1
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
2
|
Jiang H, Li L, Li Z, Chu X. Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. Biomed Microdevices 2024; 26:12. [PMID: 38261085 PMCID: PMC10806003 DOI: 10.1007/s10544-023-00686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.
Collapse
Affiliation(s)
- Hao Jiang
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingzhi Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhong Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xiang Chu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Emergency, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
3
|
Siddiqui MA, Wahab R, Saquib Q, Ahmad J, Farshori NN, Al-Sheddi ES, Al-Oqail MM, Al-Massarani SM, Al-Khedhairy AA. Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells. J Trace Elem Med Biol 2023; 80:127302. [PMID: 37734210 DOI: 10.1016/j.jtemb.2023.127302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Nanotechnology and material science have developed enormously fast in recent years. Due to their excellent magnetic properties, iron oxide nanoparticles (IONPs) have been broadly applied in the field of bioengineering and biomedical. Thus, it is important to evaluate the safety issues and health effects of these nanomaterials. The present investigation was aimed to evaluate the adverse effects of IONPs on human umbilical vein endothelial cells (HUVECs). METHODS The cytotoxic potential of IONPs was assessed by MTT and neutral red uptake (NRU) assays. The impact of IONPs on oxidative stress markers (glutathione (GSH) and lipid peroxidation (LPO)), reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) was also examined. Furthermore, the toxic effect of IONPs was quantified by assessing DNA damage, cell cycle arrest, and apoptosis by quantitative real time PCR. RESULTS We found that IONPs induce a dose-dependent cytotoxicity on HUVECs with IC50 value of 79.13 μg/mL. The results also displayed that IONPs induce oxidative stress, ROS production, and mitochondrial membrane dysfunction. The comet assay results exhibited IONPs induces DNA damage in HUVECs. We found significant cell cycle arrest at SubG1 phase in treated cells and consequent cell death was evidenced by microscopic analysis. Moreover, IONPs display substantial up-regulation of pro-apoptotic genes and down-regulation of anti-apoptotic gene evidenced by real time qPCR. CONCLUSION Overall, our results clearly demonstrated that IONPs have the potential to induce cytotoxicity, DNA damage, cell cycle arrest, and apoptosis in HUVECs mediated through oxidative stress and ROS production. Thus, IONPs are cytotoxic and it should be handled with proper care.
Collapse
Affiliation(s)
- Maqsood A Siddiqui
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Rizwan Wahab
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nida N Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mai M Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Shaza M Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Electrospun Polycaprolactone/ZnO Nanocomposite Membranes with High Antipathogen Activity. Polymers (Basel) 2022; 14:polym14245364. [PMID: 36559729 PMCID: PMC9780843 DOI: 10.3390/polym14245364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The spread of bacterial, fungal, and viral diseases by airborne aerosol flows poses a serious threat to human health, so the development of highly effective antibacterial, antifungal and antiviral filters to protect the respiratory system is in great demand. In this study, we developed ZnO-modified polycaprolactone nanofibers (PCL-ZnO) by treating the nanofiber surface with plasma in a gaseous mixture of Ar/CO2/C2H4 followed by the deposition of ZnO nanoparticles (NPs). The structure and chemical composition of the composite fibers were characterized by SEM, TEM, EDX, FTIR, and XPS methods. We demonstrated high material stability. The mats were tested against Gram-positive and Gram-negative pathogenic bacteria and pathogenic fungi and demonstrated high antibacterial and antifungal activity.
Collapse
|
5
|
Qiu D, Zhou P, Kang J, Chen Z, Xu Z, Yang H, Tao J, Ai F. ZnO nanoparticle modified chitosan/borosilicate bioglass composite scaffold for inhibiting bacterial infection and promoting bone regeneration. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac99c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Abstract
The treatment of implant-associated bone infection remains a significant clinical challenge. However, bone scaffolds with antimicrobial activity and osteoinductive properties can prevent these infections and improve clinical outcomes. In this study, borosilicate bioglass and chitosan composite scaffolds were prepared, and then the surface was modified with nano-zinc oxide. In vitro and in vivo experiments showed that the chitosan/borosilicate bioglass scaffolds have good degradation and osteogenic properties, while the oxidized Zinc scaffolds have better antibacterial properties.
Collapse
|
6
|
Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, Song Y, Zhao J, Zhang Y, Wang J. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155720. [PMID: 35525366 DOI: 10.1016/j.scitotenv.2022.155720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yan-Fei Fei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Siew-Leng Loo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China.
| |
Collapse
|
7
|
Fan Z, Jiang C, Wang Y, Wang K, Marsh J, Zhang D, Chen X, Nie L. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. NANOSCALE HORIZONS 2022; 7:682-714. [PMID: 35662310 DOI: 10.1039/d2nh00070a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs), as natural carriers of bioactive cargo, have a unique micro/nanostructure, bioactive composition, and characteristic morphology, as well as fascinating physical, chemical and biochemical features, which have shown promising application in the treatment of a wide range of diseases. However, native EVs have limitations such as lack of or inefficient cell targeting, on-demand delivery, and therapeutic feedback. Recently, EVs have been engineered to contain an intelligent core, enabling them to (i) actively target sites of disease, (ii) respond to endogenous and/or exogenous signals, and (iii) provide treatment feedback for optimal function in the host. These advances pave the way for next-generation nanomedicine and offer promise for a revolution in drug delivery. Here, we summarise recent research on intelligent EVs and discuss the use of "intelligent core" based EV systems for the treatment of disease. We provide a critique about the construction and properties of intelligent EVs, and challenges in their commercialization. We compare the therapeutic potential of intelligent EVs to traditional nanomedicine and highlight key advantages for their clinical application. Collectively, this review aims to provide a new insight into the design of next-generation EV-based theranostic platforms for disease treatment.
Collapse
Affiliation(s)
- Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), Taizhou 318000, P. R. China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jade Marsh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Liming Nie
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
8
|
De La Franier B, Asker D, Hatton B, Thompson M. Long-Term Reduction of Bacterial Adhesion on Polyurethane by an Ultra-Thin Surface Modifier. Biomedicines 2022; 10:979. [PMID: 35625716 PMCID: PMC9138992 DOI: 10.3390/biomedicines10050979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Indwelling urinary catheters are employed widely to relieve urinary retention in patients. A common side effect of the use of these catheters is the formation of urinary tract infections (UTIs), which can lead not only to severe medical complications, but even to death. A number of approaches have been used to attempt reduction in the rate of UTI development in catheterized patients, which include the application of antibiotics and modification of the device surface by coatings. Many of these coatings have not seen use on catheters in medical settings due to either the high cost of their implementation, their long-term stability, or their safety. In previous work, it has been established that the simple, stable, and easily applicable sterilization surface coating 2-(3-trichlorosilylpropyloxy)-ethyl hydroxide (MEG-OH) can be applied to polyurethane plastic, where it greatly reduces microbial fouling from a variety of species for a 1-day time period. In the present work, we establish that this coating is able to remain stable and provide a similarly large reduction in fouling against Escherichia coli and Staphylococcus aureus for time periods in an excess of 30 days. This non-specific coating functioned against both Gram-positive and Gram-negative bacteria, providing a log 1.1 to log 1.9 reduction, depending on the species and day. This stability and continued efficacy greatly suggest that MEG-OH may be capable of providing a solution to the UTI issue which occurs with urinary catheters.
Collapse
Affiliation(s)
- Brian De La Franier
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada;
| | - Dalal Asker
- Department of Materials Science, University of Toronto, 184 College Street, Toronto, ON M5S 3E4, Canada; or (D.A.); (B.H.)
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Benjamin Hatton
- Department of Materials Science, University of Toronto, 184 College Street, Toronto, ON M5S 3E4, Canada; or (D.A.); (B.H.)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada;
| |
Collapse
|
9
|
Pajerski W, Chytrosz-Wrobel P, Golda-Cepa M, Pawlyta M, Reczynski W, Ochonska D, Brzychczy-Wloch M, Kotarba A. Opposite effects of gold and silver nanoparticle decoration of graphenic surfaces on bacterial attachment. NEW J CHEM 2022. [DOI: 10.1039/d2nj00648k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between bacteria and nanoparticles is currently a central topic in bionanotechnology.
Collapse
Affiliation(s)
- Wojciech Pajerski
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Paulina Chytrosz-Wrobel
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika Golda-Cepa
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Miroslawa Pawlyta
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Witold Reczynski
- Faculty of Material Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Dorota Ochonska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Monika Brzychczy-Wloch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
10
|
Lu B, Jan Hendriks A, Nolte TM. A generic model based on the properties of nanoparticles and cells for predicting cellular uptake. Colloids Surf B Biointerfaces 2022; 209:112155. [PMID: 34678608 DOI: 10.1016/j.colsurfb.2021.112155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Nanoparticles (NPs) are widely used in industry and technology due to their small size and versatility, which makes them easy to enter organisms and pose threats to human and ecological health. Given the particularity and complex structure of NPs, statistical models alone cannot reliably predict uptake. Hence, we developed a generic model for predicting the cellular uptake of NPs with organic coatings, based on physicochemical interactions underlying uptake. The model utilized the concentration, experimental conditions and properties of NPs viz. size, surface coating and coverage. These parameters were converted to surface energy components and surface potentials, and combined with the components and potential for a cell membrane. For NPs uptake, we constructed energetic profiles and barriers for adsorption and permeation onto/through cell membranes. The relationships derived were compared to experimental uptake data. The model provided accurate and robust uptake estimates for neutrally charged unhalogenated NPs and six different cell types. We envision that the model provides a reference for cellular accumulation of neutral NPs and (ecological/human) risk assessment of NPs or microparticles.
Collapse
Affiliation(s)
- Bingqing Lu
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands.
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Tom M Nolte
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
11
|
Sun Y, Yang Y, Jiang W, Bai H, Liu H, Wang J. In Vivo Antibacterial Efficacy of Nanopatterns on Titanium Implant Surface: A Systematic Review of the Literature. Antibiotics (Basel) 2021; 10:antibiotics10121524. [PMID: 34943736 PMCID: PMC8698789 DOI: 10.3390/antibiotics10121524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Bionic surface nanopatterns of titanium (Ti) materials have excellent antibacterial effects in vitro for infection prevention. To date, there is a lack of knowledge about the in vivo bactericidal outcomes of the nanostructures on the Ti implant surfaces. Methods: A systematic review was performed using the PubMed, Embase, and Cochrane databases to better understand surface nanoscale patterns’ in vivo antibacterial efficacy. The inclusion criteria were preclinical studies (in vivo) reporting the antibacterial activity of nanopatterns on Ti implant surface. Ex vivo studies, studies not evaluating the antibacterial activity of nanopatterns or surfaces not modified with nanopatterns were excluded. Results: A total of five peer-reviewed articles met the inclusion criteria. The included studies suggest that the in vivo antibacterial efficacy of the nanopatterns on Ti implants’ surfaces seems poor. Conclusions: Given the small number of literature results, the variability in experimental designs, and the lack of reporting across studies, concluding the in vivo antibacterial effectiveness of nanopatterns on Ti substrates’ surfaces remains a big challenge. Surface coatings using metallic or antibiotic elements are still practical approaches for this purpose. High-quality preclinical data are still needed to investigate the in vivo antibacterial effects of the nanopatterns on the implant surface.
Collapse
Affiliation(s)
- Yang Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Yang Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Disease, The Second Hospital of Jilin University, Changchun 130041, China
| | - Weibo Jiang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Correspondence:
| |
Collapse
|
12
|
Ouerghi O, Geesi MH, Ibnouf EO, Ansari MJ, Alam P, Elsanousi A, Kaiba A, Riadi Y. Sol-gel synthesized rutile TiO2 nanoparticles loaded with cardamom essential oil: Enhanced antibacterial activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Engineering of cerium oxide loaded chitosan/polycaprolactone hydrogels for wound healing management in model of cardiovascular surgery. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Lotfali H, Meshkini A. Synthesis and characterization of lysozyme-conjugated Ag.ZnO@HA nanocomposite: A redox and pH-responsive antimicrobial agent with photocatalytic activity. Photodiagnosis Photodyn Ther 2021; 35:102418. [PMID: 34197967 DOI: 10.1016/j.pdpdt.2021.102418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022]
Abstract
Hydroxyapatite (HA) is extensively used for implantable device coating; however, it lacks antibacterial property, leading to potential bacterial infection during orthopedic implantation surgery. Herein, to enhance the antibacterial activity of HA, a redox- and pH-responsive HA nanocomposite with photocatalytic activity was designed. A photosensitive heterostructure, zinc oxide/hydroxyapatite (ZnO.HA), was coated with Ag nanoparticles (AgNPs) with assisted gallic acid using the UV-irradiation method. An antibacterial enzyme, lysozyme, was then conjugated on the surface of the nanocomposite by a cleavable disulfide linker, resulting in a redox-sensitive nanoplatform. In comparison with bare HA, the designed nanocomposites as Lyso.CAGZ@HA displayed much higher antibacterial activity (> 5-fold) toward Escherichia coli (E. coli) owing to the synergistic antibacterial effects of ZnONPs, AgNPs, gallic acid, and lysozyme on the surface of the nanocomposite. However, antibacterial and antifouling effects are much more enhanced in Lyso.CAGZ@HA-treated bacteria as they were subjected to UVA irradiation. Moreover, the cellular uptake of nanocomposite and intracellular glutathione depletion enhanced in the presence of UVA light, resulting in reactive oxygen specious generation enhancement. Further, in vitro cytotoxicity experiments on mammalian cells (human foreskin fibroblast) revealed that nanocomposite has no cytotoxic effects. Hence, this study demonstrated that Lyso.CAGZ@HA could be considered as a potential therapeutic approach against bacterial infectious diseases.
Collapse
Affiliation(s)
- Hanieh Lotfali
- Biochemical Research center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P. O. Box 9177948974, Mashhad, Iran
| | - Azadeh Meshkini
- Biochemical Research center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P. O. Box 9177948974, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
15
|
Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16962-16981. [PMID: 33638785 DOI: 10.1007/s11356-021-12996-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The production and demand of nanoparticles in the manufacturing sector and personal care products, release a large number of engineered nanoparticles (ENPs) into the atmosphere, aquatic ecosystems, and terrestrial environments. The intentional or involuntary incorporation of ENPs into the environment is carried out through different processes. The ENPs are combined with other compounds and release into the atmosphere, settling on the ground due to the water cycle or other atmospheric phenomena. In the case of aquatic ecosystems, the ENPs undergo hetero-aggregation and sedimentation, reaching different living organisms and flora, as well as groundwater. Accordingly, the high mobility of ENPs in diverse ecosystems is strongly related to physical, chemical, and biological processes. Recent studies have been focused on the toxicological effects of a wide variety of ENPs using different validated biological models. This literature review emphasizes the study of toxicological effects related to using the most common ENPs, specifically metal and metal/oxides-based nanoparticles, addressing different synthesis methodologies, applications, and toxicological evaluations. The results suggest negative impacts on biological models, such as oxidative stress, metabolic and locomotive toxicity, DNA replication dysfunction, and bioaccumulation. Finally, it was consulted the protocols for the control of risks, following the assessment and management process, as well as the classification system for technological alternatives and risk management measures of ENPs, which are useful for the transfer of technology and nanoparticles commercialization.
Collapse
Affiliation(s)
- Ricardo Solano
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - David Patiño-Ruiz
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Lesly Tejeda-Benitez
- Chemical Engineering Program, Process Design and Biomass Utilization Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Adriana Herrera
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
- Chemical Engineering Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
| |
Collapse
|
16
|
Ahmed B, Syed A, Ali K, Elgorban AM, Khan A, Lee J, Al-Shwaiman HA. Synthesis of gallotannin capped iron oxide nanoparticles and their broad spectrum biological applications. RSC Adv 2021; 11:9880-9893. [PMID: 35423492 PMCID: PMC8695504 DOI: 10.1039/d1ra00220a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Green synthesized nanoparticles (NPs) have attracted enormous attention for their clinical and non-clinical applications. A natural polyphenol, gallo-tannin (GT) was used to reduce and cap the Fe2O3-NPs. GT-Fe2O3-NPs were synthesized following co-precipitation of FeCl3 and FeSO4·7H2O with GT. Fe2O3-NPs absorbed light at 380 nm. Physicochemically, Fe2O3-NPs were spherical with slight aggregation and average diameter of 12.85 nm. X-ray diffraction confirmed crystallinity and EDX revealed the elemental percentage of iron and oxygen as 21.7% and 42.11%, respectively. FT-IR data confirmed the adsorption of gallo-tannin functional groups. Multiple drug-resistant (MDR) Escherichia coli (ESβL), Pseudomonas aeruginosa (ESβL), and Staphylococcus aureus were found susceptible to 500-1000 μg GT-Fe2O3-NPs per ml. In synergy, Fe2O3-NPs enhanced the efficiency of some antibiotics. GT-Fe2O3 NPs showed significant (P ≤ 0.05) inhibition of growth and biofilm against MDR E. coli, P. aeruginosa, and S. aureus causing morphological and biofilm destruction. Violacein production (quorum sensing mediated) by C. violaceum was inhibited by GT-Fe2O3-NPs in a concentration-dependent manner with a maximum decrease of 3.1-fold. A decrease of 11-fold and 2.32-fold in fungal mycelial growth and human breast cancer (MCF-7) cell viability, respectively was evident. This study suggests a plausible role of gallo-tannin capped Fe2O3-NPs as an alternative antibacterial, antiquorum sensing, antibiofilm, antifungal, and anti-proliferative agent.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University Gyeongsan Republic of Korea
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Khursheed Ali
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University Aligarh 202002 India
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Afroz Khan
- Department of Physics, Faculty of Science, Aligarh Muslim University Aligarh 202002 India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University Gyeongsan Republic of Korea
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
17
|
De La Franier B, Asker D, van den Berg D, Hatton B, Thompson M. Reduction of microbial adhesion on polyurethane by a sub-nanometer covalently-attached surface modifier. Colloids Surf B Biointerfaces 2021; 200:111579. [PMID: 33517152 DOI: 10.1016/j.colsurfb.2021.111579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
Indwelling urinary catheters are a common medical device used to relieve urinary retention. Many patients who undergo urinary catheterization develop urinary tract infections (UTIs), which can lead to severe medical complications and high cost of subsequent treatment. Recent years have seen a number of attempts at reducing the rate of UTIs in catheterized patients via catheter surface modifications. In this work, a low cost, robust anti-thrombogenic, and sterilizable anti-fouling layer based on a covalently-bound monoethylene glycol hydroxide (MEG-OH) was attached to polyurethane, a polymeric material commonly used to fabricate catheters. Modified polyurethane tubing was compared to bare tubing after exposure to a wide spectrum of pathogens including Gram-negative bacteria (Pesudomonas aeruginosa, Escherichia coli), Gram-positive bacteria (Staphylococcus aureus) and a fungus (Candida albicans). It has been demonstrated that the MEG-OH monolayer was able to significantly reduce the amount of adhesion of pathogens present on the material surface, with between 85 and 96 % reduction after 24 h of exposure. Additionally, similar reductions in surface fouling were observed following autoclave sterilization, long term storage of samples in air, and longer exposure up to 3 days.
Collapse
Affiliation(s)
- Brian De La Franier
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Dalal Asker
- Department of Materials Science, University of Toronto, 140-184 College St, Toronto, Ontario, M5S 3E4, Canada; Food Science & Technology Department, Faculty of Agriculture, Alexandria University, 21545 - El-Shatby, Alexandria, Egypt
| | - Desmond van den Berg
- Department of Materials Science, University of Toronto, 140-184 College St, Toronto, Ontario, M5S 3E4, Canada
| | - Benjamin Hatton
- Department of Materials Science, University of Toronto, 140-184 College St, Toronto, Ontario, M5S 3E4, Canada
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
18
|
Bengalli R, Colantuoni A, Perelshtein I, Gedanken A, Collini M, Mantecca P, Fiandra L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NANOIMPACT 2021; 21:100282. [PMID: 35559774 DOI: 10.1016/j.impact.2020.100282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 06/15/2023]
Abstract
In the context of nosocomial infections, there is an urgent need to develop efficient nanomaterials (NMs) with antibacterial properties for the prevention of infection diseases. Metal oxide nanoparticles (MeO-NPs) are promising candidates for the development of new antibacterial textiles. However, the direct exposure to MeO-NPs and MeO-coated NMs through skin contact could constitute a severe hazard for human health. In this work, the toxicity of copper and zinc oxide (CuO, ZnO) NPs antimicrobial-coated textiles was assessed on an in vitro reconstructed 3D model of epidermis. Thus, MeO-NPs and extracts from MeO-coated NMs were tested on EpiDerm™ skin model according to OECD TG 431 (Corrosion Test) and 439 (Irritation Test), respectively. Skin surface fluids composition is a crucial aspect to be considered in the development of NMs that have to encounter this tissue. So, for the irritation test, coated textiles were extracted in artificial sweat solutions at pH 4.7 and 6.5. Skin tissue viability, pro-inflammatory interleukin-8 secretion and morphological alteration of intermediate and actin filaments of keratinocytes were evaluated after 18 h exposure to extracts from CuO- and ZnO-coated textiles. Analysis of extracts at the two pH conditions indicated that released ions and not NPs are involved in promoting adverse effects on epidermis. Since Cu2+ and Zn2+ ions are known to penetrate epidermis, Balb/3 T3 cells were used as model of dermis. Fibroblasts viability was investigated after the exposure to trans-epidermis permeated ions, collected from EpiDerm™ basal supernatants, and to extracts, as representative of a direct interaction of ions with dermis cells by wounded skin. From our data we can conclude that: 1) skin surface fluids composition is a key parameter for the stability of NPs-coated textiles; 2) MeO ions released from coated textiles can deeply affect the epidermal tissue and the underlying dermal cells upon trans-epidermal permeation; 3) skin barrier integrity is a fundamental prerequisite that should be taken into account during the assessment of NMs safety by direct contact exposure.
Collapse
Affiliation(s)
- Rossella Bengalli
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | - Alessandra Colantuoni
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | - Ilana Perelshtein
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Israel
| | - Aharon Gedanken
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Israel
| | - Maddalena Collini
- Department of Physic "Giuseppe Occhialini", University of Milano - Bicocca, Milano, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy; Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy.
| | - Luisa Fiandra
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy; Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| |
Collapse
|
19
|
Seifi T, Kamali AR. Anti-pathogenic activity of graphene nanomaterials: A review. Colloids Surf B Biointerfaces 2020; 199:111509. [PMID: 33340933 DOI: 10.1016/j.colsurfb.2020.111509] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Graphene and its derivatives are promising candidates for a variety of biological applications, among which, their anti-pathogenic properties are highly attractive due to the outstanding physicochemical characteristics of these novel nanomaterials. The antibacterial, antiviral and antifungal performances of graphene are increasingly becoming more important due to the pathogen's resistance to existing drugs. Despite this, the factors influencing the antibacterial activity of graphene nanomaterials, and consequently, the mechanisms involved are still controversial. This review aims to systematically summarize the literature, discussing various factors that affect the antibacterial performance of graphene materials, including the shape, size, functional group and the electrical conductivity of graphene flakes, as well as the concentration, contact time and the pH value of the graphene suspensions used in related microbial tests. We discuss the possible surface and edge interactions between bacterial cells and graphene nanomaterials, which cause antibacterial effects such as membrane/oxidative/photothermal stresses, charge transfer, entrapment and self-killing phenomena. This article reviews the anti-pathogenic activity of graphene nanomaterials, comprising their antibacterial, antiviral, antifungal and biofilm-forming performance, with an emphasis on the antibacterial mechanisms involved.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
20
|
de Santana WMO, Caetano BL, de Annunzio SR, Pulcinelli SH, Ménager C, Fontana CR, Santilli CV. Conjugation of superparamagnetic iron oxide nanoparticles and curcumin photosensitizer to assist in photodynamic therapy. Colloids Surf B Biointerfaces 2020; 196:111297. [DOI: 10.1016/j.colsurfb.2020.111297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
|
21
|
Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C, Xie K, Yao J, Wang L, Liu C, Tang Y. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front Bioeng Biotechnol 2020; 8:576969. [PMID: 33330415 PMCID: PMC7719827 DOI: 10.3389/fbioe.2020.576969] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Titanium and its alloys have superb biocompatibility, low elastic modulus, and favorable corrosion resistance. These exceptional properties lead to its wide use as a medical implant material. Titanium itself does not have antibacterial properties, so bacteria can gather and adhere to its surface resulting in infection issues. The infection is among the main reasons for implant failure in orthopedic surgeries. Nano-modification, as one of the good options, has the potential to induce different degrees of antibacterial effect on the surface of implant materials. At the same time, the nano-modification procedure and the produced nanostructures should not adversely affect the osteogenic activity, and it should simultaneously lead to favorable antibacterial properties on the surface of the implant. This article scrutinizes and deals with the surface nano-modification of titanium implant materials from three aspects: nanostructures formation procedures, nanomaterials loading, and nano-morphology. In this regard, the research progress on the antibacterial properties of various surface nano-modification of titanium implant materials and the related procedures are introduced, and the new trends will be discussed in order to improve the related materials and methods.
Collapse
Affiliation(s)
- Jianqiao Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, Baise, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
22
|
Eymard-Vernain E, Luche S, Rabilloud T, Lelong C. ZnO and TiO2 nanoparticles alter the ability of Bacillus subtilis to fight against a stress. PLoS One 2020; 15:e0240510. [PMID: 33045025 PMCID: PMC7549824 DOI: 10.1371/journal.pone.0240510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Due to the physicochemical properties of nanoparticles, the use of nanomaterials increases over time in industrial and medical processes. We herein report the negative impact of nanoparticles, using solid growth conditions mimicking a biofilm, on the ability of Bacillus subtilis to fight against a stress. Bacteria have been exposed to sublethal doses of nanoparticles corresponding to conditions that bacteria may meet in their natural biotopes, the upper layer of soil or the gut microbiome. The analysis of the proteomic data obtained by shotgun mass spectrometry have shown that several metabolic pathways are affected in response to nanoparticles, n-ZnO or n-TiO2, or zinc salt: the methyglyoxal and thiol metabolisms, the oxidative stress and the stringent responses. Nanoparticles being embedded in the agar medium, these impacts are the consequence of a physiological adaptation rather than a physical cell injury. Overall, these results show that nanoparticles, by altering bacterial physiology and especially the ability to resist to a stress, may have profound influences on a “good bacteria”, Bacillus subtilis, in its natural biotope and moreover, on the global equilibrium of this biotope.
Collapse
Affiliation(s)
| | - Sylvie Luche
- Université Grenoble Alpes, CNRS, CEA, IRIG, CBM UMR CNRS5249, Grenoble, France
| | - Thierry Rabilloud
- Université Grenoble Alpes, CNRS, CEA, IRIG, CBM UMR CNRS5249, Grenoble, France
| | - Cécile Lelong
- Université Grenoble Alpes, CNRS, CEA, IRIG, CBM UMR CNRS5249, Grenoble, France
- * E-mail:
| |
Collapse
|
23
|
Ruiz‐Hitzky E, Darder M, Wicklein B, Ruiz‐Garcia C, Martín‐Sampedro R, del Real G, Aranda P. Nanotechnology Responses to COVID-19. Adv Healthc Mater 2020; 9:e2000979. [PMID: 32885616 DOI: 10.1002/adhm.202000979] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Researchers, engineers, and medical doctors are made aware of the severity of the COVID-19 infection and act quickly against the coronavirus SARS-CoV-2 using a large variety of tools. In this review, a panoply of nanoscience and nanotechnology approaches show how these disciplines can help the medical, technical, and scientific communities to fight the pandemic, highlighting the development of nanomaterials for detection, sanitation, therapies, and vaccines. SARS-CoV-2, which can be regarded as a functional core-shell nanoparticle (NP), can interact with diverse materials in its vicinity and remains attached for variable times while preserving its bioactivity. These studies are critical for the appropriate use of controlled disinfection systems. Other nanotechnological approaches are also decisive for the development of improved novel testing and diagnosis kits of coronavirus that are urgently required. Therapeutics are based on nanotechnology strategies as well and focus on antiviral drug design and on new nanoarchitectured vaccines. A brief overview on patented work is presented that emphasizes nanotechnology applied to coronaviruses. Finally, some comments are made on patents of the initial technological responses to COVID-19 that have already been put in practice.
Collapse
Affiliation(s)
- Eduardo Ruiz‐Hitzky
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | - Margarita Darder
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | - Bernd Wicklein
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | | | - Raquel Martín‐Sampedro
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
- National Institute of Agricultural and Food Research INIA Ctra. de la Coruña Km 7.5 Madrid 28040 Spain
| | - Gustavo del Real
- National Institute of Agricultural and Food Research INIA Ctra. de la Coruña Km 7.5 Madrid 28040 Spain
| | - Pilar Aranda
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| |
Collapse
|
24
|
|
25
|
Zahra Z, Habib Z, Chung S, Badshah MA. Exposure Route of TiO 2 NPs from Industrial Applications to Wastewater Treatment and Their Impacts on the Agro-Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1469. [PMID: 32727126 PMCID: PMC7466468 DOI: 10.3390/nano10081469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The tremendous increase in the production and consumption of titanium dioxide (TiO2) nanoparticles (NPs) in numerous industrial products and applications has augmented the need to understand their role in wastewater treatment technologies. Likewise, the deleterious effects of wastewater on the environment and natural resources have compelled researchers to find out most suitable, economical and environment friendly approaches for its treatment. In this context, the use of TiO2 NPs as the representative of photocatalytic technology for industrial wastewater treatment is coming to the horizon. For centuries, the use of industrial wastewater to feed agriculture land has been a common practice across the globe and the sewage sludge generated from wastewater treatment plants is also used as fertilizer in agricultural soils. Therefore, it is necessary to be aware of possible exposure pathways of these NPs, especially in the perspective of wastewater treatment and their impacts on the agro-environment. This review highlights the potential exposure route of TiO2 NPs from industrial applications to wastewater treatment and its impacts on the agro-environment. Key elements of the review present the recent developments of TiO2 NPs in two main sectors including wastewater treatment and the agro-environment along with their potential exposure pathways. Furthermore, the direct exposure routes of these NPs from production to end-user consumption until their end phase needs to be studied in detail and optimization of their suitable applications and controlled use to ensure environmental safety.
Collapse
Affiliation(s)
- Zahra Zahra
- Department of Civil & Environmental Engineering, University of California-Irvine, Irvine, CA 92697, USA
| | - Zunaira Habib
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Sujin Chung
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, MA 02163, USA;
| | - Mohsin Ali Badshah
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
26
|
Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110754. [DOI: 10.1016/j.msec.2020.110754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/28/2020] [Accepted: 02/15/2020] [Indexed: 12/17/2022]
|
27
|
Aranda P, Wicklein B, Ruiz-Garcia C, Martín-Sampedro R, Darder M, Del Real G, Ruiz-Hitzky E. Research and Patents on Coronavirus and COVID-19: A Review. RECENT PATENTS ON NANOTECHNOLOGY 2020; 14:328-350. [PMID: 33087037 DOI: 10.2174/1872210514666201021145735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND COVID-19 pandemic is a global problem that requires the point of view of basic sciences and medicine as well as social, economics and politics disciplines. Viral particles of coronaviruses including SARS-CoV-2 as well as other enveloped viruses like influenza virus could be considered as an approximation to functional core-shell nanoparticles and therefore, their study enters the realm of nanotechnology. In this context, nanotechnology can contribute to alleviate some of the current challenges posed by COVID-19 pandemic. METHODS The present analysis contributed to diverse sources of general information, databases on scientific literature and patents to produce a review affording information on relevant areas where as nanotechnology has offered response to coronavirus challenges in the past and may be relevant now, and has offered an update of the current information on SARS-CoV-2 and COVID-19 issues. RESULTS This review contribution includes specific information including: 1) An introduction to current research on nanotechnology and related recent patents for COVID-19 responses; 2) Analysis of nonimmunogenic and immunogenic prophylaxis of COVID-19 using Nanotechnology; 3) Tools devoted to detection & diagnosis of coronaviruses and COVID-19: the role of Nanotechnology; and 4) A compilation on the research and patents on nanotechnology dealing with therapeutics & treatments of COVID-19. CONCLUSION Among the increasing literature on COVID-19, there are few works analyzing the relevance of Nanotechnology, and giving an analysis on patents dealing with coronaviruses that may provide useful information on the area. This review offers a general view of the current research investigation and recent patents dealing with aspects of immunogenic and non-immunogenic prophylaxis, detection and diagnosis as well as therapeutics and treatments.
Collapse
Affiliation(s)
- Pilar Aranda
- Materials Science Institute of Madrid, ICMM-CSIC, c/Sor Juana Ines de la Cruz 3, 28049, Madrid, Spain
| | - Bernd Wicklein
- Materials Science Institute of Madrid, ICMM-CSIC, c/Sor Juana Ines de la Cruz 3, 28049, Madrid, Spain
| | - Cristina Ruiz-Garcia
- Centre National de la Recherche Scientifique, CNRS, CEMHTI, (UPR 3079), Universite d'Orleans, 45071 Orleans, France
| | - Raquel Martín-Sampedro
- Materials Science Institute of Madrid, ICMM-CSIC, c/Sor Juana Ines de la Cruz 3, 28049, Madrid, Spain
| | - Margarita Darder
- Materials Science Institute of Madrid, ICMM-CSIC, c/Sor Juana Ines de la Cruz 3, 28049, Madrid, Spain
| | - Gustavo Del Real
- National Institute of Agricultural and Food Research, INIA, Ctra de la Coruna Km 7.5, Madrid 28040, Spain
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, ICMM-CSIC, c/Sor Juana Ines de la Cruz 3, 28049, Madrid, Spain
| |
Collapse
|