1
|
Wu Y, Liu P, Mehrjou B, Chu PK. Interdisciplinary-Inspired Smart Antibacterial Materials and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305940. [PMID: 37469232 DOI: 10.1002/adma.202305940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance. The research and development of SAMs are increasingly interdisciplinary because new designs require the knowledge of different fields and input/collaboration from scientists in different fields. A good understanding of energy conversion in materials, physiological characteristics in cells and bacteria, and bactericidal structures and components in nature are expected to promote the development of SAMs. In this review, the importance of multidisciplinary insights for SAMs is emphasized, and the latest advances in SAMs are categorized and discussed according to the pertinent disciplines including materials science, physiology, and biomimicry.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
2
|
Wang D, Ingram AA, Luka J, Mao M, Ahrens L, Bienstein M, Spaniol TP, Schwaneberg U, Okuda J. Engineered Anchor Peptide LCI with a Cobalt Cofactor Enhances Oxidation Efficiency of Polystyrene Microparticles. Angew Chem Int Ed Engl 2024; 63:e202317419. [PMID: 38251394 DOI: 10.1002/anie.202317419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
A typical component of polymer waste is polystyrene (PS) used in numerous applications, but degraded only slowly in the environment due to its hydrophobic properties. To increase the reactivity of polystyrene, polar groups need to be introduced. Here, biohybrid catalysts based on the engineered anchor peptide LCI_F16C are presented, which are capable of attaching to polystyrene microparticles and hydroxylating benzylic C-H bonds in polystyrene microparticles using commercially available oxone as oxidant. LCI peptides achieve a dense surface coverage of PS through monolayer formation within minutes in aqueous solutions at ambient temperature. The catalytically active cobalt cofactor Co-L1 or Co-L2 with a modified NNNN macrocyclic TACD ligand (TACD=1,4,7,10-tetraazacyclododecane) is covalently bound to the anchor peptide LCI through a maleimide linker. Compared to the free cofactors, a 12- to 15-fold improvement in catalytic activity using biohybrid catalysts based on LCI_F16C was observed.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Julian Luka
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Maochao Mao
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Leon Ahrens
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Marian Bienstein
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
3
|
Panayotov IV, Végh AG, Martin M, Vladimirov B, Larroque C, Gergely C, Cuisinier FJG, Estephan E. Improving dental epithelial junction on dental implants with bioengineered peptides. Front Bioeng Biotechnol 2023; 11:1165853. [PMID: 37409165 PMCID: PMC10318435 DOI: 10.3389/fbioe.2023.1165853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction: The functionalization of titanium (Ti) and titanium alloys (Ti6Al4V) implant surfaces via material-specific peptides influence host/biomaterial interaction. The impact of using peptides as molecular linkers between cells and implant material to improve keratinocyte adhesion is reported. Results: The metal binding peptides (MBP-1, MBP-2) SVSVGMKPSPRP and WDPPTLKRPVSP were selected via phage display and combined with laminin-5 or E-cadherin epithelial cell specific peptides (CSP-1, CSP-2) to engineer four metal-cell specific peptides (MCSPs). Single-cell force spectroscopy and cell adhesion experiments were performed to select the most promising candidate. In vivo tests using the dental implant for rats showed that the selected bi functional peptide not only enabled stable cell adhesion on the trans-gingival part of the dental implant but also arrested the unwanted apical migration of epithelial cells. Conclusion: The results demonstrated the outstanding performance of the bioengineered peptide in improving epithelial adhesion to Ti based implants and pointed towards promising new opportunities for applications in clinical practice.
Collapse
Affiliation(s)
- Ivan V. Panayotov
- LBN, University Montpellier, Montpellier, France
- CSERD, CHU Montpellier, Montpellier, France
| | - Attila G. Végh
- Biological Research Centre, Institute of Biophysics, Eötvös Lóránd Research Network (ELKH), Szeged, Hungary
| | - Marta Martin
- L2C, University Montpellier, CNRS, Montpellier, France
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Christian Larroque
- Department of Nephrology, CHU Montpellier, Hôpital Lapeyronie, IRMB, University of Montpellier, INSERM U1183, Montpellier, France
| | | | | | - Elias Estephan
- LBN, University Montpellier, Montpellier, France
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
4
|
Teixeira GTL, do Nascimento JPL, Gelamo RV, Moreto JA, Slade NBL. Strategies for Functionalization of Metallic Surfaces with Bioactive Peptides: a Mini Review. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Alavi SE, Panah N, Page F, Gholami M, Dastfal A, Sharma LA, Ebrahimi Shahmabadi H. Hydrogel-based therapeutic coatings for dental implants. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Wang Z, Chen T, Wu Z, Jiang X, Hou Q, Miao S, Xia R, Wang L. The dual-effects of PLGA@MT electrospun nanofiber coatings on promoting osteogenesis at the titanium-bone interface under diabetic conditions. J Mater Chem B 2022; 10:4020-4030. [PMID: 35506736 DOI: 10.1039/d2tb00120a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high failure risk of endosseous titanium implants under diabetes conditions appeals to strengthen the osteointegration on the titanium-bone (Ti-B) interface. Melatonin (MT) is a neurohormone involved in bone homeostasis, which can promote osteogenesis and inhibit ROS overproduction through multiple pathways, but its effects on the Ti-B interface in diabetes remain elusive. The biodegradable poly(lactic-co-glycolic acid) (PLGA) has excellent controlled and sustained release properties, low cytotoxicity, and biocompatibility. Our study fabricated a nanofiber in which MT was encapsulated in PLGA to generate a nanofiber coating on a polydopamine (PDA)-modified titanium surface using electrospinning technology. The surface characteristic showed that MT was fully encapsulated in the PLGA carrier, and PLGA@MT was strongly coupled to the titanium matrix. Furthermore, the PLGA@MT-Ti nanofiber could release MT for at least 30 days. In vitro cellular tests demonstrated that PLGA@MT-Ti directly stimulates osteogenesis on the Ti-B interface by activating the BMP-4/WNT pathway in a dose-dependent manner. The effect of suppressing diabetes-induced ROS overproduction and promoting cell proliferation was not proportional to the content of MT. In vivo experiments revealed that PLGA@MT-Ti screws promoted the bone formation and osteointegration in type 1 diabetes mellitus (T1DM) mice with tibial bone defects. Our findings demonstrate that PLGA@MT-Ti exerted dual effects through activating the BMP-4/WNT pathway and attenuating ROS overproduction to promote osteogenesis and osteointegration at the Ti-B interface, providing a novel strategy to fabricate biomaterial modification and biofunctionalization under diabetic conditions.
Collapse
Affiliation(s)
- Zijie Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tingting Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zimei Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xingzhu Jiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qiaodan Hou
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Sikai Miao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Ruihao Xia
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China. .,Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| |
Collapse
|
7
|
Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, Vasconcelos NF, Machado G. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3150. [PMID: 35591484 PMCID: PMC9104688 DOI: 10.3390/ma15093150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
This review addresses the different aspects of the use of titanium and its alloys in the production of dental implants, the most common causes of implant failures and the development of improved surfaces capable of stimulating osseointegration and guaranteeing the long-term success of dental implants. Titanium is the main material for the development of dental implants; despite this, different surface modifications are studied aiming to improve the osseointegration process. Nanoscale modifications and the bioactivation of surfaces with biological molecules can promote faster healing when compared to smooth surfaces. Recent studies have also pointed out that gradual changes in the implant, based on the microenvironment of insertion, are factors that may improve the integration of the implant with soft and bone tissues, preventing infections and osseointegration failures. In this context, the understanding that nanobiotechnological surface modifications in titanium dental implants improve the osseointegration process arouses interest in the development of new strategies, which is a highly relevant factor in the production of improved dental materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste-Cetene, Av. Prof. Luiz Freire, 01, Cidade Universitária, Recife CEP 50740-545, PE, Brazil; (R.C.S.S.); (A.A.); (A.N.A.); (C.L.M.-M.); (I.R.S.A.); (L.R.L.S.); (N.F.V.)
| |
Collapse
|
8
|
Wei Y, Liu Z, Zhu X, Jiang L, Shi W, Wang Y, Xu N, Gang F, Wang X, Zhao L, Lin J, Sun X. Dual directions to address the problem of aseptic loosening via electrospun PLGA @ aspirin nanofiber coatings on titanium. Biomaterials 2020; 257:120237. [PMID: 32738656 DOI: 10.1016/j.biomaterials.2020.120237] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023]
Abstract
Peri-implant aseptic inflammation and osteolysis can cause aseptic loosening, leading to the failure of implants. Therefore, aseptic loosening of orthopedic implants remains an imminent problem for the development of durable and effective implants. In this work, a common anti-inflammatory drug (aspirin, ASA) was loaded in poly(lactic-co-glycolic acid) (PLGA) to construct nanofiber coatings on titanium (Ti) via electrospinning. The adhesion of the nanofiber coatings to Ti was ensured by polydopamine (PDA) modification. A stable and sustainable release of aspirin from the nanofiber coatings could last up to 60 days. Such electrospun PLGA@ASA nanofiber coatings could promote proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) as well as inhibit M1 polarization and RANKL-induced osteoclast differentiation of macrophages in vitro. These results indicated that this facile formulation of the PLGA@ASA nanofiber coatings for long-term drug release could be expected to address the problem of aseptic loosening effectively in dual directions of both anti-inflammation and improving osseointegration simultaneously. Notably, the in vivo experiments demonstrated that PLGA@ASA nanofiber coatings did promote osseointegration ability of Ti implants significantly, even in challenging condition with wear particles, and also effectively inhibited Ti particle induced osteolysis around the implants. This work indicates a promising way for the development of durable and effective implants by using PLGA@ASA-PDA-Ti to address the problem of aseptic loosening in dual directions.
Collapse
Affiliation(s)
- Yaojie Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhongqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xu Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, People's Republic of China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Weidong Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, People's Republic of China
| | - Yingjin Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Nan Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Fangli Gang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jun Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, People's Republic of China.
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
9
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
10
|
Secchi V, Franchi S, Dettin M, Zamuner A, Beranová K, Vladescu A, Battocchio C, Graziani V, Tortora L, Iucci G. Hydroxyapatite Surfaces Functionalized with a Self-Assembling Peptide: XPS, RAIRS and NEXAFS Study. NANOMATERIALS 2020; 10:nano10061151. [PMID: 32545421 PMCID: PMC7353169 DOI: 10.3390/nano10061151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite (HAP) coatings can improve the biocompatibility and bioactivity of titanium alloys, such as Ti6Al4V, commonly used as material for orthopedic prostheses. In this framework, we have studied the surface of HAP coatings enriched with Mg and either Si or Ti deposited by RF magnetron sputtering on Ti6Al4V. HAP coatings have been furtherly functionalized by adsorption of a self-assembling peptide (SAP) on the HAP surface, with the aim of increasing the material bioactivity. The selected SAP (peptide sequence AbuEAbuEAbuKAbuKAbuEAbuEAbuKAbuK) is a self-complementary oligopeptide able to generate extended ordered structures by self-assembling in watery solutions. Samples were prepared by incubation of the HAP coatings in SAP solutions and subsequently analyzed by X-Ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR) and Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopies, in order to determine the amount of adsorbed peptide, the peptide stability and the structure of the peptide overlayer on the HAP coatings as a function of the HAP substrate and of the pH of the mother SAP solution. Experimental data yielded evidence of SAP adsorption on the HAP surface, and peptide overlayers showed ordered structure and molecular orientation. The thickness of the SAP overlayer depends on the composition of the HAP coating.
Collapse
Affiliation(s)
- Valeria Secchi
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
- Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20125 Milan, Italy
| | - Stefano Franchi
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
- Institute of Structure of Matter (ISM), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: (S.F.); (G.I.)
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy; (M.D.); (A.Z.)
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy; (M.D.); (A.Z.)
| | - Klára Beranová
- Materials Science Beamline, Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5, 34149 Basovizza-Trieste, Italy;
| | - Alina Vladescu
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics, 409 Atomistilor St., 077125 Magurele, Romania;
- Physical Materials Science and Composite Materials Centre, National Research Tomsk Polytechnic University, Lenin Avenue 43, 634050 Tomsk, Russia
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
| | - Valerio Graziani
- Surface Analysis Laboratory, INFN University Roma Tre, via della Vasca Navale 84, 00146 Rome, Italy;
| | - Luca Tortora
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
- Surface Analysis Laboratory, INFN University Roma Tre, via della Vasca Navale 84, 00146 Rome, Italy;
| | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
- Correspondence: (S.F.); (G.I.)
| |
Collapse
|
11
|
Rodriguez GM, Bowen J, Zelzer M, Stamboulis A. Selective modification of Ti6Al4V surfaces for biomedical applications. RSC Adv 2020; 10:17642-17652. [PMID: 35515604 PMCID: PMC9053614 DOI: 10.1039/c9ra11000c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
The surface of a medical implant is required to interact favourably with ions, biomolecules and cells in vivo, commonly resulting in the formation of the extracellular matrix. Medical grade Ti6Al4V alloy is widely used in orthopaedic and dental applications for bone replacement due to its advantageous mechanical properties and biocompatibility, which enhances the adhesion between native tissue and the implanted material. In this study, chemical and thermal modification of a medical-grade Ti6Al4V alloy were performed to enhance electrostatic interactions at the alloy surface with a synthetic peptide, suitable for conferring drug release capabilities and antimicrobial properties. The modified surfaces exhibited a range of topographies and chemical compositions depending primarily on the treatment temperature. The surface wetting behaviour was found to be pH-dependent, as were the adhesive properties, evidenced by chemical force titration atomic force microscopy.
Collapse
Affiliation(s)
- Gabriela Melo Rodriguez
- Biomaterials Group, School of Metallurgy and Materials, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - James Bowen
- School of Engineering and Innovation, The Open University Walton Hall Milton Keynes MK7 6AA UK
| | - Mischa Zelzer
- School of Pharmacy, University of Nottingham Nottingham NG7 2RD UK
| | - Artemis Stamboulis
- Biomaterials Group, School of Metallurgy and Materials, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
12
|
Comparison of low-pressure oxygen plasma and chemical treatments for surface modifications of Ti6Al4V. Biodes Manuf 2019. [DOI: 10.1007/s42242-019-00036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Biomimetic Surfaces Coated with Covalently Immobilized Collagen Type I: An X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Micro-CT and Histomorphometrical Study in Rabbits. Int J Mol Sci 2019; 20:ijms20030724. [PMID: 30744023 PMCID: PMC6387268 DOI: 10.3390/ijms20030724] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The process of osseointegration of dental implants is characterized by healing phenomena at the level of the interface between the surface and the bone. Implant surface modification has been introduced in order to increase the level of osseointegration. The purpose of this study is to evaluate the influence of biofunctional coatings for dental implants and the bone healing response in a rabbit model. The implant surface coated with collagen type I was analyzed through X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), micro-CT and histologically. Methods: The sandblasted and double acid etched surface coated with collagen type I, and uncoated sandblasted and double acid etched surface were evaluated by X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) analysis in order evaluate the different morphology. In vivo, a total of 36 implants were positioned in rabbit articular femoral knee-joint, 18 fixtures for each surface. Micro-CT scans, histological and histomorphometrical analysis were conducted at 15, 30 and 60 days. Results: A histological statistical differences were evident at 15, 30 and 60 days (p < 0.001). Both implant surfaces showed a close interaction with newly formed bone. Mature bone appeared in close contact with the surface of the fixture. The AFM outcome showed a similar roughness for both surfaces. Conclusion: However, the final results showed that a coating of collagen type I on the implant surface represents a promising procedure able to improve osseointegration, especially in regions with a low bone quality.
Collapse
|
14
|
Fabrication of two distinct hydroxyapatite coatings and their effects on MC3T3-E1 cell behavior. Colloids Surf B Biointerfaces 2018; 171:40-48. [DOI: 10.1016/j.colsurfb.2018.06.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
|