1
|
Ninham BW, Battye MJ, Bolotskova PN, Gerasimov RY, Kozlov VA, Bunkin NF. Nafion: New and Old Insights into Structure and Function. Polymers (Basel) 2023; 15:2214. [PMID: 37177360 PMCID: PMC10181149 DOI: 10.3390/polym15092214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The work reports a number of results on the dynamics of swelling and inferred nanostructure of the ion-exchange polymer membrane Nafion in different aqueous solutions. The techniques used were photoluminescent and Fourier transform IR (FTIR) spectroscopy. The centers of photoluminescence were identified as the sulfonic groups localized at the ends of the perfluorovinyl ether (Teflon) groups that form the backbone of Nafion. Changes in deuterium content of water induced unexpected results revealed in the process of polymer swelling. In these experiments, deionized (DI) water (deuterium content 157 ppm) and deuterium depleted water (DDW) with deuterium content 3 PPM, were investigated. The strong hydration of sulfonic groups involves a competition between ortho- and para-magnetic forms of a water molecule. Deuterium, as it seems, adsorbs competitively on the sulfonic groups and thus can change the geometry of the sulfate bonds. With photoluminescent spectroscopy experiments, this is reflected in the unwinding of the polymer fibers into the bulk of the adjoining water on swelling. The unwound fibers do not tear off from the polymer substrate. They form a vastly extended "brush" type structure normal to the membrane surface. This may have implications for specificity of ion transport in biology, where the ubiquitous glycocalyx of cells and tissues invariably involves highly sulfated polymers such asheparan and chondroitin sulfate.
Collapse
Affiliation(s)
- Barry W. Ninham
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2600, Australia
| | | | - Polina N. Bolotskova
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Rostislav Yu. Gerasimov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Valery A. Kozlov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Nikolai F. Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| |
Collapse
|
2
|
Hayashi K, Ota H, Sugimura H, Shimanouchi T, Iwasaki T, Fujita S, Nakamura H, Umakoshi H. Cholesterol as a Subsidiary Component of Sorbitan Surfactant-Based Aggregates: A Study of Formation, Hydrophobicity, and Estimation of Localization of Embedded Molecules. J Phys Chem B 2023; 127:2214-2223. [PMID: 36881848 DOI: 10.1021/acs.jpcb.2c08153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Aggregates of amphiphilic molecules can be used as drug carriers, for which the properties can be modified by mixing with other molecules such as cholesterol. It is important to understand the effects of such additives on the properties because they directly define the material functions. In this work, we investigated the effect of cholesterol on the formation and hydrophobicity of aggregates of sorbitan surfactants. As cholesterol changed its formation from micelles to vesicles, an increase in hydrophobicity was seen, particularly in the middle regions compared with the shallow and deep regions. We show that this gradual hydrophobicity is related to the localization of the embedded molecules. 4-Hydroxy-TEMPO and 4-carboxy-TEMPO were preferentially localized in the shallow region of the aggregates, whereas 4-PhCO2-TEMPO was preferentially localized in the deep region of the vesicle. The localization of molecules depends on their chemical structure. However, the localization of 4-PhCO2-TEMPO in micelles was not observed, despite the similar hydrophobicity in the hydrophobic region within the aggregates. The localization of embedded molecules was related to other properties, such as molecular mobility.
Collapse
Affiliation(s)
- Keita Hayashi
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Hikaru Ota
- Department of Materials Science and Chemical Engineering, Faculty of Advanced Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Haruna Sugimura
- Department of Materials Science and Chemical Engineering, Faculty of Advanced Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Toshinori Shimanouchi
- Division of Environmental Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Tomoyuki Iwasaki
- Division of Medical Research Support, Advanced Research Support Center, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Sakiko Fujita
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hidemi Nakamura
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
3
|
Ninham B, Reines B, Battye M, Thomas P. Pulmonary surfactant and COVID-19: A new synthesis. QRB DISCOVERY 2022; 3:e6. [PMID: 37564950 PMCID: PMC10411325 DOI: 10.1017/qrd.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Chapter 1 COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2 For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.
Collapse
Affiliation(s)
- Barry Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT2612, Australia
| | - Brandon Reines
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Blvd, Pittsburgh, PA15206, USA
| | | | - Paul Thomas
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
4
|
Self-assembly in saponin/surfactant mixtures: Escin and sodium dodecylsulfate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
A Hofmeister series perspective on the mixed micellization of cationic and non-ionic surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Aragón-Muriel A, Liscano Y, Upegui Y, Robledo SM, Ramírez-Apan MT, Morales-Morales D, Oñate-Garzón J, Polo-Cerón D. In Vitro Evaluation of the Potential Pharmacological Activity and Molecular Targets of New Benzimidazole-Based Schiff Base Metal Complexes. Antibiotics (Basel) 2021; 10:728. [PMID: 34208759 PMCID: PMC8235109 DOI: 10.3390/antibiotics10060728] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-based drugs, including lanthanide complexes, have been extremely effective in clinical treatments against various diseases and have raised major interest in recent decades. Hence, in this work, a series of lanthanum (III) and cerium (III) complexes, including Schiff base ligands derived from (1H-benzimidazol-2-yl)aniline, salicylaldehyde, and 2,4-dihydroxybenzaldehyde were synthesized and characterized using different spectroscopic methods. Besides their cytotoxic activities, they were examined in human U-937 cells, primate kidney non-cancerous COS-7, and six other, different human tumor cell lines: U251, PC-3, K562, HCT-15, MCF-7, and SK-LU-1. In addition, the synthesized compounds were screened for in vitro antiparasitic activity against Leishmania braziliensis, Plasmodium falciparum, and Trypanosoma cruzi. Additionally, antibacterial activities were examined against two Gram-positive strains (S. aureus ATCC® 25923, L. monocytogenes ATCC® 19115) and two Gram-negative strains (E. coli ATCC® 25922, P. aeruginosa ATCC® 27583) using the microdilution method. The lanthanide complexes generally exhibited increased biological activity compared with the free Schiff base ligands. Interactions between the tested compounds and model membranes were examined using differential scanning calorimetry (DSC), and interactions with calf thymus DNA (CT-DNA) were investigated by ultraviolet (UV) absorption. Molecular docking studies were performed using leishmanin (1LML), cruzain (4PI3), P. falciparum alpha-tubulin (GenBank sequence CAA34101 [453 aa]), and S.aureus penicillin-binding protein 2a (PBP2A; 5M18) as the protein receptors. The results lead to the conclusion that the synthesized compounds exhibited a notable effect on model membranes imitating mammalian and bacterial membranes and rolled along DNA strands through groove interactions. Interactions between the compounds and studied receptors depended primarily on ligand structures in the molecular docking study.
Collapse
Affiliation(s)
- Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia; (Y.L.); (J.O.-G.)
| | - Yulieth Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (Y.U.); (S.M.R.)
| | - Sara M. Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (Y.U.); (S.M.R.)
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia; (Y.L.); (J.O.-G.)
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia;
| |
Collapse
|
7
|
Alfredsson V, Lo Nostro P, Ninham B, Nylander T. Morphologies and Structure of Brain Lipid Membrane Dispersions. Front Cell Dev Biol 2021; 9:675140. [PMID: 34195192 PMCID: PMC8236638 DOI: 10.3389/fcell.2021.675140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
This study aims to explore the variety of previously unknown morphologies that brain lipids form in aqueous solutions. We study how these structures are dependent on cholesterol content, salt solution composition, and temperature. For this purpose, dispersions of porcine sphingomyelin with varying amounts of cholesterol as well as dispersions of porcine brain lipid extracts were investigated. We used cryo-TEM to investigate the dispersions at high-salt solution content together with small-angle (SAXD) and wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) for dispersions in the corresponding salt solution at high lipid content. Sphingomyelin forms multilamellar vesicles in large excess of aqueous salt solution. These vesicles appear as double rippled bilayers in the images and as split Bragg peaks in SAXD together with a very distinct lamellar phase pattern. These features disappear with increasing temperature, and addition of cholesterol as the WAXD data shows that the peak corresponding to the chain crystallinity disappears. The dispersions of sphingomyelin at high cholesterol content form large vesicular type of structures with smooth bilayers. The repeat distance of the lamellar phase depends on temperature, salt solution composition, and slightly with cholesterol content. The brain lipid extracts form large multilamellar vesicles often attached to assemblies of higher electron density. We think that this is probably an example of supra self-assembly with a multiple-layered vesicle surrounding an interior cubic microphase. This is challenging to resolve. DSC shows the presence of different kinds of water bound to the lipid aggregates as a function of the lipid content. Comparison with the effect of lithium, sodium, and calcium salts on the structural parameters of the sphingomyelin and the morphologies of brain lipid extract morphologies demonstrate that lithium has remarkable effects also at low content.
Collapse
Affiliation(s)
- Viveka Alfredsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Italy
| | - Barry Ninham
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT, Australia
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden.,NanoLund, Lund University, Lund, Sweden.,Lund Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| |
Collapse
|
8
|
Salvador-Castell M, Golub M, Erwin N, Demé B, Brooks NJ, Winter R, Peters J, Oger PM. Characterisation of a synthetic Archeal membrane reveals a possible new adaptation route to extreme conditions. Commun Biol 2021; 4:653. [PMID: 34079059 PMCID: PMC8172549 DOI: 10.1038/s42003-021-02178-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
It has been proposed that adaptation to high temperature involved the synthesis of monolayer-forming ether phospholipids. Recently, a novel membrane architecture was proposed to explain the membrane stability in polyextremophiles unable to synthesize such lipids, in which apolar polyisoprenoids populate the bilayer midplane and modify its physico-chemistry, extending its stability domain. Here, we have studied the effect of the apolar polyisoprenoid squalane on a model membrane analogue using neutron diffraction, SAXS and fluorescence spectroscopy. We show that squalane resides inside the bilayer midplane, extends its stability domain, reduces its permeability to protons but increases that of water, and induces a negative curvature in the membrane, allowing the transition to novel non-lamellar phases. This membrane architecture can be transposed to early membranes and could help explain their emergence and temperature tolerance if life originated near hydrothermal vents. Transposed to the archaeal bilayer, this membrane architecture could explain the tolerance to high temperature in hyperthermophiles which grow at temperatures over 100 °C while having a membrane bilayer. The induction of a negative curvature to the membrane could also facilitate crucial cell functions that require high bending membranes.
Collapse
Affiliation(s)
| | - Maksym Golub
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France
- Institut Laue Langevin, Grenoble, France
| | - Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Bruno Demé
- Institut Laue Langevin, Grenoble, France
| | | | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France.
- Institut Laue Langevin, Grenoble, France.
| | | |
Collapse
|
9
|
Tatini D, Raudino M, Ambrosi M, Carretti E, Davidovich I, Talmon Y, Ninham BW, Lo Nostro P. Physicochemical characterization of green sodium oleate-based formulations. Part 1. Structure and rheology. J Colloid Interface Sci 2021; 590:238-248. [PMID: 33548607 DOI: 10.1016/j.jcis.2021.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The structure, rheology and other physicochemical properties of dilute aqueous dispersions of sodium oleate (NaOL) are well known. This paper is the first report in which a moderately concentrated (13% w/w) dispersion of NaOL in water is investigated. In fact, at this concentration the phase and rheology behavior of the surfactant remarkably deviates from those of its dilute solutions in water and a significant effect is imparted by the addition of potassium chloride. EXPERIMENTAL The structural, thermal and rheological properties of a 13% w/w dispersion of NaOL in water were investigated by cryo-TEM, rheology, and DSC experiments with and without the addition of potassium chloride. The system is comprised of elongated wormlike micelles that turn into a gel-like more disordered viscous material upon addition of small amounts of KCl (4% w/w). FINDINGS This paper illustrates the multifaceted behavior of sodium oleate dispersions at intermediate concentrations that depends on the presence of other cosolutes (such as KCl). The results show that viscoelastic aqueous dispersions of NaOL are excellent candidates for the preparation of stimuli-responsive green materials to be used in a number of different applications. We also discuss the genesis of wormlike micelles (WLMs) in terms of the general theory of self-assembly.
Collapse
Affiliation(s)
- Duccio Tatini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Martina Raudino
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Moira Ambrosi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Emiliano Carretti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Barry W Ninham
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
10
|
Zul NF, Tajuddin HA, Ahmad N, Zainal Abidin ZH, Sadidarto AB, Abdullah Z. Influence of Hydrogen Bonding on Low Critical Micellar Concentration Value and Formation of Giant Vesicle of Triazole‐Contained Amphiphile. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nurul Faiezin Zul
- Organic Research Laboratory, Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Hairul Anuar Tajuddin
- Organic Research Laboratory, Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Noraini Ahmad
- Colloid Chemistry & Nanotechnology Laboratory, Centre for Fundamental and Frontier Sciences in Nanostructure Self‐Assembly (FSSA), Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Zul Hazrin Zainal Abidin
- Visible Spectroscopy Laboratory, Centre for Ionics University of Malaya (CIUM), Department of Physics, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ahmad Bayhaki Sadidarto
- Organic Research Laboratory, Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Zanariah Abdullah
- Organic Research Laboratory, Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
11
|
Risaliti L, Ambrosi M, Calamante M, Bergonzi MC, Lo Nostro P, Bilia AR. Preparation and Characterization of Ascosome Vesicles Loaded with Khellin. J Pharm Sci 2020; 109:3114-3124. [DOI: 10.1016/j.xphs.2020.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
|
12
|
Perini I, Ambrosi M, Tanini D, Ninham BW, Capperucci A, Nostro PL. Ascorbyl‐6‐O‐oleate: A Bioconjugate Antioxidant Lipid. ChemistrySelect 2020. [DOI: 10.1002/slct.201903528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ilaria Perini
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Moira Ambrosi
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Barry W. Ninham
- Department of Applied Mathematics, Research School of Physics Australian National University Canberra Australia 0200
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
13
|
Lo Nostro P, Ninham BW. After DLVO: Hans Lyklema and the keepers of the faith. Adv Colloid Interface Sci 2020; 276:102082. [PMID: 31887575 DOI: 10.1016/j.cis.2019.102082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff", University of Florence, Ferroni Foundation, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Barry W Ninham
- Department of Chemistry "Ugo Schiff", University of Florence, Ferroni Foundation, 50019 Sesto Fiorentino, Firenze, Italy; Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra 0200, Australia
| |
Collapse
|
14
|
Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces. Q Rev Biophys 2019; 52:e13. [PMID: 31771669 DOI: 10.1017/s0033583519000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Among the unsolved mysteries of modern biology is the nature of a lining of blood vessels called the 'endothelial surface layer' or ESL. In venous micro-vessels, it is half a micron in thickness. The ESL is 10 times thicker than the endothelial glycocalyx (eGC) at its base, has been presumed to be comprised mainly of water, yet is rigid enough to exclude red blood cells. How is this possible? Developments in physical chemistry suggest that the venous ESL is actually comprised of nanobubbles of CO2, generated from tissue metabolism, in a foam nucleated in the eGC. For arteries, the ESL is dominated by nanobubbles of O2 and N2 from inspired air. The bubbles of the foam are separated and stabilized by thin layers of serum electrolyte and proteins, and a palisade of charged polymer strands of the eGC. The ESL seems to be a respiratory organ contiguous with the flowing blood, an extension of, and a 'lung' in miniature. This interpretation may have far-reaching consequences for physiology.
Collapse
|
15
|
Salvador-Castell M, Brooks NJ, Peters J, Oger P. Induction of non-lamellar phases in archaeal lipids at high temperature and high hydrostatic pressure by apolar polyisoprenoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183130. [PMID: 31734311 DOI: 10.1016/j.bbamem.2019.183130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/01/2022]
Abstract
It is now well established that cell membranes are much more than a barrier that separate the cytoplasm from the outside world. Regarding membrane's lipids and their self-assembling, the system is highly complex, for example, the cell membrane needs to adopt different curvatures to be functional. This is possible thanks to the presence of non-lamellar-forming lipids, which tend to curve the membrane. Here, we present the effect of squalane, an apolar isoprenoid molecule, on an archaea-like lipid membrane. The presence of this molecule provokes negative membrane curvature and forces lipids to self-assemble under inverted cubic and inverted hexagonal phases. Such non-lamellar phases are highly stable under a broad range of external extreme conditions, e.g. temperatures and high hydrostatic pressures, confirming that such apolar lipids could be included in the architecture of membranes arising from cells living under extreme environments.
Collapse
Affiliation(s)
| | - Nicholas J Brooks
- Imperial College London, South Kensington Campus, London SW7 2AZ, England, United Kingdom of Great Britain and Northern Ireland
| | - Judith Peters
- Université Grenoble Alpes, LiPhy, CNRS, 38000 Grenoble, France; Institut Laue Langevin, 38000 Grenoble, France
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS, UMR 5240, 69211 Villeurbanne, France.
| |
Collapse
|
16
|
Kékicheff P. The long-range attraction between hydrophobic macroscopic surfaces. Adv Colloid Interface Sci 2019; 270:191-215. [PMID: 31277036 DOI: 10.1016/j.cis.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Direct measurements of the long-range strongly attractive force observed between macroscopic hydrophobic surfaces across aqueous solutions are reexamined in light of recent experiments and theoretical developments. The focus is on systems in the absence of submicroscopic bubbles (preexistent or induced) to avoid capillary bridging forces. Other possible interferences to the measurements are also eliminated. The force-distance profiles are obtained directly (no contributions from electrical double layer or hydrodynamics) between symmetric identical hydrophobic surfaces, overall charge-neutral, at the thermodynamic equilibrium and in a quenched state. Therefore in the well-defined geometry of crossed-cylinders, sphere-flat, or sphere-sphere, there is no additional interaction to be considered except the ever-present dispersion forces, negligible at large separations. For the three main categories of substrates rendered hydrophobic, namely surfaces obtained with surfactant monolayers physically adsorbed from solution to deposited ones, and substrates coated with a hydrophobizing agent bonded chemically onto the surface, the interaction energy scales as A exp (-2κD)/2κD at large separations, with measured decay lengths in accord with theoretical predictions, simply being half the Debye screening length, κ-1/2, at least in non vanishing electrolyte. Taken together with the prefactor A scaling as the ionic strength, the interaction energy is demonstrated to have an electrostatic origin in all the systems. Thanks to our recent SFAX coupling force measurements with x-ray solution scattering under controlled nano-confinement, the microstructuration of the adsorbed film emerges as an essential feature in the molecular mechanism for explaining the observed attraction of larger magnitude than dispersion forces. The adsorption of pairs of positive and negative ions on small islands along the interface, the fluctuation of the surface charge density around a zero mean-value with desorption into or adsorption from the electrolyte solution, the correlations in the local surface ion concentrations along the surfaces, the redistribution of counterions upon intersurface variation, all contribute and are tuned finely by the inhomogeneities and defects present in the hydrophobic layers. It appears that the magnitude of the interacting energy can be described by a single master curve encompassing all the systems.
Collapse
|
17
|
Hofmann MJ, Leontidis E, Motschmann H. The influence of lanthanide-(III)-nitrates on adsorbed monolayers of dodecylphosphorylcholine at the air-water interface. J Colloid Interface Sci 2019; 548:217-223. [DOI: 10.1016/j.jcis.2019.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
|
18
|
Fabozzi A, Russo Krauss I, Vitiello R, Fornasier M, Sicignano L, King S, Guido S, Jones C, Paduano L, Murgia S, D'Errico G. Branched alkyldimethylamine oxide surfactants: An effective strategy for the design of high concentration/low viscosity surfactant formulations. J Colloid Interface Sci 2019; 552:448-463. [PMID: 31151022 DOI: 10.1016/j.jcis.2019.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
HYPOTHESIS The rational design of branched-tail surfactants is a suitable strategy to obtain low-viscosity surfactant-rich isotropic aqueous mixtures with negligible effects on biodegradability. This opens a way to the design of concentrated ("water-free") surfactant formulations, highly attractive for their ecological and economic benefits. EXPERIMENTS The aggregation behaviour of N,N-dimethyl-2-propylheptan-1-amine oxide (C10DAO-branched) in aqueous mixtures is investigated across the entire composition range by polarized optical microscopy, small angle X-ray and neutron scattering, electron paramagnetic resonance, and pulse-gradient stimulated echo nuclear magnetic resonance. The humidity scanning quartz crystal microbalance with dissipation monitoring technique is validated as a tool for the fast screening of surfactants phase behaviour. Furthermore, the shear viscosities and viscoelastic moduli of the systems are determined by rheological measurements. FINDINGS With respect to the linear isomer, C10DAO-branched presents a much lower tendency to form lyotropic liquid crystalline phases. Except for a narrow composition and temperature range in which a lamellar structure is observed, C10DAO-branched aqueous mixtures are isotropic liquids whose microstructure changes, with increasing concentration, from micellar solutions to unstructured dispersions of hydrated surfactant molecules. Low-viscosity was found for all these mixtures, including the most concentrated ones. Thus, the introduction of a single short side-chain in the tail is demonstrated to be an effective approach to increase the active concentration in surfactant formulations.
Collapse
Affiliation(s)
- Antonio Fabozzi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy
| | - Rosa Vitiello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy
| | - Marco Fornasier
- Department of Chemical and Geological Sciences, University of Cagliari, s.s. 554 bivio Sestu, Monserrato, CA I-09042, Italy
| | - Luca Sicignano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le V. Tecchio 80, I-80125 Naples, Italy
| | - Stephen King
- ISIS Pulsed Neutron & Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Stefano Guido
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le V. Tecchio 80, I-80125 Naples, Italy
| | - Christopher Jones
- Procter & Gamble Innovation Centre, Strombeek-Bever Temseelan 100, B-1853, Brussels, Belgium
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy
| | - Sergio Murgia
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy; Department of Chemical and Geological Sciences, University of Cagliari, s.s. 554 bivio Sestu, Monserrato, CA I-09042, Italy.
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
19
|
Beguin E, Bau L, Shrivastava S, Stride E. Comparing Strategies for Magnetic Functionalization of Microbubbles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1829-1840. [PMID: 30574777 DOI: 10.1021/acsami.8b18418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The advancement of ultrasound-mediated therapy has stimulated the development of drug-loaded microbubble agents that can be targeted to a region of interest through an applied magnetic field prior to ultrasound activation. However, the need to incorporate therapeutic molecules while optimizing the responsiveness to both magnetic and acoustic fields and maintaining adequate stability poses a considerable challenge for microbubble synthesis. The aim of this study was to evaluate three different methods for incorporating iron oxide nanoparticles (IONPs) into phospholipid-coated microbubbles using (1) hydrophobic IONPs within an oil layer below the microbubble shell, (2) phospholipid-stabilized IONPs within the shell, or (3) hydrophilic IONPs noncovalently bound to the surface of the microbubble. All microbubbles exhibited similar acoustic response at both 1 and 7 MHz. The half-life of the microbubbles was more than doubled by the addition of IONPs by using both surface and phospholipid-mediated loading methods, provided the lipid used to coat the IONPs was the same as that constituting the microbubble shell. The highest loading of IONPs per microbubble was also achieved with the surface loading method, and these microbubbles were the most responsive to an applied magnetic field, showing a 3-fold increase in the number of retained microbubbles compared to other groups. For the purpose of drug delivery, surface loading of IONPs could restrict the attachment of hydrophilic drugs to the microbubble shell, but hydrophobic drugs could still be incorporated. In contrast, although the incorporation of phospholipid IONPs produced more weakly magnetic microbubbles, it would not interfere with hydrophilic drug loading on the surface of the microbubble.
Collapse
Affiliation(s)
- Estelle Beguin
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Luca Bau
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Shamit Shrivastava
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| |
Collapse
|
20
|
Bunkin NF, Shkirin AV, Kozlov VA, Ninham BW, Uspenskaya EV, Gudkov SV. Near-surface structure of Nafion in deuterated water. J Chem Phys 2018; 149:164901. [PMID: 30384746 DOI: 10.1063/1.5042065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The swelling of a polymer ion-exchange membrane Nafion in water with various heavy isotope contents (D2O) was studied by photoluminescent UV spectroscopy. The photoluminescence arises because of the presence of sulfonic groups attached to the ends of the perfluorovinyl ether groups that form the tetrafluoroethylene (Teflon) backbone of Nafion. The width of the colloidal region, which is formed near the membrane surface as a result of the outgrowth of Nafion microfibers toward the bulk liquid, varies non-monotonically with D2O content, displaying a narrow maximum in the low concentration region. A significant insight into the unexpected isotopic effects revealed in swelling Nafion in deuterated water is provided. Mainly, the polymer swelling is very sensitive to small changes (on the order of several tens of parts per million) in the content of deuterium, which, for instance, can help in understanding the isotopic effects in living tissues.
Collapse
Affiliation(s)
- N F Bunkin
- Bauman Moscow State Technical University, Second Baumanskaya Str. 5, Moscow 105005, Russia
| | - A V Shkirin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, Moscow 119991, Russia
| | - V A Kozlov
- Bauman Moscow State Technical University, Second Baumanskaya Str. 5, Moscow 105005, Russia
| | - B W Ninham
- The Australian National University, Acton, ACT 2601, Australia
| | - E V Uspenskaya
- RUDN University, Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - S V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, Moscow 119991, Russia
| |
Collapse
|
21
|
Tamagawa H, Ikeda K. Another interpretation of the Goldman-Hodgkin-Katz equation based on Ling's adsorption theory. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:869-879. [PMID: 30203188 DOI: 10.1007/s00249-018-1332-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
According to standard membrane theory, the generation of membrane potential is attributed to transmembrane ion transport. However, there have been a number of reports of membrane behavior in conflict with the membrane theory of cellular potential. Putting aside the membrane theory, we scrutinized the generation mechanism of membrane potential from the view of the long-dismissed adsorption theory of Ling. Ling's adsorption theory attributes the membrane potential generation to mobile ion adsorption. Although Ling's adsorption theory conflicts with the broadly accepted membrane theory, we found that it well reproduces experimentally observed membrane potential behavior. Our theoretical analysis finds that the potential formula based on the GHK eq., which is a fundamental concept of membrane theory, coincides with the potential formula based on Ling's adsorption theory. Reinterpreting the permeability coefficient in the GHK eq. as the association constant between the mobile ion and adsorption site, the GHK eq. turns into the potential formula from Ling's adsorption theory. We conclude that the membrane potential is generated by ion adsorption as Ling's adsorption theory states and that the membrane theory of cellular potential should be amended even if not discarded.
Collapse
Affiliation(s)
- Hirohisa Tamagawa
- Department of Mechanical Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan.
| | - Kota Ikeda
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1, Nakano, Nakano-ku, Tokyo, 165-8525, Japan
| |
Collapse
|
22
|
Besford QA, Liu M, Christofferson AJ. Stabilizing Dipolar Interactions Drive Specific Molecular Structure at the Water Liquid–Vapor Interface. J Phys Chem B 2018; 122:8309-8314. [DOI: 10.1021/acs.jpcb.8b06464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quinn Alexander Besford
- Department of Chemical Engineering, The University of Melbourne, Victoria, Melbourne 3010, Australia
| | - Maoyuan Liu
- School of Chemistry, The University of Melbourne, Victoria, Melbourne 3010, Australia
| | | |
Collapse
|
23
|
Bunkin NF, Kozlov VA, Shkirin AV, Ninham BW, Balashov AA, Gudkov SV. Dynamics of Nafion membrane swelling in H 2O/D 2O mixtures as studied using FTIR technique. J Chem Phys 2018; 148:124901. [PMID: 29604815 DOI: 10.1063/1.5022264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Experiments with Fourier transform spectrometry of Nafion, a water-swollen polymeric membrane, are described. The transmittance spectra of liquid samples and Nafion, soaked in these samples, were studied, depending on the deuterium content in water in the spectral range 1.8-2.15 μm. The experiments were carried out using two protocols: in the first protocol we studied the dynamics of Nafion swelling in H2O + D2O mixtures for the deuterium concentrations 3 < C < 104 ppm, and in the second protocol we studied the dynamics of swelling in pure heavy water (C = 106 ppm). For liquid mixtures in the concentration range 3 < C < 104 ppm, the transmittance spectra are the same, but for Nafion soaked in these fluids, the corresponding spectra are different. It is shown that, in the range of deuterium contents C = 90-500 ppm, the behavior of transmittance of the polymer membrane is non-monotonic. In experiments using the second protocol, the dynamics of diffusion replacement of residual water, which is always present in the bulk of the polymer membrane inside closed cavities (i.e., without access to atmospheric air), were studied. The experimentally estimated diffusion coefficient for this process is ≈6·10-11 cm2/s.
Collapse
Affiliation(s)
- Nikolai F Bunkin
- Bauman Moscow State Technical University, Second Baumanskaya Str. 5, Moscow 105005, Russia
| | - Valeriy A Kozlov
- Bauman Moscow State Technical University, Second Baumanskaya Str. 5, Moscow 105005, Russia
| | - Alexey V Shkirin
- A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Str. 38, Moscow 119991, Russia
| | - Barry W Ninham
- The Australian National University, Acton, ACT 2601, Australia
| | - Anatoliy A Balashov
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Butlerova Str., Moscow 15117342, Russia
| | - Sergey V Gudkov
- A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Str. 38, Moscow 119991, Russia
| |
Collapse
|
24
|
Schönhöfer PW, Ellison LJ, Marechal M, Cleaver DJ, Schröder-Turk GE. Purely entropic self-assembly of the bicontinuous Ia3d gyroid phase in equilibrium hard-pear systems. Interface Focus 2017; 7:20160161. [PMID: 28630680 PMCID: PMC5474042 DOI: 10.1098/rsfs.2016.0161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We investigate a model of hard pear-shaped particles which forms the bicontinuous Ia[Formula: see text]d structure by entropic self-assembly, extending the previous observations of Barmes et al. (2003 Phys. Rev. E68, 021708. (doi:10.1103/PhysRevE.68.021708)) and Ellison et al. (2006 Phys. Rev. Lett.97, 237801. (doi:10.1103/PhysRevLett.97.237801)). We specifically provide the complete phase diagram of this system, with global density and particle shape as the two variable parameters, incorporating the gyroid phase as well as disordered isotropic, smectic and nematic phases. The phase diagram is obtained by two methods, one being a compression-decompression study and the other being a continuous change of the particle shape parameter at constant density. Additionally, we probe the mechanism by which interdigitating sheets of pears in these systems create surfaces with negative Gauss curvature, which is needed to form the gyroid minimal surface. This is achieved by the use of Voronoi tessellation, whereby both the shape and volume of Voronoi cells can be assessed in regard to the local Gauss curvature of the gyroid minimal surface. Through this, we show that the mechanisms prevalent in this entropy-driven system differ from those found in systems which form gyroid structures in nature (lipid bilayers) and from synthesized materials (di-block copolymers) and where the formation of the gyroid is enthalpically driven. We further argue that the gyroid phase formed in these systems is a realization of a modulated splay-bend phase in which the conventional nematic has been predicted to be destabilized at the mesoscale due to molecular-scale coupling of polar and orientational degrees of freedom.
Collapse
Affiliation(s)
- Philipp W. A. Schönhöfer
- School of Engineering and Information Technology, Mathematics and Statistics, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- Institut für Theoretische Physik I, Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
| | - Laurence J. Ellison
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Matthieu Marechal
- Institut für Theoretische Physik I, Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
| | - Douglas J. Cleaver
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Gerd E. Schröder-Turk
- School of Engineering and Information Technology, Mathematics and Statistics, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
25
|
Ninham BW, Larsson K, Lo Nostro P. Two sides of the coin. Part 2. Colloid and surface science meets real biointerfaces. Colloids Surf B Biointerfaces 2017; 159:394-404. [PMID: 28822288 DOI: 10.1016/j.colsurfb.2017.07.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/07/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022]
Abstract
Part 1 revisited developments in lipid and surfactant self assembly over the past 40 years [1]. New concepts emerged. Here we explore how these developments can be used to make sense of and bring order to a range of complex biological phenomena. Together with Part 1, this contribution is a fundamental revision of intuition at the boundaries of Colloid Science and Biological interfaces from a perspective of nearly 50 years. We offer new insights on a unified treatment of self assembly of lipids, surfactants and proteins in the light of developments presented in Part 1. These were in the enabling disciplines in molecular forces, hydration, oil and electrolyte specificity; and in the role of non Euclidean geometries-across the whole gammut of physical, colloid and surface chemistry, biophysics and membrane biology and medicine. It is where the early founders of the cell theory of biology and the physiologists expected advances to occur as D'Arcy Thompson predicted us 100 years ago.
Collapse
Affiliation(s)
- Barry W Ninham
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Firenze, Italy
| | - Kåre Larsson
- Camurus Lipid Research Foundation, Ideon Science Park, 22370 Lund, Sweden
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Firenze, Italy; Fondazione Prof. Enzo Ferroni-Onlus, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|