1
|
Bahadori Zade M, Abdollahi S, Raoufi Z, Zare Asl H. Synergistic antibacterial and wound healing effects of chitosan nanofibers with ZnO nanoparticles and dual antibiotics. Int J Pharm 2024; 666:124767. [PMID: 39332456 DOI: 10.1016/j.ijpharm.2024.124767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
One concern that has been considered potentially fatal is bacterial infection. In addition to the development of biocompatible antibacterial dressings, the screening and combination of new antibiotics effective against antibiotic resistance are crucial. In this study, designing hemostasis electrospun composite nanofibers containing chitosan (CS), polyvinyl pyrrolidone (PVP) and Gelatin (G) as the major components of hydrogel and natural nanofibrillated sodium alginate (SA)/polyvinyl alcohol (PVA) and ZnO nanoparticles (ZnONPs) combination as the nanofiller ingredient, has been investigated which demonstrated significant potential for accelerating wound healing. The hydrogels were developed for the delivery of the amikacin and cefepime antibiotics, along with zinc oxide nanoparticles that were applied to an electrospun layer. Amikacin is a highly effective aminoglycoside antibiotic, particularly for hospital-acquired infections, but its use is limited due to its toxicity. By utilizing it in low concentrations in the form of nanofibers and combining it with cefepime, which exhibits synergistic effects, enhanced efficacy against bacterial pathogens is achieved while potentially minimizing cytotoxicity compared to individual antibiotics. This dressing demonstrated efficient drug release, flexibility, and good swelling properties, indicating its suitable mechanical properties for therapeutic applications. After applying the biocompatible hydrogel to wounds, a significant acceleration in wound closure was observed within 14 days compared to the control group. Furthermore, the notable antibiotic and anti-inflammatory properties underscore its effectiveness in wound healing, making it a promising candidate for medical applications.
Collapse
Affiliation(s)
- Mona Bahadori Zade
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hassan Zare Asl
- Department of Physics, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
2
|
Cao L, Lu Y, Chen H, Su Y, Cheng Y, Xu J, Sun H, Song K. A 3D bioprinted antibacterial hydrogel dressing of gelatin/sodium alginate loaded with ciprofloxacin hydrochloride. Biotechnol J 2024; 19:e2400209. [PMID: 39212214 DOI: 10.1002/biot.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Skin plays a crucial role in human physiological functions, however, it was vulnerable to bacterial infection which delayed wound healing. Nowadays, designing an individual wound dressing with good biocompatibility and sustaining anti-infection capability for healing of chronic wounds are still challenging. In this study, various concentrations of the ciprofloxacin (CIP) were mixed with gelatine (Gel)/sodium alginate (SA) solution to prepare Gel/SA/CIP (GAC) bioinks, following the fabrication of GAC scaffold by an extrusion 3D bioprinting technology. The results showed that the GAC bioinks had good printability and the printed GAC scaffolds double-crosslinked by EDC/NHS and CaCl2 had rich porous structure with appropriate pore size, which were conducive to drug release and cell growth. It demonstrated that the CIP could be rapidly released by 70% in 5 min, which endowed the GAC composite scaffolds with an excellent antibacterial ability. Especially, the antibacterial activities of GAC7.5 against Escherichia coli and Staphylococcus aureus within 24 h were even close to 100%, and the inhibition zones were still maintained 14.78 ± 0.40 mm and 14.78 ± 0.40 mm, respectively, after 24 h. Meanwhile, GAC7.5 also demonstrated impressive biocompatibility which can promote the growth and migration of L929 and accelerate wound healing. Overall, the GAC7.5 3D bioprinting scaffold could be used as a potential skin dressing for susceptible wounds with excellent antibacterial activity and good biocompatibility to meet urgent clinical needs.
Collapse
Affiliation(s)
- Liuyuan Cao
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yueqi Lu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Hezhi Chen
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - YuneYee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Huanwei Sun
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
3
|
Guo W, Ding X, Zhang H, Liu Z, Han Y, Wei Q, Okoro OV, Shavandi A, Nie L. Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels 2024; 10:175. [PMID: 38534593 DOI: 10.3390/gels10030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The management of wound healing represents a significant clinical challenge due to the complicated processes involved. Chitosan has remarkable properties that effectively prevent certain microorganisms from entering the body and positively influence both red blood cell aggregation and platelet adhesion and aggregation in the bloodstream, resulting in a favorable hemostatic outcome. In recent years, chitosan-based hydrogels have been widely used as wound dressings due to their biodegradability, biocompatibility, safety, non-toxicity, bioadhesiveness, and soft texture resembling the extracellular matrix. This article first summarizes an overview of the main chemical modifications of chitosan for wound dressings and then reviews the desired properties of chitosan-based hydrogel dressings. The applications of chitosan-based hydrogels in wound healing, including burn wounds, surgical wounds, infected wounds, and diabetic wounds are then discussed. Finally, future prospects for chitosan-based hydrogels as wound dressings are discussed. It is anticipated that this review will form a basis for the development of a range of chitosan-based hydrogel dressings for clinical treatment.
Collapse
Affiliation(s)
- Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Han Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Yanting Han
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Qianqian Wei
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
4
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2024:1-40. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
5
|
Araújo D, Martins M, Concórdio-Reis P, Roma-Rodrigues C, Morais M, Alves VD, Fernandes AR, Freitas F. Novel Hydrogel Membranes Based on the Bacterial Polysaccharide FucoPol: Design, Characterization and Biological Properties. Pharmaceuticals (Basel) 2023; 16:991. [PMID: 37513903 PMCID: PMC10383424 DOI: 10.3390/ph16070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
FucoPol, a fucose-rich polyanionic polysaccharide, was used for the first time for the preparation of hydrogel membranes (HMs) using Fe3+ as a crosslinking agent. This study evaluated the impact of Fe3+ and FucoPol concentrations on the HMs' strength. The results show that, above 1.5 g/L, Fe3+ concentration had a limited influence on the HMs' strength, and varying the FucoPol concentration had a more significant effect. Three different FucoPol concentrations (1.0, 1.75 and 2.5 wt.%) were combined with Fe3+ (1.5 g/L), resulting in HMs with a water content above 97 wt.% and an Fe3+ content up to 0.16 wt.%. HMs with lower FucoPol content exhibited a denser porous microstructure as the polymer concentration increased. Moreover, the low polymer content HM presented the highest swelling ratio (22.3 ± 1.8 g/g) and a lower hardness value (32.4 ± 5.8 kPa). However, improved mechanical properties (221.9 ± 10.2 kPa) along with a decrease in the swelling ratio (11.9 ± 1.6 g/g) were obtained for HMs with a higher polymer content. Furthermore, all HMs were non-cytotoxic and revealed anti-inflammatory activity. The incorporation of FucoPol as a structuring agent and bioactive ingredient in the development of HMs opens up new possibilities for its use in tissue engineering, drug delivery and wound care management.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Matilde Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Patrícia Concórdio-Reis
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria Morais
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Vítor D Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Chien ST, Suydam IT, Woodrow KA. Prodrug approaches for the development of a long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 198:114860. [PMID: 37160248 PMCID: PMC10498988 DOI: 10.1016/j.addr.2023.114860] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Long-acting formulations are designed to reduce dosing frequency and simplify dosing schedules by providing an extended duration of action. One approach to obtain long-acting formulations is to combine long-acting prodrugs (LA-prodrug) with existing or emerging drug delivery technologies (DDS). The design criteria for long-acting prodrugs are distinct from conventional prodrug strategies that alter absorption, distribution, metabolism, and excretion (ADME) parameters. Our review focuses on long-acting prodrug delivery systems (LA-prodrug DDS), which is a subcategory of long-acting formulations where prodrug design enables DDS formulation to achieve an extended duration of action that is greater than the parent drug. Here, we define LA-prodrugs as the conjugation of an active pharmaceutical ingredient (API) to a promoiety group via a cleavable covalent linker, where both the promoiety and linker are selected to enable formulation and administration from a drug delivery system (DDS) to achieve an extended duration of action. These LA-prodrug DDS results in an extended interval where the API is within a therapeutic range without necessarily altering ADME as is typical of conventional prodrugs. The conversion of the LA-prodrug to the API is dependent on linker cleavage, which can occur before or after release from the DDS. The requirement for linker cleavage provides an additional tool to prolong release from these LA-prodrug DDS. In addition, the physicochemical properties of drugs can be tuned by promoiety selection for a particular DDS. Conjugation with promoieties that are carriers or amenable to assembly into carriers can also provide access to formulations designed for extending duration of action. LA-prodrugs have been applied to a wide variety of drug delivery strategies and are categorized in this review by promoiety size and complexity. Small molecule promoieties (typically MW < 1000 Da) have been used to improve encapsulation or partitioning as well as broaden APIs for use with traditional long-acting formulations such as solid drug dispersions. Macromolecular promoieties (typically MW > 1000 Da) have been applied to hydrogels, nanoparticles, micelles, dendrimers, and polymerized prodrug monomers. The resulting LA-prodrug DDS enable extended duration of action for active pharmaceuticals across a wide range of applications, with target release timescales spanning days to years.
Collapse
Affiliation(s)
- Shin-Tian Chien
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
7
|
Trombino S, Sole R, Curcio F, Cassano R. Polymeric Based Hydrogel Membranes for Biomedical Applications. MEMBRANES 2023; 13:576. [PMID: 37367780 DOI: 10.3390/membranes13060576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The development of biomedical applications is a transdisciplinary field that in recent years has involved researchers from chemistry, pharmacy, medicine, biology, biophysics, and biomechanical engineering. The fabrication of biomedical devices requires the use of biocompatible materials that do not damage living tissues and have some biomechanical characteristics. The use of polymeric membranes, as materials meeting the above-mentioned requirements, has become increasingly popular in recent years, with outstanding results in tissue engineering, for regeneration and replenishment of tissues constituting internal organs, in wound healing dressings, and in the realization of systems for diagnosis and therapy, through the controlled release of active substances. The biomedical application of hydrogel membranes has had little uptake in the past due to the toxicity of cross-linking agents and to the existing limitations regarding gelation under physiological conditions, but now it is proving to be a very promising field This review presents the important technological innovations that the use of membrane hydrogels has promoted, enabling the resolution of recurrent clinical problems, such as post-transplant rejection crises, haemorrhagic crises due to the adhesion of proteins, bacteria, and platelets on biomedical devices in contact with blood, and poor compliance of patients undergoing long-term drug therapies.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| |
Collapse
|
8
|
Lv S, Zhang S, Zuo J, Liang S, Yang J, Wang J, Wei D. Progress in preparation and properties of chitosan-based hydrogels. Int J Biol Macromol 2023; 242:124915. [PMID: 37211080 DOI: 10.1016/j.ijbiomac.2023.124915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Chitosan is a kind of natural polysaccharide biomass with the second highest content in nature after cellulose, which has good biological properties such as biocompatibility, biodegradability, hemostasis, mucosal adsorption, non-toxicity, and antibacterial properties. Therefore, hydrogels prepared from chitosan have the advantages of good hydrophilicity, unique three-dimensional network structure, and good biocompatibility, so they have received extensive attention and research in environmental testing, adsorption, medical materials, and catalytic supports. Compared with traditional polymer hydrogels, biomass chitosan-based hydrogels have advantages such as low toxicity, excellent biocompatibility, outstanding processability, and low cost. This paper reviews the preparation of various chitosan-based hydrogels using chitosan as raw material and their applications in the fields of medical materials, environmental detection, catalytic carriers, and adsorption. Some views and prospects are put forward for the future research and development of chitosan-based hydrogels, and it is believed that chitosan-based hydrogels will be able to obtain more valuable applications.
Collapse
Affiliation(s)
- Shenghua Lv
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shanshan Zhang
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jingjing Zuo
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shan Liang
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Juhui Yang
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jialin Wang
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Dequan Wei
- College of Light Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
9
|
Peng X, Peng Q, Wu M, Wang W, Gao Y, Liu X, Sun Y, Yang D, Peng Q, Wang T, Chen XZ, Liu J, Zhang H, Zeng H. A pH and Temperature Dual-Responsive Microgel-Embedded, Adhesive, and Tough Hydrogel for Drug Delivery and Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19560-19573. [PMID: 37036950 DOI: 10.1021/acsami.2c21255] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stimuli-responsive hydrogels have attracted much attention over the past decade for potential bioengineering applications such as wound dressing and drug delivery. In this work, a pH and temperature dual-responsive microgel-embedded hydrogel has been fabricated by incorporating poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAAm-co-AAc) based microgel particles into polyacrylamide (PAAm)/chitosan (CS) semi-interpenetrating polymer network (semi-IPN), denoted as microgel@PAM/CS. The resultant hydrogel possesses excellent mechanical properties including stretchability, compressibility, and elasticity. In addition, the microgel@PAM/CS hydrogels can tightly adhere to the surfaces of a variety of tissues such as porcine skin, kidney, intestine, liver, and heart. Moreover, it shows controlled dual-drug release profile of both bovine serum albumin (BSA) (as a model protein) and sulfamethoxazole (SMZ), an antibiotic. Excellent antimicrobial properties are obtained for SMZ-loaded microgel@PAM/CS hydrogels. Compared with traditional drug administration methods such as by mouth, injection, and inhalation, the microgel@PAM/CS hydrogels possess advantages such as higher drug loading efficiency (by more than 80%) and controllable and sustained (over 48 h) release. The microgel@PAM/CS hydrogels can significantly enhance the wound healing process. This work provides a facile approach for the fabrication of multifunctional stimuli-responsive microparticle-embedded hydrogels with semi-IPN structures, and the as-prepared microgel@PAM/CS hydrogels have great potential for applications as smart wound dressing materials in biomedical engineering.
Collapse
Affiliation(s)
- Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qian Peng
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongfeng Gao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Xiong Liu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tao Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xing-Zhen Chen
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
10
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
11
|
Ma J, Jiang L, Liu G. Cell membrane-coated nanoparticles for the treatment of bacterial infection. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1825. [PMID: 35725897 DOI: 10.1002/wnan.1825] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Despite the enormous success of antibiotics in antimicrobial therapy, the rapid emergence of antibiotic resistance and the complexity of the bacterial infection microenvironment make traditional antibiotic therapy face critical challenges against resistant bacteria, antitoxin, and intracellular infections. Consequently, there is a critical need to design antimicrobial agents that target infection microenvironment and alleviate antibiotic resistance. Cell membrane-coated nanoparticles (CMCNPs) are biomimetic materials that can be obtained by wrapping the cell membrane vesicles directly onto the surface of the nanoparticles (NPs) through physical means. Incorporating the biological functions of cell membrane vesicles and the superior physicochemical properties of NPs, CMCNPs have shown great promise in recent years for targeting infections, neutralizing bacterial toxins, and designing bacterial infection vaccines. This review highlights topics where CMCNPs present great value in advancing the treatment of bacterial infections, including drug delivery, detoxification, and vaccination. Lastly, we discuss the future hurdles and prospects of translating this technique into clinical practice, providing a comprehensive review of the technological developments of CMCNPs in the treatment of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Lai Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of Chitosan in Surgical and Post-Surgical Materials. Mar Drugs 2022; 20:md20060396. [PMID: 35736199 PMCID: PMC9228111 DOI: 10.3390/md20060396] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
The continuous advances in surgical procedures require continuous research regarding materials with surgical applications. Biopolymers are widely studied since they usually provide a biocompatible, biodegradable, and non-toxic material. Among them, chitosan is a promising material for the development of formulations and devices with surgical applications due to its intrinsic bacteriostatic, fungistatic, hemostatic, and analgesic properties. A wide range of products has been manufactured with this polymer, including scaffolds, sponges, hydrogels, meshes, membranes, sutures, fibers, and nanoparticles. The growing interest of researchers in the use of chitosan-based materials for tissue regeneration is obvious due to extensive research in the application of chitosan for the regeneration of bone, nervous tissue, cartilage, and soft tissues. Chitosan can serve as a substance for the administration of cell-growth promoters, as well as a support for cellular growth. Another interesting application of chitosan is hemostasis control, with remarkable results in studies comparing the use of chitosan-based dressings with traditional cotton gauzes. In addition, chitosan-based or chitosan-coated surgical materials provide the formulation with antimicrobial activity that has been highly appreciated not only in dressings but also for surgical sutures or meshes.
Collapse
|
13
|
Tharmatt A, Chhina A, Saini M, Trehan K, Singh S, Bedi N. Novel Therapeutics Involving Antibiotic Polymer Conjugates for Treating Various Ailments: A Review. Assay Drug Dev Technol 2022; 20:137-148. [DOI: 10.1089/adt.2022.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Aashveen Chhina
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muskaan Saini
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Karan Trehan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sahilpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
14
|
Zhao E, Liu H, Jia Y, Xiao T, Li J, Zhou G, Wang J, Zhou X, Liang XJ, Zhang J, Li Z. Engineering a photosynthetic bacteria-incorporated hydrogel for infected wound healing. Acta Biomater 2022; 140:302-313. [PMID: 34954107 DOI: 10.1016/j.actbio.2021.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Treating wounds with multidrug-resistant bacterial infections remains a huge and arduous challenge. In this work, we prepared a "live-drug"-encapsulated hydrogel dressing for the treatment of multidrug-resistant bacterial infections and full-thickness skin incision repair. Our live dressing was comprised of photosynthetic bacteria (PSB) and extracellular matrix (ECM) gel with photothermal, antibacterial and antioxidant properties, as well as good cytocompatibility and blood compatibility. More interestingly, live PSB could be regarded as not only photothermal agents but also as anti-inflammatory agents to promote wound healing owing to their antioxidant metabolites. In vitro and in vivo studies showed that the PSB hydrogel not only had a high killing rate against methicillin-resistant Staphylococcus aureus (MRSA) but it also accelerated collagen deposition and granulation tissue formation by promoting cell proliferation and migration, which significantly promoted skin tissue regeneration and wound healing. We believe that the large-scale production of PSB Gel-based therapeutic dressings has the advantages of easy use and promising clinical applications. STATEMENT OF SIGNIFICANCE: Rapid wound healing and the treatment of bacterial infections have always been the two biggest challenges in the field of wound care. We prepared a "live drug" dressing by encapsulating photosynthetic bacteria into an extracellular matrix hydrogel to sterilize the wound and promote wound healing. First, photosynthetic bacteria are not only a photothermal agent for photothermal wound sterilization, but also possess the anti-inflammatory capacity to enhance wound healing due to their antioxidant metabolites. Second, the extracellular matrix hydrogel is rich in a variety of growth factors and nutrients to promote cell migration and accelerate wound healing. Third, photosynthetic bacteria are not only green and non-toxic, but also can be obtained on a large scale, which facilitates manufacturing and clinical transformation.
Collapse
Affiliation(s)
- Erman Zhao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
| | - Yaru Jia
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Jiaxin Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - June Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xiaohan Zhou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China; College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China.
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China.
| |
Collapse
|
15
|
Araújo D, Rodrigues T, Alves VD, Freitas F. Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability. Polymers (Basel) 2022; 14:785. [PMID: 35215701 PMCID: PMC8877193 DOI: 10.3390/polym14040785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Chitin-glucan complex (CGC) hydrogels were fabricated through a freeze-thaw procedure for biopolymer dissolution in NaOH 5 mol/L, followed by a dialysis step to promote gelation. Compared to a previously reported methodology that included four freeze-thaw cycles, reducing the number of cycles to one had no significant impact on the hydrogels' formation, as well as reducing the total freezing time from 48 to 18 h. The optimized CGC hydrogels exhibited a high and nearly spontaneous swelling ratio (2528 ± 68%) and a water retention capacity of 55 ± 3%, after 2 h incubation in water, at 37 °C. Upon loading with caffeine as a model drug, an enhancement of the mechanical and rheological properties of the hydrogels was achieved. In particular, the compressive modulus was improved from 23.0 ± 0.89 to 120.0 ± 61.64 kPa and the storage modulus increased from 149.9 ± 9.8 to 315.0 ± 76.7 kPa. Although the release profile of caffeine was similar in PBS and NaCl 0.9% solutions, the release rate was influenced by the solutions' pH and ionic strength, being faster in the NaCl solution. These results highlight the potential of CGC based hydrogels as promising structures to be used as drug delivery devices in biomedical applications.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Thomas Rodrigues
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food Research Center, Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Filomena Freitas
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
16
|
Carpa R, Remizovschi A, Culda CA, Butiuc-Keul AL. Inherent and Composite Hydrogels as Promising Materials to Limit Antimicrobial Resistance. Gels 2022; 8:70. [PMID: 35200452 PMCID: PMC8870943 DOI: 10.3390/gels8020070] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 01/25/2023] Open
Abstract
Antibiotic resistance has increased significantly in the recent years, and has become a global problem for human health and the environment. As a result, several technologies for the controlling of health-care associated infections have been developed over the years. Thus, the most recent findings in hydrogel fabrication, particularly antimicrobial hydrogels, could offer valuable solutions for these biomedical challenges. In this review, we discuss the most promising strategies in the development of antimicrobial hydrogels and the application of hydrogels in the treatment of microbial infections. The latest advances in the development of inherently and composite antimicrobial hydrogels will be discussed, as well as hydrogels as carriers of antimicrobials, with a focus on antibiotics, metal nanoparticles, antimicrobial peptides, and biological extracts. The emergence of CRISR-Cas9 technology for removing the antimicrobial resistance has led the necessity of new and performant carriers for delivery of the CRISPR-Cas9 system. Different delivery systems, such as composite hydrogels and many types of nanoparticles, attracted a great deal of attention and will be also discussed in this review.
Collapse
Affiliation(s)
- Rahela Carpa
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alexei Remizovschi
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Carla Andreea Culda
- Parasitology and Parasitic Diseases Department, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Anca Livia Butiuc-Keul
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Cefuroxime-Loaded Hydrogels for Prevention and Treatment of Bacterial Contamination of Open Wounds. INT J POLYM SCI 2021. [DOI: 10.1155/2021/4935642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dextran/Sulfodextran-graft-polyacrylamide- and polyacrylamide-based hydrogels were synthesized by radical polymerization and loaded with cefuroxime to obtain antimicrobial wound dressings. Antibiotic release from the antibiotic-loaded hydrogels into an aqueous solution was studied by the HPLC-UV method. It is shown that cefuroxime-loaded Dextran/Sulfodextran-graft-polyacrylamide hydrogels release the antibiotic more slowly compared to polyacrylamide hydrogel with the same density of cross-links. Antibacterial activity of the synthesized materials was tested in vitro against wild strains of S. aureus, E. coli, and Klebsiella spp. The possibility of using the obtained antimicrobial hydrogels for the treatment of infected wounds was confirmed in vivo in a rat model.
Collapse
|
18
|
Kasza K, Gurnani P, Hardie KR, Cámara M, Alexander C. Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: A tissue-by-tissue account. Adv Drug Deliv Rev 2021; 178:113973. [PMID: 34530014 DOI: 10.1016/j.addr.2021.113973] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
To tackle the emerging antibiotic resistance crisis, novel antimicrobial approaches are urgently needed. Bacterial communities (biofilms) are a particular concern in this context. Biofilms are responsible for most human infections and are inherently less susceptible to antibiotic treatments. Biofilms have been linked with several challenging chronic diseases, including implant-associated osteomyelitis and chronic wounds. The specific local environments present in the infected tissues further contribute to the rise in antibiotic resistance by limiting the efficacy of systemic antibiotic therapies and reducing drug concentrations at the infection site, which can lead to reoccurring infections. To overcome the shortcomings of systemic drug delivery, encapsulation within polymeric carriers has been shown to enhance antimicrobial efficacy, permeation and retention at the infection site. In this Review, we present an overview of current strategies for antimicrobial encapsulation within polymeric carriers, comparing challenges and solutions on a tissue-by-tissue basis. We compare challenges and proposed drug delivery solutions from the perspective of the local environments for biofilms found in oral, wound, gastric, urinary tract, bone, pulmonary, vaginal, ocular and middle/inner ear tissues. We will also discuss future challenges and barriers to clinical translation for these therapeutics. The following Review demonstrates there is a significant imbalance between the research focus being placed on different tissue types, with some targets (oral and wound biofims) being extensively more studied than others (vaginal and otitis media biofilms and endocarditis). Furthermore, the importance of the local tissue environment when selecting target therapies is demonstrated, with some materials being optimal choices for certain sites of bacterial infection, while having limited applicability in others.
Collapse
|
19
|
Ghauri ZH, Islam A, Qadir MA, Gull N, Haider B, Khan RU, Riaz T. Development and evaluation of pH-sensitive biodegradable ternary blended hydrogel films (chitosan/guar gum/PVP) for drug delivery application. Sci Rep 2021; 11:21255. [PMID: 34711866 PMCID: PMC8553746 DOI: 10.1038/s41598-021-00452-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
pH responsive hydrogels have gained much attraction in biomedical fields. We have formulated ternary hydrogel films as a new carrier of drug. Polyelectrolyte complex of chitosan/guar gum/polyvinyl pyrrolidone cross-linked via sodium tripolyphosphate was developed by solution casting method. Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis were conducted to examine the interactions between the polymeric chains, surface morphology and thermal stability, respectively. The swelling tests resulted that the swelling was reduced with the increase in the concentration of crosslinker due to the more entangled arrangement and less availability of pores in hydrogels. Ciprofloxacin hydrochloride was used as a model drug and its release in simulated gastric fluid, simulated intestinal fluid and phosphate buffer saline solution was studied. pH responsive behaviour of the hydrogels have subjected these hydrogels for drug release applications.
Collapse
Affiliation(s)
- Zunaira Huma Ghauri
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan.
| | | | - Nafisa Gull
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Bilal Haider
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - Rafi Ullah Khan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Tabinda Riaz
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
20
|
Waresindo WX, Luthfianti HR, Edikresnha D, Suciati T, Noor FA, Khairurrijal K. A freeze-thaw PVA hydrogel loaded with guava leaf extract: physical and antibacterial properties. RSC Adv 2021; 11:30156-30171. [PMID: 35480264 PMCID: PMC9040922 DOI: 10.1039/d1ra04092h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
A polyvinyl alcohol (PVA) hydrogel loaded with guava leaf extract (GLE) has potential applications as a wound dressing with good antibacterial activity. This study succeeded in fabricating a PVA hydrogel containing GLE using the freeze-thaw (FT) method. By varying the GLE concentration, we can adjust the physical properties of the hydrogel. The addition of GLE results in a decrease in cross-linking during gelation and an increase in the pore size of the hydrogels. The increase of the pore size made the swelling increase and the mechanical strength decrease. The weight loss of the hydrogel also increases because the phosphate buffer saline (PBS) dissolves the GLE. Increasing the GLE concentration caused the Fourier-transform infrared (FTIR) absorbance peaks to widen due to hydrogen bonds formed during the FT process. The crystalline phase was transformed into an amorphous phase in the PVA/GLE hydrogel based on the X-ray diffraction (XRD) spectra. The differential scanning calorimetry (DSC) characterization showed a significant decrease in the hydrogel weight over temperatures of 30-150 °C due to the evaporation of water from the hydrogel matrix. The zone of inhibition of the PVA/GLE hydrogel increased with antibacterial activity against Staphylococcus aureus of 17.93% per gram and 15.79% per gram against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- William Xaveriano Waresindo
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Halida Rahmi Luthfianti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Dhewa Edikresnha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Tri Suciati
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Fatimah Arofiati Noor
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| |
Collapse
|
21
|
Biocompatible hyaluronic acid-divinyl sulfone injectable hydrogels for sustained drug release with enhanced antibacterial properties against Staphylococcus aureus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112102. [PMID: 33965111 DOI: 10.1016/j.msec.2021.112102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
Hyaluronic acid (HA) solutions were crosslinked with divinyl sulfone (DVS) and subsequently loaded with antibiotic molecules to obtain biocompatible and antibacterial injectable hydrogels. The crosslinking degree of the hydrogels was modulated by varying the reaction time and the HA:DVS weight ratio. Synthesized HA-DVS hydrogels were characterized by their rheological properties, pore size, swelling capacity and hydrolytic and thermal degradation. Biocompatibility was assessed by measuring pH, osmolality and by in vitro cytotoxic assay. Acetyl salicylic (AAS) loaded hydrogels display anti-inflammatory properties in vitro, whereas cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) loaded hydrogels show in vitro antibacterial activity against Staphylococcus aureus. The combine use of antibiotics and AAS produces a synergic effect that reduces the S. aureus population up to a log10 reduction (R) of 5.55. Overall results show that antibiotic/AAS loaded HA-DVS hydrogels could be effectively used to combat S. aureus infections and to increase the antibacterial activity of antibiotics commonly used against S. aureus.
Collapse
|
22
|
Rahmanian-Devin P, Baradaran Rahimi V, Askari VR. Thermosensitive Chitosan- β-Glycerophosphate Hydrogels as Targeted Drug Delivery Systems: An Overview on Preparation and Their Applications. Adv Pharmacol Pharm Sci 2021; 2021:6640893. [PMID: 34036263 PMCID: PMC8116164 DOI: 10.1155/2021/6640893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Today, with the advances in technology and science, more advanced drug delivery formulations are required. One of these new systems is an intelligent hydrogel. These systems are affected by the environment or conditions that become a gel, stay in the circumstance for a certain period, and slowly release the drug. As an advantage, only a lower dose of the drug is required, and it provides less toxicity and minor damage to other tissues. Hydrogels are of different types, including temperature-sensitive, pH-sensitive, ion change-sensitive, and magnetic field-sensitive. In this study, we investigated a kind of temperature-sensitive smart hydrogel, which has a liquid form at room temperature and becomes gel with increasing temperature. Chitosan-β-glycerophosphate hydrogels have been researched and used in many studies. This study investigates the various factors that influence the gelation mechanism, such as gel formation rates, temperature, pH, time, and gel specificity. Hydrogels are used in many drug delivery systems and diseases, including nasal drug delivery, vaginal drug delivery, wound healing, peritoneal adhesion, ophthalmic drug delivery, tissue engineering, and peptide and protein delivery. Overall, the chitosan-β-glycerophosphate hydrogel is a suitable drug carrier for a wide range of drugs. It shows little toxicity to the body, is biodegradable, and is compatible with other organs. This system can be used in different conditions and different medication ways, such as oral, nasal, and injection.
Collapse
Affiliation(s)
- Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Dhanka M, Pawar V, Chauhan DS, Jain NK, R S P, Shetty C, Kumawat MK, Prasad R, Srivastava R. Synthesis and characterization of an injectable microparticles integrated hydrogel composite biomaterial: In-vivo biocompatibility and inflammatory arthritis treatment. Colloids Surf B Biointerfaces 2021; 201:111597. [PMID: 33609936 DOI: 10.1016/j.colsurfb.2021.111597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
Polymeric hydrogels and microparticles have been widely used for localized drug delivery applications for the treatment of arthritis. Nonetheless, owing to initial burst drug release, non-specific biodistribution and low retention time at the target site in body, these polymeric drug delivery systems have been found with low in-vivo performance. Hence, the above limitations need to be resolved by designing a smart novel drug delivery system which is the current need in biomedicine. Herein, a novel localized injectable thermoresponsive microparticles embedded hydrogel composite drug delivery system has been developed for the treatment of inflammatory arthritis. In the current study, methotrexate (MTX) loaded alginate microparticles (MTX-Microparticles) are embedded into thermoreversible hydrogel matrix (MTX-MPs-H) prepared by physical blending of sodium hyaluronate and methylcellulose (SHMC). Microparticles-hydrogel composite system exhibited appropriate in-vitro thermoreversibility (sol at 4 °C and gel at 37 °C), biocompatibility (>80 %), hemocompatibility, and controlled drug release profile. The in-vivo biocompatibility studies for 10 days revealed that composite system is non-toxic in nature. The developed MTX-MPs-H composite drug delivery system effectively decreased the swelling/ inflammation of the arthritis affected paw in wistar rats in comparison to only alginate microparticles and pure MTX up to 30 days.
Collapse
Affiliation(s)
- Mukesh Dhanka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Vaishali Pawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Deepak S Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Nishant Kumar Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Prabhuraj R S
- Center for Research in Nanotechnology & Science (CRNTS), IIT Bombay, Mumbai, India
| | - Chaitra Shetty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Mukesh K Kumawat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India; Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India.
| |
Collapse
|
24
|
Shafique M, Sohail M, Minhas MU, Khaliq T, Kousar M, Khan S, Hussain Z, Mahmood A, Abbasi M, Aziz HC, Shah SA. Bio-functional hydrogel membranes loaded with chitosan nanoparticles for accelerated wound healing. Int J Biol Macromol 2020; 170:207-221. [PMID: 33359612 DOI: 10.1016/j.ijbiomac.2020.12.157] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Wounds are often recalcitrant to traditional wound dressings and a bioactive and biodegradable wound dressing using hydrogel membranes can be a promising approach for wound healing applications. The present research aimed to design hydrogel membranes based on hyaluronic acid, pullulan and polyvinyl alcohol and loaded with chitosan based cefepime nanoparticles for potential use in cutaneous wound healing. The developed membranes were evaluated using dynamic light scattering, proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results indicated the novel crosslinking and thermal stability of the fabricated hydrogel membrane. The in vitro analysis demonstrates that the developed membrane has water vapors transmission rate (WVTR) between 2000 and 2500 g/m2/day and oxygen permeability between 7 and 14 mg/L, which lies in the range of an ideal dressing. The swelling capacity and surface porosity to liberate encapsulated drug (cefepime) in a sustained manner and 88% of drug release was observed. The cefepime loaded hydrogel membrane demonstrated a higher zone of inhibition against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli and excisional rat model exhibit expeditious recovery rate. The developed hydrogel membrane loaded with cefepime nanoparticles is a promising approach for topical application and has greater potential for an accelerated wound healing process.
Collapse
Affiliation(s)
- Maryam Shafique
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan.
| | | | - Touba Khaliq
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| | - Heather C Aziz
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| |
Collapse
|
25
|
Alven S, Aderibigbe BA. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int J Mol Sci 2020; 21:E9656. [PMID: 33352826 PMCID: PMC7767230 DOI: 10.3390/ijms21249656] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound management remains a challenge worldwide, although there are several developed wound dressing materials for the management of acute and chronic wounds. The wound dressings that are currently used include hydrogels, films, wafers, nanofibers, foams, topical formulations, transdermal patches, sponges, and bandages. Hydrogels exhibit unique features which make them suitable wound dressings such as providing a moist environment for wound healing, exhibiting high moisture content, or creating a barrier against bacterial infections, and are suitable for the management of exuding and granulating wounds. Biopolymers have been utilized for their development due to their non-toxic, biodegradable, and biocompatible properties. Hydrogels have been prepared from biopolymers such as cellulose and chitosan by crosslinking with selected synthetic polymers resulting in improved mechanical, biological, and physicochemical properties. They were useful by accelerating wound re-epithelialization and also mimic skin structure, inducing skin regeneration. Loading antibacterial agents into them prevented bacterial invasion of wounds. This review article is focused on hydrogels formulated from two biopolymers-chitosan and cellulose-for improved wound management.
Collapse
Affiliation(s)
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| |
Collapse
|
26
|
Ao F, Shen W, Ge X, Wang L, Ning Y, Ren H, Fan G, Huang M. Effects of the crystallinity on quercetin loaded the Eudragit L-100 electrospun nanofibers. Colloids Surf B Biointerfaces 2020; 195:111264. [DOI: 10.1016/j.colsurfb.2020.111264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
|
27
|
Aliakbar Ahovan Z, Khosravimelal S, Eftekhari BS, Mehrabi S, Hashemi A, Eftekhari S, Brouki Milan P, Mobaraki M, Seifalian AM, Gholipourmalekabadi M. Thermo-responsive chitosan hydrogel for healing of full-thickness wounds infected with XDR bacteria isolated from burn patients: In vitro and in vivo animal model. Int J Biol Macromol 2020; 164:4475-4486. [PMID: 32888993 DOI: 10.1016/j.ijbiomac.2020.08.239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
Treatment of non-healing skin wounds infected with extensively drug-resistant (XDR) bacteria remains as a big challenge. To date, different biomaterials have been applied for treatment of post-wound infections, nevertheless their efficacy for treatment of the wounds infected with XDR isolates has not been determined yet. In this study, the potential of the thermo-responsive chitosan (TCTS) hydrogel for protection of full-thickness wounds XDR bacteria isolated from burn patients was evaluated both in vitro and in vivo in a rat model. Antibacterial activity of the TCTS hydrogel against standard strain and clinical isolates of Acinetobacter baumannii, cytobiocompatibility for Hu02 fibroblast cells, degradation rate and swelling ratio were determined in vitro. MTT assay and disk diffusion test indicated no detectable cytotoxicity and antibacterial activity in vitro, respectively. In vivo study showed significant acceleration of wound healing, re-epithelialization, wound closure, and decreased colony count in the TCTS hydrogel group compared with control. This study suggests TCTS hydrogel as an excellent wound dressing for management of the wounds infected with XDR bacteria, and now promises to proceed with clinical investigations.
Collapse
Affiliation(s)
- Zahra Aliakbar Ahovan
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Sadat Eftekhari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, USA
| | - Soraya Mehrabi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom.
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Lopez-Carrizales M, Mendoza-Mendoza E, Peralta-Rodriguez RD, Pérez-Díaz MA, Portales-Pérez D, Magaña-Aquino M, Aragón-Piña A, Infante-Martínez R, Barriga-Castro ED, Sánchez-Sánchez R, Martinez-Castañon GA, Martinez-Gutierrez F. Characterization, antibiofilm and biocompatibility properties of chitosan hydrogels loaded with silver nanoparticles and ampicillin: an alternative protection to central venous catheters. Colloids Surf B Biointerfaces 2020; 196:111292. [PMID: 32777661 DOI: 10.1016/j.colsurfb.2020.111292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to generate novel chitosan hydrogels (CHs) loaded with silver nanoparticles (AgNPs) and ampicillin (AMP) to prevent early formation of biofilms. AgNPs and CHs were characterized by UV-Vis, DLS, TEM, rheology, FT-IR, Raman, and SEM. The antibiofilm effect of the formulations was investigated against four multidrug-resistant and extensively drug-resistant pathogens using a colony biofilm, a high cell density and gradients model. Also, their hemostatic properties and cytotoxic effect were evaluated. Rheology results showed that CHs with AgNPs and AMP are typical non-Newtonian pseudoplastic fluids. The CH with 25 ppm of AgNPs and 50 ppm AMP inhibited the formation of biofilms of Acinetobacter baumannii, Enterococcus faecium and Staphylococcus epidermidis, while a ten-fold increase of the antimicrobial's concentration was needed to inhibit the biofilm of the β-lactamase positive Enterobacter cloacae. Further, CH with 250 ppm of AgNPs and 500 ppm AMP showed anticoagulant effect, and it was shown that all formulations were biocompatible. Besides to previous reports that described the bioadhesion properties of chitosan, these results suggest that AgNPs and AMP CHs loaded could be used as prophylactic treatment in patients with central venous catheter (CVC), inhibiting the formation of biofilms in their early stages, in addition to their anticoagulant effect and biocompatibility, those properties could keep the functionality of CVC helping to prevent complications such as sepsis and thrombosis.
Collapse
Affiliation(s)
- Montserrat Lopez-Carrizales
- Posgrado en Ciencias Farmacobiológicas, Facultad de Ciencias Químicas (FCQ), Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Esmeralda Mendoza-Mendoza
- Centro de Investigación y Estudios de Posgrado, FCQ, UASLP, Av. Dr. Manuel Nava No.6, Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico; Cátedras-CONACYT, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, UASLP, Sierra Leona No. 550, Lomas, CP 28210, San Luis Potosí, S.L.P., Mexico
| | - René D Peralta-Rodriguez
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, CP 25294, Saltillo, Coahuila, Mexico
| | - Mario A Pérez-Díaz
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco 289, Arenal Tepepan, CP 14389, Ciudad de México, Mexico; Laboratorio de Biomembranas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, CP 11340, Ciudad de México, Mexico
| | - Diana Portales-Pérez
- Posgrado en Ciencias Farmacobiológicas, Facultad de Ciencias Químicas (FCQ), Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Martín Magaña-Aquino
- Hospital Central Dr. Ignacio Morones Prieto, Av. Venustiano Carranza No. 2395, CP 78290, San Luis Potosí, S.L.P., Mexico
| | - Antonio Aragón-Piña
- Instituto de Metalurgia, UASLP, Av. Sierra Leona No. 550, Lomas 2ª sección, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Ramiro Infante-Martínez
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, CP 25294, Saltillo, Coahuila, Mexico
| | - Enrique D Barriga-Castro
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, CP 25294, Saltillo, Coahuila, Mexico
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco 289, Arenal Tepepan, CP 14389, Ciudad de México, Mexico
| | - Gabriel A Martinez-Castañon
- Laboratorio de Nanobiomateriales, Facultad de Estomatología, UASLP, Av. Dr. Manuel Nava No. 2 Zona Universitaria, CP 78290, San Luis Potosí, S.L.P., Mexico
| | - Fidel Martinez-Gutierrez
- Posgrado en Ciencias Farmacobiológicas, Facultad de Ciencias Químicas (FCQ), Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, UASLP, Sierra Leona No. 550, Lomas, CP 28210, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
29
|
Mahato KK, Sabbarwal S, Misra N, Kumar M. Fabrication of polyvinyl alcohol/chitosan oligosaccharide hydrogel: physicochemical characterizations and in vitro drug release study. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1789382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kaushal Kumar Mahato
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Shivesh Sabbarwal
- Department of Chemical Engineering and Technology, Nano and Microsystem Fabrication and Design Lab, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Nira Misra
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Manoj Kumar
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
- Department of Chemical Engineering and Technology, Nano and Microsystem Fabrication and Design Lab, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
30
|
Raj R, Sobhan PK, Pratheesh KV, Anilkumar TV. A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering. J Biomed Mater Res A 2020; 108:1922-1933. [PMID: 32319161 DOI: 10.1002/jbm.a.36955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
Abstract
Tailoring the properties of extracellular matrix (ECM) based hydrogels by conjugating with synthetic polymers is an emerging method for designing hybridhydrogels for a wide range of tissue engineering applications. In this study, poly(ethylene glycol) diacrylate (PEGDA), a synthetic polymer at variable concentrations (ranging from 0.2 to 2% wt/vol) was conjugated with porcine cholecyst derived ECM (C-ECM) (1% wt/vol) and prepared a biosynthetic hydrogel having enhanced physico-mechanical properties, as required for skeletal muscle tissue engineering. The C-ECM was functionalized with acrylate groups using activated N-hydroxysuccinimide ester-based chemistry and then conjugated with PEGDA via free-radical polymerization in presence of ammonium persulfate and ascorbic acid. The physicochemical characteristics of the hydrogels were evaluated by Fourier transform infrared spectroscopy and environmental scanning electron microscopy. Further, the hydrogel properties were studied by evaluating rheology, swelling, gelation time, percentage gel fraction, in vitro degradation, and mechanical strength. Biocompatibility of the gel formulations were assessed using the C2C12 skeletal myoblast cells. The hydrogel formulations containing 0.2 and 0.5% wt/vol of PEGDA were non-cytotoxic and found suitable for growth and proliferation of skeletal myoblasts. The study demonstrated a method for modulating the properties of ECM hydrogels through conjugation with bio-inert polymers for skeletal muscle tissue engineering applications.
Collapse
Affiliation(s)
- Reshmi Raj
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Praveen K Sobhan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Kanakarajan V Pratheesh
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Thapasimuthu V Anilkumar
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| |
Collapse
|
31
|
Dehghan-Baniani D, Chen Y, Wang D, Bagheri R, Solouk A, Wu H. Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloids Surf B Biointerfaces 2020; 192:111059. [PMID: 32380404 DOI: 10.1016/j.colsurfb.2020.111059] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/16/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
Limited regeneration capacity of cartilage can be addressed by tissue engineering approaches including localized delivery of bioactive agents using biomaterials. Although chitosan hydrogels have been considered as appropriate candidates for these purposes, however, their poor mechanical properties limit their real applications. Here, we develop in situ forming chitosan hydrogels with enhanced shear modulus by chemical modification of chitosan using N-(β-maleimidopropyloxy) succinimide ester (BMPS). Moreover, we utilize β-Glycerophosphate (β-GP) in the hydrogels for achieving thermosensitivity. We investigate the effects of BMPS, β-GP and chitosan concentration on rheological and swelling properties of the hydrogels. Accordingly, we generate significant statistical models by response surface method to predict these properties. These models provide us beneficial tools to tune the hydrogel properties depending on the cartilage defect location and properties. Finally, we incorporate a recently discovered small biomolecule, kartogenin (KGN), for promoting chondrogenesis of stem cells into the optimized hydrogel. The hydrogel's shear modulus is 78 ± 5 kPa which covers a wide range of human articular cartilage shear modulus (50-250 kPa). It can be injected to the defects non-invasively at room temperature which gels at 37 °C within minutes. Additionally, it provides a sustained KGN release for ∼40 days that may eliminate the need of multiple injections. In vitro chondrogenic results confirm enhanced chondrogenic differentiation of human adipose mesenchymal stem cells (hAMSCs) treated with KGN-loaded hydrogel, compared to pure KGN. Based on the enhanced hydrogel shear modulus, injectability, gelation behavior, long-term drug release and in vitro results, this thermosensitive hydrogel looks promising for cartilage tissue engineering.
Collapse
Affiliation(s)
- Dorsa Dehghan-Baniani
- Department of Chemical and Biological Engineering, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466, Iran
| | - Yin Chen
- Department of Chemical and Biological Engineering, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Dong Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Reza Bagheri
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hongkai Wu
- Department of Chemical and Biological Engineering, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
32
|
|
33
|
Gámez E, Elizondo-Castillo H, Tascon J, García-Salinas S, Navascues N, Mendoza G, Arruebo M, Irusta S. Antibacterial Effect of Thymol Loaded SBA-15 Nanorods Incorporated in PCL Electrospun Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E616. [PMID: 32230766 PMCID: PMC7221837 DOI: 10.3390/nano10040616] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
For the effective management of infected chronic wounds, the incorporation of antimicrobial drugs into wound dressings can increase their local availability at the infection site. Mesoporous silicon dioxide SBA-15 is an excellent drug carrier with tunable drug release kinetics. In this work, synthesized SBA-15 loaded with the natural antimicrobial compound thymol (THY) was incorporated into polycaprolactone (PCL) electrospun nanofibers to obtain an advanced wound dressing. Rod-shaped particles with internal parallel channels oriented along the longitudinal axis (diameter: 138 ± 30 nm, length: 563 ± 100 nm) were loaded with 70.8 wt.% of THY. Fiber mats were prepared using these particles as nanofillers within polycaprolactone (PCL) electrospun fibers. The resulting mats contained 5.6 wt.% of THY and more than half of this loading was released in the first 7 h. This release would prevent an initial bacterial colonization and also inhibit or eliminate bacterial growth as in vitro shown against Staphylococcus aureus ATCC 25923. Minimal inhibitory concentration (MIC: 0.07 mg/mL) and minimal bactericidal concentration (MBC: 0.11 mg/mL) of released THY were lower than the amount of free THY required, demonstrating the benefit of drug encapsulation for a more efficient bactericidal capacity due to the direct contact between mats and bacteria.
Collapse
Affiliation(s)
- Enrique Gámez
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
| | - Hellen Elizondo-Castillo
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
| | - Jorge Tascon
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
| | - Sara García-Salinas
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain;
| | - Nuria Navascues
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
| | - Gracia Mendoza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain;
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain;
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Silvia Irusta
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain;
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
34
|
Hu H, Wang L, Xu B, Wang P, Yuan J, Yu Y, Wang Q. Construction of a composite hydrogel of silk sericin via horseradish peroxidase-catalyzed graft polymerization of poly-PEGDMA. J Biomed Mater Res B Appl Biomater 2020; 108:2643-2655. [PMID: 32144891 DOI: 10.1002/jbm.b.34596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/13/2020] [Accepted: 02/22/2020] [Indexed: 02/01/2023]
Abstract
Silk sericin (SS), which is one of the main components of Bombyx mori silk fibers, has attracted increasing attentions as functional biomaterials due to its diverse biological activities as well as excellent biocompatibility. However, the poor formability and weak mechanical properties of SS materials severely limit their practical applications in biomedical field. To address this issue, in this study poly(ethylene glycol)dimethacrylate (PEGDMA) modified sericin were prepared by graft polymerization of poly-PEGDMA (pPEGDMA) onto sericin chains in the presence of horseradish peroxidase and hydrogen peroxide under mild condition. The composite hydrogels obtained from the modified SS not only exhibit much improved formability and excellent mechanical properties, but also high possess porosity and swelling ratios up to 63 and 1,250%, respectively, at the optimized formulation. Moreover, the composite hydrogels also reveal sustained drug release behavior and acceptable cytotoxicity, which endow them with vast application as biomaterials. It is envisioned that the method presented in this study would expand the application of SS in biomedical filed.
Collapse
Affiliation(s)
- Haoran Hu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Lin Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
35
|
Qin Y, Li P. Antimicrobial Chitosan Conjugates: Current Synthetic Strategies and Potential Applications. Int J Mol Sci 2020; 21:E499. [PMID: 31941068 PMCID: PMC7013974 DOI: 10.3390/ijms21020499] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
As a natural polysaccharide, chitosan possesses good biocompatibility, biodegradability and biosafety. Its hydroxyl and amino groups make it an ideal carrier material in the construction of polymer-drug conjugates. In recent years, various synthetic strategies have been used to couple chitosan with active substances to obtain conjugates with diverse structures and unique functions. In particular, chitosan conjugates with antimicrobial activity have shown great application prospects in the fields of medicine, food, and agriculture in recent years. Hence, we will place substantial emphasis on the synthetic approaches for preparing chitosan conjugates and their antimicrobial applications, which are not well summarized. Meanwhile, the challenges, limitations, and prospects of antimicrobial chitosan conjugates are described and discussed.
Collapse
Affiliation(s)
- Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
36
|
Tian B, Hua S, Tian Y, Liu J. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review. J Mater Chem B 2020; 8:10050-10064. [DOI: 10.1039/d0tb01869d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes and discusses recent research progress in chemical and physical chitosan hydrogels for drug delivery.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology
- Xinjiang University
- Urumchi 830046
- China
| | - Shiyao Hua
- School of Pharmacy
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Yu Tian
- School of Computer Science and Engineering
- Beihang University
- Beijing 100083
- China
| | - Jiayue Liu
- School of Pharmacy
- Ningxia Medical University
- Yinchuan 750004
- China
| |
Collapse
|
37
|
Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109774. [PMID: 31349528 DOI: 10.1016/j.msec.2019.109774] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 01/24/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023]
Abstract
Currently, an enormous amount of cancer research based on two-dimensional nano-graphene oxide (GO), as well as zero-dimensional graphene quantum dots (GQDs), is being carried out in the fields of therapeutics and diagnostics. However, the exploration of their hybrid "functional" nanomaterials in the theranostic system is still rare. In the current study, a stable complex of GO and GQDs was formed by an electrostatic layer-by-layer assembly via a polyethylene imine bridge (GO-PEI-GQDs). Furthermore, we compared separate mono-equivalents of the GO-PEI-GQDs complex - GO and GQDs, in terms of cell imaging (diagnostics), photothermal, and oxidative stress response in breast cancer cells (MDA-MB-231). GO-PEI-GQDs showed an excellent photothermal response (44-49 °C) upon 808 nm laser (0.5 W cm-2) exposure for 5 min at a concentration up to 50 μg/mL. We report new synergistic properties of GO-PEI-GQDs such as stable fluorescence imaging and enhanced photothermal and cytotoxic activities on cancer cells. Composite materials made up of GO and GQDs combining diverse properties help to study 2D-0D heterosystems and improve specific therapeutic systems in theranostics.
Collapse
|
38
|
Chitosan-polycaprolactone blend sponges for management of chronic osteomyelitis: A preliminary characterization and in vitro evaluation. Int J Pharm 2019; 568:118553. [DOI: 10.1016/j.ijpharm.2019.118553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022]
|
39
|
Türkan F, Huyut Z, Huyut MT, Calimli MH. In vivo biochemical evaluations of some β-lactam group antibiotics on glutathione reductase and glutathione S- transferase enzyme activities. Life Sci 2019; 231:116572. [PMID: 31207309 DOI: 10.1016/j.lfs.2019.116572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aim of this study was to investigate whether some of the cephalosporin group antibiotics have inhibition effects on GR and GST enzymes with important functions in the metabolic pathway. METHODS In this study, some selected cephalosporin group antibiotics on GST and GR enzyme was carried out using 96 rats. 16 groups (16 × 6) were created from these rats, divided to another 4 groups (4 × 24). The resulting groups were named as sham groups, cefazolin groups, cefuroxime groups and cefoperazone groups, respectively. The antibiotics used were injected to cefazolin, cefuroxime and cefoperazone groups. The inhibition effects of the antibiotics were measured in the different time intervals (1st, 3th, 5th, 7th). The statistical investigation of the results was performed using the SPSS software program. RESULTS Results revealed the complex effects of the tested substances on GR and GST activity at different time intervals and in different tissues (p < 0.05). This indicated that the tested substances could be exposed to different interactions in vivo. CONCLUSION The tested antibiotics showed some significant inhibition effects on the GST and GR enzyme activity in some tissues of brain, eye and muscle. The interaction of enzyme - the drug is a key factor to highlight the toxicological mechanism. For this reason, the results obtained from in vivo experiments are crucial to explane the physiological properties of the enzymes.
Collapse
Affiliation(s)
- Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey.
| | - Zübeyir Huyut
- Department of Biochemistry, Medical Faculty, Van Yuzuncu Yıl University, Van, Turkey
| | | | | |
Collapse
|
40
|
Pawar V, Bulbake U, Khan W, Srivastava R. Chitosan sponges as a sustained release carrier system for the prophylaxis of orthopedic implant-associated infections. Int J Biol Macromol 2019; 134:100-112. [DOI: 10.1016/j.ijbiomac.2019.04.190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
|
41
|
Ding X, Wang A, Tong W, Xu FJ. Biodegradable Antibacterial Polymeric Nanosystems: A New Hope to Cope with Multidrug-Resistant Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900999. [PMID: 30957927 DOI: 10.1002/smll.201900999] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/19/2019] [Indexed: 05/14/2023]
Abstract
The human society is faced with daunting threats from bacterial infections. Over decades, a variety of antibacterial polymeric nanosystems have exhibited great promise for the eradication of multidrug-resistant bacteria and persistent biofilms by enhancing bacterial recognition and binding capabilities. In this Review, the "state-of-the-art" biodegradable antibacterial polymeric nanosystems, which could respond to bacteria environments (e.g., acidity or bacterial enzymes) for controlled antibiotic release or multimodal antibacterial treatment, are summarized. The current antibacterial polymeric nanosystems can be categorized into antibiotic-containing and intrinsic antibacterial nanosystems. The antibiotic-containing polymeric nanosystems include antibiotic-encapsulated nanocarriers (e.g., polymeric micelles, vesicles, nanogels) and antibiotic-conjugated polymer nanosystems for the delivery of antibiotic drugs. On the other hand, the intrinsic antibacterial polymer nanosystems containing bactericidal moieties such as quaternary ammonium groups, phosphonium groups, polycations, antimicrobial peptides (AMPs), and their synthetic mimics, are also described. The biodegradability of the nanosystems can be rendered by the incorporation of labile chemical linkages, such as carbonate, ester, amide, and phosphoester bonds. The design and synthesis of the degradable polymeric building blocks and their fabrications into nanosystems are also explicated, together with their plausible action mechanisms and potential biomedical applications. The perspectives of the current research in this field are also described.
Collapse
Affiliation(s)
- Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Tong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|