1
|
Purushothaman E, Shanmugavadivu A, Balagangadharan K, Lekhavadhani S, Saranya I, Babu S, Selvamurugan N. Osteogenic potential of esculetin-loaded chitosan nanoparticles in microporous alginate/polyvinyl alcohol scaffolds for bone tissue engineering. Int J Biol Macromol 2024; 286:138518. [PMID: 39647745 DOI: 10.1016/j.ijbiomac.2024.138518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Bone tissue engineering (BTE) is an emerging strategy for the treatment of critical bone defects using biomaterials and cells. Esculetin (ES), a coumarin phytocompound, has demonstrated therapeutic potential, although its osteogenic effects remain insufficiently explored. Owing to its hydrophobic nature, which limits its bioavailability, this study developed a drug delivery system using chitosan nanoparticles (nCS) to achieve sustained release of ES. These ES-loaded nCS nanoparticles were incorporated into biocomposite scaffolds composed of alginate (Alg) and polyvinyl alcohol (PVA) using freeze-drying. The synthesized nCS-ES nanoparticles exhibited spherical morphology with a uniform size distribution, ranging from 105 to 117 nm, and demonstrated excellent entrapment efficiencies (94.07 to 97.61 %). The nanoparticles displayed high zeta potential values (+27.8 to +33.2 mV), ensuring stable dispersion. The biocomposite scaffolds exhibited a uniform distribution of pores, with pore diameters ranging from 106 ± 14 μm to 112 ± 14 μm. The biocomposite scaffolds exhibited excellent swelling, protein adsorption, biodegradation, and biomineralization properties. The ES-loaded scaffolds showed sustained ES release, promoting osteogenesis in vitro, with the activation of the Wnt/β-catenin signaling pathway. In vivo studies using a rat tibial bone defect model further confirmed that these scaffolds stimulated new bone formation, highlighting the ES's potential for BTE applications.
Collapse
Affiliation(s)
- Elumalai Purushothaman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sushma Babu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Sathiya K, Ganesamoorthi S, Mohan S, Shanmugavadivu A, Selvamurugan N. Natural polymers-based surface engineering of bone scaffolds - A review. Int J Biol Macromol 2024; 282:136840. [PMID: 39461639 DOI: 10.1016/j.ijbiomac.2024.136840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Critical-sized bone defects present a major challenge in healthcare, necessitating innovative solutions like bone tissue engineering (BTE) to address these issues. Surface engineering of bone scaffolds plays a crucial role in BTE by integrating natural polymers with advanced techniques to closely replicate the bone microenvironment, enhancing cellular responses such as adhesion, proliferation, and osteogenic differentiation. Natural polymers like collagen, chitosan, gelatin, hyaluronic acid, and alginate are used in various surface modification methods, including physical adsorption, covalent immobilization, electrospinning, and layer-by-layer assembly. This review provides a thorough analysis of these surface modification strategies across metallic, ceramic, and polymeric scaffolds, along with characterization methodologies, preclinical studies, and future prospects. By analysing recent research, the review offers valuable insights for advancing natural polymer-based surface engineering and developing next-generation scaffolds with improved bone regenerative capabilities.
Collapse
Affiliation(s)
- K Sathiya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Srinidhi Ganesamoorthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sahithya Mohan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
3
|
Agarwal P, Mathur V, Kasturi M, Srinivasan V, Seetharam RN, S Vasanthan K. A Futuristic Development in 3D Printing Technique Using Nanomaterials with a Step Toward 4D Printing. ACS OMEGA 2024; 9:37445-37458. [PMID: 39281933 PMCID: PMC11391532 DOI: 10.1021/acsomega.4c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
3D bioprinting has shown great promise in tissue engineering and regenerative medicine for creating patient-specific tissue scaffolds and medicinal devices. The quickness, accurate imaging, and design targeting of this emerging technology have excited biomedical engineers and translational medicine researchers. Recently, scaffolds made from 3D bioprinted tissue have become more clinically effective due to nanomaterials and nanotechnology. Because of quantum confinement effects and high surface area/volume ratios, nanomaterials and nanotechnological techniques have unique physical, chemical, and biological features. The use of nanomaterials and 3D bioprinting has led to scaffolds with improved physicochemical and biological properties. Nanotechnology and nanomaterials affect 3D bioprinted tissue engineered scaffolds for regenerative medicine and tissue engineering. Biomaterials and cells that respond to stimuli change the structural shape in 4D bioprinting. With such dynamic designs, tissue architecture can change morphologically. New 4D bioprinting techniques will aid in bioactuation, biorobotics, and biosensing. The potential of 4D bioprinting in biomedical technologies is also discussed in this article.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Meghana Kasturi
- Department of Mechanical Engineering, University of Michigan, Dearborn, Michigan 48128, United States
| | - Varadharajan Srinivasan
- Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
4
|
Waidi YO, Debnath S, Datta S, Chatterjee K. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation. Biomacromolecules 2024; 25:5512-5540. [PMID: 39133748 DOI: 10.1021/acs.biomac.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Sudipto Datta
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
5
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
6
|
Chu C, Qiu J, Zhao Q, Xun X, Wang H, Yuan R, Xu X. Injectable dual drug-loaded thermosensitive liposome-hydrogel composite scaffold for vascularised and innervated bone regeneration. Colloids Surf B Biointerfaces 2024; 245:114203. [PMID: 39241633 DOI: 10.1016/j.colsurfb.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Adequate blood supply and thorough innervation are essential to the survival of tissue-engineered bones. Though great progress has been created in the application of bone tissue engineering technology to bone defect repair, many challenges remain, such as insufficient vascularisation and deficient innervation in newly regenerated bone. In the present study, we addressed these challenges by manipulating the bone regeneration microenvironment in terms of vascularisation and innervation. We used a novel injectable thermosensitive liposome-hydrogel composite scaffold as a sustained-release carrier for basic fibroblast growth factor (bFGF, which promotes angiogenesis and neurogenic differentiation) and dexamethasone (Dex, which promotes osteogenic differentiation). In vitro biological assessment demonstrated that the composite scaffold had sufficient cell compatibility; it enhanced the capacity for angiogenesis in human umbilical vein endothelial cells, and the capacity for neurogenic/osteogenic differentiation in human bone marrow mesenchymal stem cells. Moreover, the introduction of bFGF/Dex liposome-hydrogel composite scaffold to bone defect sites significantly improved vascularisation and innervated bone regeneration properties in a rabbit cranial defect model. Based on our findings, the regeneration of sufficiently vascularised and innervated bone tissue through a sustained-release scaffold with excellent injectability and body temperature sensitivity represents a promising tactic towards bone defect repair.
Collapse
Affiliation(s)
- Chen Chu
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Jianzhong Qiu
- The Center of Stomaology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, PR China
| | - Qian Zhao
- School of Stomatology of Qingdao University, Qingdao 266003, PR China
| | - Xingxiang Xun
- The Center of Stomaology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, PR China
| | - Hejing Wang
- Qingdao West Coast New Area People's Hospital, Qingdao 266499, PR China
| | - Rongtao Yuan
- The Center of Stomaology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, PR China.
| | - Xiao Xu
- The Center of Stomaology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, PR China.
| |
Collapse
|
7
|
Wan J, Wu L, Liu H, Zhao J, Xie T, Li X, Huang S, Yu F. Incorporation of Zinc-Strontium Phosphate into Gallic Acid-Gelatin Composite Hydrogel with Multiple Biological Functions for Bone Tissue Regeneration. ACS Biomater Sci Eng 2024; 10:5057-5067. [PMID: 38950519 DOI: 10.1021/acsbiomaterials.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Large bone defects resulting from fractures and diseases have become a significant medical concern, usually impeding spontaneous healing through the body's self-repair mechanism. Calcium phosphate (CaP) bioceramics are widely utilized for bone regeneration, owing to their exceptional biocompatibility and osteoconductivity. However, their bioactivities in repairing healing-impaired bone defects characterized by conditions such as ischemia and infection remain limited. Recently, an emerging bioceramics zinc-strontium phosphate (ZSP, Zn2Sr(PO4)2) has received increasing attention due to its remarkable antibacterial and angiogenic abilities, while its plausible biomedical utility on tissue regeneration is nonetheless few. In this study, gallic acid-grafted gelatin (GGA) with antioxidant properties was injected into hydrogels to scavenge reactive oxygen species and regulate bone microenvironment while simultaneously incorporating ZSP to form GGA-ZSP hydrogels. The GGA-ZSP hydrogel exhibits low swelling, and in vitro cell experiments have demonstrated its favorable biocompatibility, osteogenic induction potential, and ability to promote vascular regeneration. In an in vivo bone defect model, the GGA-ZSP hydrogel significantly enhanced the bone regeneration rates. This study demonstrated that the GGA-ZSP hydrogel has pretty environmentally friendly therapeutic effects in osteogenic differentiation and massive bone defect repair.
Collapse
Affiliation(s)
- Junming Wan
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat sen University, Shenzhen 518000, P. R. China
| | - Liang Wu
- Department of Orthopaedics, South China Hospital of Shenzhen University, Shenzhen 518111, P. R. China
| | - Hanzhong Liu
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat sen University, Shenzhen 518000, P. R. China
| | - Jin Zhao
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Tong Xie
- First Clinical Medical College, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Xinhe Li
- Department of Orthopaedics, South China Hospital of Shenzhen University, Shenzhen 518111, P. R. China
| | - Shenghui Huang
- Department of Orthopaedics, South China Hospital of Shenzhen University, Shenzhen 518111, P. R. China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| |
Collapse
|
8
|
Nitschke BM, Beltran FO, Hahn MS, Grunlan MA. Trends in bioactivity: inducing and detecting mineralization of regenerative polymeric scaffolds. J Mater Chem B 2024; 12:2720-2736. [PMID: 38410921 PMCID: PMC10935659 DOI: 10.1039/d3tb02674d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Due to limitations of biological and alloplastic grafts, regenerative engineering has emerged as a promising alternative to treat bone defects. Bioactive polymeric scaffolds are an integral part of such an approach. Bioactivity importantly induces hydroxyapatite mineralization that promotes osteoinductivity and osseointegration with surrounding bone tissue. Strategies to confer bioactivity to polymeric scaffolds utilize bioceramic fillers, coatings and surface treatments, and additives. These approaches can also favorably impact mechanical and degradation properties. A variety of fabrication methods are utilized to prepare scaffolds with requisite morphological features. The bioactivity of scaffolds may be evaluated with a broad set of techniques, including in vitro (acellular and cellular) and in vivo methods. Herein, we highlight contemporary and emerging approaches to prepare and assess scaffold bioactivity, as well as existing challenges.
Collapse
Affiliation(s)
- Brandon M Nitschke
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Felipe O Beltran
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Yao X, Chen X, Sun Y, Yang P, Gu X, Dai X. Application of metal-organic frameworks-based functional composite scaffolds in tissue engineering. Regen Biomater 2024; 11:rbae009. [PMID: 38420353 PMCID: PMC10900102 DOI: 10.1093/rb/rbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xinran Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
10
|
Dadashpour M, Kalavi S, Gorgzadeh A, Nosrati R, Firouzi Amandi A, Mohammadikhah M, Rezai Seghin Sara M, Alizadeh E. Preparation and in vitro evaluation of cell adhesion and long-term proliferation of stem cells cultured on silibinin co-embedded PLGA/Collagen electrospun composite nanofibers. Exp Cell Res 2024; 435:113926. [PMID: 38228225 DOI: 10.1016/j.yexcr.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.
Collapse
Affiliation(s)
- Mehdi Dadashpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Amirsasan Gorgzadeh
- Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Guilan, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Effat Alizadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Yuan Y, Xu Y, Mao Y, Liu H, Ou M, Lin Z, Zhao R, Long H, Cheng L, Sun B, Zhao S, Zeng M, Lu B, Lu H, Zhu Y, Chen C. Three Birds, One Stone: An Osteo-Microenvironment Stage-Regulative Scaffold for Bone Defect Repair through Modulating Early Osteo-Immunomodulation, Middle Neovascularization, and Later Osteogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306428. [PMID: 38060833 PMCID: PMC10853759 DOI: 10.1002/advs.202306428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Indexed: 02/10/2024]
Abstract
In order to repair critical-sized bone defects, various polylactic acid-glycolic acid (PLGA)-based hybrid scaffolds are successfully developed as bone substitutes. However, the byproducts of these PLGA-based scaffolds are known to acidify the implanted site, inducing tiresome acidic inflammation. Moreover, these degradation productions cannot offer an osteo-friendly microenvironment at the implanted site, matching natural bone healing. Herein, inspired by bone microenvironment atlas of natural bone-healing process, an osteo-microenvironment stage-regulative scaffold (P80/D10/M10) is fabricated by incorporating self-developed decellularized bone matrix microparticles (DBM-MPs) and multifunctional magnesium hydroxide nanoparticles (MH-NPs) into PLGA with an optimized proportion using low-temperature rapid prototyping (LT-RP) 3D-printing technology. The cell experiments show that this P80/D10/M10 exhibits excellent properties in mechanics, biocompatibility, and biodegradability, meanwhile superior stimulations in osteo-immunomodulation, angiogenesis, and osteogenesis. Additionally, the animal experiments determined that this P80/D10/M10 can offer an osteo-friendly microenvironment in a stage-matched pattern for enhanced bone regeneration, namely, optimization of early inflammation, middle neovascularization, and later bone formation. Furthermore, transcriptomic analysis suggested that the in vivo performance of P80/D10/M10 on bone defect repair is mostly attributed to regulating artery development, bone development, and bone remodeling. Overall, this study reveals that the osteo-microenvironment stage-regulative scaffold provides a promising treatment for bone defect repair.
Collapse
Affiliation(s)
- Yuhao Yuan
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yan Xu
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaHunan410008China
- Department of Sports MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yiyang Mao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaHunan410008China
| | - Hongbin Liu
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Minning Ou
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Zhangyuan Lin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ruibo Zhao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Haitao Long
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Liang Cheng
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Buhua Sun
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Shushan Zhao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ming Zeng
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Bangbao Lu
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hongbin Lu
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaHunan410008China
- Department of Sports MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yong Zhu
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Can Chen
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangshaHunan410008China
| |
Collapse
|
12
|
Feng Q, Zhou X, He C. NIR light-facilitated bone tissue engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1925. [PMID: 37632228 DOI: 10.1002/wnan.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
In the last decades, near-infrared (NIR) light has attracted considerable attention due to its unique properties and numerous potential applications in bioimaging and disease treatment. Bone tissue engineering for bone regeneration with the help of biomaterials is currently an effective means of treating bone defects. As a controlled light source with deeper tissue penetration, NIR light can provide real-time feedback of key information on bone regeneration in vivo utilizing fluorescence imaging and be used for bone disease treatment. This review provides a comprehensive overview of NIR light-facilitated bone tissue engineering, from the introduction of NIR probes as well as NIR light-responsive materials, and the visualization of bone regeneration to the treatment of bone-related diseases. Furthermore, the existing challenges and future development directions of NIR light-based bone tissue engineering are also discussed. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
13
|
Adel IM, ElMeligy MF, Amer MS, Elkasabgy NA. Polymeric nanocomposite hydrogel scaffold for jawbone regeneration: The role of rosuvastatin calcium-loaded silica nanoparticles. Int J Pharm X 2023; 6:100213. [PMID: 37927584 PMCID: PMC10622845 DOI: 10.1016/j.ijpx.2023.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Bones are subject to different types of damages ranging from simple fatigue to profound defects. In serious cases, the endogenous healing mechanism is not capable of healing the damage or restoring the normal structure and function of the bony tissue. The aim of this research was to achieve a sustained delivery of rosuvastatin and assess its efficacy in healing bone tissue damage. Rosuvastatin was entrapped into silica nanoparticles and the system was loaded into an alginate hydrogel to be implanted in the damaged tissue. Silica nanoparticles were formulated based on a modified Stöber technique and alginate hydrogel was prepared via sprinkling alginate onto silica nanoparticle dispersion followed by addition of CaCl2 to promote crosslinking and hydrogel rigidification. The selected nanoparticle formulation possessed high % drug content (100.22± 0.67%), the smallest particle size (221.00± 7.30 nm) and a sustained drug release up to 4 weeks (98.72± 0.52%). The fabricated hydrogel exhibited a further delay in drug release (81.52± 4.81% after 4 weeks). FT-IR indicated the silica nanoparticle formation and hydrogel crosslinking. SEM visualized the porous and dense surface of hydrogel. In-vivo testing on induced bone defects in New Zealand rabbits revealed the enhanced rate of new bone tissue formation, its homogeneity in color as well as similarity in structure to the original tissue.
Collapse
Affiliation(s)
- Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohamed F. ElMeligy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohammed S. Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
14
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
15
|
Han X, Saiding Q, Cai X, Xiao Y, Wang P, Cai Z, Gong X, Gong W, Zhang X, Cui W. Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds. NANO-MICRO LETTERS 2023; 15:239. [PMID: 37907770 PMCID: PMC10618155 DOI: 10.1007/s40820-023-01187-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023]
Abstract
Blood vessels are essential for nutrient and oxygen delivery and waste removal. Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering. Additive manufacturing is a manufacturing technology that creates three-dimensional solids by stacking substances layer by layer, mainly including but not limited to 3D printing, but also 4D printing, 5D printing and 6D printing. It can be effectively combined with vascularization to meet the needs of vascularized tissue scaffolds by precisely tuning the mechanical structure and biological properties of smart vascular scaffolds. Herein, the development of neovascularization to vascularization to bone tissue engineering is systematically discussed in terms of the importance of vascularization to the tissue. Additionally, the research progress and future prospects of vascularized 3D printed scaffold materials are highlighted and presented in four categories: functional vascularized 3D printed scaffolds, cell-based vascularized 3D printed scaffolds, vascularized 3D printed scaffolds loaded with specific carriers and bionic vascularized 3D printed scaffolds. Finally, a brief review of vascularized additive manufacturing-tissue scaffolds in related tissues such as the vascular tissue engineering, cardiovascular system, skeletal muscle, soft tissue and a discussion of the challenges and development efforts leading to significant advances in intelligent vascularized tissue regeneration is presented.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Xiaolu Cai
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China
| | - Yi Xiao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Peng Wang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Xuan Gong
- University of Texas Southwestern Medical Center, Dallas, TX, 75390-9096, USA
| | - Weiming Gong
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, People's Republic of China.
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
16
|
Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology 2023; 21:351. [PMID: 37770928 PMCID: PMC10536787 DOI: 10.1186/s12951-023-02115-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite the recent advances in the development of bone graft substitutes, treatment of critical size bone defects continues to be a significant challenge, especially in the elderly population. A current approach to overcome this challenge involves the creation of bone-mimicking scaffolds that can simultaneously promote osteogenesis and angiogenesis. In this context, incorporating multiple bioactive agents like growth factors, genes, and small molecules into these scaffolds has emerged as a promising strategy. To incorporate such agents, researchers have developed scaffolds incorporating nanoparticles, including nanoparticulate carriers, inorganic nanoparticles, and exosomes. Current paper provides a summary of the latest advancements in using various bioactive agents, drugs, and cells to synergistically promote osteogenesis and angiogenesis in bone-mimetic scaffolds. It also discusses scaffold design properties aimed at maximizing the synergistic effects of osteogenesis and angiogenesis, various innovative fabrication strategies, and ongoing clinical studies.
Collapse
Affiliation(s)
- Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
17
|
Mishchenko O, Yanovska A, Kosinov O, Maksymov D, Moskalenko R, Ramanavicius A, Pogorielov M. Synthetic Calcium-Phosphate Materials for Bone Grafting. Polymers (Basel) 2023; 15:3822. [PMID: 37765676 PMCID: PMC10536599 DOI: 10.3390/polym15183822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Synthetic bone grafting materials play a significant role in various medical applications involving bone regeneration and repair. Their ability to mimic the properties of natural bone and promote the healing process has contributed to their growing relevance. While calcium-phosphates and their composites with various polymers and biopolymers are widely used in clinical and experimental research, the diverse range of available polymer-based materials poses challenges in selecting the most suitable grafts for successful bone repair. This review aims to address the fundamental issues of bone biology and regeneration while providing a clear perspective on the principles guiding the development of synthetic materials. In this study, we delve into the basic principles underlying the creation of synthetic bone composites and explore the mechanisms of formation for biologically important complexes and structures associated with the various constituent parts of these materials. Additionally, we offer comprehensive information on the application of biologically active substances to enhance the properties and bioactivity of synthetic bone grafting materials. By presenting these insights, our review enables a deeper understanding of the regeneration processes facilitated by the application of synthetic bone composites.
Collapse
Affiliation(s)
- Oleg Mishchenko
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Anna Yanovska
- Theoretical and Applied Chemistry Department, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Oleksii Kosinov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Denys Maksymov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| |
Collapse
|
18
|
Dubey A, Vahabi H, Kumaravel V. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections. ACS Biomater Sci Eng 2023; 9:4020-4044. [PMID: 37339247 PMCID: PMC10336748 DOI: 10.1021/acsbiomaterials.3c00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
In bone tissue engineering, the performance of scaffolds underpins the success of the healing of bone. Microbial infection is the most challenging issue for orthopedists. The application of scaffolds for healing bone defects is prone to microbial infection. To address this challenge, scaffolds with a desirable shape and significant mechanical, physical, and biological characteristics are crucial. 3D printing of antibacterial scaffolds with suitable mechanical strength and excellent biocompatibility is an appealing strategy to surmount issues of microbial infection. The spectacular progress in developing antimicrobial scaffolds, along with beneficial mechanical and biological properties, has sparked further research for possible clinical applications. Herein, the significance of antibacterial scaffolds designed by 3D, 4D, and 5D printing technologies for bone tissue engineering is critically investigated. Materials such as antibiotics, polymers, peptides, graphene, metals/ceramics/glass, and antibacterial coatings are used to impart the antimicrobial features for the 3D scaffolds. Polymeric or metallic biodegradable and antibacterial 3D-printed scaffolds in orthopedics disclose exceptional mechanical and degradation behavior, biocompatibility, osteogenesis, and long-term antibacterial efficiency. The commercialization aspect of antibacterial 3D-printed scaffolds and technical challenges are also discussed briefly. Finally, the discussion on the unmet demands and prevailing challenges for ideal scaffold materials for fighting against bone infections is included along with a highlight of emerging strategies in this field.
Collapse
Affiliation(s)
- Anshu Dubey
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| | - Henri Vahabi
- Université
de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Vignesh Kumaravel
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
19
|
Awale GM, Barajaa MA, Kan HM, Seyedsalehi A, Nam GH, Hosseini FS, Ude CC, Schmidt TA, Lo KWH, Laurencin CT. Regenerative engineering of long bones using the small molecule forskolin. Proc Natl Acad Sci U S A 2023; 120:e2219756120. [PMID: 37216527 PMCID: PMC10235978 DOI: 10.1073/pnas.2219756120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Bone grafting procedures have become increasingly common in the United States, with approximately 500,000 cases occurring each year at a societal cost exceeding $2.4 billion. Recombinant human bone morphogenetic proteins (rhBMPs) are therapeutic agents that have been widely used by orthopedic surgeons to stimulate bone tissue formation alone and when paired with biomaterials. However, significant limitations such as immunogenicity, high production cost, and ectopic bone growth from these therapies remain. Therefore, efforts have been made to discover and repurpose osteoinductive small-molecule therapeutics to promote bone regeneration. Previously, we have demonstrated that a single-dose treatment with the small-molecule forskolin for just 24 h induces osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro, while mitigating adverse side effects attributed with prolonged small-molecule treatment schemes. In this study, we engineered a composite fibrin-PLGA [poly(lactide-co-glycolide)]-sintered microsphere scaffold for the localized, short-term delivery of the osteoinductive small molecule, forskolin. In vitro characterization studies showed that forskolin released out of the fibrin gel within the first 24 h and retained its bioactivity toward osteogenic differentiation of bone marrow-derived stem cells. The forskolin-loaded fibrin-PLGA scaffold was also able to guide bone formation in a 3-mo rabbit radial critical-sized defect model comparable to recombinant human bone morphogenetic protein-2 (rhBMP-2) treatment, as demonstrated through histological and mechanical evaluation, with minimal systemic off-target side effects. Together, these results demonstrate the successful application of an innovative small-molecule treatment approach within long bone critical-sized defects.
Collapse
Affiliation(s)
- Guleid M. Awale
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical Engineering, University of Connecticut, Storrs, CT06269
| | - Mohammed A. Barajaa
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University,31451Dammam, Saudi Arabia
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
| | - Amir Seyedsalehi
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
| | - Ga Hie Nam
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT06030
| | - Fatemeh S. Hosseini
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, CT06030
| | - Chinedu C. Ude
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
| | - Tannin A. Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
| | - Kevin W.-H. Lo
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Division of Endocrinology, Department of Medicine, UConn Health, Farmington, CT06030
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT06030
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical Engineering, University of Connecticut, Storrs, CT06269
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT06030
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT06269
| |
Collapse
|
20
|
Galefi A, Nourany M, Hosseini S, Alipour A, Azari S, Jahanfar M, Farrokhi N, Homaeigohar S, Shahsavarani H. Enhanced osteogenesis on proantocyanidin-loaded date palm endocarp cellulosic matrices: A novel sustainable approach for guided bone regeneration. Int J Biol Macromol 2023; 242:124857. [PMID: 37187421 DOI: 10.1016/j.ijbiomac.2023.124857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Developing inexpensive, biocompatible natural scaffolds that can support the differentiation and proliferation of stem cells has been recently emphasized by the research community to faster obtain the FDA approvals for regenerative medicine. In this regard, plant-derived cellulose materials are a novel class of sustainable scaffolding materials with high potentials for bone tissue engineering (BTE). However, low bioactivity of the plant-derived cellulose scaffolds restricts cell proliferation and cell differentiation. This limitation can be addressed though surface-functionalization of cellulose scaffolds with natural antioxidant polyphenols, e.g., grape seed proanthocyanidin (PCA)-rich extract (GSPE). Despite the various merits of GSPE as a natural antioxidant, its impact on the proliferation and adhesion of osteoblast precursor cells, and on their osteogenic differentiation is an as-yet unknown issue. Here, we investigated the effects of GSPE surface functionalization on the physicochemical properties of decellularized date (Phoenix dactyliferous) fruit inner layer (endocarp) (DE) scaffold. In this regard, various physiochemical characteristics of the DE-GSPE scaffold such as hydrophilicity, surface roughness, mechanical stiffness, porosity, and swelling, and biodegradation behavior were compared with those of the DE scaffold. Additionally, the impact of the GSPE treatment of the DE scaffold on the osteogenic response of human mesenchymal stem cells (hMSCs) was thoroughly studied. For this purpose, cellular activities including cell adhesion, calcium deposition and mineralization, alkaline phosphatase (ALP) activity, and expression levels of bone-related genes were monitored. Taken together, the GSPE treatment enhanced the physicochemical and biological properties of the DE-GSPE scaffold, thereby raising its potentials as a promising candidate for guided bone regeneration.
Collapse
Affiliation(s)
- Atena Galefi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Mohammad Nourany
- Amirkabir University of Technology, Polymer Engineering and Color Technology, Tehran, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran.
| | - Shahram Azari
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran
| | - Mehdi Jahanfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Shahin Homaeigohar
- School of Science & Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran 13169-43551, Iran.
| |
Collapse
|
21
|
Keshavarz M, Alizadeh P, Kadumudi FB, Orive G, Gaharwar AK, Castilho M, Golafshan N, Dolatshahi-Pirouz A. Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21476-21495. [PMID: 37073785 PMCID: PMC10165608 DOI: 10.1021/acsami.3c01717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Several studies have shown that nanosilicate-reinforced scaffolds are suitable for bone regeneration. However, hydrogels are inherently too soft for load-bearing bone defects of critical sizes, and hard scaffolds typically do not provide a suitable three-dimensional (3D) microenvironment for cells to thrive, grow, and differentiate naturally. In this study, we bypass these long-standing challenges by fabricating a cell-free multi-level implant consisting of a porous and hard bone-like framework capable of providing load-bearing support and a softer native-like phase that has been reinforced with nanosilicates. The system was tested with rat bone marrow mesenchymal stem cells in vitro and as a cell-free system in a critical-sized rat bone defect. Overall, our combinatorial and multi-level implant design displayed remarkable osteoconductivity in vitro without differentiation factors, expressing significant levels of osteogenic markers compared to unmodified groups. Moreover, after 8 weeks of implantation, histological and immunohistochemical assays indicated that the cell-free scaffolds enhanced bone repair up to approximately 84% following a near-complete defect healing. Overall, our results suggest that the proposed nanosilicate bioceramic implant could herald a new age in the field of orthopedics.
Collapse
Affiliation(s)
- Mozhgan Keshavarz
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Parvin Alizadeh
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
| | - Firoz Babu Kadumudi
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gorka Orive
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical
Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- University
Institute for Regenerative Medicine and Oral Implantology—UIRMI
(UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz 01006, Spain
- Bioaraba,
NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College
Station, Texas TX 77843, United States
| | - Miguel Castilho
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Nasim Golafshan
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
22
|
Valizadeh N, Salehi R, Aghazadeh M, Alipour M, Sadeghzadeh H, Mahkam M. Enhanced osteogenic differentiation and mineralization of human dental pulp stem cells using Prunus amygdalus amara (bitter almond) incorporated nanofibrous scaffold. J Mech Behav Biomed Mater 2023; 142:105790. [PMID: 37104899 DOI: 10.1016/j.jmbbm.2023.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 04/29/2023]
Abstract
Polyphenol extracts derived from plants are expected to have enhanced osteoblast proliferation and differentiation ability, which has gained much attention in tissue engineering applications. Herein, for the first time, we investigate the effects of Prunus amygdalus amara (bitter almond) (BA) extract loaded on poly (ε-caprolactone) (PCL)/gelatin (Gt) nanofibrous scaffolds on the osteoblast differentiation of human dental pulp stem cells (DPSCs). In this regard, BA (0, 5, 10, and 15% wt)-loaded PCL/Gt nanofibrous scaffolds were prepared by electrospinning with fiber diameters in the range of around 237-276 nm. Morphology, composition, porosity, hydrophilicity, and mechanical properties of the scaffolds were examined by FESEM, ATR-FTIR spectroscopy, BET, contact angle, and tensile tests, respectively. It was found that the addition of BA improved the tensile strength (up to 6.1 times), Young's modulus (up to 3 times), and strain at break (up to 3.2 times) compared to the neat PCL/Gt nanofibers. Evaluations of cell attachment, spreading, and proliferation were done by FESEM observation and MTT assay. Cytocompatibility studies support the biocompatible nature of BA loaded PCL/Gt scaffolds and free BA by demonstrating cell viability of more than 100% in all groups. The results of alkaline phosphatase activity and Alizarin Red assay revealed that osteogenic activity levels of BA loaded PCL/Gt scaffolds and free BA were significantly increased compared to the control group (p < 0.05, p < 0.01, p < 0.001). QRT-PCR results demonstrated that BA loaded PCL/Gt scaffolds and free BA led to a significant increase in osteoblast differentiation of DPSCs through the upregulation of osteogenic related genes compared to the control group (p < 0.05). Based on results, incorporation of BA extract in PCL/Gt scaffolds exhibited synergistic effects on the adhesion, proliferation, and osteogenesis differentiation of hDPSCs and was therefore assumed to be a favorable scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nasrin Valizadeh
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Sadeghzadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
23
|
Bian Y, Hu T, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Feng B, Liang R, Tan C, Weng X. Bone tissue engineering for treating osteonecrosis of the femoral head. EXPLORATION (BEIJING, CHINA) 2023; 3:20210105. [PMID: 37324030 PMCID: PMC10190954 DOI: 10.1002/exp.20210105] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and complicated disease with an unclear etiology. Femoral head-preserving surgeries have been devoted to delaying and hindering the collapse of the femoral head since their introduction in the last century. However, the isolated femoral head-preserving surgeries cannot prevent the natural progression of ONFH, and the combination of autogenous or allogeneic bone grafting often leads to many undesired complications. To tackle this dilemma, bone tissue engineering has been widely developed to compensate for the deficiencies of these surgeries. During the last decades, great progress has been made in ingenious bone tissue engineering for ONFH treatment. Herein, we comprehensively summarize the state-of-the-art progress made in bone tissue engineering for ONFH treatment. The definition, classification, etiology, diagnosis, and current treatments of ONFH are first described. Then, the recent progress in the development of various bone-repairing biomaterials, including bioceramics, natural polymers, synthetic polymers, and metals, for treating ONFH is presented. Thereafter, regenerative therapies for ONFH treatment are also discussed. Finally, we give some personal insights on the current challenges of these therapeutic strategies in the clinic and the future development of bone tissue engineering for ONFH treatment.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yingjie Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Wei Zhu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Bin Feng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chaoliang Tan
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
24
|
Tomasina C, Montalbano G, Fiorilli S, Quadros P, Azevedo A, Coelho C, Vitale-Brovarone C, Camarero-Espinosa S, Moroni L. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration. BIOMATERIALS ADVANCES 2023; 149:213406. [PMID: 37054582 DOI: 10.1016/j.bioadv.2023.213406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The combination of biomaterials and bioactive particles has shown to be a successful strategy to fabricate electrospun scaffolds for bone tissue engineering. Among the range of bioactive particles, hydroxyapatite and mesoporous bioactive glasses (MBGs) have been widely used for their osteoconductive and osteoinductive properties. Yet, the comparison between the chemical and mechanical characteristics as well as the biological performances of these particle-containing scaffolds have been characterized to a limited extent. In this work, we fabricated PEOT/PBT-based composite scaffolds incorporating either nanohydroxyapatite (nHA), strontium-containing nanohydroxyapatite (nHA_Sr) or MBGs doped with strontium ions up to 15 wt./vol% and 12,5 wt./vol% for nHA and MBG, respectively. The composite scaffolds presented a homogeneous particle distribution. Morphological, chemical and mechanical analysis revealed that the introduction of particles into the electrospun meshes caused a decrease in the fiber diameter and mechanical properties, yet maintaining the hydrophilic nature of the scaffolds. The Sr2+ release profile differed according to the considered system, observing a 35-day slowly decreasing release from strontium-containing nHA scaffolds, whereas MBG-based scaffolds showed a strong burst release in the first week. In vitro, culture of human bone marrow-derived mesenchymal stromal cells (hMSCs) on composite scaffolds demonstrated excellent cell adhesion and proliferation. In maintenance and osteogenic media, all composite scaffolds showed high mineralization as well as expression of Col I and OCN compared to PEOT/PBT scaffolds, suggesting their ability to boost bone formation even without osteogenic factors. The presence of strontium led to an increase in collagen secretion and matrix mineralization in osteogenic medium, while gene expression analysis showed that hMSCs cultured on nHA-based scaffolds had a higher expression of OCN, ALP and RUNX2 compared to cells cultured on nHA_Sr scaffolds in osteogenic medium. Yet, cells cultured on MBGs-based scaffolds showed a higher gene expression of COL1, ALP, RUNX2 and BMP2 in osteogenic medium compared to nHA-based scaffolds, which is hypothesized to lead to high osteoinductivity in long term cultures.
Collapse
|
25
|
Lei C, Song JH, Li S, Zhu YN, Liu MY, Wan MC, Mu Z, Tay FR, Niu LN. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials 2023; 296:122066. [PMID: 36842238 DOI: 10.1016/j.biomaterials.2023.122066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Han Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Song Li
- School of Stomatology, Xinjiang Medical University. Urumqi 830011, China
| | - Yi-Na Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming-Yi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
26
|
Thant AA, Ruangpornvisuti V, Sangvanich P, Banlunara W, Limcharoen B, Thunyakitpisal P. Characterization of a bioscaffold containing polysaccharide acemannan and native collagen for pulp tissue regeneration. Int J Biol Macromol 2023; 225:286-297. [PMID: 36356879 DOI: 10.1016/j.ijbiomac.2022.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Dental pulp regeneration exploits tissue engineering concepts using stem cells/scaffolds/growth-factors. Extracted collagen is commonly used as a biomaterial-scaffold due to its biocompatibility/biodegradability and mimics the natural extracellular matrix. Adding biomolecules into a collagen-scaffold enhanced pulp regeneration. Acemannan, β-(1-4)-acetylated-polymannose, is a polysaccharide extracted from aloe vera. Acemannan is a regenerative biomaterial. Therefore, acemannan could be a biomolecule in a collagen-scaffold. Here, acemannan and native collagen were obtained and characterized. The AceCol-scaffold's physical properties were investigated using FTIR, SEM, contact angle, swelling, pore size, porosity, compressive modulus, and degradation assays. The AceCol-scaffold's biocompatibility, growth factor secretion, osteogenic protein expression, and calcification were evaluated in vitro. The AceCol-scaffolds demonstrated higher hydrophilicity, swelling, porosity, and larger pore size than the collagen scaffolds (p < 0.05). Better cell-cell and cell-scaffold adhesion, and dentin extracellular matrix protein (BSP/OPN/DSPP) expression were observed in the AceCol-scaffold, however, DSPP expression was not detected in the collagen group. Significantly increased cellular proliferation, VEGF and BMP2 expression, and mineralization were detected in the AceCol-scaffold compared with the collagen-scaffold (p < 0.05). Computer simulation revealed that acemannan's 3D structure changes to bind with collagen. In conclusion, the AceCol-scaffold synergistically provides better physical and biological properties than collagen. The AceCol-scaffold is a promising material for tissue regeneration.
Collapse
Affiliation(s)
- Aye Aye Thant
- Dental Biomaterials Science Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pasutha Thunyakitpisal
- Research Unit of Herbal Medicine, Biomaterial and Material for Dental Treatment, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
27
|
Li L, Li Q, Gui L, Deng Y, Wang L, Jiao J, Hu Y, Lan X, Hou J, Li Y, Lu D. Sequential gastrodin release PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis. Bioact Mater 2023; 19:24-37. [PMID: 35415312 PMCID: PMC8980440 DOI: 10.1016/j.bioactmat.2022.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a highly orchestrated process involving a variety of cells, including immune cells. Developing immunomodulatory biomaterials for regenerative engineering applications, such as bone regeneration, is an appealing strategy. Herein, inspired by the immunomodulatory effects of gastrodin (a bioactive component in traditional Chinese herbal medicine), a series of new immunomodulatory gastrodin-comprising biodegradable polyurethane (gastrodin-PU) and nano-hydroxyapatite (n-HA) (gastrodin-PU/n-HA) composites were developed. RAW 264.7 macrophages, rat bone marrow mesenchymal stem cells (rBMSCs), and human umbilical vein endothelial cells (HUVECs) were cultured with gastrodin-PU/n-HA containing different concentrations of gastrodin (0.5%, 1%, and 2%) to decipher their immunomodulatory effects on osteogenesis and angiogenesis in vitro. Results demonstrated that, compared with PU/n-HA, gastrodin-PU/n-HA induced macrophage polarization toward the M2 phenotype, as evidenced by the higher expression level of pro-regenerative cytokines (CD206, Arg-1) and the lower expression of pro-inflammatory cytokines (iNOS). The expression levels of osteogenesis-related factors (BMP-2 and ALP) in the rBMSCs and angiogenesis-related factors (VEGF and BFGF) in the HUVECs were significantly up-regulated in gastrodin-PU/n-HA/macrophage-conditioned medium. The immunomodulatory effects of gastrodin-PU/n-HA to reprogram macrophages from a pro-inflammatory (M1) phenotype to an anti-inflammatory and pro-healing (M2) phenotype were validated in a rat subcutaneous implantation model. And the 2% gastrodin-PU/n-HA significantly decreased fibrous capsule formation and enhanced angiogenesis. Additionally, 2% gastrodin-PU/n-HA scaffolds implanted in the rat femoral condyle defect model showed accelerated osteogenesis and angiogenesis. Thus, the novel gastrodin-PU/n-HA scaffold may represent a new and promising immunomodulatory biomaterial for bone repair and regeneration. A new immunomodulatory gastrodin-PU/n-HA biomaterial has been developed. The gastrodin-PU/n-HA triggered M2 macrophage polarization. The osteogenesis and angiogenesis were enhanced in response to the local immune microenvironment. The findings prove a therapeutic strategy in bone defect and other inflammatory osteoimmune disorders.
Collapse
Affiliation(s)
- Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Li Gui
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, 650011, China
| | - Yi Deng
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lu Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Jianlin Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Yingrui Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Xiaoqian Lan
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650000, China
| | - Jianhong Hou
- Department of Orthopaedics, The Third People's Hospital of Yunnan Province, Kunming, 650011, China
- Corresponding author.
| | - Yao Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
- Corresponding author.
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
- Corresponding author.
| |
Collapse
|
28
|
Ali F, Kalva SN, Koç M. Additive Manufacturing of Polymer/Mg-Based Composites for Porous Tissue Scaffolds. Polymers (Basel) 2022; 14:5460. [PMID: 36559829 PMCID: PMC9783552 DOI: 10.3390/polym14245460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Due to their commercial availability, superior processability, and biocompatibility, polymers are frequently used to build three-dimensional (3D) porous scaffolds. The main issues limiting the widespread clinical use of monophasic polymer scaffolds in the bone healing process are their inadequate mechanical strength and inappropriate biodegradation. Due to their mechanical strength and biocompatibility, metal-based scaffolds have been used for various bone regenerative applications. However, due to the mismatch in mechanical properties and nondegradability, they lack integration with the host tissues, resulting in the production of fiber tissue and the release of toxic ions, posing a risk to the durability of scaffolds. Due to their natural degradability in the body, Mg and its alloys increasingly attract attention for orthopedic and cardiovascular applications. Incorporating Mg micro-nano-scale particles into biodegradable polymers dramatically improves scaffolds and implants' strength, biocompatibility, and biodegradability. Polymer biodegradable implants also improve the quality of life, particularly for an aging society, by eliminating the secondary surgery often needed to remove permanent implants and significantly reducing healthcare costs. This paper reviews the suitability of various biodegradable polymer/Mg composites for bone tissue scaffolds and then summarizes the current status and challenges of polymer/magnesium composite scaffolds. In addition, this paper reviews the potential use of 3D printing, which has a unique design capability for developing complex structures with fewer material waste at a faster rate, and with a personalized and on-site fabrication possibility.
Collapse
Affiliation(s)
- Fawad Ali
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
| | | | - Muammer Koç
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
| |
Collapse
|
29
|
Zhang Y, Jiang N, Gan Z. Poly(ε-Caprolactone) Substrates with Micro/Nanohierarchical Patterned Structures for Cell Culture. Macromol Biosci 2022; 22:e2200300. [PMID: 36086924 DOI: 10.1002/mabi.202200300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Indexed: 01/15/2023]
Abstract
A simple, efficient and controllable one-step template method is proposed to fabricate poly(ε-caprolactone) substrates with micro/nanohierarchical patterned structures. Two kinds of geometric patterns with and without nanowires, i.e., hexagonal and strip with controllable island size and spacing are designed and fabricated. Furthermore, the influence of geometric patterns, island size, island spacing, and patterned nanowires (pNW) on the growth behavior of MG-63 cells is studied in terms of cell density, distribution, proliferation, morphogenesis, and cellular alignment. It is found that MG-63 cells prefer to adhere and grow on the substrate with smaller island size or spacing. Moreover, unlike the hexagonal structure, the strip structure can guide cellular alignment on its surface. In addition, the microisland structures and the pNW play different roles in promoting cell proliferation, distribution, and morphogenesis. It is concluded that the growth behavior of MG-63 cells can be well controlled by precisely adjusting the micro/nanostructure of the substrate surface. A simple and effective method is provided here for the regulation of cell growth behavior.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ni Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
30
|
Nedorubova IA, Bukharova TB, Mokrousova VO, Khvorostina MA, Vasilyev AV, Nedorubov AA, Grigoriev TE, Zagoskin YD, Chvalun SN, Kutsev SI, Goldshtein DV. Comparative Efficiency of Gene-Activated Matrices Based on Chitosan Hydrogel and PRP Impregnated with BMP2 Polyplexes for Bone Regeneration. Int J Mol Sci 2022; 23:ijms232314720. [PMID: 36499056 PMCID: PMC9735524 DOI: 10.3390/ijms232314720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Gene therapy is one of the most promising approaches in regenerative medicine. Gene-activated matrices provide stable gene expression and the production of osteogenic proteins in situ to stimulate osteogenesis and bone repair. In this study, we developed new gene-activated matrices based on polylactide granules (PLA) impregnated with BMP2 polyplexes and included in chitosan hydrogel or PRP-based fibrin hydrogel. The matrices showed high biocompatibility both in vitro with mesenchymal stem cells and in vivo when implanted intramuscularly in rats. The use of porous PLA granules allowed the inclusion of a high concentration of polyplexes, and the introduction of the granules into hydrogel provided the gradual release of the plasmid constructs. All gene-activated matrices showed transfecting ability and ensured long-term gene expression and the production of target proteins in vitro. At the same time, the achieved concentration of BMP-2 was sufficient to induce osteogenic differentiation of MSCs. When implanted into critical-size calvarial defects in rats, all matrices with BMP2 polyplexes led to new bone formation. The most significant effect on osteoinduction was observed for the PLA/PRP matrices. Thus, the developed gene-activated matrices were shown to be safe and effective osteoplastic materials. PLA granules and PRP-based fibrin hydrogel containing BMP2 polyplexes were shown to be the most promising for future applications in bone regeneration.
Collapse
Affiliation(s)
| | | | - Viktoria Olegovna Mokrousova
- Research Centre for Medical Genetics, 115478 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | - Maria Aleksandrovna Khvorostina
- Research Centre for Medical Genetics, 115478 Moscow, Russia
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 108840 Moscow, Russia
| | - Andrey Vyacheslavovich Vasilyev
- Research Centre for Medical Genetics, 115478 Moscow, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, 119021 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
31
|
Ahmadi A, Mazloomnejad R, Kasravi M, Gholamine B, Bahrami S, Sarzaeem MM, Niknejad H. Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Res Ther 2022; 13:518. [PMID: 36371202 PMCID: PMC9652959 DOI: 10.1186/s13287-022-03204-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Bone-related diseases are major contributors to morbidity and mortality in elderly people and the current treatments result in insufficient healing and several complications. One of the promising areas of research for healing bone fractures and skeletal defects is regenerative medicine using stem cells. Differentiating stem cells using agents that shift cell development towards the preferred lineage requires activation of certain intracellular signaling pathways, many of which are known to induce osteogenesis during embryological stages. Imitating embryological bone formation through activation of these signaling pathways has been the focus of many osteogenic studies. Activation of osteogenic signaling can be done by using small molecules. Several of these agents, e.g., statins, metformin, adenosine, and dexamethasone have other clinical uses but have also shown osteogenic capacities. On the other hand, some other molecules such as T63 and tetrahydroquinolines are not as well recognized in the clinic. Osteogenic small molecules exert their effects through the activation of signaling pathways known to be related to osteogenesis. These pathways include more well-known pathways including BMP/Smad, Wnt, and Hedgehog as well as ancillary pathways including estrogen signaling and neuropeptide signaling. In this paper, we review the recent data on small molecule-mediated osteogenic differentiation, possible adjunctive agents with these molecules, and the signaling pathways through which each small molecule exerts its effects.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Mahdi Sarzaeem
- Department of Orthopedic Surgery, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran.
| |
Collapse
|
32
|
Li J, Du H, Ji X, Chen Y, Li Y, Heng BC, Xu J. ETV2 promotes osteogenic differentiation of human dental pulp stem cells through the ERK/MAPK and PI3K-Akt signaling pathways. Stem Cell Res Ther 2022; 13:495. [PMID: 36195958 PMCID: PMC9533526 DOI: 10.1186/s13287-022-03052-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background The repair of cranio-maxillofacial bone defects remains a formidable clinical challenge. The Ets variant 2 (ETV2) transcription factor, which belongs to the E26 transformation-specific (ETS) family, has been reported to play a key role in neovascularization. However, the role of ETV2 in the osteogenesis of human dental pulp stem cells (hDPSCs) remains unexplored. Methods Transgenic overexpression of ETV2 was achieved using a lentiviral vector, based on a Dox-inducible system. The effects of Dox-induced overexpression of ETV2 on the osteogenesis of hDPSCs were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunofluorescence staining, alkaline phosphatase (ALP) staining, and Alizarin Red S (ARS) staining. Additionally, RNA-sequencing (RNA-Seq) analysis was performed to analyze the underlying mechanisms of ETV2-induced osteogenesis. Additionally, the role of ETV2 overexpression in bone formation in vivo was validated by animal studies with a rat calvarial defect model and a nude mice model. Results Our results demonstrated that ETV2 overexpression significantly upregulated the mRNA and protein expression levels of osteogenic markers, markedly enhanced ALP activity, and promoted matrix mineralization of hDPSCs. Moreover, the results of RNA-Seq analysis and western blot showed that the ERK/MAPK and PI3K-Akt signaling pathways were activated upon transgenic overexpression of ETV2. The enhanced osteogenic differentiation of hDPSCs due to ETV2 overexpression was partially reversed by treatment with inhibitors of ERK/MAPK or PI3K-AKT signaling. Furthermore, the results of in vivo studies demonstrated that ETV2 overexpression improved bone healing in a rat calvarial defect model and increased ectopic bone formation in nude mice. Conclusions Collectively, our results indicated that ETV2 overexpression exerted positive effects on the osteogenesis of hDPSCs, at least partially via the ERK/MAPK and PI3K/AKT signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03052-2.
Collapse
Affiliation(s)
- Jing Li
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, People's Republic of China
| | - Haoran Du
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, 69 Meishan Road, Hefei, 230032, People's Republic of China
| | - Xin Ji
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, 69 Meishan Road, Hefei, 230032, People's Republic of China
| | - Yihan Chen
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, 69 Meishan Road, Hefei, 230032, People's Republic of China
| | - Yishuai Li
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, 69 Meishan Road, Hefei, 230032, People's Republic of China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Jianguang Xu
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, 69 Meishan Road, Hefei, 230032, People's Republic of China.
| |
Collapse
|
33
|
Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022; 222:132-153. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
The bone tissue engineering approach for treating large bone defects becomes necessary when the tissue damage surpasses the threshold of the inherent regenerative ability of the human body. A myriad of natural biodegradable polymers and scaffold fabrication techniques have emerged in the last decade. Chitosan (CS) is especially attractive as a bone scaffold material to support cell attachment and proliferation and mineralization of the bone matrix. The primary amino groups in CS are responsible for properties such as controlled drug release, mucoadhesion, in situ gelation, and transfection. CS-based smart drug delivery scaffolds that respond to environmental stimuli have been reported to have a localized sustained delivery of drugs in the large bone defect area. This review outlines the recent advances in the fabrication of CS-based scaffolds as a pharmaceutical carrier to deliver drugs such as antibiotics, growth factors, nucleic acids, and phenolic compounds for bone tissue regeneration.
Collapse
Affiliation(s)
- R Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - G Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kumari Vatsala
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Aravind
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Abinaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
34
|
Paknia S, Izadi Z, Moosaipour M, Moradi S, Khalilzadeh B, Jaymand M, Samadian H. Fabrication and characterization of electroconductive/osteoconductive hydrogel nanocomposite based on poly(dopamine-co-aniline) containing calcium phosphate nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Nanomaterials in Scaffolds for Periodontal Tissue Engineering: Frontiers and Prospects. Bioengineering (Basel) 2022; 9:bioengineering9090431. [PMID: 36134977 PMCID: PMC9495816 DOI: 10.3390/bioengineering9090431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The regeneration of periodontium represents important challenges to controlling infection and achieving functional regeneration. It has been recognized that tissue engineering plays a vital role in the treatment of periodontal defects, profiting from scaffolds that create the right microenvironment and deliver signaling molecules. Attributable to the excellent physicochemical and antibacterial properties, nanomaterials show great potential in stimulating tissue regeneration in tissue engineering. This article reviewed the up-to-date development of nanomaterials in scaffolds for periodontal tissue engineering. The paper also represented the merits and defects of different materials, among which the biocompatibility, antibacterial properties, and regeneration ability were discussed in detail. To optimize the project of choosing materials and furthermore lay the foundation for constructing a series of periodontal tissue engineering scaffolds, various nanomaterials and their applications in periodontal regeneration were introduced.
Collapse
|
36
|
Wang Y, Ling C, Chen J, Liu H, Mo Q, Zhang W, Yao Q. 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration. BIOMATERIALS ADVANCES 2022; 140:213067. [PMID: 35961187 DOI: 10.1016/j.bioadv.2022.213067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of osteochondral scaffolds with both structural and biochemical cues to regulate endogenous bone marrow-derived mesenchymal stem cells (BMSCs) behavior for cartilage and subchondral bone regeneration is still a challenge. To this end, a composite scaffold (BE-PSA) with gradient structure and programmed biomolecule delivery was prepared by fused deposition modeling (FDM) 3D printing and multi-material-based modification. The 3D-printed polycaprolactone (PCL) scaffold included upper pores of 200 μm for cartilage regeneration and lower pores of 400 μm for bone regeneration. For a sequential modulation of BMSCs behavior, fast-degrading sodium alginate (SA) hydrogel was used to deliver a burst release of E7 peptide to enhance BMSCs migration within 72 h, while a slowly-degrading silk fibroin (SF) porous matrix was used to provide a sustained release of B2A peptide to improve BMSCs dual-lineage differentiation lasting for >300 h, depending on the different degradation rates of SA hydrogel and SF matrix. The BE-PSA scaffold had good biocompatibility and could improve the migration and osteogenic/chondrogenic differentiation of BMSCs. Benefiting from the synergistic effects of spatial structures and programmed biomolecule delivery, the BE-PSA scaffold showed enhanced cartilage and subchondral bone regeneration in rabbit osteochondral defect model. This work not only provides a promising scaffold to guide BMSCs behavior for osteochondral regeneration but also offers a method for the fabrication of tissue engineering biomaterials based on the structural and biochemical modification.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| |
Collapse
|
37
|
Kadkhoda J, Tarighatnia A, Nader ND, Aghanejad A. Targeting mitochondria in cancer therapy: Insight into photodynamic and photothermal therapies. Life Sci 2022; 307:120898. [PMID: 35987340 DOI: 10.1016/j.lfs.2022.120898] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Mitochondria are critical multifunctional organelles in cells that generate power, produce reactive oxygen species, and regulate cell survival. Mitochondria that are dysfunctional are eliminated via mitophagy as a way to protect cells under moderate stress and physiological conditions. However, mitophagy is a double-edged sword and can trigger cell death under severe stresses. By targeting mitochondria, photodynamic (PD) and photothermal (PT) therapies may play a role in treating cancer. These therapeutic modalities alter mitochondrial membrane potential, thereby affecting respiratory chain function and generation of reactive oxygen species promotes signaling pathways for cell death. In this regard, PDT, PTT, various mitochondrion-targeting agents and therapeutic methods could have exploited the vital role of mitochondria as the doorway to regulated cell death. Targeted mitochondrial therapies would provide an excellent opportunity for effective mitochondrial injury and accurate tumor erosion. Herein, we summarize the recent progress on the roles of PD and PT treatments in regulating cancerous cell death in relation to mitochondrial targeting and the signaling pathways involved.
Collapse
Affiliation(s)
- Jamileh Kadkhoda
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Singh YP, Bhaskar R, Agrawal AK, Dasgupta S. Effect of monetite reinforced into the chitosan-based lyophilized 3D scaffolds on physicochemical, mechanical, and osteogenic properties. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
- Department of Nano, Medical & Polymer Materials, Yeungnam University, South Korea
| | | | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
39
|
A bioactive porous scaffold containing collagen/ phosphorous-modified polycaprolactone for osteogenesis of adipose-derived mesenchymal stem cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Synergistic effect of cell and molecule: imprinted substrates for bone tissue engineering. Mol Biol Rep 2022; 49:4595-4605. [DOI: 10.1007/s11033-022-07306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
|
41
|
Silva RD, Carvalho LT, Moraes RM, Medeiros SDF, Lacerda TM. Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rodrigo Duarte Silva
- Nanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentation Rua XV de Novembro 1452 São Carlos SP 13560‐970 Brazil
| | - Layde Teixeira Carvalho
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Rodolfo Minto Moraes
- Department of Material Engineering Engineering School of Lorena University of São Paulo, (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Simone de Fátima Medeiros
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Talita Martins Lacerda
- Department of Biotechnology Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| |
Collapse
|
42
|
Effects on bone regeneration of single-dose treatment with osteogenic small molecules. Drug Discov Today 2022; 27:1538-1544. [DOI: 10.1016/j.drudis.2022.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022]
|
43
|
Biofunctional phosphorylated magnetic scaffold for bone tissue engineering. Colloids Surf B Biointerfaces 2021; 211:112284. [PMID: 34952284 DOI: 10.1016/j.colsurfb.2021.112284] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
The development of highly bioactive engineered scaffolds is required to promote bone regeneration and the success of bone tissue engineering treatment approaches. This study attempts to fabricate a biofunctional magnetic scaffold based on new phosphorylated polycaprolactone combined with gelatin (MNPs-PCL-P/gelatin). Phosphorylated polymer and magnetic nanoparticles (MNPs) were synthesized and characterized by NMR, FT-IR, TEM, and DLS instruments. The synthetic polymer, MNPs, and biopolymer were mixed then freeze-dried to prepare a porous scaffold. Physiochemical assessments showed that a scaffold with well-developed porous morphology, and stable structure was obtained. MNPs-PCL-P/gelatin scaffold had no toxicity on human dental pulp stem cells (hDPSCs). The use of phosphorous-containing polymer resulted in improvement of the scaffold's osteoconductivity to support proper cell attachment and promote cell proliferation. Phosphate group by mimicking function of bone phosphate groups stimulate bone mineralization that reflected by alizarin red S staining assay. The presence of MNPs resulted in higher ALP activity and increased expression level of RUNX2, BMP2 osteogenic biomarkers. Also, phosphorylation enhanced osteoinductivity of scaffold and upregulate RUNX2, BMP2, COL1A1, and OCN genes in phosphors-containing scaffold test groups. It seems that biocompatible MNPs-PCL-P/gelatin scaffold possesses the potential of applications in bone tissue engineering.
Collapse
|
44
|
Physical Gold Nanoparticle-Decorated Polyethylene Glycol-Hydroxyapatite Composites Guide Osteogenesis and Angiogenesis of Mesenchymal Stem Cells. Biomedicines 2021; 9:biomedicines9111632. [PMID: 34829861 PMCID: PMC8615876 DOI: 10.3390/biomedicines9111632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, polyethylene glycol (PEG) with hydroxyapatite (HA), with the incorporation of physical gold nanoparticles (AuNPs), was created and equipped through a surface coating technique in order to form PEG-HA-AuNP nanocomposites. The surface morphology and chemical composition were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–Vis spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and contact angle assessment. The effects of PEG-HA-AuNP nanocomposites on the biocompatibility and biological activity of MC3T3-E1 osteoblast cells, endothelial cells (EC), macrophages (RAW 264.7), and human mesenchymal stem cells (MSCs), as well as the guiding of osteogenic differentiation, were estimated through the use of an in vitro assay. Moreover, the anti-inflammatory, biocompatibility, and endothelialization capacities were further assessed through in vivo evaluation. The PEG-HA-AuNP nanocomposites showed superior biological properties and biocompatibility capacity for cell behavior in both MC3T3-E1 cells and MSCs. These biological events surrounding the cells could be associated with the activation of adhesion, proliferation, migration, and differentiation processes on the PEG-HA-AuNP nanocomposites. Indeed, the induction of the osteogenic differentiation of MSCs by PEG-HA-AuNP nanocomposites and enhanced mineralization activity were also evidenced in this study. Moreover, from the in vivo assay, we further found that PEG-HA-AuNP nanocomposites not only facilitate the anti-immune response, as well as reducing CD86 expression, but also facilitate the endothelialization ability, as well as promoting CD31 expression, when implanted into rats subcutaneously for a period of 1 month. The current research illustrates the potential of PEG-HA-AuNP nanocomposites when used in combination with MSCs for the regeneration of bone tissue, with their nanotopography being employed as an applicable surface modification approach for the fabrication of biomaterials.
Collapse
|
45
|
Biomaterials and Their Biomedical Applications: From Replacement to Regeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9111949] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The history of biomaterials dates back to the mists of time: human beings had always used exogenous materials to facilitate wound healing and try to restore damaged tissues and organs. Nowadays, a wide variety of materials are commercially available and many others are under investigation to both maintain and restore bodily functions. Emerging clinical needs forced the development of new biomaterials, and lately discovered biomaterials allowed for the performing of new clinical applications. The definition of biomaterials as materials specifically conceived for biomedical uses was raised when it was acknowledged that they have to possess a fundamental feature: biocompatibility. At first, biocompatibility was mainly associated with biologically inert substances; around the 1970s, bioactivity was first discovered and the definition of biomaterials was consequently extended. At present, it also includes biologically derived materials and biological tissues. The present work aims at walking across the history of biomaterials, looking towards the scientific literature published on this matter. Finally, some current applications of biomaterials are briefly depicted and their future exploitation is hypothesized.
Collapse
|
46
|
Avila-Ramirez A, Catzim-Ríos K, Guerrero-Beltrán CE, Ramírez-Cedillo E, Ortega-Lara W. Reinforcement of Alginate-Gelatin Hydrogels with Bioceramics for Biomedical Applications: A Comparative Study. Gels 2021; 7:gels7040184. [PMID: 34842681 PMCID: PMC8628790 DOI: 10.3390/gels7040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
This study states the preparation of novel ink with potential use for bone and cartilage tissue restoration. 3Dprint manufacturing allows customizing prostheses and complex morphologies of any traumatism. The quest for bioinks that increase the restoration rate based on printable polymers is a need. This study is focused on main steps, the synthesis of two bioceramic materials as WO3 and Na2Ti6O13, its integration into a biopolymeric-base matrix of Alginate and Gelatin to support the particles in a complete scaffold to trigger the potential nucleation of crystals of calcium phosphates, and its comparative study with independent systems of formulations with bioceramic particles as Al2O3, TiO2, and ZrO2. FT-IR and SEM studies result in hydroxyapatite's potential nucleation, which can generate bone or cartilage tissue regeneration systems with low or null cytotoxicity. These composites were tested by cell culture techniques to assess their biocompatibility. Moreover, the reinforcement was compared individually by mechanical tests with higher results on synthesized materials Na2Ti6O13 with 35 kPa and WO3 with 63 kPa. Finally, the integration of these composite materials formulated by Alginate/Gelatin and bioceramic has been characterized as functional for further manufacturing with the aid of novel biofabrication techniques such as 3D printing.
Collapse
Affiliation(s)
- Alan Avila-Ramirez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico; (A.A.-R.); (K.C.-R.); (E.R.-C.)
- Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kevin Catzim-Ríos
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico; (A.A.-R.); (K.C.-R.); (E.R.-C.)
| | - Carlos Enrique Guerrero-Beltrán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey 64710, Mexico;
| | - Erick Ramírez-Cedillo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico; (A.A.-R.); (K.C.-R.); (E.R.-C.)
| | - Wendy Ortega-Lara
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico; (A.A.-R.); (K.C.-R.); (E.R.-C.)
- Correspondence: ; Tel.: +52-8358-2000
| |
Collapse
|
47
|
Qiu G, Wu H, Huang M, Ma T, Schneider A, Oates TW, Weir MD, Xu HHK, Zhao L. Novel calcium phosphate cement with biofilm-inhibition and platelet lysate delivery to enhance osteogenesis of encapsulated human periodontal ligament stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112306. [PMID: 34474857 DOI: 10.1016/j.msec.2021.112306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023]
Abstract
Osteomyelitis is caused by Staphylococcus aureus (S. aureus), with associated progressive bone loss. This study developed for the first time a calcium phosphate cement (CPC) for delivery of doxycycline (DOX) and human platelet lysate (hPL) to fight against S. aureus infection and enhance the osteogenesis of human periodontal ligament stem cells (hPDLSCs). Chitosan-containing CPC scaffolds were fabricated in the absence (CPCC) or presence of DOX (CPCC+DOX). In addition, hPL was encapsulated in alginate microbeads and incorporated into CPCC+DOX (CPCC+DOX+ hPL). Flexural strength of CPCC+DOX + hPL was (5.56 ± 0.55) MPa, lower than (8.26 ± 1.6) MPa of CPCC+DOX (p < 0.05), but exceeding the reported strength of cancellous bone. CPCC+DOX and CPCC+DOX + hPL exhibited strong antibacterial activity against S. aureus, reducing biofilm CFU by 4 orders of magnitude. The hPDLSCs encapsulated in microbeads were co-cultured with the CPCs. The hPDLSCs were able to be released from the microbeads and showed a high proliferation rate, increasing by about 8 folds at 14 days for all groups. The hPL was released from the scaffold and promoted the osteogenic differentiation of hPDLSCs. ALP activity was 28.07 ± 5.15 mU/mg for CPCC+DOX + hPL, higher than 17.36 ± 2.37 mU/mg and 1.34 ± 0.37 mU/mg of CPCC+DOX and CPCC, respectively (p < 0.05). At 7 days, osteogenic genes (ALP, RUNX2, COL-1, and OPN) in CPCC+DOX + hPL were 3-10 folds those of control. The amount of hPDLSC-synthesized bone mineral with CPCC+DOX + hPL was 3.8 folds that of CPCC (p < 0.05). In summary, the novel CPC + DOX + hPL-hPDLSCs scaffold exhibited strong antibacterial activity, excellent cytocompatibility and hPDLSC osteogenic differentiation, showing a promising approach for treatment and prevention of bone infection and enhancement of bone regeneration.
Collapse
Affiliation(s)
- Gengtao Qiu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hansen Wu
- General Administration Office, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingguang Huang
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Member, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Member, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Liang Zhao
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
48
|
Leonés A, Salaris V, Mujica-Garcia A, Arrieta MP, Lopez D, Lieblich M, Kenny JM, Peponi L. PLA Electrospun Fibers Reinforced with Organic and Inorganic Nanoparticles: A Comparative Study. Molecules 2021; 26:molecules26164925. [PMID: 34443512 PMCID: PMC8401602 DOI: 10.3390/molecules26164925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, different poly (lactic acid) (PLA)-based nanocomposite electrospun fibers, reinforced with both organic and inorganic nanoparticles, were obtained. As organic fibers, cellulose nanocrystals, CNC, both neat and functionalized by “grafting from” reaction, chitosan and graphene were used; meanwhile, hydroxyapatite and silver nanoparticles were used as inorganic fibers. All of the nanoparticles were added at 1 wt% with respect to the PLA matrix in order to be able to compare their effect. The main aim of this work was to study the morphological, thermal and mechanical properties of the different systems, looking for differences between the effects of the addition of organic or inorganic nanoparticles. No differences were found in either the glass transition temperature or the melting temperature between the different electrospun systems. However, systems reinforced with both neat and functionalized CNC exhibited an enhanced degree of crystallinity of the electrospun fibers, by up to 12.3%. From a mechanical point of view, both organic and inorganic nanoparticles exhibited a decreased elastic modulus and tensile strength in comparison to neat electrospun PLA fibers, improving their elongation at break. Furthermore, all of the organic and inorganic reinforced systems disintegrated under composting conditions after 35 days.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
| | - Alicia Mujica-Garcia
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Civil and Environmental Engineering Department and UDR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Marina P. Arrieta
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Politécnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Daniel Lopez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain;
| | - José Maria Kenny
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Civil and Environmental Engineering Department and UDR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
- Correspondence: (J.M.K.); (L.P.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
- Correspondence: (J.M.K.); (L.P.)
| |
Collapse
|
49
|
Kim SY, Lee YJ, Cho WT, Hwang SH, Heo SC, Kim HJ, Huh JB. Preliminary Animal Study on Bone Formation Ability of Commercialized Particle-Type Bone Graft with Increased Operability by Hydrogel. MATERIALS 2021; 14:ma14164464. [PMID: 34442986 PMCID: PMC8399214 DOI: 10.3390/ma14164464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to evaluate the bone-generating ability of a new bovine-derived xenograft (S1-XB) containing hydrogel. For control purposes, we used Bio-Oss and Bone-XB bovine-derived xenografts. S1-XB was produced by mixing Bone-XB and hydrogel. Cell proliferation and differentiation studies were performed to assess cytotoxicities and cell responses. For in vivo study, 8 mm-sized cranial defects were formed in 16 rats, and then the bone substitutes were transplanted into defect sites in the four study groups, that is, a Bio-Oss group, a Bone-XB group, an S1-XB group, and a control (all n = 4); in the control group defects were left empty. Eight weeks after surgery, new bone formation areas were measured histomorphometrically. In the cell study, extracts of Bio-Oss, Bone-XB, and S1-XB showed good results in terms of the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and no cytotoxic reaction was evident. No significant difference was observed between mean new bone areas in the Bio-Oss (36.93 ± 4.27%), Bone-XB (35.07 ± 3.23%), and S1-XB (30.80 ± 6.41%) groups, but new bone area was significantly smaller in the control group (18.73 ± 5.59%) (p < 0.05). Bovine-derived bone graft material containing hydrogel (S1-XB) had a better cellular response and an osteogenic effect similar to Bio-Oss.
Collapse
Affiliation(s)
- So-Yeun Kim
- Department of Prosthodontics, Kyungpook National University Dental Hospital, Daegu 41940, Korea;
| | - You-Jin Lee
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-J.L.); (W.-T.C.); (S.-H.H.)
| | - Won-Tak Cho
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-J.L.); (W.-T.C.); (S.-H.H.)
| | - Su-Hyun Hwang
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-J.L.); (W.-T.C.); (S.-H.H.)
| | - Soon-Chul Heo
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
| | - Hyung-Joon Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
- Correspondence: (H.-J.K.); (J.-B.H.); Tel.: +82-10-6326-4189 (H.-J.K.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-510-8208 (H.-J.K.); +82-55-360-5134 (J.-B.H.)
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-J.L.); (W.-T.C.); (S.-H.H.)
- Correspondence: (H.-J.K.); (J.-B.H.); Tel.: +82-10-6326-4189 (H.-J.K.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-510-8208 (H.-J.K.); +82-55-360-5134 (J.-B.H.)
| |
Collapse
|
50
|
Kim SH, Choi HJ, Yoon DS, Son CN. Serial administration of rhBMP-2 and alendronate enhances the differentiation of osteoblasts. Int J Rheum Dis 2021; 24:1266-1272. [PMID: 34324274 DOI: 10.1111/1756-185x.14189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
AIM The incorporation of growth factors is an effective strategy to accelerate bone induction. Bone morphogenetic protein-2 (BMP-2) promotes osteoblast differentiation and induces bone formation. Alendronate (ALN) is an osteoclast deactivation drug. We investigated the effect of serial administration of recombinant human BMP-2 (rhBMP-2) and ALN on osteoblast differentiation. METHODS The effect of serial administration of rhBMP-2 (0-150 ng/mL) and ALN (0-15 µmol/L) on the viability and differentiation of a clonal murine calvarial cell line, MC3T3-E1, was evaluated at various concentrations and for different periods. The Cell Counting Kit-8 assay was used to assess cell viability. The alkaline phosphatase activity was evaluated as an indicator of osteogenic differentiation. The expression levels of runt domain-containing transcription factor 2 (Runx2) and osteopontin (OPN) were analyzed by real-time polymerase chain reaction and western blotting. Statistical analyses were performed using Student's t test. RESULTS The serial treatment with rhBMP-2 and ALN increased the expression of the differentiation-related factors Runx2 and OPN, as well as the differentiation ability of osteoblasts compared with individual or simultaneous treatment. The osteoblasts treated with rhBMP-2 followed by ALN showed the highest differentiation. The degree of differentiation in the group treated with rhBMP-2 for 7 days followed by ALN for 3 days was increased by 1.5 times compared with that of the group treated with rhBMP-2 alone (P < .01). CONCLUSION These findings indicate that the serial administration of rhBMP-2 and ALN may exert osteogenic effects on osteoblastic cells via the upregulation of Runx2 and OPN.
Collapse
Affiliation(s)
- Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Hye-Jung Choi
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea.,Department of Emergency Medical Technology, Gyeongbuk Provincial College, Gyeongsangbuk-do, Korea
| | - Dae Sung Yoon
- Department of Biomedical Engineering, Korea University College of Health Science, Seoul, Korea
| | - Chang-Nam Son
- Division of Rheumatology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|