement in biomaterials makes it possible to design composite materials with morphologies merely the same as that of bone tissues. In the present work is the fabrication of selenium substituted Hydroxyapatite (HAP-Se) covered by lactic acid (LA)-Polyethylene glycol (PEG)-Aspartic acid (AS) composite with the loading of vincristine sulfate (VCR) drug (HAP-Se/LA-PEG-AS/VCR) for twin purposes of bone regenerations. The HAP-Se/LA-PEG-AS/VCR composite coated on titanium implant through electrophoretic deposition (EPD). The prepared composite characterized using FTIR, XRD techniques to rely on the composites' chemical nature and crystalline status. The morphology of the composite and the titanium plate with the composite coating was investigated by utilizing SEM, TEM instrument techniques, and it reveals the composite has porous morphology. The drug (VCR) load in HAP-Se/LA-PEG-AS and releasing nature were investigated through UV-Visible spectroscopy at the wavelength of 295 nm. In vitro study of SBF treatment shows excellent biocompatibility to form the HAP crystals. The viability against MG63 and toxicity against Saos- 2 cells have expressed the more exceptional biocompatibility in bone cells and toxicity with the cancer cells of prepared composites. The in-vivo study emphasizes prepared biomaterial suitable for implantation and helps accelerate bone regeneration on osteoporosis and osteosarcoma affected hard tissue.
Collapse
Affiliation(s)
- Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Xin Dong
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jian Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Wei Li
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Nayak V, Singh KRB, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. NEW J CHEM 2021. [DOI: 10.1039/d0nj05884j] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium nanoparticles (SeNPs) have revolutionized biomedical domain and are still developing rapidly. Hence, this perspective elaborates SeNPs properties, synthesis, and biomedical applications, together with their potential for management of SARS-CoV-2.
Collapse
Affiliation(s)
- Vanya Nayak
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Kshitij RB Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ajaya Kumar Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ravindra Pratap Singh
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| |
Collapse
|
30
|
Shi Y, Ma X, Fang G, Tian X, Ge C. Matrix metalloproteinase inhibitors (MMPIs) as attractive therapeutic targets: Recent progress and current challenges. NANOIMPACT 2021; 21:100293. [PMID: 35559782 DOI: 10.1016/j.impact.2021.100293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 06/15/2023]
Abstract
Matrix metalloproteinase (MMP) plays an essential role in many physiological and pathological processes. An increase in MMP activity contributes to excessive degradation and remodeling of the extracellular matrix (ECM), which has been correlated with invasion and metastasis of tumors. Matrix metalloproteinase inhibitor (MMPI) has been developed as an attractive therapeutic target for decades, suggesting inspiring therapeutic effects in preclinical studies. However, achieving specificity remains an important challenge in the development of MMPIs, limiting their clinical application and bringing about the risk of biosafety. Nanomaterials can be used as alternative candidates for MMPI design, providing a new strategy for this problem. This report reviewed the research about MMPIs, summarized their MMPs activity regulation mechanisms, and discussed their failures in clinical trials. Furthermore, we outlined several schemes of MMPIs screening and design. Finally, we reviewed the therapeutic application prospects of MMPIs and discussed the remaining challenges and solutions, which may offer new insights for the development of MMPIs studies.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ge Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cuicui Ge
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
31
|
Poluboyarinov PA, Elistratov DG, Moiseeva IJ. Antitumor Activity of Selenium and Search Parameters for Its New Potentially Active Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Vaquette C, Bock N, Tran PA. Layered Antimicrobial Selenium Nanoparticle-Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55638-55648. [PMID: 33270424 DOI: 10.1021/acsami.0c17017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se0) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell-nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer. We showed, for the first time, that the release of soluble HSe- ions from the Se nanoparticles strongly inhibited planktonic growth and biofilm formation of key bacteria, Staphylococcus aureus. The Se-CaP coating was found to support higher bone formation than the CaP-only coating in critical-size calvarial defects in rats; this finding could be directly attributed to the released soluble Se ions as the CaP layers in both groups had no detectable differences in the porous morphology, chemistry, and release of Ca or P. The Se-CaP coating was highly versatile and applicable to various surface chemistries as it formed through simple precipitation from aqueous solutions at room temperature and therefore could be promising in bone regeneration scaffolds or orthopedic implant applications.
Collapse
Affiliation(s)
- Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD 4059, Australia
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Phong A Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical and Process Engineering, Interface Science and Materials Engineering Group, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
33
|
Menon S, Shanmugam VK. Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. J Trace Elem Med Biol 2020; 62:126549. [PMID: 32731109 DOI: 10.1016/j.jtemb.2020.126549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Scientists are working on creating novel materials that can help in the treatment of diverse cancer-related diseases having trademark highlights like the target siting, specificity, improved therapeutic index of radiotherapy and chemotherapeutic treatments. The utilization of novel nanomaterials which are surface adorned with drugs or natural compounds can be used in diverse medical applications and helps in setting up a new platform for its improvement in the chemotherapeutic potentiality. One such nanomaterial is the trace element selenium in its nanoparticulate form that has been proved to be a potential chemotherapeutic agent recently. METHODS The English language papers were gathered from electronic databases like Sciencedirect, Pub Med, Google Scholar and Scopus, the papers are published from 2001 to 2019. RESULTS In the initial phase, approximately 200 papers were searched upon, out of which 118 articles were included after screening and critical reviewing. The information included was also tabulated for better knowledge and easy read. These articles contain information on the nanotechnology, inflammation, cancer and selenium as nanoparticles. CONCLUSION The overview of the paper explains the enhancement of potentiality of anticancer drugs or phytochemicals which restricts its utilization in chemotherapeutic applications by the encapsulation or adsorption of them on selenium nanoparticles proven to accelerate the anticancerous properties with better results when compared with individual components. SeNPs (selenium nanoparticles) have demonstrated chemotherapeutic activity due to pro-oxidant property, where the anti-oxidant enzymes are stimulated to produce reactive active species, which induces oxidative stress, followed by activation of the apoptotic signalling pathway, cell cycle arrest, mitochondrial dysfunction and other pathways that ultimately lead to cell death. Selenium in nanoparticulate form can be used as a micronutrient to human health, thereby having low toxicity, can easily be degraded and also has good biocompatibility.
Collapse
Affiliation(s)
- Soumya Menon
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Venkat Kumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
34
|
Wu VM, Ahmed MK, Mostafa MS, Uskoković V. Empirical and theoretical insights into the structural effects of selenite doping in hydroxyapatite and the ensuing inhibition of osteoclasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111257. [PMID: 32919627 PMCID: PMC7501993 DOI: 10.1016/j.msec.2020.111257] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/02/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The use of ions as therapeutic agents has the potential to minimize the use of small-molecule drugs and biologics for the same purpose, thus providing a potentially more economic and less adverse means of treating, ameliorating or preventing a number of diseases. Hydroxyapatite (HAp) is a solid compound capable of accommodating foreign ions with a broad range of sizes and charges and its properties can dramatically change with the incorporation of these ionic additives. While most ionic substitutes in HAp have been monatomic cations, their lesser atomic weight, higher diffusivity, chaotropy and a lesser residence time on surfaces theoretically makes them prone to exert a lesser influence on the material/cell interaction than the more kosmotropic oxyanions. Selenite ion as an anionic substitution in HAp was explored in this study for its ability to affect the short-range and the long-range crystalline symmetry and solubility as well as for its ability to affect the osteoclast activity. We combined microstructural, crystallographic and spectroscopic analyses with quantum mechanical calculations to understand the structural effects of doping HAp with selenite. Integration of selenite ions into the crystal structure of HAp elongated the crystals along the c-axis, but isotropically lowered the crystallinity. It also increased the roughness of the material in direct proportion with the content of the selenite dopant, thus having a potentially positive effect on cell adhesion and integration with the host tissue. Selenite in total acted as a crystal structure breaker, but was also able to bring about symmetry at the local and global scales within specific concentration windows, indicating a variety of often mutually antagonistic crystallographic effects that it can induce in a concentration-dependent manner. Experimental determination of the lattice strain coupled with ab initio calculations on three different forms of carbonated HAp (A-type, B-type, AB-type) demonstrated that selenite ions initially substitute carbonates in the crystal structure of carbonated HAp, before substituting phosphates at higher concentrations. The most energetically favored selenite-doped HAp is of AB-type, followed by the B-type and only then by the A-type. This order of stability was entailed by the variation in the geometry and orientation of both the selenite ion and its neighboring phosphates and/or carbonates. The incorporation of selenite in different types of carbonated HAp also caused variations of different thermodynamic parameters, including entropy, enthalpy, heat capacity, and the Gibbs free energy. Solubility of HAp accommodating 1.2 wt% of selenite was 2.5 times higher than that of undoped HAp and the ensuing release of the selenite ion was directly responsible for inhibiting RAW264.7 osteoclasts. Dose-response curves demonstrated that the inhibition of osteoclasts was directly proportional to the concentration of selenite-doped HAp and to the selenite content in it. Meanwhile, selenite-doped HAp had a significantly less adverse effect on osteoblastic K7M2 and MC3T3-E1 cells than on RAW264.7 osteoclasts. The therapeutically promising osteoblast vs. osteoclast selectivity of inhibition was absent when the cells were challenged with undoped HAp, indicating that it is caused by selenite ions in HAp rather than by HAp alone. It is concluded that like three oxygens building the selenite pyramid, the coupling of (1) experimental materials science, (2) quantum mechanical modeling and (3) biological assaying is a triad from which a deeper understanding of ion-doped HAp and other biomaterials can emanate.
Collapse
Affiliation(s)
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, Egypt
| | - Mervat S Mostafa
- Science and Technology Center of Excellence, Ministry of Military Production, Cairo, Egypt
| | - Vuk Uskoković
- Tardigrade Nano, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical and Aerospace Engineering, University of California, Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Kumar A, Prasad KS. Role of nano-selenium in health and environment. J Biotechnol 2020; 325:152-163. [PMID: 33157197 DOI: 10.1016/j.jbiotec.2020.11.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/08/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
In recent years, researches on selenium nanoparticle have gained more attention due to its important role in many physiological processes. Generally, selenium nanoparticle has a high level of absorption in regular supplementation comparative to selenium. Therefore it is all-important to develop new techniques to elevate the transportation of selenium compounds (selenoproteins, selenoenzymes, etc.) by increasing their bioavailability, bioactivity, and controlled release. SeNPs have special attention regarding their application as food additives and therapeutic agents. Selenium nanoparticle has biomedical and pharmaceutical uses due to its antioxidant, antimicrobial, antidiabetic, and anticancer effects. Selenium nanoparticle is also used to antagonize the toxic effect of chemical and heavy metals. SeNPs are beneficial for the treatment of water and soil contaminated with metals and heavy metals as it has adsorption capability. Selenium nanoparticle is synthesized by the bioreduction of selenium species (sodium selenate, sodium selenite, selenium dioxide, and selenium tetrachloride, etc.) by using bacteria, fungi, plant, and plant extracts, which have given hope for the bioremediation of selenium contaminated water and soils. This article reviews the procedure of selenium nanoparticle synthesis (physical, chemical and biological methods), characterization (UV-vis spectroscopy, transmission electron microscopy, Scanning electron microscopy, electron dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, etc.), with the emphasis on its role and application in health and environment.
Collapse
Affiliation(s)
- Awanish Kumar
- Centre of Environmental Science, Institute of Interdisciplinary Studies, University of Allahabad (A Central University), Allahabad, Uttar Pradesh, India
| | - Kumar Suranjit Prasad
- Centre of Environmental Science, Institute of Interdisciplinary Studies, University of Allahabad (A Central University), Allahabad, Uttar Pradesh, India.
| |
Collapse
|
36
|
da Silva Brum I, Frigo L, Lana Devita R, da Silva Pires JL, Hugo Vieira de Oliveira V, Rosa Nascimento AL, de Carvalho JJ. Histomorphometric, Immunohistochemical, Ultrastructural Characterization of a Nano-Hydroxyapatite/Beta-Tricalcium Phosphate Composite and a Bone Xenograft in Sub-Critical Size Bone Defect in Rat Calvaria. MATERIALS 2020; 13:ma13204598. [PMID: 33076561 PMCID: PMC7602735 DOI: 10.3390/ma13204598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Nowadays, we can observe a worldwide trend towards the development of synthetic biomaterials. Several studies have been conducted to better understand the cellular mechanisms involved in the processes of inflammation and bone healing related to living tissues. The aim of this study was to evaluate tissue behaviors of two different types of biomaterials: synthetic nano-hydroxyapatite/beta-tricalcium phosphate composite and bone xenograft in sub-critical bone defects in rat calvaria. Twenty-four rats underwent experimental surgery in which two 3 mm defects in each cavity were tested. Rats were divided into two groups: Group 1 used xenogen hydroxyapatite (Bio Oss™); Group 2 used synthetic nano-hydroxyapatite/beta-tricalcium phosphate (Blue Bone™). Sixty days after surgery, calvaria bone defects were filled with biomaterial, animals were euthanized, and tissues were stained with Masson’s trichrome and periodic acid–Schiff (PAS) techniques, immune-labeled with anti-TNF-α and anti-MMP-9, and electron microscopy analyses were also performed. Histomorphometric analysis indicated a greater presence of protein matrix in Group 2, in addition to higher levels of TNF-α and MMP-9. Ultrastructural analysis showed that biomaterial fibroblasts were associated with the tissue regeneration stage. Paired statistical data indicated that Blue Bone™ can improve bone formation/remodeling when compared to biomaterials of xenogenous origin.
Collapse
Affiliation(s)
- Igor da Silva Brum
- Implantology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil;
- Correspondence: ; Tel.: +55-21-988-244-976
| | - Lucio Frigo
- Periodontology Department, Universidade Guarulhos, Guarulhos 07023-070, São Paulo, Brazil;
| | - Renan Lana Devita
- Orthodontics Department, State University Barcelona, 08193 Barcelona, Spain;
| | | | - Victor Hugo Vieira de Oliveira
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Ana Lucia Rosa Nascimento
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Jorge José de Carvalho
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| |
Collapse
|
37
|
Combination of nano-hydroxyapatite and curcumin in a biopolymer blend matrix: Characteristics and drug release performance of fibrous composite material systems. Int J Pharm 2020; 590:119933. [PMID: 33011251 DOI: 10.1016/j.ijpharm.2020.119933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/20/2022]
Abstract
The design of appropriate materials is required for biomedical applications (e.g. drug delivery systems) in improving people's health care processes. This study focused on the incorporation of nanosized hydroxyapatite (n-HA) with different ratios (ranging from 0.1 wt% to 0.5 wt%) into the poly (ε-caprolactone)/ poly (ethylene oxide) (PCL/PEO) blend matrix loaded or unloaded with curcumin. Composite fibrous material systems were successfully fabricated by the electrospinning technique without the occurrence of bead defects. In addition to the morphological and physicochemical properties of the material systems obtained, the in vitro curcumin release performance was investigated. Further, anti-cancer activity against breast cancer cell line (MCF-7) was examined by MTT assay. Fourier transform infrared spectroscopy and X-ray diffraction characterizations of the fabricated fibrous materials exhibited the interaction of PCL/PEO, n-HA, and curcumin. The 0.3 wt% n-HA incorporated fibrous materials showed a much slower curcumin release manner along with the highest cytotoxicity against MCF-7 cells. The findings obtained from this research are expected to contribute to the appropriate design of nanofiber-based composite materials not only for drug delivery systems but also for the fabrication of biomaterials toward different biomedical applications.
Collapse
|
38
|
Nie L, Hou M, Wang T, Sun M, Hou R. Nanostructured selenium-doped biphasic calcium phosphate with in situ incorporation of silver for antibacterial applications. Sci Rep 2020; 10:13738. [PMID: 32792661 PMCID: PMC7427101 DOI: 10.1038/s41598-020-70776-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/04/2020] [Indexed: 01/26/2023] Open
Abstract
Selenium-doped nanostructure has been considered as an attractive approach to enhance the antibacterial activity of calcium phosphate (CaP) materials in diverse medical applications. In this study, the selenium-doped biphasic calcium phosphate nanoparticles (SeB-NPs) were first synthesized. Then, silver was in situ incorporated into SeB-NPs to obtain nanostructured composite nanoparticles (AgSeB-NPs). Both SeB-NPs and AgSeB-NPs were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS), and Raman spectra. The results confirmed that the SeO32- was doped at the PO43- position and silver nanoparticles were deposited on the surface of SeB-NPs. Next, Transmission Electron Microscopy (TEM) analysis displayed that the prepared AgSeB-NPs had a needle-cluster-like morphology. CCK-8 analysis revealed SeB-NPs and AgSeB-NPs had good cytocompatibility with osteoblasts. The antibacterial activity of the prepared AgSeB-NPs was confirmed by using Gram-negative E. coli and Gram-positive S. aureus. The above results manifested the significance of the final AgSeB-NPs for biomedical applications.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, People's Republic of China.
- Department of Mechanical Engineering, Member of Flanders Make, KU Leuven (Catholic University of Leuven), 3001, Leuven, Belgium.
| | - Mengjuan Hou
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, People's Republic of China
| | - Tianwen Wang
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, People's Republic of China
| | - Meng Sun
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, People's Republic of China
| | - Ruixia Hou
- Medical School of Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
39
|
Hu M, Fang J, Zhang Y, Wang X, Zhong W, Zhou Z. Design and evaluation a kind of functional biomaterial for bone tissue engineering: Selenium/mesoporous bioactive glass nanospheres. J Colloid Interface Sci 2020; 579:654-666. [PMID: 32652321 DOI: 10.1016/j.jcis.2020.06.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Conventional treatments of bone tumor involve removal followed by radiation and chemotherapeutic drugs that may have limitations and cause secondary damage. The development of functional filling biomaterial has led to a new strategy for tumor therapy. In this study, a novel therapeutic ion selenium doped mesoporous bioactive glasses (Se/MBG) nanospheres were successfully synthesized by a facile sol-gel technique using cetyl trimethyl ammonium bromide (CTAB) as the template, which had uniform spherical morphology (≈ 400 nm), high surface area (>400 m2/g) and mesopore volume (≈0.30 cm3/g). Results showed that hydroxyapatite formation ability and controllable doxorubicin (DOX) release and distinct degradation of Se/MBG nanospheres depended on the dose of Se4+. In vitro cell cultures showed that both Se/MBG and DOX-Se/MBG nanospheres had the culture time and dose dependent cytotoxicity to MG63 osteosarcoma cells. But DOX-Se/MBG nanospheres reduced the acute cytotoxicity to MG63 because of the co-operative effect of Se and DOX. Meanwhile, Se/MBG nanospheres were found to have selective cytotoxicity to cancer cells (MG63) and normal cells (MC3T3-E1), indicating that the prepared Se/MBG nanospheres had cell recognition function. These all note that the synthesized Se/MBG nanospheres can be used as a filling biomaterial for the bone tissue engineering.
Collapse
Affiliation(s)
- Meng Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jie Fang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Ying Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Xiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Wenxing Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhufa Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
40
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
41
|
Cavalu S, Fritea L, Brocks M, Barbaro K, Murvai G, Costea TO, Antoniac I, Verona C, Romani M, Latini A, Zilli R, Rau JV. Novel Hybrid Composites Based on PVA/SeTiO 2 Nanoparticles and Natural Hydroxyapatite for Orthopedic Applications: Correlations between Structural, Morphological and Biocompatibility Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2077. [PMID: 32369898 PMCID: PMC7254265 DOI: 10.3390/ma13092077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022]
Abstract
The properties of poly(vinyl alcohol) (PVA)-based composites recommend this material as a good candidate for the replacement of damaged cartilage, subchondral bone, meniscus, humeral joint and other orthopedic applications. The manufacturing process can be manipulated to generate the desired biomechanical properties. However, the main shortcomings of PVA hydrogels are related to poor strength and bioactivity. To overcome this situation, reinforcing elements are added to the PVA matrix. The aim of our work was to develop and characterize a novel composition based on PVA reinforced with Se-doped TiO2 nanoparticles and natural hydroxyapatite (HA), for possible orthopedic applications. The PVA/Se-doped TiO2 composites with and without HA were structurally investigated by FTIR and XRD, in order to confirm the incorporation of the inorganic phase in the polymeric structure, and by SEM and XRF, to evidence the ultrastructural details and dispersion of nanoparticles in the PVA matrix. Both the mechanical and structural properties of the composites demonstrated a synergic reinforcing effect of HA and Se-doped TiO2 nanoparticles. Moreover, the tailorable properties of the composites were proved by the viability and differentiation potential of the bone marrow mesenchymal stem cells (BMMSC) to osteogenic, chondrogenic and adipogenic lineages. The novel hybrid PVA composites show suitable structural, mechanical and biological features to be considered as a promising biomaterial for articular cartilage and subchondral bone repair.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410081 Oradea, Romania;
| | - Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410081 Oradea, Romania;
| | - Marcel Brocks
- Biomedical Sciences Doctoral School, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410081 Oradea, Romania; (M.B.); (G.M.)
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (K.B.); (R.Z.)
| | - Gelu Murvai
- Biomedical Sciences Doctoral School, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410081 Oradea, Romania; (M.B.); (G.M.)
| | - Traian Octavian Costea
- Advanced Materials Research Laboratory, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Iulian Antoniac
- Department Materials Science and Engineering, University Politehnica of Bucharest, Splaiul Independentei 313, sector 6, 060032 Bucharest, Romania;
| | - Claudio Verona
- Department of Industrial Engineering, University “Tor Vergata” Rome, via del Politecnico 1, 00133 Rome, Italy;
| | - Martina Romani
- INFN National Laboratory of Frascati, via Enrico Fermi 40, 00044 Frascati, Italy;
| | - Alessandro Latini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Romano Zilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova 1411, 00178 Rome, Italy; (K.B.); (R.Z.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| |
Collapse
|
42
|
Tahir N, Madni A, Li W, Correia A, Khan MM, Rahim MA, Santos HA. Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. Int J Pharm 2020; 581:119275. [PMID: 32229283 DOI: 10.1016/j.ijpharm.2020.119275] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 01/02/2023]
Abstract
Lipid polymer hybrid nanoparticles (LPHNPs) have been merged as potential nanocarriers for treatment of cancer. In the present study, LPHNPs loaded with Sorafenib (SFN) were prepared with PLGA, Lecithin and DSPE-PEG 2000 by using the bulk nanoprecipitation and microfluidic (MF) co-flow nanoprecipitation techniques. Herein, a glass capillary microfluidic device was primed to optimize the LPHNPs and compared to the bulk nanoprecipitation method. The morphological analysis of prepared LPHNPs revealed the well-defined spherical nano-sized particles in bulk nanoprecipitation method. Whereas, core shell morphology was observed in the MF method. The formulation prepared by the MF method (MF1-MF3) indicated relatively higher % EE (95.0%, 93.8% and 88.7%) and controlled release of the SFN from the particles as compared to the LPHNPs obtained by the bulk nanoprecipitation method. However, the release of SFN from all LPHNP formulation followed Higuchi model (R2 = 0.9901-0.9389) with Fickian diffusion mechanism. Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and powder X-rays diffraction (pXRD) studies depicted the compatibility of SFN with all the structural components. In addition, the colloidal stability, in vitro cytotoxicity and cell growth inhibition studies of LPHNPs also demonstrated stability in biological media, biocompatibility and safety with enhanced anti-proliferative effects than the free SFN in breast cancer and prostate cancer cells. In conclusion, LPHNPs provided a prospective platform for the cancer chemotherapy and substantially improved the knowledge of fabrication and optimization of the hybrid nanoparticles.
Collapse
Affiliation(s)
- Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan; Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Muhammad Muzamil Khan
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Muhammad Abdur Rahim
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
43
|
Liver Cancer: Current and Future Trends Using Biomaterials. Cancers (Basel) 2019; 11:cancers11122026. [PMID: 31888198 PMCID: PMC6966667 DOI: 10.3390/cancers11122026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer diagnosed and the second leading cause of death worldwide. Despite advancement in current treatments for HCC, the prognosis for this cancer is still unfavorable. This comprehensive review article focuses on all the current technology that applies biomaterials to treat and study liver cancer, thus showing the versatility of biomaterials to be used as smart tools in this complex pathologic scenario. Specifically, after introducing the liver anatomy and pathology by focusing on the available treatments for HCC, this review summarizes the current biomaterial-based approaches for systemic delivery and implantable tools for locally administrating bioactive factors and provides a comprehensive discussion of the specific therapies and targeting agents to efficiently deliver those factors. This review also highlights the novel application of biomaterials to study HCC, which includes hydrogels and scaffolds to tissue engineer 3D in vitro models representative of the tumor environment. Such models will serve to better understand the tumor biology and investigate new therapies for HCC. Special focus is given to innovative approaches, e.g., combined delivery therapies, and to alternative approaches-e.g., cell capture-as promising future trends in the application of biomaterials to treat HCC.
Collapse
|
44
|
Wang Y, Qin N, Zhao C, Yuan J, Lu S, Li W, Xiang H, Hao H. The correlation between the methylation of PTEN gene and the apoptosis of osteosarcoma cells mediated by SeHA nanoparticles. Colloids Surf B Biointerfaces 2019; 184:110499. [PMID: 31541893 DOI: 10.1016/j.colsurfb.2019.110499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
The invasive spreading of residual osteosarcoma cells becomes a serious threat to human health, urgently needing new bone regenerative biomaterials for orthopedic therapy. Thus, in this work, selenite-substituted hydroxyapatite (SeHA) nanoparticles were prepared for both inhibiting the recurrence of the tumor and accelerating the regenerative repair of bone defect. Physicochemical characterization showed these synthetic nanoparticles were spherical poly-crystals with the shape of snowflakes. Such structure benefited them to inhibit the cellular viability of osteosarcoma cells by about (58.90 ± 14.37)% during 24 h co-culturing. The expression level of cell growth-related genes such as PTEN, MMP-9, Cyclin D1, Cyclin A2, Annexin A2 and CDC2 decreased. Bisulfite Sequence PCR of PTEN gene exhibited about (22.40 ± 5.39)%, (45.91 ± 6.36)% and (25.90 ± 5.36)% promoter methylation in control, HA and SeHA group. Animal experiment also proved the similar effects. Almost no recurrence were observed in SeHA group. Oppositely, the slowly recurrent growth of the remnant tumor appeared in purely surgical group. The overall survival and toxicity analysis showed that, in the usage dose of 0-0.1 g, the SeHA-0.01 exhibited higher inhibitory recurrence and metastasis potentials, lower renal toxicity and better anti-inflammation function. Immunohistochemistry stain showed the reduced expression of PTEN, MMP-9, Ki-67 and Annexin A2, but slightly increased expression of DNMT1 and BMP-2. Compared the methylation status of PTEN gene in each group, it was confirming that SeHA nanoparticles hardly possessed the de-methylation effect, but the pure HA strikingly increased the methylation level of such gene. It seemed the dopant selenite ions possessed de-methylation effect onto PTEN gene. Therefore, from the viewpoint of inhibiting metastatic potentials, the SeHA-0.01 might be a feasible biomaterial to inhibit the relapse of the tumor post-surgery.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China.
| | - Na Qin
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Caifa Zhao
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Jiehua Yuan
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Shiqi Lu
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Wenjing Li
- Department of Morphology, Medical Science College of China Three Gorges University, Yichang, China
| | - Huiyao Xiang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Hang Hao
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Li Y, Hao H, Zhong Z, Li M, Li J, Du Y, Wu X, Wang J, Zhang S. Assembly Mechanism of Highly Crystalline Selenium-Doped Hydroxyapatite Nanorods via Particle Attachment and Their Effect on the Fate of Stem Cells. ACS Biomater Sci Eng 2019; 5:6703-6714. [DOI: 10.1021/acsbiomaterials.9b01029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan Li
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Hao
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengyu Zhong
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengdie Li
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Li
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaodan Wu
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
46
|
Lee WH, Loo CY, Rohanizadeh R. Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:929-939. [DOI: 10.1016/j.msec.2019.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 01/22/2023]
|
47
|
Controlled nanoparticle synthesis of Ag/Fe co-doped hydroxyapatite system for cancer cell treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:311-323. [DOI: 10.1016/j.msec.2018.12.148] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/15/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
|
48
|
Laskus A, Zgadzaj A, Kolmas J. Selenium-Enriched Brushite: A Novel Biomaterial for Potential Use in Bone Tissue Engineering. Int J Mol Sci 2018; 19:E4042. [PMID: 30558119 PMCID: PMC6321228 DOI: 10.3390/ijms19124042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
In this study, a novel biomaterial, i.e., brushite containing 0.67 wt% of selenium (Se-Bru) was synthesized via a wet precipitation method. Pure, unsubstituted brushite (Bru) was synthesized via the same method and used as a reference material. Different techniques of instrumental analysis were applied to investigate and compare physicochemical properties of both materials. Fourier-Transform Infrared Spectroscopy confirmed the chemical identity of both materials. Scanning Electron Microscopy (SEM) was used to study the morphology and indicated that both samples (Bru and Se-Bru) consisted of plate-like microcrystals. Powder X-ray Diffraction (PXRD) showed that Bru, as well as Se-Bru were crystallographically homogenous. What is more, the data obtained from PXRD studies revealed that the substitution of selenite ions into the crystal structure of the material had clearly affected its lattice parameters. The incorporation of selenium was also confirmed by solid-state ¹H→31P CP MAS kinetics experiments. Additionally, studies on the release kinetics of the elements forming Se-Bru and preliminary cytotoxicity tests were conducted. This preliminary research will favor a better understanding of ionic substitution in calcium phosphates and may be a starting point for the development of selenium-doped brushite cements for potential use in bone tissue impairments treatment.
Collapse
Affiliation(s)
- Aleksandra Laskus
- Department of Analytical Chemistry and Biomaterials, Analytical Group, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| | - Joanna Kolmas
- Department of Analytical Chemistry and Biomaterials, Analytical Group, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
49
|
Constantinescu-Aruxandei D, Frîncu RM, Capră L, Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients 2018; 10:E1466. [PMID: 30304813 PMCID: PMC6213372 DOI: 10.3390/nu10101466] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Selenium is essential for humans and the deficit of Se requires supplementation. In addition to traditional forms such as Se salts, amino acids, or selenium-enriched yeast supplements, next-generation selenium supplements, with lower risk for excess supplementation, are emerging. These are based on selenium forms with lower toxicity, higher bioavailability, and controlled release, such as zerovalent selenium nanoparticles (SeNPs) and selenized polysaccharides (SPs). This article aims to focus on the existing analytical systems for the next-generation Se dietary supplement, providing, at the same time, an overview of the analytical methods available for the traditional forms. The next-generation dietary supplements are evaluated in comparison with the conventional/traditional ones, as well as the analysis and speciation methods that are suitable to reveal which Se forms and species are present in a dietary supplement. Knowledge gaps and further research potential in this field are highlighted. The review indicates that the methods of analysis of next-generation selenium supplements should include a step related to chemical species separation. Such a step would allow a proper characterization of the selenium forms/species, including molecular mass/dimension, and substantiates the marketing claims related to the main advantages of these new selenium ingredients.
Collapse
Affiliation(s)
- Diana Constantinescu-Aruxandei
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Rodica Mihaela Frîncu
- INCDCP-ICECHIM Calarasi Subsidiary, 7A Nicolae Titulescu St., 915300 Lehliu Gara, Romania.
| | - Luiza Capră
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Florin Oancea
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| |
Collapse
|
50
|
Menon S, KS SD, R S, S R, S VK. Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B Biointerfaces 2018; 170:280-292. [DOI: 10.1016/j.colsurfb.2018.06.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|