1
|
Huang Y, Liu W, Yin Z, Hu S, Wang M, Cai W. ECG classification based on guided attention mechanism. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108454. [PMID: 39369585 DOI: 10.1016/j.cmpb.2024.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Integrating domain knowledge into deep learning models can improve their effectiveness and increase explainability. This study aims to enhance the classification performance of electrocardiograms (ECGs) by customizing specific guided mechanisms based on the characteristics of different cardiac abnormalities. METHODS Two novel guided attention mechanisms, Guided Spatial Attention (GSA) and CAM-based spatial guided attention mechanism (CGAM), were introduced. Different attention guidance labels were created based on clinical knowledge for four ECG abnormality classification tasks: ST change detection, premature contraction identification, Wolf-Parkinson-White syndrome (WPW) classification, and atrial fibrillation (AF) detection. The models were trained and evaluated separately for each classification task. Model explainability was quantified using Shapley values. RESULTS GSA improved the F1 score of the model by 5.74%, 5%, 8.96%, and 3.91% for ST change detection, premature contraction identification, WPW classification, and AF detection, respectively. Similarly, CGAM exhibited improvements of 3.89%, 5.40%, 8.21%, and 1.80% for the respective tasks. The combined use of GSA and CGAM resulted in even higher improvements of 6.26%, 5.58%, 8.85%, and 4.03%, respectively. Moreover, when all four tasks were conducted simultaneously, a notable overall performance boost was achieved, demonstrating the broad adaptability of the proposed model. The quantified Shapley values demonstrated the effectiveness of the guided attention mechanisms in enhancing the model's explainability. CONCLUSIONS The guided attention mechanisms, utilizing domain knowledge, effectively directed the model's attention, leading to improved classification performance and explainability. These findings have significant implications in facilitating accurate automated ECG classification.
Collapse
Affiliation(s)
- Yangcheng Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ziyi Yin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuaicong Hu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Mingjie Wang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjie Cai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Dhingra LS, Aminorroaya A, Camargos AP, Khunte A, Sangha V, McIntyre D, Chow CK, Asselbergs FW, Brant LCC, Barreto SM, Ribeiro ALP, Krumholz HM, Oikonomou EK, Khera R. Using Artificial Intelligence to Predict Heart Failure Risk from Single-lead Electrocardiographic Signals: A Multinational Assessment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.27.24307952. [PMID: 38854022 PMCID: PMC11160804 DOI: 10.1101/2024.05.27.24307952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Importance Despite the availability of disease-modifying therapies, scalable strategies for heart failure (HF) risk stratification remain elusive. Portable devices capable of recording single-lead electrocardiograms (ECGs) can enable large-scale community-based risk assessment. Objective To evaluate an artificial intelligence (AI) algorithm to predict HF risk from noisy single-lead ECGs. Design Multicohort study. Setting Retrospective cohort of individuals with outpatient ECGs in the integrated Yale New Haven Health System (YNHHS) and prospective population-based cohorts of UK Biobank (UKB) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Participants Individuals without HF at baseline. Exposures AI-ECG-defined risk of left ventricular systolic dysfunction (LVSD). Main Outcomes and Measures Among individuals with ECGs, we isolated lead I ECGs and deployed a noise-adapted AI-ECG model trained to identify LVSD. We evaluated the association of the model probability with new-onset HF, defined as the first HF hospitalization. We compared the discrimination of AI-ECG against the pooled cohort equations to prevent HF (PCP-HF) score for new-onset HF using Harrel's C-statistic, integrated discrimination improvement (IDI), and net reclassification improvement (NRI). Results There were 194,340 YNHHS patients (age 56 years [IQR, 41-69], 112,082 women [58%]), 42,741 UKB participants (65 years [59-71], 21,795 women [52%]), and 13,454 ELSA-Brasil participants (56 years [41-69], 7,348 women [55%]) with baseline ECGs. A total of 3,929 developed HF in YNHHS over 4.5 years (2.6-6.6), 46 in UKB over 3.1 years (2.1-4.5), and 31 in ELSA-Brasil over 4.2 years (3.7-4.5). A positive AI-ECG screen was associated with a 3- to 7-fold higher risk for HF, and each 0.1 increment in the model probability portended a 27-65% higher hazard across cohorts, independent of age, sex, comorbidities, and competing risk of death. AI-ECG's discrimination for new-onset HF was 0.725 in YNHHS, 0.792 in UKB, and 0.833 in ELSA-Brasil. Across cohorts, incorporating AI-ECG predictions in addition to PCP-HF resulted in improved Harrel's C-statistic (Δ=0.112-0.114), with an IDI of 0.078-0.238 and an NRI of 20.1%-48.8% for AI-ECG vs. PCP-HF. Conclusions and Relevance Across multinational cohorts, a noise-adapted AI model with lead I ECGs as the sole input defined HF risk, representing a scalable portable and wearable device-based HF risk-stratification strategy.
Collapse
Affiliation(s)
- Lovedeep S Dhingra
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Arya Aminorroaya
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Aline Pedroso Camargos
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Akshay Khunte
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Veer Sangha
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Daniel McIntyre
- Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Luisa CC Brant
- Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandhi M Barreto
- Department of Preventive Medicine, School of Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio Luiz P Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Harlan M Krumholz
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation (CORE), Yale New Haven Hospital, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Evangelos K Oikonomou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation (CORE), Yale New Haven Hospital, New Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
3
|
Al Younis SM, Hadjileontiadis LJ, Khandoker AH, Stefanini C, Soulaidopoulos S, Arsenos P, Doundoulakis I, Gatzoulis KA, Tsioufis K. Prediction of heart failure patients with distinct left ventricular ejection fraction levels using circadian ECG features and machine learning. PLoS One 2024; 19:e0302639. [PMID: 38739639 PMCID: PMC11090346 DOI: 10.1371/journal.pone.0302639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Heart failure (HF) encompasses a diverse clinical spectrum, including instances of transient HF or HF with recovered ejection fraction, alongside persistent cases. This dynamic condition exhibits a growing prevalence and entails substantial healthcare expenditures, with anticipated escalation in the future. It is essential to classify HF patients into three groups based on their ejection fraction: reduced (HFrEF), mid-range (HFmEF), and preserved (HFpEF), such as for diagnosis, risk assessment, treatment choice, and the ongoing monitoring of heart failure. Nevertheless, obtaining a definitive prediction poses challenges, requiring the reliance on echocardiography. On the contrary, an electrocardiogram (ECG) provides a straightforward, quick, continuous assessment of the patient's cardiac rhythm, serving as a cost-effective adjunct to echocardiography. In this research, we evaluate several machine learning (ML)-based classification models, such as K-nearest neighbors (KNN), neural networks (NN), support vector machines (SVM), and decision trees (TREE), to classify left ventricular ejection fraction (LVEF) for three categories of HF patients at hourly intervals, using 24-hour ECG recordings. Information from heterogeneous group of 303 heart failure patients, encompassing HFpEF, HFmEF, or HFrEF classes, was acquired from a multicenter dataset involving both American and Greek populations. Features extracted from ECG data were employed to train the aforementioned ML classification models, with the training occurring in one-hour intervals. To optimize the classification of LVEF levels in coronary artery disease (CAD) patients, a nested cross-validation approach was employed for hyperparameter tuning. HF patients were best classified using TREE and KNN models, with an overall accuracy of 91.2% and 90.9%, and average area under the curve of the receiver operating characteristics (AUROC) of 0.98, and 0.99, respectively. Furthermore, according to the experimental findings, the time periods of midnight-1 am, 8-9 am, and 10-11 pm were the ones that contributed to the highest classification accuracy. The results pave the way for creating an automated screening system tailored for patients with CAD, utilizing optimal measurement timings aligned with their circadian cycles.
Collapse
Affiliation(s)
- Sona M. Al Younis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Centre (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Leontios J. Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Centre (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ahsan H. Khandoker
- Department of Biomedical Engineering, Healthcare Engineering Innovation Centre (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Creative Engineering Design Lab at the BioRobotics Institute, Applied Experimental Sciences Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
| | - Stergios Soulaidopoulos
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Arsenos
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Doundoulakis
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos A. Gatzoulis
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Dhingra LS, Aminorroaya A, Sangha V, Camargos AP, Asselbergs FW, Brant LCC, Barreto SM, Ribeiro ALP, Krumholz HM, Oikonomou EK, Khera R. Scalable Risk Stratification for Heart Failure Using Artificial Intelligence applied to 12-lead Electrocardiographic Images: A Multinational Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.02.24305232. [PMID: 38633808 PMCID: PMC11023679 DOI: 10.1101/2024.04.02.24305232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background Current risk stratification strategies for heart failure (HF) risk require either specific blood-based biomarkers or comprehensive clinical evaluation. In this study, we evaluated the use of artificial intelligence (AI) applied to images of electrocardiograms (ECGs) to predict HF risk. Methods Across multinational longitudinal cohorts in the integrated Yale New Haven Health System (YNHHS) and in population-based UK Biobank (UKB) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), we identified individuals without HF at baseline. Incident HF was defined based on the first occurrence of an HF hospitalization. We evaluated an AI-ECG model that defines the cross-sectional probability of left ventricular dysfunction from a single image of a 12-lead ECG and its association with incident HF. We accounted for the competing risk of death using the Fine-Gray subdistribution model and evaluated the discrimination using Harrel's c-statistic. The pooled cohort equations to prevent HF (PCP-HF) were used as a comparator for estimating incident HF risk. Results Among 231,285 individuals at YNHHS, 4472 had a primary HF hospitalization over 4.5 years (IQR 2.5-6.6) of follow-up. In UKB and ELSA-Brasil, among 42,741 and 13,454 people, 46 and 31 developed HF over a follow-up of 3.1 (2.1-4.5) and 4.2 (3.7-4.5) years, respectively. A positive AI-ECG screen portended a 4-fold higher risk of incident HF among YNHHS patients (age-, sex-adjusted HR [aHR] 3.88 [95% CI, 3.63-4.14]). In UKB and ELSA-Brasil, a positive-screen ECG portended 13- and 24-fold higher hazard of incident HF, respectively (aHR: UKBB, 12.85 [6.87-24.02]; ELSA-Brasil, 23.50 [11.09-49.81]). The association was consistent after accounting for comorbidities and the competing risk of death. Higher model output probabilities were progressively associated with a higher risk for HF. The model's discrimination for incident HF was 0.718 in YNHHS, 0.769 in UKB, and 0.810 in ELSA-Brasil. Across cohorts, incorporating model probability with PCP-HF yielded a significant improvement in discrimination over PCP-HF alone. Conclusions An AI model applied to images of 12-lead ECGs can identify those at elevated risk of HF across multinational cohorts. As a digital biomarker of HF risk that requires just an ECG image, this AI-ECG approach can enable scalable and efficient screening for HF risk.
Collapse
Affiliation(s)
- Lovedeep S Dhingra
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Arya Aminorroaya
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Veer Sangha
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Aline Pedroso Camargos
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Luisa CC Brant
- Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandhi M Barreto
- Department of Preventive Medicine, School of Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio Luiz P Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Harlan M Krumholz
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation (CORE), Yale New Haven Hospital, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Evangelos K Oikonomou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation (CORE), Yale New Haven Hospital, New Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
5
|
Attallah O. ADHD-AID: Aiding Tool for Detecting Children's Attention Deficit Hyperactivity Disorder via EEG-Based Multi-Resolution Analysis and Feature Selection. Biomimetics (Basel) 2024; 9:188. [PMID: 38534873 DOI: 10.3390/biomimetics9030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
The severe effects of attention deficit hyperactivity disorder (ADHD) among adolescents can be prevented by timely identification and prompt therapeutic intervention. Traditional diagnostic techniques are complicated and time-consuming because they are subjective-based assessments. Machine learning (ML) techniques can automate this process and prevent the limitations of manual evaluation. However, most of the ML-based models extract few features from a single domain. Furthermore, most ML-based studies have not examined the most effective electrode placement on the skull, which affects the identification process, while others have not employed feature selection approaches to reduce the feature space dimension and consequently the complexity of the training models. This study presents an ML-based tool for automatically identifying ADHD entitled "ADHD-AID". The present study uses several multi-resolution analysis techniques including variational mode decomposition, discrete wavelet transform, and empirical wavelet decomposition. ADHD-AID extracts thirty features from the time and time-frequency domains to identify ADHD, including nonlinear features, band-power features, entropy-based features, and statistical features. The present study also looks at the best EEG electrode placement for detecting ADHD. Additionally, it looks into the location combinations that have the most significant impact on identification accuracy. Additionally, it uses a variety of feature selection methods to choose those features that have the greatest influence on the diagnosis of ADHD, reducing the classification's complexity and training time. The results show that ADHD-AID has provided scores for accuracy, sensitivity, specificity, F1-score, and Mathew correlation coefficients of 0.991, 0.989, 0.992, 0.989, and 0.982, respectively, in identifying ADHD with 10-fold cross-validation. Also, the area under the curve has reached 0.9958. ADHD-AID's results are significantly higher than those of all earlier studies for the detection of ADHD in adolescents. These notable and trustworthy findings support the use of such an automated tool as a means of assistance for doctors in the prompt identification of ADHD in youngsters.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 21937, Egypt
- Wearables, Biosensing and Biosignal Processing Laboratory, Arab Academy for Science, Technology and Maritime Transport, Alexandria 21937, Egypt
| |
Collapse
|
6
|
Al Younis SM, Hadjileontiadis LJ, Al Shehhi AM, Stefanini C, Alkhodari M, Soulaidopoulos S, Arsenos P, Doundoulakis I, Gatzoulis KA, Tsioufis K, Khandoker AH. Investigating automated regression models for estimating left ventricular ejection fraction levels in heart failure patients using circadian ECG features. PLoS One 2023; 18:e0295653. [PMID: 38079417 PMCID: PMC10712857 DOI: 10.1371/journal.pone.0295653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Heart Failure (HF) significantly impacts approximately 26 million people worldwide, causing disruptions in the normal functioning of their hearts. The estimation of left ventricular ejection fraction (LVEF) plays a crucial role in the diagnosis, risk stratification, treatment selection, and monitoring of heart failure. However, achieving a definitive assessment is challenging, necessitating the use of echocardiography. Electrocardiogram (ECG) is a relatively simple, quick to obtain, provides continuous monitoring of patient's cardiac rhythm, and cost-effective procedure compared to echocardiography. In this study, we compare several regression models (support vector machine (SVM), extreme gradient boosting (XGBOOST), gaussian process regression (GPR) and decision tree) for the estimation of LVEF for three groups of HF patients at hourly intervals using 24-hour ECG recordings. Data from 303 HF patients with preserved, mid-range, or reduced LVEF were obtained from a multicentre cohort (American and Greek). ECG extracted features were used to train the different regression models in one-hour intervals. To enhance the best possible LVEF level estimations, hyperparameters tuning in nested loop approach was implemented (the outer loop divides the data into training and testing sets, while the inner loop further divides the training set into smaller sets for cross-validation). LVEF levels were best estimated using rational quadratic GPR and fine decision tree regression models with an average root mean square error (RMSE) of 3.83% and 3.42%, and correlation coefficients of 0.92 (p<0.01) and 0.91 (p<0.01), respectively. Furthermore, according to the experimental findings, the time periods of midnight-1 am, 8-9 am, and 10-11 pm demonstrated to be the lowest RMSE values between the actual and predicted LVEF levels. The findings could potentially lead to the development of an automated screening system for patients with coronary artery disease (CAD) by using the best measurement timings during their circadian cycles.
Collapse
Affiliation(s)
- Sona M. Al Younis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Centre (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Leontios J. Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Centre (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aamna M. Al Shehhi
- Department of Biomedical Engineering, Healthcare Engineering Innovation Centre (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Creative Engineering Design Lab at the BioRobotics Institute, Applied Experimental Sciences Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
| | - Mohanad Alkhodari
- Department of Biomedical Engineering, Healthcare Engineering Innovation Centre (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stergios Soulaidopoulos
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Arsenos
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Doundoulakis
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos A. Gatzoulis
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- First Cardiology Department, School of Medicine, “Hippokration” General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ahsan H. Khandoker
- Department of Biomedical Engineering, Healthcare Engineering Innovation Centre (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Al Younis SM, Hadjileontiadis LJ, Stefanini C, Khandoker AH. Non-invasive technologies for heart failure, systolic and diastolic dysfunction modeling: a scoping review. Front Bioeng Biotechnol 2023; 11:1261022. [PMID: 37920244 PMCID: PMC10619666 DOI: 10.3389/fbioe.2023.1261022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
The growing global prevalence of heart failure (HF) necessitates innovative methods for early diagnosis and classification of myocardial dysfunction. In recent decades, non-invasive sensor-based technologies have significantly advanced cardiac care. These technologies ease research, aid in early detection, confirm hemodynamic parameters, and support clinical decision-making for assessing myocardial performance. This discussion explores validated enhancements, challenges, and future trends in heart failure and dysfunction modeling, all grounded in the use of non-invasive sensing technologies. This synthesis of methodologies addresses real-world complexities and predicts transformative shifts in cardiac assessment. A comprehensive search was performed across five databases, including PubMed, Web of Science, Scopus, IEEE Xplore, and Google Scholar, to find articles published between 2009 and March 2023. The aim was to identify research projects displaying excellence in quality assessment of their proposed methodologies, achieved through a comparative criteria-based rating approach. The intention was to pinpoint distinctive features that differentiate these projects from others with comparable objectives. The techniques identified for the diagnosis, classification, and characterization of heart failure, systolic and diastolic dysfunction encompass two primary categories. The first involves indirect interaction with the patient, such as ballistocardiogram (BCG), impedance cardiography (ICG), photoplethysmography (PPG), and electrocardiogram (ECG). These methods translate or convey the effects of myocardial activity. The second category comprises non-contact sensing setups like cardiac simulators based on imaging tools, where the manifestations of myocardial performance propagate through a medium. Contemporary non-invasive sensor-based methodologies are primarily tailored for home, remote, and continuous monitoring of myocardial performance. These techniques leverage machine learning approaches, proving encouraging outcomes. Evaluation of algorithms is centered on how clinical endpoints are selected, showing promising progress in assessing these approaches' efficacy.
Collapse
Affiliation(s)
- Sona M. Al Younis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Leontios J. Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Creative Engineering Design Lab at the BioRobotics Institute, Applied Experimental Sciences Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
| | - Ahsan H. Khandoker
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Qi M, Shao H, Shi N, Wang G, Lv Y. Arrhythmia classification detection based on multiple electrocardiograms databases. PLoS One 2023; 18:e0290995. [PMID: 37756278 PMCID: PMC10529562 DOI: 10.1371/journal.pone.0290995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
According to the World Health Organization, cardiovascular diseases are the leading cause of deaths globally. Electrocardiogram (ECG) is a non-invasive approach for detecting heart diseases and reducing the risk of heart disease-related death. However, there are limited numbers of ECG samples and imbalance distribution for existing ECG databases. It is difficult to train practical and efficient neural networks. Based on the analysis and research of many existing ECG databases, this paper conduct an in-depth study on three fine-labeled ECG databases, to extract heartbeats, unify the sampling frequency, and propose a self-processing method of heartbeats, and finally form a unified ECG arrhythmia classification database, noted as Hercules-3. It is separated into training sets (80%) and testing sets (the remaining 20%). In order to verify its capabilities, we have trained a 16-classification fully connected neural network based on Hercules-3 and it achieves an accuracy rate of up to 98.67%. Compared with other data processing, our proposed method improves classification recall by at least 6%, classification accuracy by at least 4%, and F1-score by at least 7%.
Collapse
Affiliation(s)
- Meng Qi
- Computer and Information Engineering Department, Luoyang Institute of Science and Technology, Luoyang, China
- Henan Province Engineering Research Center of Industrial Intelligent Vision, Luoyang, China
| | - Hongxiang Shao
- Computer and Information Engineering Department, Luoyang Institute of Science and Technology, Luoyang, China
- Henan Province Engineering Research Center of Industrial Intelligent Vision, Luoyang, China
| | - Nianfeng Shi
- Computer and Information Engineering Department, Luoyang Institute of Science and Technology, Luoyang, China
- Henan Province Engineering Research Center of Industrial Intelligent Vision, Luoyang, China
| | - Guoqiang Wang
- Computer and Information Engineering Department, Luoyang Institute of Science and Technology, Luoyang, China
- Henan Province Engineering Research Center of Industrial Intelligent Vision, Luoyang, China
| | - Yifei Lv
- School of Computer Science and Engineering Department, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
9
|
Khare SK, Bajaj V, Gaikwad NB, Sinha GR. Ensemble Wavelet Decomposition-Based Detection of Mental States Using Electroencephalography Signals. SENSORS (BASEL, SWITZERLAND) 2023; 23:7860. [PMID: 37765916 PMCID: PMC10537182 DOI: 10.3390/s23187860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Technological advancements in healthcare, production, automobile, and aviation industries have shifted working styles from manual to automatic. This automation requires smart, intellectual, and safe machinery to develop an accurate and efficient brain-computer interface (BCI) system. However, developing such BCI systems requires effective processing and analysis of human physiology. Electroencephalography (EEG) is one such technique that provides a low-cost, portable, non-invasive, and safe solution for BCI systems. However, the non-stationary and nonlinear nature of EEG signals makes it difficult for experts to perform accurate subjective analyses. Hence, there is an urgent need for the development of automatic mental state detection. This paper presents the classification of three mental states using an ensemble of the tunable Q wavelet transform, the multilevel discrete wavelet transform, and the flexible analytic wavelet transform. Various features are extracted from the subbands of EEG signals during focused, unfocused, and drowsy states. Separate and fused features from ensemble decomposition are classified using an optimized ensemble classifier. Our analysis shows that the fusion of features results in a dimensionality reduction. The proposed model obtained the highest accuracies of 92.45% and 97.8% with ten-fold cross-validation and the iterative majority voting technique. The proposed method is suitable for real-time mental state detection to improve BCI systems.
Collapse
Affiliation(s)
- Smith K. Khare
- Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Varun Bajaj
- Indian Institute of Information Technology, Design and Manufacturing (IIITDM) Jabalpur, Jabalpur 482005, India
| | - Nikhil B. Gaikwad
- Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - G. R. Sinha
- International Institute of Information Technology, Bangalore 560100, India
| |
Collapse
|
10
|
Khare SK, Acharya UR. An explainable and interpretable model for attention deficit hyperactivity disorder in children using EEG signals. Comput Biol Med 2023; 155:106676. [PMID: 36827785 DOI: 10.1016/j.compbiomed.2023.106676] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects a person's sleep, mood, anxiety, and learning. Early diagnosis and timely medication can help individuals with ADHD perform daily tasks without difficulty. Electroencephalogram (EEG) signals can help neurologists to detect ADHD by examining the changes occurring in it. The EEG signals are complex, non-linear, and non-stationary. It is difficult to find the subtle differences between ADHD and healthy control EEG signals visually. Also, making decisions from existing machine learning (ML) models do not guarantee similar performance (unreliable). METHOD The paper explores a combination of variational mode decomposition (VMD), and Hilbert transform (HT) called VMD-HT to extract hidden information from EEG signals. Forty-one statistical parameters extracted from the absolute value of analytical mode functions (AMF) have been classified using the explainable boosted machine (EBM) model. The interpretability of the model is tested using statistical analysis and performance measurement. The importance of the features, channels and brain regions has been identified using the glass-box and black-box approach. The model's local and global explainability has been visualized using Local Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), Partial Dependence Plot (PDP), and Morris sensitivity. To the best of our knowledge, this is the first work that explores the explainability of the model prediction in ADHD detection, particularly for children. RESULTS Our results show that the explainable model has provided an accuracy of 99.81%, a sensitivity of 99.78%, 99.84% specificity, an F-1 measure of 99.83%, the precision of 99.87%, a false detection rate of 0.13%, and Mathew's correlation coefficient, negative predicted value, and critical success index of 99.61%, 99.73%, and 99.66%, respectively in detecting the ADHD automatically with ten-fold cross-validation. The model has provided an area under the curve of 100% while the detection rate of 99.87% and 99.73% has been obtained for ADHD and HC, respectively. CONCLUSIONS The model show that the interpretability and explainability of frontal region is highest compared to pre-frontal, central, parietal, occipital, and temporal regions. Our findings has provided important insight into the developed model which is highly reliable, robust, interpretable, and explainable for the clinicians to detect ADHD in children. Early and rapid ADHD diagnosis using robust explainable technologies may reduce the cost of treatment and lessen the number of patients undergoing lengthy diagnosis procedures.
Collapse
Affiliation(s)
- Smith K Khare
- Electrical and Computer Engineering Department, Aarhus University, 8200, Aarhus, Denmark.
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, Australia; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Informatics and Medical Engineering, Asia University, Taiwan; Kumamoto University, Japan; University of Malaya, Malaysia
| |
Collapse
|
11
|
Evaluation of handcrafted features and learned representations for the classification of arrhythmia and congestive heart failure in ECG. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Barua PD, Keles T, Dogan S, Baygin M, Tuncer T, Demir CF, Fujita H, Tan RS, Ooi CP, Rajendra Acharya U. Automated EEG sentence classification using novel dynamic-sized binary pattern and multilevel discrete wavelet transform techniques with TSEEG database. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Zhang T, Chen W, Chen X. Identifying epileptic EEGs and congestive heart failure ECGs under unified framework of wavelet scattering transform, bidirectional weighted (2D)2PCA and KELM. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Yang J, Xi C. The Diagnosis of Congestive Heart Failure Based on Generalized Multiscale Entropy-Wavelet Leaders. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1763. [PMID: 36554169 PMCID: PMC9778204 DOI: 10.3390/e24121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Congestive heart failure (CHF) is a chronic heart condition associated with debilitating symptoms that can lead to mortality. The electrocardiogram (ECG) is a noninvasive and simple diagnostic method that can show detectable changes in CHF. However, manual diagnosis of ECG signals is often erroneous due to the small amplitude and duration of the ECG signals. This paper presents a CHF diagnosis method based on generalized multiscale entropy (MSE)-wavelet leaders (WL) and extreme learning machine (ELM). Firstly, ECG signals from normal sinus rhythm (NSR) and congestive heart failure (CHF) patients are pre-processed. Then, parameters such as segmentation time and scale factor are chosen, and the multifractal spectrum features and number of ELM hidden layer nodes are determined. Two different data sets (A, B) were used for training and testing. In both sets, the balanced data set (B) had the highest accuracy of 99.72%, precision, sensitivity, specificity, and F1 score of 99.46%, 100%, 99.44%, and 99.73%, respectively. The unbalanced data set (A) attained an accuracy of 99.56%, precision of 99.44%, sensitivity of 99.81%, specificity of 99.17%, and F1 score of 99.62%. Finally, increasing the number of ECG segments and different algorithms validated the probability of detection of the unbalanced data set. The results indicate that our proposed method requires a lower number of ECG segments and does not require the detection of R waves. Moreover, the method can improve the probability of detection of unbalanced data sets and provide diagnostic assistance to cardiologists by providing a more objective and faster interpretation of ECG signals.
Collapse
Affiliation(s)
- Juanjuan Yang
- Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Caiping Xi
- College of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
15
|
Rjoob K, Bond R, Finlay D, McGilligan V, Leslie SJ, Rababah A, Iftikhar A, Guldenring D, Knoery C, McShane A, Peace A, Macfarlane PW. Machine learning and the electrocardiogram over two decades: Time series and meta-analysis of the algorithms, evaluation metrics and applications. Artif Intell Med 2022; 132:102381. [DOI: 10.1016/j.artmed.2022.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
|
16
|
Liu T, Si Y, Yang W, Huang J, Yu Y, Zhang G, Zhou R. Inter-Patient Congestive Heart Failure Detection Using ECG-Convolution-Vision Transformer Network. SENSORS (BASEL, SWITZERLAND) 2022; 22:3283. [PMID: 35590972 PMCID: PMC9104351 DOI: 10.3390/s22093283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022]
Abstract
An attack of congestive heart failure (CHF) can cause symptoms such as difficulty breathing, dizziness, or fatigue, which can be life-threatening in severe cases. An electrocardiogram (ECG) is a simple and economical method for diagnosing CHF. Due to the inherent complexity of ECGs and the subtle differences in the ECG waveform, misdiagnosis happens often. At present, the research on automatic CHF detection methods based on machine learning has become a research hotspot. However, the existing research focuses on an intra-patient experimental scheme and lacks the performance evaluation of working under noise, which cannot meet the application requirements. To solve the above issues, we propose a novel method to identify CHF using the ECG-Convolution-Vision Transformer Network (ECVT-Net). The algorithm combines the characteristics of a Convolutional Neural Network (CNN) and a Vision Transformer, which can automatically extract high-dimensional abstract features of ECGs with simple pre-processing. In this study, the model reached an accuracy of 98.88% for the inter-patient scheme. Furthermore, we added different degrees of noise to the original ECGs to verify the model's noise robustness. The model's performance in the above experiments proved that it could effectively identify CHF ECGs and can work under certain noise.
Collapse
Affiliation(s)
- Taotao Liu
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (T.L.); (Y.Y.); (G.Z.); (R.Z.)
- College of Communication Engineering, Jilin University, Changchun 130012, China;
| | - Yujuan Si
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (T.L.); (Y.Y.); (G.Z.); (R.Z.)
- College of Communication Engineering, Jilin University, Changchun 130012, China;
| | - Weiyi Yang
- College of Communication Engineering, Jilin University, Changchun 130012, China;
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jiaqi Huang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China;
| | - Yongheng Yu
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (T.L.); (Y.Y.); (G.Z.); (R.Z.)
- College of Communication Engineering, Jilin University, Changchun 130012, China;
| | - Gengbo Zhang
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (T.L.); (Y.Y.); (G.Z.); (R.Z.)
- College of Communication Engineering, Jilin University, Changchun 130012, China;
| | - Rongrong Zhou
- School of Electronic and Information Engineering (SEIE), Zhuhai College of Science and Technology, Zhuhai 519041, China; (T.L.); (Y.Y.); (G.Z.); (R.Z.)
- College of Communication Engineering, Jilin University, Changchun 130012, China;
| |
Collapse
|
17
|
Cardiac arrhythmia detection using dual-tree wavelet transform and convolutional neural network. Soft comput 2022. [DOI: 10.1007/s00500-021-06653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Javeed A, Khan SU, Ali L, Ali S, Imrana Y, Rahman A. Machine Learning-Based Automated Diagnostic Systems Developed for Heart Failure Prediction Using Different Types of Data Modalities: A Systematic Review and Future Directions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9288452. [PMID: 35154361 PMCID: PMC8831075 DOI: 10.1155/2022/9288452] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of deaths around the globe is heart disease. Heart is an organ that is responsible for the supply of blood to each part of the body. Coronary artery disease (CAD) and chronic heart failure (CHF) often lead to heart attack. Traditional medical procedures (angiography) for the diagnosis of heart disease have higher cost as well as serious health concerns. Therefore, researchers have developed various automated diagnostic systems based on machine learning (ML) and data mining techniques. ML-based automated diagnostic systems provide an affordable, efficient, and reliable solutions for heart disease detection. Various ML, data mining methods, and data modalities have been utilized in the past. Many previous review papers have presented systematic reviews based on one type of data modality. This study, therefore, targets systematic review of automated diagnosis for heart disease prediction based on different types of modalities, i.e., clinical feature-based data modality, images, and ECG. Moreover, this paper critically evaluates the previous methods and presents the limitations in these methods. Finally, the article provides some future research directions in the domain of automated heart disease detection based on machine learning and multiple of data modalities.
Collapse
Affiliation(s)
- Ashir Javeed
- Aging Research Center, Karolinska Institutet, Sweden
| | - Shafqat Ullah Khan
- Department of Electrical Engineering, University of Science and Technology Bannu, Pakistan
| | - Liaqat Ali
- Department of Electronics, University of Buner, Buner, Pakistan
| | - Sardar Ali
- School of Engineering and Applied Sciences, Isra University Islamabad Campus, Pakistan
| | - Yakubu Imrana
- School of Engineering, University of Development Studies, Tamale, Ghana
- School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Atiqur Rahman
- Department of Computer Science, University of Science and Technology Bannu, Pakistan
| |
Collapse
|
19
|
Akbilgic O, Butler L, Karabayir I, Chang PP, Kitzman DW, Alonso A, Chen LY, Soliman EZ. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2021; 2:626-634. [PMID: 34993487 PMCID: PMC8715759 DOI: 10.1093/ehjdh/ztab080] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 01/30/2023]
Abstract
AIMS Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction. METHODS AND RESULTS Data from the baseline visits (1987-89) of the Atherosclerosis Risk in Communities (ARIC) study was used. Incident hospitalized HF events were ascertained by ICD codes. Participants with good quality baseline ECGs were included. Participants with prevalent HF were excluded. ECG-artificial intelligence (AI) model to predict HF was created as a deep residual convolutional neural network (CNN) utilizing standard 12-lead ECG. The area under the receiver operating characteristic curve (AUC) was used to evaluate prediction models including (CNN), light gradient boosting machines (LGBM), and Cox proportional hazards regression. A total of 14 613 (45% male, 73% of white, mean age ± standard deviation of 54 ± 5) participants were eligible. A total of 803 (5.5%) participants developed HF within 10 years from baseline. Convolutional neural network utilizing solely ECG achieved an AUC of 0.756 (0.717-0.795) on the hold-out test data. ARIC and Framingham Heart Study (FHS) HF risk calculators yielded AUC of 0.802 (0.750-0.850) and 0.780 (0.740-0.830). The highest AUC of 0.818 (0.778-0.859) was obtained when ECG-AI model output, age, gender, race, body mass index, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, and heart rate were used as predictors of HF within LGBM. The ECG-AI model output was the most important predictor of HF. CONCLUSIONS ECG-AI model based solely on information extracted from ECG independently predicts HF with accuracy comparable to existing FHS and ARIC risk calculators.
Collapse
Affiliation(s)
- Oguz Akbilgic
- Department of Health Informatics and Data Science, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, 2160 S 1st Street, Maywood, IL 60153, USA
- Sections on Cardiovascular Medicine and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, 475 Vine Street, Winston-Salem, NC 27101, USA
| | - Liam Butler
- Department of Health Informatics and Data Science, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, 2160 S 1st Street, Maywood, IL 60153, USA
| | - Ibrahim Karabayir
- Department of Health Informatics and Data Science, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, 2160 S 1st Street, Maywood, IL 60153, USA
- Departmet of Econometrics, Kirklareli University, 3 Kayalı Kampüsü Kofçaz, Kirklareli, Turkey, Department of Medicine, Division of Cardiology, University of North Carolina at Chapel Hill, 160 Dental Circle, Chapel Hill, NC 27599, USA
| | - Patricia P Chang
- Sections on Cardiovascular Medicine and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, 475 Vine Street, Winston-Salem, NC 27101, USA
| | - Dalane W Kitzman
- Sections on Cardiovascular Medicine and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, 475 Vine Street, Winston-Salem, NC 27101, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE Atlanta, GA, 30322, USA
| | - Lin Y Chen
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, 401 East River Parkway, Minneapolis, MN 55455, USA
| | - Elsayed Z Soliman
- Sections on Cardiovascular Medicine and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, 475 Vine Street, Winston-Salem, NC 27101, USA
- Internal Medicine, Epidemiological Cardiology Research Center, Sections on Cardiovascular Medicine, Wake Forest School of Medicine, 525 Vine Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
20
|
Li H, An Z, Zuo S, Zhu W, Cao L, Mu Y, Song W, Mao Q, Zhang Z, Li E, García JDP. Classification of electrocardiogram signals with waveform morphological analysis and support vector machines. Med Biol Eng Comput 2021; 60:109-119. [PMID: 34718933 DOI: 10.1007/s11517-021-02461-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
Electrocardiogram (ECG) indicates the occurrence of various cardiac diseases, and the accurate classification of ECG signals is important for the automatic diagnosis of arrhythmia. This paper presents a novel classification method based on multiple features by combining waveform morphology and frequency domain statistical analysis, which offer improved classification accuracy and minimise the time spent for classifying signals. A wavelet packet is used to decompose a denoised ECG signal, and the singular value, maximum value, and standard deviation of the decomposed wavelet packet coefficients are calculated to obtain the frequency domain feature space. The slope threshold method is applied to detect R peak and calculate RR intervals, and the first two RR intervals are extracted as time-domain features. The fusion feature space is composed of time and frequency domain features. A combination of support vector machine (SVM) with the help of grid search and waveform morphological analysis is applied to complete nine types of ECG signal classification. Computer simulations show that the accuracy of the proposed algorithm on multiple types of arrhythmia databases can reach 96.67%.
Collapse
Affiliation(s)
- Hongqiang Li
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information Engineering, Tiangong University, Tianjin, China.
| | - Zhixuan An
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information Engineering, Tiangong University, Tianjin, China
| | - Shasha Zuo
- Textile Fiber Inspection Center, Tianjin Product Quality Inspection Technology Research Institute, Tianjin, China
| | - Wei Zhu
- Textile Fiber Inspection Center, Tianjin Product Quality Inspection Technology Research Institute, Tianjin, China
| | - Lu Cao
- Tianjin Chest Hospital, Tianjin, China
| | - Yuxin Mu
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information Engineering, Tiangong University, Tianjin, China
| | - Wenchao Song
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information Engineering, Tiangong University, Tianjin, China
| | - Quanhua Mao
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronics and Information Engineering, Tiangong University, Tianjin, China
| | - Zhen Zhang
- School of Computer Science and Technology, Tiangong University, Tianjin, China
| | - Enbang Li
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | | |
Collapse
|
21
|
Grün D, Rudolph F, Gumpfer N, Hannig J, Elsner LK, von Jeinsen B, Hamm CW, Rieth A, Guckert M, Keller T. Identifying Heart Failure in ECG Data With Artificial Intelligence-A Meta-Analysis. Front Digit Health 2021; 2:584555. [PMID: 34713056 PMCID: PMC8521986 DOI: 10.3389/fdgth.2020.584555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction: Electrocardiography (ECG) is a quick and easily accessible method for diagnosis and screening of cardiovascular diseases including heart failure (HF). Artificial intelligence (AI) can be used for semi-automated ECG analysis. The aim of this evaluation was to provide an overview of AI use in HF detection from ECG signals and to perform a meta-analysis of available studies. Methods and Results: An independent comprehensive search of the PubMed and Google Scholar database was conducted for articles dealing with the ability of AI to predict HF based on ECG signals. Only original articles published in peer-reviewed journals were considered. A total of five reports including 57,027 patients and 579,134 ECG datasets were identified including two sets of patient-level data and three with ECG-based datasets. The AI-processed ECG data yielded areas under the receiver operator characteristics curves between 0.92 and 0.99 to identify HF with higher values in ECG-based datasets. Applying a random-effects model, an sROC of 0.987 was calculated. Using the contingency tables led to diagnostic odds ratios ranging from 3.44 [95% confidence interval (CI) = 3.12–3.76] to 13.61 (95% CI = 13.14–14.08) also with lower values in patient-level datasets. The meta-analysis diagnostic odds ratio was 7.59 (95% CI = 5.85–9.34). Conclusions: The present meta-analysis confirms the ability of AI to predict HF from standard 12-lead ECG signals underlining the potential of such an approach. The observed overestimation of the diagnostic ability in artificial ECG databases compared to patient-level data stipulate the need for robust prospective studies.
Collapse
Affiliation(s)
- Dimitri Grün
- Department of Internal Medicine I, Cardiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Felix Rudolph
- Department of Internal Medicine I, Cardiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Nils Gumpfer
- Cognitive Information Systems, KITE - Kompetenzzentrum für Informationstechnologie, Technische Hochschule Mittelhessen - University of Applied Sciences, Friedberg, Germany
| | - Jennifer Hannig
- Cognitive Information Systems, KITE - Kompetenzzentrum für Informationstechnologie, Technische Hochschule Mittelhessen - University of Applied Sciences, Friedberg, Germany
| | - Laura K Elsner
- Department of Internal Medicine I, Cardiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Beatrice von Jeinsen
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Christian W Hamm
- Department of Internal Medicine I, Cardiology, Justus-Liebig University Giessen, Giessen, Germany.,Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Andreas Rieth
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Michael Guckert
- Cognitive Information Systems, KITE - Kompetenzzentrum für Informationstechnologie, Technische Hochschule Mittelhessen - University of Applied Sciences, Friedberg, Germany.,Department of MND - Mathematik, Naturwissenschaften und Datenverarbeitung, Technische Hochschule Mittelhessen - University of Applied Sciences, Friedberg, Germany
| | - Till Keller
- Department of Internal Medicine I, Cardiology, Justus-Liebig University Giessen, Giessen, Germany.,Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| |
Collapse
|
22
|
Yang W, Si Y, Zhang G, Wang D, Sun M, Fan W, Liu X, Li L. A novel method for automated congestive heart failure and coronary artery disease recognition using THC-Net. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Martinek R, Ladrova M, Sidikova M, Jaros R, Behbehani K, Kahankova R, Kawala-Sterniuk A. Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach-Part I: Cardiac Signals. SENSORS (BASEL, SWITZERLAND) 2021; 21:5186. [PMID: 34372424 PMCID: PMC8346990 DOI: 10.3390/s21155186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Advanced signal processing methods are one of the fastest developing scientific and technical areas of biomedical engineering with increasing usage in current clinical practice. This paper presents an extensive literature review of the methods for the digital signal processing of cardiac bioelectrical signals that are commonly applied in today's clinical practice. This work covers the definition of bioelectrical signals. It also covers to the extreme extent of classical and advanced approaches to the alleviation of noise contamination such as digital adaptive and non-adaptive filtering, signal decomposition methods based on blind source separation and wavelet transform.
Collapse
Affiliation(s)
- Radek Martinek
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Martina Ladrova
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Michaela Sidikova
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Rene Jaros
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Khosrow Behbehani
- College of Engineering, The University of Texas in Arlington, Arlington, TX 76019, USA;
| | - Radana Kahankova
- FEECS, Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava, 708 00 Ostrava, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland
| |
Collapse
|
24
|
Ketu S, Mishra PK. Empirical Analysis of Machine Learning Algorithms on Imbalance Electrocardiogram Based Arrhythmia Dataset for Heart Disease Detection. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05972-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Saini SK, Gupta R. Artificial intelligence methods for analysis of electrocardiogram signals for cardiac abnormalities: state-of-the-art and future challenges. Artif Intell Rev 2021. [DOI: 10.1007/s10462-021-09999-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
An Automated High-Accuracy Detection Scheme for Myocardial Ischemia Based on Multi-Lead Long-Interval ECG and Choi-Williams Time-Frequency Analysis Incorporating a Multi-Class SVM Classifier. SENSORS 2021; 21:s21072311. [PMID: 33810211 PMCID: PMC8037073 DOI: 10.3390/s21072311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
Cardiovascular Disease (CVD) is a primary cause of heart problems such as angina and myocardial ischemia. The detection of the stage of CVD is vital for the prevention of medical complications related to the heart, as they can lead to heart muscle death (known as myocardial infarction). The electrocardiogram (ECG) reflects these cardiac condition changes as electrical signals. However, an accurate interpretation of these waveforms still calls for the expertise of an experienced cardiologist. Several algorithms have been developed to overcome issues in this area. In this study, a new scheme for myocardial ischemia detection with multi-lead long-interval ECG is proposed. This scheme involves an observation of the changes in ischemic-related ECG components (ST segment and PR segment) by way of the Choi-Williams time-frequency distribution to extract ST and PR features. These extracted features are mapped to a multi-class SVM classifier for training in the detection of unknown conditions to determine if they are normal or ischemic. The use of multi-lead ECG for classification and 1 min intervals instead of beats or frames contributes to improved detection performance. The classification process uses the data of 92 normal and 266 patients from four different databases. The proposed scheme delivered an overall result with 99.09% accuracy, 99.49% sensitivity, and 98.44% specificity. The high degree of classification accuracy for the different and unknown data sources used in this study reflects the flexibility, validity, and reliability of this proposed scheme. Additionally, this scheme can assist cardiologists in detecting signal abnormality with robustness and precision, and can even be used for home screening systems to provide rapid evaluation in emergency cases.
Collapse
|
27
|
Biswas U, Goh CH, Ooi SY, Lim E, Redmond SJ, Lovell NH. Telemedicine systems to manage chronic disease. Digit Health 2021. [DOI: 10.1016/b978-0-12-818914-6.00020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Hammad M, Iliyasu AM, Subasi A, Ho ESL, El-Latif AAA. A Multitier Deep Learning Model for Arrhythmia Detection. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2021; 70:1-9. [PMID: 0 DOI: 10.1109/tim.2020.3033072] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
29
|
A Robust Multilevel DWT Densely Network for Cardiovascular Disease Classification. SENSORS 2020; 20:s20174777. [PMID: 32847070 PMCID: PMC7506881 DOI: 10.3390/s20174777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Immediate and accurate diagnoses of cardiovascular disease are essential for saving lives. Although most of the previously reported works have tried to classify heartbeats accurately based on the intra-patient paradigm, they suffer from category imbalance issues since abnormal heartbeats appear much less regularly than normal heartbeats. Furthermore, most existing methods rely on data preprocessing steps, such as noise removal and R-peak location. In this study, we present a robust classification system using a multilevel discrete wavelet transform densely network (MDD-Net) for the accurate detection of normal, coronary artery disease (CAD), myocardial infarction (MI) and congestive heart failure (CHF). First, the raw ECG signals from different databases are divided into same-size segments using an original adaptive sample frequency segmentation algorithm (ASFS). Then, the fusion features are extracted from the MDD-Net to achieve great classification performance. We evaluated the proposed method considering the intra-patient and inter-patient paradigms. The average accuracy, positive predictive value, sensitivity and specificity were 99.74%, 99.09%, 98.67% and 99.83%, respectively, under the intra-patient paradigm, and 96.92%, 92.17%, 89.18% and 97.77%, respectively, under the inter-patient paradigm. Moreover, the experimental results demonstrate that our model is robust to noise and class imbalance issues.
Collapse
|
30
|
Yang W, Si Y, Wang D, Zhang G, Liu X, Li L. Automated intra-patient and inter-patient coronary artery disease and congestive heart failure detection using EFAP-Net. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Darmawahyuni A, Nurmaini S, Yuwandini M, Muhammad Naufal Rachmatullah, Firdaus F, Tutuko B. Congestive heart failure waveform classification based on short time-step analysis with recurrent network. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
A Prototype Photoplethysmography Electronic Device that Distinguishes Congestive Heart Failure from Healthy Individuals by Applying Natural Time Analysis. ELECTRONICS 2019. [DOI: 10.3390/electronics8111288] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, a prototype photoplethysmography (PPG) electronic device is presented for the distinction of individuals with congestive heart failure (CHF) from the healthy (H) by applying the concept of Natural Time Analysis (NTA). Data were collected simultaneously with a conventional three-electrode electrocardiography (ECG) system and our prototype PPG electronic device from H and CHF volunteers at the 2nd Department of Cardiology, Medical School of Ioannina, Greece. Statistical analysis of the results show a clear separation of CHF from H subjects by means of NTA for both the conventional ECG system and our PPG prototype system, with a clearly better distinction for the second one which additionally inherits the advantages of a low-cost portable device.
Collapse
|
33
|
Połap D, Woźniak M, Damaševičius R, Maskeliūnas R. Bio-inspired voice evaluation mechanism. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Bhurane AA, Sharma M, San-Tan R, Acharya UR. An efficient detection of congestive heart failure using frequency localized filter banks for the diagnosis with ECG signals. COGN SYST RES 2019. [DOI: 10.1016/j.cogsys.2018.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Jahmunah V, Oh SL, Wei JKE, Ciaccio EJ, Chua K, San TR, Acharya UR. Computer-aided diagnosis of congestive heart failure using ECG signals - A review. Phys Med 2019; 62:95-104. [PMID: 31153403 DOI: 10.1016/j.ejmp.2019.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/16/2022] Open
Abstract
The heart muscle pumps blood to vital organs, which is indispensable for human life. Congestive heart failure (CHF) is characterized by the inability of the heart to pump blood adequately throughout the body without an increase in intracardiac pressure. The symptoms include lung and peripheral congestion, leading to breathing difficulty and swollen limbs, dizziness from reduced delivery of blood to the brain, as well as arrhythmia. Coronary artery disease, myocardial infarction, and medical co-morbidities such as kidney disease, diabetes, and high blood pressure all take a toll on the heart and can impair myocardial function. CHF prevalence is growing worldwide. It afflicts millions of people globally, and is a leading cause of death. Hence, proper diagnosis, monitoring and management are imperative. The importance of an objective CHF diagnostic tool cannot be overemphasized. Standard diagnostic tests for CHF include chest X-ray, magnetic resonance imaging (MRI), nuclear imaging, echocardiography, and invasive angiography. However, these methods are costly, time-consuming, and they can be operator-dependent. Electrocardiography (ECG) is inexpensive and widely accessible, but ECG changes are typically not specific for CHF diagnosis. A properly designed computer-aided detection (CAD) system for CHF, based on the ECG, would potentially reduce subjectivity and provide quantitative assessment for informed decision-making. Herein, we review existing CAD for automatic CHF diagnosis, and highlight the development of an ECG-based CAD diagnostic system that employs deep learning algorithms to automatically detect CHF.
Collapse
Affiliation(s)
- V Jahmunah
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore.
| | - Shu Lih Oh
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - Joel Koh En Wei
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | | | - Kuang Chua
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | | | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia.
| |
Collapse
|
36
|
Tripathy RK, Paternina MRA, Arrieta JG, Zamora-Méndez A, Naik GR. Automated detection of congestive heart failure from electrocardiogram signal using Stockwell transform and hybrid classification scheme. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 173:53-65. [PMID: 31046996 DOI: 10.1016/j.cmpb.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The congestive heart failure (CHF) is a life-threatening cardiac disease which arises when the pumping action of the heart is less than that of the normal case. This paper proposes a novel approach to design a classifier-based system for the automated detection of CHF. METHODS The approach is founded on the use of the Stockwell (S)-transform and frequency division to analyze the time-frequency sub-band matrices stemming from electrocardiogram (ECG) signals. Then, the entropy features are evaluated from the sub-band matrices of ECG. A hybrid classification scheme is adopted taking the sparse representation classifier and the average of the distances from the nearest neighbors into account for the detection of CHF. The proposition is validated using ECG signals from CHF subjects and normal sinus rhythm from public databases. RESULTS The results reveal that the proposed system is successful for the detection of CHF with an accuracy, a sensitivity and a specificity values of 98.78%, 98.48%, and 99.09%, respectively. A comparison with the existing approaches for the detection of CHF is accomplished. CONCLUSIONS The time-frequency entropy features of the ECG signal in the frequency range from 11 Hz to 30 Hz have higher performance for the detection of CHF using a hybrid classifier. The approach can be used for the automated detection of CHF in tele-healthcare monitoring systems.
Collapse
Affiliation(s)
- R K Tripathy
- Department of Electrical and Electronics Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| | - Mario R A Paternina
- Department of Electrical Engineering, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | | | - Alejandro Zamora-Méndez
- Electrical Engineering Faculty, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Ganesh R Naik
- MARCS Institute, Western Sydney University Kingswood, NSW - 2747, Australia
| |
Collapse
|
37
|
Hagiwara Y, Fujita H, Oh SL, Tan JH, Tan RS, Ciaccio EJ, Acharya UR. Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2018.07.063] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. APPL INTELL 2018. [DOI: 10.1007/s10489-018-1179-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Sengupta PP, Kulkarni H, Narula J. Prediction of Abnormal Myocardial Relaxation From Signal Processed Surface ECG. J Am Coll Cardiol 2018; 71:1650-1660. [DOI: 10.1016/j.jacc.2018.02.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/09/2023]
|
40
|
Acharya UR, Hagiwara Y, Koh JEW, Oh SL, Tan JH, Adam M, Tan RS. Entropies for automated detection of coronary artery disease using ECG signals: A review. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2018.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
KANG YIDA, ZHUO DEMING, FOO RUIENANNE, LIM CHOOMIN, FAUST OLIVER, HAGIWARA YUKI. ALGORITHM FOR THE DETECTION OF CONGESTIVE HEART FAILURE INDEX. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417400437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study documents our efforts to provide computer support for the diagnosis of congestive heart failure (CHF). That computer support takes the form of an index value. A high index value indicates a low probability of CHF, and an index value below a threshold of 25.6 suggests a high probability of CHF. To create that index, we have designed a sophisticated algorithm chain which takes electrocardiogram signals as input. The signals are pre-processed before they are sent to a range of nonlinear feature extraction algorithms. The top 10 feature extraction methods were used to create the CHF index. By using objective feature extraction algorithms, we avoid the problem of inter- and intra-observer variability. We observed that the nonlinear feature extraction methods reflect the nature of the human heart very well. That observation is based on the fact that the nonlinear features achieved low [Formula: see text]-values and high feature ranking criterion scores.
Collapse
Affiliation(s)
- YI DA KANG
- Department of Electronic and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - DEMING ZHUO
- Department of Electronic and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - RUI EN ANNE FOO
- Department of Electronic and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - CHOO MIN LIM
- Department of Electronic and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - OLIVER FAUST
- Department of Engineering and Mathematics, Sheffield Hallam University, UK
| | - YUKI HAGIWARA
- Department of Electronic and Computer Engineering, Ngee Ann Polytechnic, Singapore
| |
Collapse
|