1
|
Xu G, Ge R, Zhang C, Zhao Z, Han L, Zhang W, Yue W, Zhang J, Zhao Y, Hou S, Li L, Wang P. Promotion of nerve regeneration and motor function recovery in SCI rats using LOCAS-iPSCs-NSCs. Stem Cell Res Ther 2024; 15:376. [PMID: 39444002 PMCID: PMC11515548 DOI: 10.1186/s13287-024-03999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe traumatic spinal condition with a poor prognosis. In this study, a scaffold called linearly ordered collagen aggregates (LOCAS) was created and loaded with induced pluripotent stem cells (iPSCs)-derived neural stem cells (NSCs) from human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) to treat SCI in a rat model. METHODS The rats underwent a complete transection SCI resulting in a 3-mm break at either the T9 or T10 level of the spinal cord. RESULTS Scanning electron microscope analysis revealed a uniform pore structure on the coronal plane of the scaffold. The LOCAS had a porosity of 88.52% and a water absorption of 1161.67%. Its compressive modulus and stress were measured at 4.1 MPa and 205 kPa, respectively, with a degradation time of 10 weeks. After 12 weeks, rats in the LOCAS-iPSCs-NSCs group exhibited significantly higher BBB scores (8.6) compared to the LOCAS-iPSCs-NSCs group (5.6) and the Model group (4.2). The CatWalk analysis showed improved motion trajectory, regularity index (RI), and swing speed in the LOCAS-iPSCs-NSCs group compared to the other groups. Motor evoked potentials latency was lower and amplitude was higher in the LOCAS-iPSCs-NSCs group, indicating better neural function recovery. Histological analysis demonstrated enhanced neuronal differentiation of NSCs and nerve fiber regeneration promoted by LOCAS-iPSCs-NSCs, leading to improved motor function recovery in rats. The LOCAS scaffold facilitated ordered neurofilament extension and guided nerve regeneration. CONCLUSIONS The combination of LOCAS and iPSCs-NSCs demonstrated a positive therapeutic impact on motor function recovery and tissue repair in rats with SCI. This development offers a more resilient bionic microenvironment and presents novel possibilities for clinical SCI repair.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, Dalian, 116011, Liaoning Province, China.
| | - Rui Ge
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning Province, Dalian, 116011, Liaoning Province, China
| | - Chunli Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Ziteng Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Liwei Han
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Wanhao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - WenJie Yue
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Jing Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Shuxun Hou
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
| | - Li Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China.
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Gu J, Cai X, Raza F, Zafar H, Chu B, Yuan H, Wang T, Wang J, Feng X. Preparation of a minocycline polymer micelle thermosensitive gel and its application in spinal cord injury. NANOSCALE ADVANCES 2024:d4na00625a. [PMID: 39355839 PMCID: PMC11440374 DOI: 10.1039/d4na00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
Neuroprotection is an important approach for the treatment of spinal cord injury (SCI). Minocycline (MC), a known neuroprotective agent, has been utilized for SCI treatment, but its therapeutic effect is limited by instability and low bioavailability. Herein, we developed an innovative micellar thermosensitive hydrogel (MCPP-M-gel) that encapsulates MC in polyethylene glycol (PEG)-poly(lactide-co-glycolic acid) (PLGA) micelles to enhance its therapeutic efficacy in a rat model of SCI. The micelles were synthesized via the thin-film hydration method and characterized for encapsulation efficiency, particle size, zeta potential, and polydispersity index (PDI). MCPP-M-gel demonstrated favorable physico-mechanical properties and extended MC release over 72 hours in vitro without cytotoxic effects on neural crest-derived ectoderm mesenchymal stem cells (EMSCs). Thereafter, MC, MCPP-M, MCPP-M-gel and a blank micellar thermosensitive gel were injected into the injured site of SCI rats. Histopathological evaluation demonstrated that MCPP-M-gel could promote neuronal regeneration at the injured site of the SC after 28 days. Immunofluorescence techniques revealed that MCPP-M-gel increased the expression of neuronal class III β-tubulin (Tuj1), myelin basic protein (MBP), growth-associated protein 43 (GAP43), neurofilament protein-200 (NF-200) and nestin as well as reduced glial-fibrillary acidic protein (GFAP) expression in damaged areas of the SC. In conclusion, this study innovatively developed MCPP-M-gel based on a PEG-PLGA copolymer as a biomaterial, laying a solid foundation for further research and application of MCPP-M-gel in SCI models or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun Gu
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Xiaohu Cai
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Rehabilitation, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bo Chu
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Haitao Yuan
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Tianqi Wang
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Jiapeng Wang
- School of Pharmacy, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiaojun Feng
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| |
Collapse
|
3
|
Hindam MO, Ahmed LA, El Sayed NS, Khattab M, Sallam NA. Repositioning of baricitinib for management of memory impairment in ovariectomized/D-galactose treated rats: A potential role of JAK2/STAT3-PI3K/AKT/mTOR signaling pathway. Life Sci 2024; 351:122838. [PMID: 38897347 DOI: 10.1016/j.lfs.2024.122838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIMS Neuroinflammation plays a pivotal role in amyloid β (Aβ) plaques formation which is among the hallmarks of Alzheimer's disease (AD). The present study investigated the potential therapeutic effects of baricitinib (BAR), a selective JAK2/ STAT3 inhibitor, in ovariectomized/ D-galactose (OVX/D-gal) treated rats as a model for AD. MAIN METHODS To induce AD, adult female rats (130-180 g) underwent bilateral ovariectomy and were injected daily with 150 mg/kg, i.p. D-gal for 8 consecutive weeks. BAR (10 and 50 mg/kg/day) was then given orally for 14 days. KEY FINDINGS BAR in a dose-dependent effect mitigated OVX/D-gal-induced aberrant activation of JAK2/STAT3 signaling pathway resulting in significant decreases in the expression of p-JAK 2, and p-STAT3 levels, along with deactivating AKT/PI3K/mTOR signaling as evidenced by deceased protein expression of p-AKT, p-PI3K, and p-mTOR. As a result, neuroinflammation was diminished as evidenced by decreased NF-κβ, TNF-α, and IL-6 levels. Moreover, oxidative stress biomarkers levels as iNOS, and MDA were reduced, whereas GSH was increased by BAR. BAR administration also succeeded in reverting histopathological alterations caused by OVX/D-gal, increased the number of intact neurons (detected by Nissl stain), and diminished astrocyte hyperactivity assessed as GFAP immunoreactivity. Finally, treatment with BAR diminished the levels of Aβ. These changes culminated in enhancing spatial learning and memory in Morris water maze, and novel object recognition test. SIGNIFICANCE BAR could be an effective therapy against neuroinflammation, astrogliosis and cognitive impairment induced by OVX/ D-gal where inhibiting JAK2/STAT3- AKT/PI3K/mTOR seems to play a crucial role in its beneficial effect.
Collapse
Affiliation(s)
- Merhan O Hindam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
4
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
5
|
Panda SP, Kesharwani A, Datta S, Prasanth DSNBK, Panda SK, Guru A. JAK2/STAT3 as a new potential target to manage neurodegenerative diseases: An interactive review. Eur J Pharmacol 2024; 970:176490. [PMID: 38492876 DOI: 10.1016/j.ejphar.2024.176490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Neurodegenerative diseases (NDDs) are a collection of incapacitating disorders in which neuroinflammation and neuronal apoptosis are major pathological consequences due to oxidative stress. Neuroinflammation manifests in the impacted cerebral areas as a result of pro-inflammatory cytokines stimulating the Janus Kinase2 (JAK2)/Signal Transducers and Activators of Transcription3 (STAT3) pathway via neuronal cells. The pro-inflammatory cytokines bind to their respective receptor in the neuronal cells and allow activation of JAK2. Activated JAK2 phosphorylates tyrosines on the intracellular domains of the receptor which recruit the STAT3 transcription factor. The neuroinflammation issues are exacerbated by the active JAK2/STAT3 signaling pathway in conjunction with additional transcription factors like nuclear factor kappa B (NF-κB), and the mammalian target of rapamycin (mTOR). Neuronal apoptosis is a natural process made worse by persistent neuroinflammation and immunological responses via caspase-3 activation. The dysregulation of micro-RNA (miR) expression has been observed in the consequences of neuroinflammation and neuronal apoptosis. Neuroinflammation and neuronal apoptosis-associated gene amplification may be caused by dysregulated miR-mediated aberrant phosphorylation of JAK2/STAT3 signaling pathway components. Therefore, JAK2/STAT3 is an attractive therapeutic target for NDDs. Numerous synthetic and natural small molecules as JAK2/STAT3 inhibitors have therapeutic advances against a wide range of diseases, and many are now in human clinical studies. This review explored the interactive role of the JAK2/STAT3 signaling system with key pathological factors during the reinforcement of NDDs. Also, the clinical trial data provides reasoning evidence about the possible use of JAK2/STAT3 inhibitors to abate neuroinflammation and neuronal apoptosis in NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Birbhum, West Bengal, India
| | - D S N B K Prasanth
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
6
|
Li X, Ji R, Duan L, Hao Z, Su Y, Wang H, Guan F, Ma S. MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of spinal cord injury by alleviating neuroinflammation. Int J Biol Macromol 2024; 267:131520. [PMID: 38615859 DOI: 10.1016/j.ijbiomac.2024.131520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The adverse microenvironment, including neuroinflammation, hinders the recovery of spinal cord injury (SCI). Regulating microglial polarization to alleviate neuroinflammation at the injury site is an effective strategy for SCI recovery. MG53 protein exerts obvious repair ability on multiple tissues damage, but with short half-life. In this study, we composited an innovative MG53/GMs/HA-Dex neural scaffold using gelatin microspheres (GMs), hyaluronic acid (HA), and dextran (Dex) loaded with MG53 protein. This novel neural scaffold could respond to MMP-2/9 protein and stably release MG53 protein with good physicochemical properties and biocompatibility. In addition, it significantly improved the motor function of SCI mice, suppressed M1 polarization of microglia and neuroinflammation, and promoted neurogenesis and axon regeneration. Further mechanistic experiments demonstrated that MG53/GMs/HA-Dex hydrogel inhibited the JAK2/STAT3 signaling pathway. Thus, this MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of SCI mice by alleviating neuroinflammation, which provides a new intervention strategy for the neural regeneration and functional repair of SCI.
Collapse
Affiliation(s)
- Xingfan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Rong Ji
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Linyan Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhizhong Hao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yujing Su
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
7
|
Wang LL, Tuohy S, Xu KL, Nace A, Yang R, Zheng Y, Burdick JA, Cotsarelis G. Local and Sustained Baricitinib Delivery to the Skin through Injectable Hydrogels Containing Reversible Thioimidate Adducts. Adv Healthc Mater 2024; 13:e2303256. [PMID: 38207170 PMCID: PMC11076163 DOI: 10.1002/adhm.202303256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Janus kinase (JAK) inhibitors are approved for many dermatologic disorders, but their use is limited by systemic toxicities including serious cardiovascular events and malignancy. To overcome these limitations, injectable hydrogels are engineered for the local and sustained delivery of baricitinib, a representative JAK inhibitor. Hydrogels are formed via disulfide crosslinking of thiolated hyaluronic acid macromers. Dynamic thioimidate bonds are introduced between the thiolated hyaluronic acid and nitrile-containing baricitinib for drug tethering, which is confirmed with 1H and 13C nuclear magnetic resonance (NMR). Release of baricitinib is tunable over six weeks in vitro and active in inhibiting JAK signaling in a cell line containing a luciferase reporter reflecting interferon signaling. For in vivo activity, baricitinib hydrogels or controls are injected intradermally into an imiquimod-induced mouse model of psoriasis. Imiquimod increases epidermal thickness in mice, which is unaffected when treated with baricitinib or hydrogel alone. Treatment with baricitinib hydrogels suppresses the increased epidermal thickness in mice treated with imiquimod, suggesting that the sustained and local release of baricitinib is important for a therapeutic outcome. This study is the first to utilize a thioimidate chemistry to deliver JAK inhibitors to the skin through injectable hydrogels, which has translational potential for treating inflammatory disorders.
Collapse
Affiliation(s)
- Leo L. Wang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Spencer Tuohy
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania
| | - Karen L. Xu
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania
- BioFrontiers Institute and Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder
| | - Arben Nace
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Ruifeng Yang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Ying Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania
- BioFrontiers Institute and Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
8
|
Wang Y, Chai YQ, Cai J, Huang SS, Wang YF, Yuan SS, Wang JL, Shi KQ, Deng JJ. Human Adipose Tissue Lysate-Based Hydrogel for Lasting Immunomodulation to Effectively Improve Spinal Cord Injury Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304318. [PMID: 38018305 DOI: 10.1002/smll.202304318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/22/2023] [Indexed: 11/30/2023]
Abstract
The long-term inflammatory microenvironment is one of the main obstacles to inhibit acute spinal cord injury (SCI) repair. The natural adipose tissue-derived extracellular matrix hydrogel shows effective anti-inflammatory regulation because of its unique protein components. However, the rapid degradation rate and removal of functional proteins during the decellularization process impair the lasting anti-inflammation function of the adipose tissue-derived hydrogel. To address this problem, adipose tissue lysate provides an effective way for SCI repair due to its abundance of anti-inflammatory and nerve regeneration-related proteins. Thereby, human adipose tissue lysate-based hydrogel (HATLH) with an appropriate degradation rate is developed, which aims to in situ long-term recruit and induce anti-inflammatory M2 macrophages through sustainedly released proteins. HATLH can recruit and polarize M2 macrophages while inhibiting pro-inflammatory M1 macrophages regardless of human or mouse-originated. The axonal growth of neuronal cells also can be effectively improved by HATLH and HATLH-induced M2 macrophages. In vivo experiments reveal that HATLH promotes endogenous M2 macrophages infiltration in large numbers (3.5 × 105/100 µL hydrogel) and maintains a long duration for over a month. In a mouse SCI model, HATLH significantly inhibits local inflammatory response, improves neuron and oligodendrocyte differentiation, enhances axonal growth and remyelination, as well as accelerates neurological function restoration.
Collapse
Affiliation(s)
- Yu Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, China
| | - Ying-Qian Chai
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jie Cai
- Department of Orthopedics, Xiaoshan Hospital Affiliated to Wenzhou Medical University, Hangzhou, Zhejiang, 310000, China
| | - Shan-Shan Huang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ye-Feng Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shan-Shan Yuan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ji-Long Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ke-Qing Shi
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jun-Jie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
9
|
Nazerian Y, Nazerian A, Mohamadi-Jahani F, Sodeifi P, Jafarian M, Javadi SAH. Hydrogel-encapsulated extracellular vesicles for the regeneration of spinal cord injury. Front Neurosci 2023; 17:1309172. [PMID: 38156267 PMCID: PMC10752990 DOI: 10.3389/fnins.2023.1309172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Spinal cord injury (SCI) is a critical neurological condition that may impair motor, sensory, and autonomous functions. At the cellular level, inflammation, impairment of axonal regeneration, and neuronal death are responsible for SCI-related complications. Regarding the high mortality and morbidity rates associated with SCI, there is a need for effective treatment. Despite advances in SCI repair, an optimal treatment for complete recovery after SCI has not been found so far. Therefore, an effective strategy is needed to promote neuronal regeneration and repair after SCI. In recent years, regenerative treatments have become a potential option for achieving improved functional recovery after SCI by promoting the growth of new neurons, protecting surviving neurons, and preventing additional damage to the spinal cord. Transplantation of cells and cells-derived extracellular vesicles (EVs) can be effective for SCI recovery. However, there are some limitations and challenges related to cell-based strategies. Ethical concerns and limited efficacy due to the low survival rate, immune rejection, and tumor formation are limitations of cell-based therapies. Using EVs is a helpful strategy to overcome these limitations. It should be considered that short half-life, poor accumulation, rapid clearance, and difficulty in targeting specific tissues are limitations of EVs-based therapies. Hydrogel-encapsulated exosomes have overcome these limitations by enhancing the efficacy of exosomes through maintaining their bioactivity, protecting EVs from rapid clearance, and facilitating the sustained release of EVs at the target site. These hydrogel-encapsulated EVs can promote neuroregeneration through improving functional recovery, reducing inflammation, and enhancing neuronal regeneration after SCI. This review aims to provide an overview of the current research status, challenges, and future clinical opportunities of hydrogel-encapsulated EVs in the treatment of SCI.
Collapse
Affiliation(s)
- Yasaman Nazerian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Sodeifi
- School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ji R, Hao Z, Wang H, Li X, Duan L, Guan F, Ma S. Application of Injectable Hydrogels as Delivery Systems in Spinal Cord Injury. Gels 2023; 9:907. [PMID: 37998998 PMCID: PMC10670785 DOI: 10.3390/gels9110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Spinal cord injury (SCI) is a severe neurological injury caused by traffic accidents, trauma, or falls, which leads to significant loss of sensory, motor, and autonomous functions and seriously affects the patient's life quality. Although considerable progress has been made in mitigating secondary injury and promoting the regeneration/repair of SCI, the therapeutic effects need to be improved due to drug availability. Given their good biocompatibility, biodegradability, and low immunogenicity, injectable hydrogels can be used as delivery systems to achieve controlled release of drugs and other substances (cells and proteins, etc.), offering new hope for SCI repair. In this article, we summarized the types of injectable hydrogels, analyzed their application as delivery systems in SCI, and further discussed the mechanisms of hydrogels in the treatment of SCI, such as anti-inflammatory, antioxidant, anti-apoptosis, and pro-neurogenesis. Moreover, we highlighted the potential benefits of hydrogels in the treatment of SCI in combination with therapies, including the recent advances and achievements of these promising tools. Our review may offer new strategies for the development of SCI treatments based on injectable hydrogels as delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| |
Collapse
|
11
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Xiao Y, Hu X, Jiang P, Qi Z. Thermos-responsive hydrogel system encapsulated engineered exosomes attenuate inflammation and oxidative damage in acute spinal cord injury. Front Bioeng Biotechnol 2023; 11:1216878. [PMID: 37614633 PMCID: PMC10442716 DOI: 10.3389/fbioe.2023.1216878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction: Spinal cord injury (SCI) is a serious and disabling condition, and the effectiveness of conventional treatment is limited, such as supportive treatment and emergency surgery. Exosomes derived from umbilical cord mesenchymal stem cells (UCMSC-Exos) have potential therapeutic effects on SCI but are limited by delivery efficiency. Our study aimed to further investigate the therapeutic effects of miR-138-modified UCMSC-exosomes (Exos-138) following SCI. Methods: We developed an injectable triblock polymer of polyglycolic acid copolymer and polyethylene glycol (PLGA-PEG-PLGA)-loaded temperature-sensitive hydrogel of miR-138-modified stem cell exosomes and characterised its biocompatibility in vitro. In Sprague-Dawley rats with SCI, the hydrogel was injected into the injury site, behavioural scores were measured, and pathological analysis was conducted postoperatively to assess neurological recovery. Results: In vitro, our data demonstrated that miR-138-5p-modified UCMSC-Exos can reduce inflammation levels in BV-2 cells through the NLRP3-caspase1 signalling pathway and reduce neuronal apoptosis by downregulating intracellular reactive oxygen species levels through the Nrf2-keap1 signalling cascade. The results of in vivo experiments showed that the P-Exos-138 hydrogel promoted neurological recovery in rats with SCI. Discussion: Our study explored a novel exosome delivery system that can be a potential therapeutic strategy for SCI. Our study, currently, has theoretical value; however, it can serve as a basis for further investigations on the treatment approaches at various stages of SCI development in inflammation-dependent injury of the central nervous system.
Collapse
Affiliation(s)
| | | | | | - Zhongquan Qi
- Medical College of Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
14
|
Cai M, Chen L, Wang T, Liang Y, Zhao J, Zhang X, Li Z, Wu H. Hydrogel scaffolds in the treatment of spinal cord injury: a review. Front Neurosci 2023; 17:1211066. [PMID: 37325033 PMCID: PMC10266534 DOI: 10.3389/fnins.2023.1211066] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Spinal cord injury (SCI) is a disease of the central nervous system often caused by accidents, and its prognosis is unsatisfactory, with long-term adverse effects on patients' lives. The key to its treatment lies in the improvement of the microenvironment at the injury and the reconstruction of axons, and tissue repair is a promising therapeutic strategy. Hydrogel is a three-dimensional mesh structure with high water content, which has the advantages of biocompatibility, degradability, and adjustability, and can be used to fill pathological defects by injectable flowing hydrophilic material in situ to accurately adapt to the size and shape of the injury. Hydrogels mimic the natural extracellular matrix for cell colonization, guide axon extension, and act as a biological scaffold, which can be used as an excellent carrier to participate in the treatment of SCI. The addition of different materials to make composite hydrogel scaffolds can further enhance their performance in all aspects. In this paper, we introduce several typical composite hydrogels and review the research progress of hydrogel for SCI to provide a reference for the clinical application of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Manqi Cai
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, China
| | - Yinru Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jie Zhao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xiaomin Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyi Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
15
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
16
|
Peng H, Liu Y, Xiao F, Zhang L, Li W, Wang B, Weng Z, Liu Y, Chen G. Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury. Front Bioeng Biotechnol 2023; 11:1111882. [PMID: 36741755 PMCID: PMC9889880 DOI: 10.3389/fbioe.2023.1111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Secondary spinal cord injury (SSCI) is the second stage of spinal cord injury (SCI) and involves vasculature derangement, immune response, inflammatory response, and glial scar formation. Bioactive additives, such as drugs and cells, have been widely used to inhibit the progression of secondary spinal cord injury. However, the delivery and long-term retention of these additives remain a problem to be solved. In recent years, hydrogels have attracted much attention as a popular delivery system for loading cells and drugs for secondary spinal cord injury therapy. After implantation into the site of spinal cord injury, hydrogels can deliver bioactive additives in situ and induce the unidirectional growth of nerve cells as scaffolds. In addition, physical and chemical methods can endow hydrogels with new functions. In this review, we summarize the current state of various hydrogel delivery systems for secondary spinal cord injury treatment. Moreover, functional modifications of these hydrogels for better therapeutic effects are also discussed to provide a comprehensive insight into the application of hydrogels in the treatment of secondary spinal cord injury.
Collapse
Affiliation(s)
- Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yongkang Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Binghan Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhijian Weng
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yu Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| | - Gang Chen
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| |
Collapse
|
17
|
Huang T, Wu J, Mu J, Gao J. Advanced Therapies for Traumatic Central Nervous System Injury: Delivery Strategy Reinforced Efficient Microglial Manipulation. Mol Pharm 2023; 20:41-56. [PMID: 36469398 DOI: 10.1021/acs.molpharmaceut.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic central nervous system (CNS) injuries, including spinal cord injury and traumatic brain injury, are challenging enemies of human health. Microglia, the main component of the innate immune system in CNS, can be activated postinjury and are key participants in the pathological procedure and development of CNS trauma. Activated microglia can be typically classified into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Reducing M1 polarization while promoting M2 polarization is thought to be promising for CNS injury treatment. However, obstacles such as the low permeability of the blood-brain barrier and short retention time in circulation limit the therapeutic outcomes of administrated drugs, and rational delivery strategies are necessary for efficient microglial regulation. To this end, proper administration methods and delivery systems like nano/microcarriers and scaffolds are investigated to augment the therapeutic effects of drugs, while some of these delivery systems have self-efficacies in microglial manipulation. Besides, systems based on cell and cell-derived exosomes also show impressive effects, and some underlying targeting mechanisms of these delivery systems have been discovered. In this review, we introduce the roles of microglia play in traumatic CNS injuries, discuss the potential targets for the polarization regulation of microglial phenotype, and summarize recent studies and clinical trials about delivery strategies on enhancing the effect of microglial regulation and therapeutic outcome, as well as targeting mechanisms post CNS trauma.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer, Pharmacology and Toxicology Research of Zhejiang Province, Affiliated, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
18
|
Han J, Hua Z, Yang WJ, Wang S, Yan F, Wang JN, Sun T. Resveratrol suppresses neuroinflammation to alleviate mechanical allodynia by inhibiting Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in a rat model of spinal cord injury. Front Mol Neurosci 2023; 16:1116679. [PMID: 36873101 PMCID: PMC9977815 DOI: 10.3389/fnmol.2023.1116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Background Neuropathic pain (NP) is one of intractable complications of spinal cord injury (SCI) and lacks effective treatment. Resveratrol (Res) has been shown to possess potent anti-inflammatory and anti-nociceptive effects. In this study, we investigated the analgesic effect of Res and its underlying mechanism in a rat model of SCI. Methods The rat thoracic (T10) spinal cord contusion injury model was established, and mechanical thresholds were evaluated during an observation period of 21 days. Intrathecal administration with Res (300 μg/10 μl) was performed once a day for 7 days after the operation. On postoperative day 7, the expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were determined by enzyme-linked immunosorbent assay (ELISA) and Real-time quantitative PCR (RT-qPCR), the expression of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway was determined by western blot and RT-qPCR, and the co-labeled phospho-STAT3 (p-STAT3) with neuronal nuclear antigen (NeuN), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba-1) were explored by double immunofluorescence staining in the lumbar spinal dorsal horns. The temporal changes of p-STAT3 were investigated by western blot on the 1st, 3rd, 7th, 14th, and 21st days after the operation. Results Intrathecal administration with Res for 7 successive days alleviated mechanical allodynia of rats during the observation period. Meanwhile, treatment with Res suppressed the production of pro-inflammatory factors TNF-α, IL-1β and IL-6, and inhibited the expressions of phospho-JAK2 and p-STAT3 in the lumbar spinal dorsal horns on postoperative day 7. Additionally, the protein expression of p-STAT3 was significantly increased on the 1st day following the operation and remained elevated during the next 21 days, immunofluorescence suggested that the up-regulated p-STAT3 was co-located with glial cells and neurons. Conclusion Our current results indicated that intrathecal administration with Res effectively alleviated mechanical allodynia after SCI in rats, and its analgesic mechanism might be to suppress neuroinflammation by partly inhibiting JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Han
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Hua
- College of Sports Medicines and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Wen-Jie Yang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shu Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Yan
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun-Nan Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
20
|
Mohammadi-Meyabadi R, Beirampour N, Garrós N, Alvarado HL, Limón D, Silva-Abreu M, Calpena AC, Mallandrich M. Assessing the Solubility of Baricitinib and Drug Uptake in Different Tissues Using Absorption and Fluorescence Spectroscopies. Pharmaceutics 2022; 14:pharmaceutics14122714. [PMID: 36559208 PMCID: PMC9785369 DOI: 10.3390/pharmaceutics14122714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
The low water solubility of baricitinib (BCT) limits the development of new formulations for the topical delivery of the drug. The aims of this study were to assess the solubility of BCT in different solvents, including Transcutol, a biocompatible permeation enhancer that is miscible in water, to evaluate the drug uptake in human skin and porcine tissues (sclera, cornea, oral, sublingual, and vaginal), and to subsequently extract the drug from the tissues so as to determine the drug recovery using in vitro techniques. Analytical methods were developed and validated for the quantification of BCT in Transcutol using absorption and fluorescence spectroscopies, which are complementary to each other and permit the detection of the drug across a broad range of concentrations. Results show that Transcutol permits an increased drug solubility, and that BCT is able to penetrate the tissues studied. The solutions of BCT in Transcutol were stable for at least one week. Hence, Transcutol may be a suitable solvent for further development of topical formulations.
Collapse
Affiliation(s)
- Roya Mohammadi-Meyabadi
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Negar Beirampour
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Núria Garrós
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Helen Lissette Alvarado
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - David Limón
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (M.S.-A.); (M.M.)
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (M.S.-A.); (M.M.)
| |
Collapse
|
21
|
Zhang H, Hu T, Xiong M, Li S, Li WX, Liu J, Zhou X, Qi J, Jiang GB. Cannabidiol-loaded injectable chitosan-based hydrogels promote spinal cord injury repair by enhancing mitochondrial biogenesis. Int J Biol Macromol 2022; 221:1259-1270. [PMID: 36075309 DOI: 10.1016/j.ijbiomac.2022.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
The treatment of traumatic spinal cord injury (SCI) remains challenging as the neuron regeneration is impaired by irregular cavity and apoptosis. An injectable in situ gelling hydrogel is therefore developed for the local delivery of cannabidiol (CBD) through a novel method based on polyelectrolyte (PEC) interaction of sodium carboxymethylcellulose (CMC) and chitosan (CS). It can be injected into the spinal cord cavity with a 26-gauge syringe before gelation, and gelled after 110 ± 10 s. Of note, the in-situ forming hydrogel has mechanical properties similar to spinal cord. Moreover, the CBD-loaded hydrogels sustain delivery of CBD for up to 72 h, resulting in reducing apoptosis in SCI by enhancing mitochondrial biogenesis. Importantly, the CBD-loaded hydrogels raise neurogenesis more than pure hydrogels both in vivo and in vitro, further achieving significant recovery of motor and urinary function in SCI rats. Thus, it suggested that CMC/CS/CBD hydrogels could be used as promising biomaterials for tissue engineering and SCI.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Veterinary, South China Agricultural University, Guangzhou 510642, China; College of Materials and energy, South China Agricultural University, Guangzhou 510642, China.
| | - Tian Hu
- College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Xiong
- College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Li
- College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Xiong Li
- College of Veterinary, South China Agricultural University, Guangzhou 510642, China; College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Liu
- College of Materials and energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Qi
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang-Biao Jiang
- College of Veterinary, South China Agricultural University, Guangzhou 510642, China; College of Materials and energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Khaledi M, Sameni F, Yahyazade S, Radandish M, Owlia P, Bagheri N, Afkhami H, Mahjoor M, Esmaelpour Z, Kohansal M, Aghaei F. COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Front Med (Lausanne) 2022; 9:961027. [PMID: 36111104 PMCID: PMC9469902 DOI: 10.3389/fmed.2022.961027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recent evidence proposed that the severity of the coronavirus disease 2019 (COVID-19) in patients is a consequence of cytokine storm, characterized by increased IL-1β, IL-6, IL-18, TNF-α, and IFN-γ. Hence, managing the cytokine storm by drugs has been suggested for the treatment of patients with severe COVID-19. Several of the proinflammatory cytokines involved in the pathogenesis of COVID-19 infection recruit a distinct intracellular signaling pathway mediated by JAKs. Consequently, JAK inhibitors, including baricitinib, pacritinib, ruxolitinib, and tofacitinib, may represent an effective therapeutic strategy for controlling the JAK to treat COVID-19. This study indicates the mechanism of cytokine storm and JAK/STAT pathway in COVID-19 as well as the medications used for JAK/STAT inhibitors.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Sheida Yahyazade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
- *Correspondence: Parviz Owlia ;
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Nader Bagheri
| | | | - Mohamad Mahjoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaelpour
- Reference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzad Aghaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
23
|
Pinelli F, Pizzetti F, Veneruso V, Petillo E, Raghunath M, Perale G, Veglianese P, Rossi F. Biomaterial-Mediated Factor Delivery for Spinal Cord Injury Treatment. Biomedicines 2022; 10:biomedicines10071673. [PMID: 35884981 PMCID: PMC9313204 DOI: 10.3390/biomedicines10071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is an injurious process that begins with immediate physical damage to the spinal cord and associated tissues during an acute traumatic event. However, the tissue damage expands in both intensity and volume in the subsequent subacute phase. At this stage, numerous events exacerbate the pathological condition, and therein lies the main cause of post-traumatic neural degeneration, which then ends with the chronic phase. In recent years, therapeutic interventions addressing different neurodegenerative mechanisms have been proposed, but have met with limited success when translated into clinical settings. The underlying reasons for this are that the pathogenesis of SCI is a continued multifactorial disease, and the treatment of only one factor is not sufficient to curb neural degeneration and resulting paralysis. Recent advances have led to the development of biomaterials aiming to promote in situ combinatorial strategies using drugs/biomolecules to achieve a maximized multitarget approach. This review provides an overview of single and combinatorial regenerative-factor-based treatments as well as potential delivery options to treat SCIs.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
| | - Valeria Veneruso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Emilia Petillo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland;
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via Buffi 13, 6900 Lugano, Switzerland;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Pietro Veglianese
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
- Correspondence: (P.V.); (F.R.); Tel.: +39-02-3901-4205 (P.V.); +39-02-2399-3145 (F.R.)
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; (F.P.); (F.P.); (E.P.)
- Correspondence: (P.V.); (F.R.); Tel.: +39-02-3901-4205 (P.V.); +39-02-2399-3145 (F.R.)
| |
Collapse
|
24
|
Garibyan A, Delyagina E, Agafonov M, Khodov I, Terekhova I. Effect of pH, temperature and native cyclodextrins on aqueous solubility of baricitinib. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Mao C, Luan H, Gao S, Sheng W. Urolithin A as a Potential Drug for the Treatment of Spinal Cord Injuries: A Mechanistic Study Using Network Pharmacology Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9090113. [PMID: 35497925 PMCID: PMC9054438 DOI: 10.1155/2022/9090113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Objective This research was focused to examine the potential targets, action network, and mechanism of urolithin A (UA) in spinal cord injury (SCI) management exploiting the network pharmacology (NP). Methods We used the SwissTargetPrediction, PharmMapper, and TargetNet databases to obtain UA action targets. We searched the OMIM, GeneCards, CTD, and DrugBank databases to screen selected target genes for SCI treatment. The intersection of target genes between the UA and SCI databases was obtained by constructing Venn diagrams, which led to the identification of common druggable targets for the disease. The relationship network of the targets was built with Cytoscape 3.7.2, and the protein interaction network was analyzed with the STRING platform. The protein-protein interaction (PPI) network can be built on the STRING database. Gene Ontology (GO) function and KEGG pathway analyses of target intersections were completed with the DAVID 6.8 database. We constructed preliminary network targets for actions underlying UA-SCI interactions. Using the AutoDock software, we examined the molecular docking interactions between UA and its target proteins and further verified the mechanism of the action of UA. Results We obtained 318 UA drug targets and 1492 SCI disease targets. We identified a total of 118 common UA-SCI targets. Based on the PPI analysis, we identified MAPK1, SRC, AKT1, HRAS, MAPK8, HSP90AA1, MAPK14, JAK2, ESR1, and NF-κB1 as possible therapeutic targets. Enrichment analysis revealed that the PI3K-AKT, VEGF, and TNF signaling pathways could be critical for the NP analysis. Molecular docking indicated that UA had a strong affinity for docked proteins (binding energy range: -6.3 to -9.3 kcal mol-1). Conclusions We employed an NP approach to validate and predict the underlying mechanisms associated with UA therapy for SCI. An additional purpose of this study was to provide a theoretical basis for further experimental studies on UA's potential in SCI treatment.
Collapse
Affiliation(s)
- Chao Mao
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - HaoPeng Luan
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - ShuTao Gao
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - WeiBin Sheng
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| |
Collapse
|
26
|
Wogonin inhibits inflammation and apoptosis through STAT3 signal pathway to promote the recovery of spinal cord injury. Brain Res 2022; 1782:147843. [PMID: 35202619 DOI: 10.1016/j.brainres.2022.147843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) is a complex central traumatic disease. STAT3 signal transduction pathway plays an important role in SCI. Wogonin has been reported to exhibit neuroprotection. However, the molecular mechanism of its potential therapeutic effect after SCI remains unclear. In this study, rats were divided into the following groups: Sham; SCI; SCI + wogonin; and SCI + wogonin + colivelin (Colivelin is an effective activator of the STAT3 pathway). Motor function was evaluated by Basso Beattie Bresnahan (BBB) score. Histomorphological changes in the spinal cords were observed by Hematoxylin-eosin (HE) staining and Nissl staining. Western blot, Transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, and immunofluorescence were used to detect changes in the neuronal inflammation, apoptosis, and STAT3 signal pathway. Western blot and immunofluorescence techniques were also performed to detect the regulatory effect and the underlying mechanism of wogonin on the inflammation and apoptosis of PC12 cells. Experimental results in vivo and in vitro showed that wogonin could promote the recovery of motor function, improve the histopathological morphology, inhibit the activation of the STAT3 signal pathway, and reduce the neuronal inflammation and apoptosis in the rats with SCI. Activation of the STAT3 signal pathway by colivelin reversed the therapeutic effect of wogonin. Therefore, wogonin could inhibit inflammation and apoptosis by inhibiting the STAT3 signal pathway and promote the functional recovery of rats with SCI.
Collapse
|
27
|
Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Pharmacol Ther 2021; 234:108043. [PMID: 34813862 DOI: 10.1016/j.pharmthera.2021.108043] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a complex medical and psychological challenge for which there is no curative therapy currently available. Despite major progress in pharmacological and surgical approaches, clinical trials for SCI patients have been uniformly disappointing thus far as there are many practical and biological issues yet to be resolved. Neuroinflammation is a critical event of the secondary injury phase after SCI, and recent research strategies have focused on modulating the immune response after injury to provide a more favorable recovery environment. Biomaterials can serve this purpose by providing physical and trophic support to the injured spinal cord after SCI. Of all potential biomaterials, functional hydrogels are emerging as a key component in novel treatment strategies for SCI, including controlled and localized delivery of immunomodulatory therapies to drive polarization of immune cells towards a pro-regenerative phenotype. Here, we extensively review recent developments in the use of functional hydrogels as immunomodulatory therapies for SCI. We briefly describe physicochemical properties of hydrogels and demonstrate how advanced fabrication methods lead to the required heterogeneity and hierarchical arrangements that increasingly mimic complex spinal cord tissue. We then summarize potential SCI therapeutic modalities including: (i) hydrogels alone; (ii) hydrogels as cellular or (iii) bioactive molecule delivery vehicles, and; (iv) combinatorial approaches. By linking the structural properties of hydrogels to their functions in treatment with particular focus on immunopharmacological stimuli, this may accelerate further development of functional hydrogels for SCI, and indeed next-generation central nervous system regenerative therapies.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
28
|
Wang X, Li X, Zuo X, Liang Z, Ding T, Li K, Ma Y, Li P, Zhu Z, Ju C, Zhang Z, Song Z, Quan H, Zhang J, Hu X, Wang Z. Photobiomodulation inhibits the activation of neurotoxic microglia and astrocytes by inhibiting Lcn2/JAK2-STAT3 crosstalk after spinal cord injury in male rats. J Neuroinflammation 2021; 18:256. [PMID: 34740378 PMCID: PMC8571847 DOI: 10.1186/s12974-021-02312-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. METHODS Male Sprague-Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. RESULTS PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. CONCLUSION Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.
Collapse
Affiliation(s)
- Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xin Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,967 Hospital of People's Liberation Army Joint Logistic Support Force, Dalian, 116044, Liaoning, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhuowen Liang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kun Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Penghui Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhihao Zhang
- 967 Hospital of People's Liberation Army Joint Logistic Support Force, Dalian, 116044, Liaoning, China
| | - Zhiwen Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Huilin Quan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiawei Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
29
|
Li J, Shui X, Sun R, Wan L, Zhang B, Xiao B, Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front Cell Neurosci 2021; 15:736310. [PMID: 34594188 PMCID: PMC8476879 DOI: 10.3389/fncel.2021.736310] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are macrophages that reside in the central nervous system (CNS) and belong to the innate immune system. Moreover, they are crucially involved in CNS development, maturation, and aging; further, they are closely associated with neurons. In normal conditions, microglia remain in a static state. Upon trauma or lesion occurrence, microglia can be activated and subsequently polarized into the pro-inflammatory or anti-inflammatory phenotype. The phenotypic transition is regulated by numerous modulators. This review focus on the literature regarding the modulators and signaling pathways involved in regulating the microglial phenotypic transition, which are rarely mentioned in other reviews. Hence, this review provides molecular insights into the microglial phenotypic transition, which could be a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyu Shui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruizheng Sun
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Boxin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Dang C, Lu Y, Chen X, Li Q. Baricitinib Ameliorates Experimental Autoimmune Encephalomyelitis by Modulating the Janus Kinase/Signal Transducer and Activator of Transcription Signaling Pathway. Front Immunol 2021; 12:650708. [PMID: 33927721 PMCID: PMC8076548 DOI: 10.3389/fimmu.2021.650708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS) and a CD4+ T cell-mediated autoimmune disease. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is recognized as the major mechanism that regulates the differentiation and function of T helper (Th) 1 and Th17 cells, which are recognized as pivotal effector cells responsible for the development of EAE. We used baricitinib, a JAK 1/2 inhibitor, to investigate the therapeutic efficacy of inhibiting the JAK/STAT pathway in EAE mice. Our results showed that baricitinib significantly delayed the onset time, decreased the severity of clinical symptoms, shortened the duration of EAE, and alleviated demyelination and immune cell infiltration in the spinal cord. In addition, baricitinib treatment downregulated the proportion of interferon-γ+CD4+ Th1 and interleukin-17+CD4+ Th17 cells, decreased the levels of retinoic acid-related orphan receptor γ t and T-bet mRNA, inhibited lymphocyte proliferation, and decreased the expression of proinflammatory cytokines and chemokines in the spleen of mice with EAE. Furthermore, our results showed the role of baricitinib in suppressing the phosphorylation of STATs 1, 3, and 4 in the spleen of EAE mice. Therefore, our study demonstrates that baricitinib could potentially alleviate inflammation in mice with EAE and may be a promising candidate for treating MS.
Collapse
Affiliation(s)
- Chun Dang
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital, Chengdu, China
- Department of General Surgery, Chengdu University of Traditional Chinese Medicine Affiliated Traditional Chinese Medicine & Western Hospital, Chengdu, China
| | - Xingyu Chen
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital, Chengdu, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|