1
|
Gavande V, Nagappan S, Seo B, Lee WK. A systematic review on green and natural polymeric nanofibers for biomedical applications. Int J Biol Macromol 2024; 262:130135. [PMID: 38354938 DOI: 10.1016/j.ijbiomac.2024.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Electrospinning is the simplest technique to produce ultrathin nanofibers, which enables the use of nanotechnology in various applications. Nanofibrous materials produced through electrospinning have garnered significant attention in biomedical applications due to their unique properties and versatile potential. In recent years, there has been a growing emphasis on incorporating sustainability principles into material design and production. However, electrospun nanofibers, owing to their reliance on solvents associated with significant drawbacks like toxicity, flammability, and disposal challenges, frequently fall short of meeting environmentally friendly standards. Due to the limited solvent choices and heightened concerns for safety and hygiene in modern living, it becomes imperative to carefully assess the implications of employing electrospun nanofibers in diverse applications and consumer products. This systematic review aims to comprehensively assess the current state of research and development in the field of "green and natural" electrospun polymer nanofibers as well as more fascinating and eco-friendly commercial techniques, solvent preferences, and other green routes that respect social and legal restrictions tailored for biomedical applications. We explore the utilization of biocompatible and biodegradable polymers sourced from renewable feedstocks, eco-friendly processing techniques, and the evaluation of environmental impacts. Our review highlights the potential of green and natural electrospun nanofibers to address sustainability concerns while meeting the demanding requirements of various biomedical applications, including tissue engineering, drug delivery, wound healing, and diagnostic platforms. We analyze the advantages, challenges, and future prospects of these materials, offering insights into the evolving landscape of environmentally responsible nanofiber technology in the biomedical field.
Collapse
Affiliation(s)
- Vishal Gavande
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Saravanan Nagappan
- Industry-University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea
| | - Bongkuk Seo
- Advanced Industrial Chemistry Research Center, Advanced Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Won-Ki Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Eivazzadeh-Keihan R, Sadat Z, Lalebeigi F, Naderi N, Panahi L, Ganjali F, Mahdian S, Saadatidizaji Z, Mahdavi M, Chidar E, Soleimani E, Ghaee A, Maleki A, Zare I. Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review. NANOSCALE ADVANCES 2024; 6:337-366. [PMID: 38235087 PMCID: PMC10790973 DOI: 10.1039/d3na00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/03/2023] [Indexed: 01/19/2024]
Abstract
Mechanical properties, such as elasticity modulus, tensile strength, elongation, hardness, density, creep, toughness, brittleness, durability, stiffness, creep rupture, corrosion and wear, a low coefficient of thermal expansion, and fatigue limit, are some of the most important features of a biomaterial in tissue engineering applications. Furthermore, the scaffolds used in tissue engineering must exhibit mechanical and biological behaviour close to the target tissue. Thus, a variety of materials has been studied for enhancing the mechanical performance of composites. Carbon-based nanostructures, such as graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), fibrous carbon nanostructures, and nanodiamonds (NDs), have shown great potential for this purpose. This is owing to their biocompatibility, high chemical and physical stability, ease of functionalization, and numerous surface functional groups with the capability to form covalent bonds and electrostatic interactions with other components in the composite, thus significantly enhancing their mechanical properties. Considering the outstanding capabilities of carbon nanostructures in enhancing the mechanical properties of biocomposites and increasing their applicability in tissue engineering and the lack of comprehensive studies on their biosafety and role in increasing the mechanical behaviour of scaffolds, a comprehensive review on carbon nanostructures is provided in this study.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Sadat
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Farnaz Lalebeigi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Nooshin Naderi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Leila Panahi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fatemeh Ganjali
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Sakineh Mahdian
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Saadatidizaji
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Elham Chidar
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Erfan Soleimani
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran P.O. Box 14395-1561 Tehran Iran
| | - Ali Maleki
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd Shiraz 7178795844 Iran
| |
Collapse
|
3
|
Sattariazar S, Nejad Ebrahimi S, Arsalani N. Enhancing the properties of electrospun polyvinyl Alcohol/Oxidized sodium alginate nanofibers with fluorescence carbon Dots: Preparation and characterization. Int J Pharm 2023; 644:123358. [PMID: 37647981 DOI: 10.1016/j.ijpharm.2023.123358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
The objective of this study was to develop fluorescence nanofibrous polyvinyl alcohol/oxidized sodium alginate (PVA-OSA) incorporated with carbon dots (CDs) through Schiff-base interaction. The carbon dots used in this study were derived from the polyphenol-enriched extract of pomegranate peel, as established in previous work, as the reinforcing and antioxidant agent to enhance the physicochemical and biological properties of the nanofibers were used. The fabricated nanofibers were characterized using FE-SEM, FT-IR, XRD, and DSC analysis. The FE-SEM results revealed that an increase in the number of CDs in the nanofibers led to a decrease in diameter (809.6 ± 77.1 nm to 273.16 ± 41.1 nm). Furthermore, surface modification caused a significant reduction in the amount of surface roughness of the nanofibers. Incorporating CDs not only reduced the scaffold diameter but also improved its mechanical properties and promoted the growth of fibroblast cells. The ultimate tensile strength of scaffolds with and without CDs was 2.15 ± 0.02 MPa and 1.53 ± 0.74 MPa respectively. The influence of CDs amount on the properties of nanofibers showed that the swelling capacity and degradability of nanofibers can be adjusted by changing the range of CDs. Apart from the aforementioned benefits of incorporating CDs in improving nanofiber properties, their exceptional antioxidant properties can be harnessed for protecting nanofibers against oxidation and as a healing agent in wound dressings.
Collapse
Affiliation(s)
- Simin Sattariazar
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.
| | - Nasser Arsalani
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Zakrzewska A, Zargarian SS, Rinoldi C, Gradys A, Jarząbek D, Zanoni M, Gualandi C, Lanzi M, Pierini F. Electrospun Poly(vinyl alcohol)-Based Conductive Semi-interpenetrating Polymer Network Fibrous Hydrogel: A Toolbox for Optimal Cross-Linking. ACS MATERIALS AU 2023; 3:464-482. [PMID: 38089097 PMCID: PMC10510526 DOI: 10.1021/acsmaterialsau.3c00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 01/08/2025]
Abstract
Cross-linking of poly(vinyl alcohol) (PVA) creates a three-dimensional network by bonding adjacent polymer chains. The cross-linked structure, upon immersion in water, turns into a hydrogel, which exhibits unique absorption properties due to the presence of hydrophilic groups within the PVA polymer chains and, simultaneously, ceases to be soluble in water. The properties of PVA can be adjusted by chemical modification or blending with other substances, such as polymers, e.g., conductive poly[3-(potassium-5-butanoate)thiophene-2,5-diyl] (P3KBT). In this work, PVA-based conductive semi-interpenetrating polymer networks (semi-IPNs) are successfully fabricated. The systems are obtained as a result of electrospinning of PVA/P3KBT precursor solutions with different polymer concentrations and then cross-linking using "green", environmentally safe methods. One approach consists of thermal treatment (H), while the second approach combines stabilization with ethanol and heating (E). The comprehensive characterization allows to evaluate the correlation between the cross-linking methods and properties of nanofibrous hydrogels. While both methods are successful, the cross-linking density is higher in the thermally cross-linked samples, resulting in lower conductivity and swelling ratio compared to the E-treated samples. Moreover, the H-cross-linked systems have better mechanical properties-lower stiffness and greater tensile strength. All the tested systems are biocompatible, and interestingly, due to the presence of P3KBT, they show photoresponsivity to solar radiation generated by the simulator. The results indicate that both methods of PVA cross-linking are highly effective and can be applied to a specific system depending on the target, e.g., biomedical or electronic applications.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Department
of Biosystems and Soft Matter, Institute of Fundamental Technological
Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute of Fundamental Technological
Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Chiara Rinoldi
- Department
of Biosystems and Soft Matter, Institute of Fundamental Technological
Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Arkadiusz Gradys
- Laboratory
of Polymers and Biomaterials, Institute of Fundamental Technological
Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Dariusz Jarząbek
- Department
of Mechanics of Materials, Institute of Fundamental Technological
Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Michele Zanoni
- Department
of Chemistry “Giacomo Ciamician″, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Chiara Gualandi
- Department
of Chemistry “Giacomo Ciamician″, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Massimiliano Lanzi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute of Fundamental Technological
Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Zulkifli MZA, Nordin D, Shaari N, Kamarudin SK. Overview of Electrospinning for Tissue Engineering Applications. Polymers (Basel) 2023; 15:polym15112418. [PMID: 37299217 DOI: 10.3390/polym15112418] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Tissue engineering (TE) is an emerging field of study that incorporates the principles of biology, medicine, and engineering for designing biological substitutes to maintain, restore, or improve tissue functions with the goal of avoiding organ transplantation. Amongst the various scaffolding techniques, electrospinning is one of the most widely used techniques to synthesise a nanofibrous scaffold. Electrospinning as a potential tissue engineering scaffolding technique has attracted a great deal of interest and has been widely discussed in many studies. The high surface-to-volume ratio of nanofibres, coupled with their ability to fabricate scaffolds that may mimic extracellular matrices, facilitates cell migration, proliferation, adhesion, and differentiation. These are all very desirable properties for TE applications. However, despite its widespread use and distinct advantages, electrospun scaffolds suffer from two major practical limitations: poor cell penetration and poor load-bearing applications. Furthermore, electrospun scaffolds have low mechanical strength. Several solutions have been offered by various research groups to overcome these limitations. This review provides an overview of the electrospinning techniques used to synthesise nanofibres for TE applications. In addition, we describe current research on nanofibre fabrication and characterisation, including the main limitations of electrospinning and some possible solutions to overcome these limitations.
Collapse
Affiliation(s)
- Muhammad Zikri Aiman Zulkifli
- Department of Chemical & Process Engineering, Faculty of Engineering & Build Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Darman Nordin
- Department of Chemical & Process Engineering, Faculty of Engineering & Build Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Norazuwana Shaari
- Full Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Siti Kartom Kamarudin
- Full Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
6
|
Yang Q, Guo J, Zhang S, Guan F, Yu Y, Feng S, Song X, Bao D, Zhang X. Development of cell adhesive and inherently antibacterial polyvinyl alcohol/polyethylene oxide nanofiber scaffolds via incorporating chitosan for tissue engineering. Int J Biol Macromol 2023; 236:124004. [PMID: 36914060 DOI: 10.1016/j.ijbiomac.2023.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Currently, polyvinyl alcohol (PVA) and polyethylene oxide (PEO), as tissue engineering scaffolds materials, had been widely studied, however the hard issues in cell adhesive and antimicrobial properties still seriously limited their application in biomedical respects. Herein, we solved both hard issues by incorporating chitosan (CHI) into the PVA/PEO system, and successfully prepared PVA/PEO/CHI nanofiber scaffolds via electrospinning technology. First, the hierarchical pore structure and elevated porosity stacked by nanofiber of the nanofiber scaffolds supplied suitable space for cell growth. Significantly, the PVA/PEO/CHI nanofiber scaffolds (the cytotoxicity of grade 0) effectively improved cell adhesion by regulating the CHI content, and presented positively correlated with the CHI content. Besides, the excellent surface wettability of PVA/PEO/CHI nanofiber scaffolds exhibited maximum absorbability at a CHI content of 15 wt%. Based on the FTIR, XRD, and mechanical test results, we studied the semi-quantitative effect of hydrogen content on the aggregated state structure and mechanical properties of the PVA/PEO/CHI nanofiber scaffolds. The breaking stress of the nanofiber scaffolds increased with increasing CHI content, and the maximum value reached 15.37 MPa, increased by 67.61 %. Therefore, such dual biofunctional nanofiber scaffolds with improved mechanical properties showed great potential application in tissue engineering scaffolds.
Collapse
Affiliation(s)
- Qiang Yang
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China.
| | - Sen Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Yue Yu
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Shi Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Xuecui Song
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Da Bao
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| | - Xin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Liaoning 116034, PR China
| |
Collapse
|
7
|
Bellier N, Baipaywad P, Ryu N, Lee JY, Park H. Recent biomedical advancements in graphene oxide- and reduced graphene oxide-based nanocomposite nanocarriers. Biomater Res 2022; 26:65. [DOI: 10.1186/s40824-022-00313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/30/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractRecently, nanocarriers, including micelles, polymers, carbon-based materials, liposomes, and other substances, have been developed for efficient delivery of drugs, nucleotides, and biomolecules. This review focuses on graphene oxide (GO) and reduced graphene oxide (rGO) as active components in nanocarriers, because their chemical structures and easy functionalization can be valuable assets for in vitro and in vivo delivery. Herein, we describe the preparation, structure, and functionalization of GO and rGO. Additionally, their important properties to function as nanocarriers are presented, including their molecular interactions with various compounds, near-infrared light adsorption, and biocompatibility. Subsequently, their mechanisms and the most appealing examples of their delivery applications are summarized. Overall, GO- and rGO-based nanocomposites show great promise as multipurpose nanocarriers owing to their various potential applications in drug and gene delivery, phototherapy, bioimaging, biosensing, tissue engineering, and as antibacterial agents.
Collapse
|
8
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
9
|
Homem NC, Miranda C, Teixeira MA, Teixeira MO, Domingues JM, Seibert D, Antunes JC, Amorim MTP, Felgueiras HP. Graphene oxide-based platforms for wound dressings and drug delivery systems: A 10 year overview. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Rahmani E, Pourmadadi M, Zandi N, Rahdar A, Baino F. pH-Responsive PVA-Based Nanofibers Containing GO Modified with Ag Nanoparticles: Physico-Chemical Characterization, Wound Dressing, and Drug Delivery. MICROMACHINES 2022; 13:mi13111847. [PMID: 36363869 PMCID: PMC9698885 DOI: 10.3390/mi13111847] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 05/03/2023]
Abstract
Site-specific drug delivery and carrying repairing agents for wound healing purposes can be achieved using the intertwined three-dimensional structure of nanofibers. This study aimed to optimize and fabricate poly (vinyl alcohol) (PVA)-graphene oxide (GO)-silver (Ag) nanofibers containing curcumin (CUR) using the electrospinning method for potential wound healing applications. Fourier Transform Infrared (FTIR) spectrophotometry, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and zeta potential were used to characterize the nanostructures. The mechanical properties of the nanostructures were subsequently examined by tensile strength and elongation test. As shown by MIC analysis of E. coli and S. aureus bacteria, the fabricated nanofibers had superior inhibitory effects on the bacteria growth. Ag nanoparticles incorporation into the nanofibers resulted in increased loading and encapsulation efficiencies from 21% to 56% and from 61% to 86%, respectively. CUR release from PVA/GO-Ag-CUR nanofiber at pH 7.4 was prevented, while the acidic microenvironment (pH 5.4) increased the release of CUR from PVA/GO-Ag-CUR nanofiber, corroborating the pH-sensitivity of the nanofibers. Using the in vitro wound healing test on NIH 3T3 fibroblast cells, we observed accelerated growth and proliferation of cells cultured on PVA/GO-Ag-CUR nanofibers.
Collapse
Affiliation(s)
- Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran 1983963113, GC, Iran
| | - Nayereh Zandi
- Department of Medical Laboratory Science, School of Medicine, Qazvin University of Medical Sciences, Qazvin 34, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); (F.B.)
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Correspondence: (A.R.); (F.B.)
| |
Collapse
|
11
|
Chen CY, Tsai PH, Lin YH, Huang CY, Chung JHY, Chen GY. Controllable graphene oxide-based biocompatible hybrid interface as an anti-fibrotic coating for metallic implants. Mater Today Bio 2022; 15:100326. [PMID: 35761844 PMCID: PMC9233272 DOI: 10.1016/j.mtbio.2022.100326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
In tissue engineering, foreign body reactions (FBRs) that may occur after the insertion of medical implants are a considerable challenge. Materials currently used in implants are mainly metals that are non-organic, and the lack of biocompatibility and absence of immune regulations may lead to fibrosis after long periods of implantation. Here, we introduce a highly biocompatible hybrid interface of graphene oxide (GO) and collagen type I (COL-I), where the topological nanostructure can effectively inhibit the differentiation of fibroblasts into myofibroblasts. The structure and roughness of this coating interface can be easily adjusted at the nanoscale level through changes in the GO concentration, thereby effectively inducing the polarization of macrophages to the M1 state without producing excessive amounts of pro-inflammatory factors. Compared to nanomaterials or the extracellular matrix as an anti-fibrotic interface, this hybrid bio-interface has superior mechanical strength, physical structures, and high inflammation. Evidenced by inorganic materials such as glass, titanium, and nitinol, GO-COL shows great potential for use in medical implants and cell-material interfaces.
Collapse
Affiliation(s)
- Chong-You Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.,Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Pei-Hsuan Tsai
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Ya-Hui Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chien-Yu Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.,Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Johnson H Y Chung
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.,Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
12
|
Teixeira MA, Antunes JC, Seabra CL, Tohidi SD, Reis S, Amorim MTP, Felgueiras HP. Tiger 17 and pexiganan as antimicrobial and hemostatic boosters of cellulose acetate-containing poly(vinyl alcohol) electrospun mats for potential wound care purposes. Int J Biol Macromol 2022; 209:1526-1541. [PMID: 35469947 DOI: 10.1016/j.ijbiomac.2022.04.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
Abstract
In this research, we propose to engineer a nanostructured mat that can simultaneously kill bacteria and promote an environment conducive to healing for prospective wound care. Polyvinyl alcohol (PVA) and cellulose acetate (CA) were combined at different polymer ratios (100/0, 90/10, 80/20% v/v), electrospun and crosslinked with glutaraldehyde vapor. Crosslinked fibers increased in diameter (from 194 to 278 nm), retaining their uniform structure. Fourier-transform infrared spectroscopy and thermal analyses proved the excellent miscibility between polymers. CA incorporation incremented the fibers swelling capacity and reduced the water vapor and air permeabilities of the mats, preventing the excessive drying of wounds. The antimicrobial peptide cys-pexiganan and the immunoregulatory peptide Tiger 17 were incorporated onto the mats via polyethylene glycol spacer (hydroxyl-PEG2-maleimide) and physisorbed, respectively. Time-kill kinetics evaluations revealed the mats effectiveness against Staphylococcus aureus and Pseudomonas aeruginosa. Tiger 17 played a major role in accelerating clotting of re-calcified plasma. Data reports for the first time the collaborative effect of pexiganan and Tiger 17 against bacterial infections and in boosting hemostasis. Cytocompatibility data verified the peptide-modified mats safety. Croslinked 90/10 PVA/CA mats were deemed the most promising combination due to their moderate hydrophilicity and permeabilities, swelling capacity, and high yields of peptide loading.
Collapse
Affiliation(s)
- Marta A Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Catarina L Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Shafagh D Tohidi
- Digital Transformation Colab (DTX), Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Salette Reis
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Teresa P Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
13
|
Shokrani H, Shokrani A, Jouyandeh M, Seidi F, Gholami F, Kar S, Munir MT, Kowalkowska-Zedler D, Zarrintaj P, Rabiee N, Saeb MR. Green Polymer Nanocomposites for Skin Tissue Engineering. ACS APPLIED BIO MATERIALS 2022; 5:2107-2121. [PMID: 35504039 DOI: 10.1021/acsabm.2c00313] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements to green polymers. Green nanocomposites (either nanoscale natural macromolecules or biopolymers containing nanoparticles) are a class of scaffolds with acceptable biomedical properties window (drug delivery and cardiac, nerve, bone, cartilage as well as skin tissue engineering), enabling one to achieve the required level of skin regeneration and wound healing. In this review, we have collected, summarized, screened, analyzed, and interpreted the properties of green nanocomposites used in skin tissue engineering and wound dressing. We particularly emphasize the mechanical and biological properties that skin cells need to meet when seeded on the scaffold. In this regard, the latest state of the art studies directed at fabrication of skin tissue and bionanocomposites as well as their mechanistic features are discussed, whereas some unspoken complexities and challenges for future developments are highlighted.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 11155-4563 Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Fatemeh Gholami
- New Technologies - Research Centre, University of West Bohemia, Veleslavínova 42, 301 00 Plzeň, Czech Republic
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran 145888-9694, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
14
|
Nica SL, Zaltariov MF, Pamfil D, Bargan A, Rusu D, Raţă DM, Găină C, Atanase LI. MWCNTs Composites-Based on New Chemically Modified Polysulfone Matrix for Biomedical Applications. NANOMATERIALS 2022; 12:nano12091502. [PMID: 35564211 PMCID: PMC9101761 DOI: 10.3390/nano12091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023]
Abstract
Polyvinyl alcohol (PVA) is a non-toxic biosynthetic polymer. Due to the hydrophilic properties of the PVA, its utilization is an easy tool to modify the properties of materials inducing increased hydrophilicity, which can be noticed in the surface properties of the materials, such as wettability. Based on this motivation, we proposed to obtain high-performance composite materials by a facile synthetic method that involves the cross-linking process of polyvinyl alcohol (PVA) with and aldehyde-functionalized polysulfone(mPSF) precursor, prior to incorporation of modified MWCNTs with hydrophilic groups, thus ensuring a high compatibility between the polymeric and the filler components. Materials prepared in this way have been compared with those based on polyvinyl alcohol and same fillers (mMWCNTs) in order to establish the influence of the polymeric matrix on the composites properties. The amount of mMWCNTs varied in both polymeric matrices between 0.5 and 5 wt%. Fourier transformed infrared with attenuated total reflectance spectroscopy (FTIR-ATR) was employed to confirm the changes noted in the PVA, mPSF and their composites. Hemolysis degree was investigated in correlation with the material structural features. Homogenous distribution of mMWCNTs in all the composite materials has been confirmed by scanning electron microscopy. The hydrophilicity of both composite systems, estimated by the contact angle method, was influenced by the presence of the filler amount mMWCNTs in both matrices (PVA and mPSF). Our work demonstrates that mPSF/mMWCNTs and PVA/mMWCNTs composite could be used as water purification or blood-filtration materials.
Collapse
Affiliation(s)
- Simona Luminita Nica
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
- Correspondence: (S.L.N.); (L.I.A.)
| | - Mirela-Fernanda Zaltariov
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Daniela Pamfil
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Alexandra Bargan
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Daniela Rusu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Delia Mihaela Raţă
- Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania;
| | - Constantin Găină
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania; (M.-F.Z.); (D.P.); (A.B.); (D.R.); (C.G.)
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania;
- Correspondence: (S.L.N.); (L.I.A.)
| |
Collapse
|
15
|
Eivazzadeh-Keihan R, Alimirzaloo F, Aghamirza Moghim Aliabadi H, Bahojb Noruzi E, Akbarzadeh AR, Maleki A, Madanchi H, Mahdavi M. Functionalized graphene oxide nanosheets with folic acid and silk fibroin as a novel nanobiocomposite for biomedical applications. Sci Rep 2022; 12:6205. [PMID: 35418605 PMCID: PMC9007964 DOI: 10.1038/s41598-022-10212-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, a novel graphene oxide-folic acid/silk fibroin (GO-FA/SF) nanobiocomposite scaffold was designed and fabricated using affordable and non-toxic materials. The GO was synthesized using the hummer method, covalently functionalized with FA, and then easily conjugated with extracted SF via the freeze-drying process. For characterization of the scaffold, several techniques were employed: Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and thermogravimetric analysis (TGA). The cell viability method, hemolysis, and anti-biofilm assays were performed, exploring the biological capability of the nanobiocomposite. The cell viability percentages were 96.67, 96.35 and 97.23% for 24, 48, and 72 h, respectively, and its hemolytic effect was less than 10%. In addition, it was shown that this nanobiocomposite prevents the formation of Pseudomonas aeruginosa biofilm and has antibacterial activity.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Farkhondeh Alimirzaloo
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers (Basel) 2022; 14:polym14081508. [PMID: 35458258 PMCID: PMC9029721 DOI: 10.3390/polym14081508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence: or (A.A.N.); (S.B.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Nasser S. Awwad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry, Organic Chemistry I, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: or (A.A.N.); (S.B.)
| |
Collapse
|
17
|
Meneses J, van de Kemp T, Costa-Almeida R, Pereira R, Magalhães FD, Castilho M, Pinto AM. Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering. Polymers (Basel) 2022; 14:1038. [PMID: 35267861 PMCID: PMC8914623 DOI: 10.3390/polym14051038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Graphene-based materials (GBM) are considered one of the 21st century's most promising materials, as they are incredibly light, strong, thin and have remarkable electrical and thermal properties. As a result, over the past decade, their combination with a diverse range of synthetic polymers has been explored in tissue engineering (TE) and regenerative medicine (RM). In addition, a wide range of methods for fabricating polymer/GBM scaffolds have been reported. This review provides an overview of the most recent advances in polymer/GBM composite development and fabrication, focusing on methods such as electrospinning and additive manufacturing (AM). As a future outlook, this work stresses the need for more in vivo studies to validate polymer/GBM composite scaffolds for TE applications, and gives insight on their fabrication by state-of-the-art processing technologies.
Collapse
Affiliation(s)
- João Meneses
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Tom van de Kemp
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Raquel Costa-Almeida
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rúben Pereira
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Owida HA, Al-Nabulsi JI, Alnaimat F, Al-Ayyad M, Turab NM, Al Sharah A, Shakur M. Recent Applications of Electrospun Nanofibrous Scaffold in Tissue Engineering. Appl Bionics Biomech 2022; 2022:1953861. [PMID: 35186119 PMCID: PMC8849965 DOI: 10.1155/2022/1953861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is a relatively new area of research that combines medical, biological, and engineering fundamentals to create tissue-engineered constructs that regenerate, preserve, or slightly increase the functions of tissues. To create mature tissue, the extracellular matrix should be imitated by engineered structures, allow for oxygen and nutrient transmission, and release toxins during tissue repair. Numerous recent studies have been devoted to developing three-dimensional nanostructures for tissue engineering. One of the most effective of these methods is electrospinning. Numerous nanofibrous scaffolds have been constructed over the last few decades for tissue repair and restoration. The current review gives an overview of attempts to construct nanofibrous meshes as tissue-engineered scaffolds for various tissues such as bone, cartilage, cardiovascular, and skin tissues. Also, the current article addresses the recent improvements and difficulties in tissue regeneration using electrospinning.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Jamal I. Al-Nabulsi
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Feras Alnaimat
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Muhammad Al-Ayyad
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Nidal M. Turab
- Department of Networks and Information Security, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashraf Al Sharah
- Computer Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Murad Shakur
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
19
|
Miranda CS, Silva AFG, Pereira-Lima SMMA, Costa SPG, Homem NC, Felgueiras HP. Tunable Spun Fiber Constructs in Biomedicine: Influence of Processing Parameters in the Fibers' Architecture. Pharmaceutics 2022; 14:pharmaceutics14010164. [PMID: 35057060 PMCID: PMC8781456 DOI: 10.3390/pharmaceutics14010164] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022] Open
Abstract
Electrospinning and wet-spinning have been recognized as two of the most efficient and promising techniques for producing polymeric fibrous constructs for a wide range of applications, including optics, electronics, food industry and biomedical applications. They have gained considerable attention in the past few decades because of their unique features and tunable architectures that can mimic desirable biological features, responding more effectively to local demands. In this review, various fiber architectures and configurations, varying from monolayer and core-shell fibers to tri-axial, porous, multilayer, side-by-side and helical fibers, are discussed, highlighting the influence of processing parameters in the final constructs. Additionally, the envisaged biomedical purposes for the examined fiber architectures, mainly focused on drug delivery and tissue engineering applications, are explored at great length.
Collapse
Affiliation(s)
- Catarina S. Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Ana Francisca G. Silva
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Sílvia M. M. A. Pereira-Lima
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Susana P. G. Costa
- Center of Chemistry (CQ), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Natália C. Homem
- Digital Transformation CoLab (DTx), Building 1, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Correspondence: ; Tel.: +351-253-510-283; Fax: +351-253-510-293
| |
Collapse
|
20
|
Meng Z, Wang L, Shen L, Li Z, Zhao Z, Wang X. Supercritical carbon dioxide assisted fabrication of biomimetic sodium alginate/silk fibroin nanofibrous scaffolds. J Appl Polym Sci 2021. [DOI: 10.1002/app.51421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhi‐Yuan Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Li Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Lin‐Yi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Ze‐Hao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| | - Xin‐Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| |
Collapse
|
21
|
Xue W, Du J, Li Q, Wang Y, Lu Y, Fan J, Yu S, Yang Y. Preparation, properties and application of graphene-based materials in tissue engineering scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1121-1136. [PMID: 34751592 DOI: 10.1089/ten.teb.2021.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tissue engineering has great application prospect as an effective treatment for tissue and organ injury, functional reduction or loss. Bioactive tissues are reconstructed and damaged organs are repaired by the three elements including cells, scaffold materials and growth factors. Graphene-based composites can be used as reinforcing auxiliary materials for tissue scaffold preparation because of their large specific surface area, and good mechanical support. Tissue engineering scaffolds with graphene-based composites have been widely studied. Part of research have focused on the application of graphene-based composites in single tissue engineering; The basic principles of graphene materials used in tissue engineering are summarized in some researches. Some studies emphasized the key problems and solutions urgently needed to be solved in the development of tissue engineering, and discussed their application prospect. Some related studies mainly focused on the conductivity of graphene, and discussed the application of electroactive scaffolds in tissue engineering. In this review, the composite materials for preparing tissue engineering scaffolds are briefly described, which emphasizes the preparation methods, biological properties and practical applications of graphene-based composite scaffolds. The synthetic techniques with stressing solvent casting, electrospinning and 3D printing are introduced in detail. The mechanical, cell-oriented and biocompatible properties of graphene-based composite scaffolds in tissue engineering are analyzed and summarized. Their applications in bone tissue engineering, nerve tissue engineering, cardiovascular tissue engineering and other tissue engineering are summarized systematically. In addition, this work also looks forward to the difficulties and challenges in the future research, providing some references for the follow-up research of graphene-based composites in tissue engineering scaffolds.
Collapse
Affiliation(s)
- Wenqiang Xue
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jinglei Du
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Qiang Li
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Yan Wang
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Yemin Lu
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jiangbo Fan
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Shiping Yu
- Second Hospital of Shanxi Medical University, 74761, 582 Wuyi Road, Taiyuan City, Shanxi Province, Taiyuan, China, 030001;
| | - Yongzhen Yang
- Taiyuan University of Technology, 47846, Taiyuan, Shanxi , China;
| |
Collapse
|
22
|
Venkataprasanna KS, Prakash J, Mathapati SS, Bharath G, Banat F, Venkatasubbu GD. Development of chitosan/poly (vinyl alcohol)/graphene oxide loaded with vanadium doped titanium dioxide patch for visible light driven antibacterial activity and accelerated wound healing application. Int J Biol Macromol 2021; 193:1430-1448. [PMID: 34742841 DOI: 10.1016/j.ijbiomac.2021.10.207] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Wound healing is a multi-stage process that is dynamic, interactive, and complicated. However, many nanomaterials are employed to expedite wound healing by demonstrating antibacterial activity or boosting cell proliferation. But only one phase is focused during the wound healing process. As a result, there is a need for optimum wound dressing materials that promotes different wound healing cascades with ideal properties. Herein, Graphene Oxide loaded with vanadium (V) doped titanium dioxide (TiO2) blended with chitosan, and polyvinyl alcohol (CS/PVA/GO/TiO2-V) patch was developed for wound healing. XRD, FTIR and FE-SEM analyses were carried out to study the morphology and structural property of the patch. The fabricated patch has a high surface porosity, excellent moisture vapor transfer rate, appropriate swelling behaviour, and oxygen permeability, which results in an excellent moist environment for wound breathing and effective management of wound exudates. The antibacterial test showed significant antibacterial efficacy against wound infections in the presence of light when compared to dark. In-vitro analysis such as hemocompatibility, cytotoxicity, cell adhesion, and scratch assay show the predicted potential wound healing application with high biocompatibility. These results suggest that CS/PVA/GO/TiO2-V patch provides a microenvironment favourable to cells' growth and differentiation and positively modulates full-thickness wounds' healing.
Collapse
Affiliation(s)
| | - J Prakash
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu Dist, Tamil Nadu, India
| | - Santosh S Mathapati
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - G Bharath
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - G Devanand Venkatasubbu
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu Dist, Tamil Nadu, India.
| |
Collapse
|
23
|
Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic. Viruses 2021; 13:v13091817. [PMID: 34578399 PMCID: PMC8473461 DOI: 10.3390/v13091817] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the decades, the world has witnessed diverse virus associated pandemics. The significant inhibitory effects of marine sulfated polysaccharides against SARS-CoV-2 shows its therapeutic potential in future biomedical applications and drug development. Algal polysaccharides exhibited significant role in antimicrobial, antitumor, antioxidative, antiviral, anticoagulant, antihepatotoxic and immunomodulating activities. Owing to their health benefits, the sulfated polysaccharides from marine algae are a great deal of interest globally. Algal polysaccharides such as agar, alginate, carrageenans, porphyran, fucoidan, laminaran and ulvans are investigated for their nutraceutical potential at different stages of infection processes, structural diversity, complexity and mechanism of action. In this review, we focus on the recent antiviral studies of the marine algae-based polysaccharides and their potential towards antiviral medicines.
Collapse
|
24
|
Feng Y, Zhao G, Xu M, Xing X, Yang L, Ma Y, Qi M, Zhang X, Gao D. rGO/Silk Fibroin-Modified Nanofibrous Patches Prevent Ventricular Remodeling via Yap/Taz-TGFβ1/Smads Signaling After Myocardial Infarction in Rats. Front Cardiovasc Med 2021; 8:718055. [PMID: 34485415 PMCID: PMC8415403 DOI: 10.3389/fcvm.2021.718055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: After acute myocardial infarction (AMI), the loss of cardiomyocytes and dysregulation of extracellular matrix homeostasis results in impaired cardiac function and eventually heart failure. Cardiac patches have emerged as a potential therapeutic strategy for AMI. In this study, we fabricated and produced reduced graphene oxide (rGO)/silk fibroin-modified nanofibrous biomaterials as a cardiac patch to repair rat heart tissue after AMI and investigated the potential role of rGO/silk patch on reducing myocardial fibrosis and improving cardiac function in the infarcted rats. Method: rGO/silk nanofibrous biomaterial was prepared by electrospinning and vacuum filtration. A rat model of AMI was used to investigate the ability of patches with rGO/silk to repair the injured heart in vivo. Echocardiography and stress-strain analysis of the left ventricular papillary muscles was used to assess the cardiac function and mechanical property of injured hearts treated with this cardiac patch. Masson's trichrome staining and immunohistochemical staining for Col1A1 was used to observe the degree of myocardial fibrosis at 28 days after patch implantation. The potential direct mechanism of the new patch to reduce myocardial fibrosis was explored in vitro and in vivo. Results: Both echocardiography and histopathological staining demonstrated improved cardiac systolic function and ventricular remodeling after implantation of the rGO/silk patch. Additionally, cardiac fibrosis and myocardial stiffness of the infarcted area were improved with rGO/silk. On RNA-sequencing, the gene expression of matrix-regulated genes was altered in cardiofibroblasts treated with rGO. Western blot analysis revealed decreased expression of the Yap/Taz-TGFβ1/Smads signaling pathway in heart tissue of the rGO/silk patch group as compared with controls. Furthermore, the rGO directly effect on Col I and Col III expression and Yap/Taz-TGFβ1/Smads signaling was confirmed in isolated cardiofibroblasts in vitro. Conclusion: This study suggested that rGO/silk improved cardiac function and reduced cardiac fibrosis in heart tissue after AMI. The mechanism of the anti-fibrosis effect may involve a direct regulation of rGO on Yap/Taz-TGFβ1/Smads signaling in cardiofibroblasts.
Collapse
Affiliation(s)
- Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guoxu Zhao
- School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Min Xu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xin Xing
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lijun Yang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yao Ma
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Mengyao Qi
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
Physicochemical and antibacterial characterization of Aspergillus sp. filtrate-reduced graphene oxide. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Arampatzis AS, Giannakoula K, Kontogiannopoulos KN, Theodoridis K, Aggelidou E, Rat A, Kampasakali E, Willems A, Christofilos D, Kritis A, Papageorgiou VP, Tsivintzelis I, Assimopoulou AN. Novel electrospun poly-hydroxybutyrate scaffolds as carriers for the wound healing agents alkannins and shikonins. Regen Biomater 2021; 8:rbab011. [PMID: 34211727 PMCID: PMC8240617 DOI: 10.1093/rb/rbab011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the potential of novel electrospun fiber mats loaded with alkannin and shikonin (A/S) derivatives, using as carrier a highly biocompatible, bio-derived, eco-friendly polymer such as poly[(R)-3-hydroxybutyric acid] (PHB). PHB fibers containing a mixture of A/S derivatives at different ratios were successfully fabricated via electrospinning. Αs evidenced by scanning electron microscopy, the fibers formed a bead-free mesh with average diameters from 1.25 to 1.47 μm. Spectroscopic measurements suggest that electrospinning marginally increases the amorphous content of the predominantly crystalline PHB in the fibers, while a significant drug amount lies near the fiber surface for samples of high total A/S content. All scaffolds displayed satisfactory characteristics, with the lower concentrations of A/S mixture-loaded PHB fiber mats achieving higher porosity, water uptake ratios, and entrapment efficiencies. The in vitro dissolution studies revealed that all samples released more than 70% of the encapsulated drug after 72 h. All PHB scaffolds tested by cell viability assay were proven non-toxic for Hs27 fibroblasts, with the 0.15 wt.% sample favoring cell attachment, spreading onto the scaffold surface, as well as cell proliferation. Finally, the antimicrobial activity of PHB meshes loaded with A/S mixture was documented for Staphylococcus epidermidis and S. aureus.
Collapse
Affiliation(s)
- Athanasios S Arampatzis
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki 57001, Greece
| | - Konstantina Giannakoula
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
| | - Konstantinos N Kontogiannopoulos
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki 57001, Greece
| | - Konstantinos Theodoridis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - Angélique Rat
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Elli Kampasakali
- Faculty of Engineering, School of Chemical Engineering and Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anne Willems
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Dimitrios Christofilos
- Faculty of Engineering, School of Chemical Engineering and Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - Vassilios P Papageorgiou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki 57001, Greece
| | - Ioannis Tsivintzelis
- Physical Chemistry Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki 57001, Greece
| |
Collapse
|
27
|
Zare P, Aleemardani M, Seifalian A, Bagher Z, Seifalian AM. Graphene Oxide: Opportunities and Challenges in Biomedicine. NANOMATERIALS 2021; 11:nano11051083. [PMID: 33922153 PMCID: PMC8143506 DOI: 10.3390/nano11051083] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Desirable carbon allotropes such as graphene oxide (GO) have entered the field with several biomedical applications, owing to their exceptional physicochemical and biological features, including extreme strength, found to be 200 times stronger than steel; remarkable light weight; large surface-to-volume ratio; chemical stability; unparalleled thermal and electrical conductivity; and enhanced cell adhesion, proliferation, and differentiation properties. The presence of functional groups on graphene oxide (GO) enhances further interactions with other molecules. Therefore, recent studies have focused on GO-based materials (GOBMs) rather than graphene. The aim of this research was to highlight the physicochemical and biological properties of GOBMs, especially their significance to biomedical applications. The latest studies of GOBMs in biomedical applications are critically reviewed, and in vitro and preclinical studies are assessed. Furthermore, the challenges likely to be faced and prospective future potential are addressed. GOBMs, a high potential emerging material, will dominate the materials of choice in the repair and development of human organs and medical devices. There is already great interest among academics as well as in pharmaceutical and biomedical industries.
Collapse
Affiliation(s)
- Pariya Zare
- Department of Chemical Engineering, University of Tehran, Tehran 1417466191, Iran;
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK;
| | - Amelia Seifalian
- Watford General Hospital, Watford WD18 0HB, UK;
- UCL Medical School, University College London, London WC1E 6BT, UK
| | - Zohreh Bagher
- ENT and Head and Neck Research Centre and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran 1445413131, Iran
- Correspondence: (Z.B.); (A.M.S.); Tel.: +44-(0)-2076911122 (A.M.S.)
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London NW1 0NH, UK
- Correspondence: (Z.B.); (A.M.S.); Tel.: +44-(0)-2076911122 (A.M.S.)
| |
Collapse
|
28
|
Grant JJ, Pillai SC, Hehir S, McAfee M, Breen A. Biomedical Applications of Electrospun Graphene Oxide. ACS Biomater Sci Eng 2021; 7:1278-1301. [PMID: 33729744 DOI: 10.1021/acsbiomaterials.0c01663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene oxide (GO) has broad potential in the biomedical sector. The oxygen-abundant nature of GO means the material is hydrophilic and readily dispersible in water. GO has also been known to improve cell proliferation, drug loading, and antimicrobial properties of composites. Electrospun composites likewise have great potential for biomedical applications because they are generally biocompatible and bioresorbable, possess low immune rejection risk, and can mimic the structure of the extracellular matrix. In the current review, GO-containing electrospun composites for tissue engineering applications are described in detail. In addition, electrospun GO-containing materials for their use in drug and gene delivery, wound healing, and biomaterials/medical devices have been examined. Good biocompatibility and anionic-exchange properties of GO make it an ideal candidate for drug and gene delivery systems. Drug/gene delivery applications for electrospun GO composites are described with a number of examples. Various systems using electrospun GO-containing therapeutics have been compared for their potential uses in cancer therapy. Micro- to nanosized electrospun fibers for wound healing applications and antimicrobial applications are explained in detail. Applications of various GO-containing electrospun composite materials for medical device applications are listed. It is concluded that the electrospun GO materials will find a broad range of biomedical applications such as cardiac patches, medical device coatings, sensors, and triboelectric nanogenerators for motion sensing and biosensing.
Collapse
Affiliation(s)
- Jamie J Grant
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Suresh C Pillai
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Sarah Hehir
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Marion McAfee
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-engineering Research Division, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland.,The Centre for Precision Engineering, Materials & Manufacturing Research, Institute of Technology Sligo, Ash Lane, Ballinode, Sligo, Ireland
| |
Collapse
|
29
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
30
|
Johnson AP, Gangadharappa H, Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J Control Release 2020; 325:141-162. [DOI: 10.1016/j.jconrel.2020.06.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|