1
|
Saba L, Maindarkar M, Khanna NN, Puvvula A, Faa G, Isenovic E, Johri A, Fouda MM, Tiwari E, Kalra MK, Suri JS. An Artificial Intelligence-Based Non-Invasive Approach for Cardiovascular Disease Risk Stratification in Obstructive Sleep Apnea Patients: A Narrative Review. Rev Cardiovasc Med 2024; 25:463. [PMID: 39742217 PMCID: PMC11683711 DOI: 10.31083/j.rcm2512463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 01/03/2025] Open
Abstract
Background Obstructive sleep apnea (OSA) is a severe condition associated with numerous cardiovascular complications, including heart failure. The complex biological and morphological relationship between OSA and atherosclerotic cardiovascular disease (ASCVD) poses challenges in predicting adverse cardiovascular outcomes. While artificial intelligence (AI) has shown potential for predicting cardiovascular disease (CVD) and stroke risks in other conditions, there is a lack of detailed, bias-free, and compressed AI models for ASCVD and stroke risk stratification in OSA patients. This study aimed to address this gap by proposing three hypotheses: (i) a strong relationship exists between OSA and ASCVD/stroke, (ii) deep learning (DL) can stratify ASCVD/stroke risk in OSA patients using surrogate carotid imaging, and (iii) including OSA risk as a covariate with cardiovascular risk factors can improve CVD risk stratification. Methods The study employed the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) search strategy, yielding 191 studies that link OSA with coronary, carotid, and aortic atherosclerotic vascular diseases. This research investigated the link between OSA and CVD, explored DL solutions for OSA detection, and examined the role of DL in utilizing carotid surrogate biomarkers by saving costs. Lastly, we benchmark our strategy against previous studies. Results (i) This study found that CVD and OSA are indirectly or directly related. (ii) DL models demonstrated significant potential in improving OSA detection and proved effective in CVD risk stratification using carotid ultrasound as a biomarker. (iii) Additionally, DL was shown to be useful for CVD risk stratification in OSA patients; (iv) There are important AI attributes such as AI-bias, AI-explainability, AI-pruning, and AI-cloud, which play an important role in CVD risk for OSA patients. Conclusions DL provides a powerful tool for CVD risk stratification in OSA patients. These results can promote several recommendations for developing unique, bias-free, and explainable AI algorithms for predicting ASCVD and stroke risks in patients with OSA.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Mahesh Maindarkar
- School of Bioengineering Sciences and Research, MIT Art, Design and Technology University, 412021 Pune, India
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | - Anudeep Puvvula
- Department of Radiology, and Pathology, Annu’s Hospitals for Skin and Diabetes, 524101 Nellore, India
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy
- Now with Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Esma Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of the Republic of Serbia, University of Belgrade, 192204 Belgrade, Serbia
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Ekta Tiwari
- Cardiology Imaging, Visvesvaraya National Institute of Technology Nagpur, 440010 Nagpur, India
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- University Center for Research & Development, Chandigarh University, 140413 Mohali, India
- Department of CE, Graphics Era Deemed to be University, 248002 Dehradun, India
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), 440008 Pune, India
- Stroke Diagnostic and Monitoring Division, AtheroPoint™️, Roseville, CA 95661, USA
| |
Collapse
|
2
|
Bhagawati M, Paul S, Mantella L, Johri AM, Gupta S, Laird JR, Singh IM, Khanna NN, Al-Maini M, Isenovic ER, Tiwari E, Singh R, Nicolaides A, Saba L, Anand V, Suri JS. Cardiovascular Disease Risk Stratification Using Hybrid Deep Learning Paradigm: First of Its Kind on Canadian Trial Data. Diagnostics (Basel) 2024; 14:1894. [PMID: 39272680 PMCID: PMC11393849 DOI: 10.3390/diagnostics14171894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The risk of cardiovascular disease (CVD) has traditionally been predicted via the assessment of carotid plaques. In the proposed study, AtheroEdge™ 3.0HDL (AtheroPoint™, Roseville, CA, USA) was designed to demonstrate how well the features obtained from carotid plaques determine the risk of CVD. We hypothesize that hybrid deep learning (HDL) will outperform unidirectional deep learning, bidirectional deep learning, and machine learning (ML) paradigms. METHODOLOGY 500 people who had undergone targeted carotid B-mode ultrasonography and coronary angiography were included in the proposed study. ML feature selection was carried out using three different methods, namely principal component analysis (PCA) pooling, the chi-square test (CST), and the random forest regression (RFR) test. The unidirectional and bidirectional deep learning models were trained, and then six types of novel HDL-based models were designed for CVD risk stratification. The AtheroEdge™ 3.0HDL was scientifically validated using seen and unseen datasets while the reliability and statistical tests were conducted using CST along with p-value significance. The performance of AtheroEdge™ 3.0HDL was evaluated by measuring the p-value and area-under-the-curve for both seen and unseen data. RESULTS The HDL system showed an improvement of 30.20% (0.954 vs. 0.702) over the ML system using the seen datasets. The ML feature extraction analysis showed 70% of common features among all three methods. The generalization of AtheroEdge™ 3.0HDL showed less than 1% (p-value < 0.001) difference between seen and unseen data, complying with regulatory standards. CONCLUSIONS The hypothesis for AtheroEdge™ 3.0HDL was scientifically validated, and the model was tested for reliability and stability and is further adaptable clinically.
Collapse
Affiliation(s)
- Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong 793022, India
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Siddharth Gupta
- Department of Computer Science and Engineering, Bharati Vidyapeeth's College of Engineering, New Delhi 110063, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Inder M Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | | | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Ekta Tiwari
- Department of Computer Science, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Rajesh Singh
- Division of Research and Innovation, UTI, Uttaranchal University, Dehradun 248007, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia 2417, Cyprus
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Vinod Anand
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of CE, Graphic Era Deemed to be University, Dehradun 248002, India
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA
- University Center for Research & Development, Chandigarh University, Mohali 140413, India
- Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune 412115, India
| |
Collapse
|
3
|
Duan M, Mao B, Li Z, Wang C, Hu Z, Guan J, Li F. Feasibility of tongue image detection for coronary artery disease: based on deep learning. Front Cardiovasc Med 2024; 11:1384977. [PMID: 39246581 PMCID: PMC11377252 DOI: 10.3389/fcvm.2024.1384977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Aim Clarify the potential diagnostic value of tongue images for coronary artery disease (CAD), develop a CAD diagnostic model that enhances performance by incorporating tongue image inputs, and provide more reliable evidence for the clinical diagnosis of CAD, offering new biological characterization evidence. Methods We recruited 684 patients from four hospitals in China for a cross-sectional study, collecting their baseline information and standardized tongue images to train and validate our CAD diagnostic algorithm. We used DeepLabV3 + for segmentation of the tongue body and employed Resnet-18, pretrained on ImageNet, to extract features from the tongue images. We applied DT (Decision Trees), RF (Random Forest), LR (Logistic Regression), SVM (Support Vector Machine), and XGBoost models, developing CAD diagnostic models with inputs of risk factors alone and then with the additional inclusion of tongue image features. We compared the diagnostic performance of different algorithms using accuracy, precision, recall, F1-score, AUPR, and AUC. Results We classified patients with CAD using tongue images and found that this classification criterion was effective (ACC = 0.670, AUC = 0.690, Recall = 0.666). After comparing algorithms such as Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and XGBoost, we ultimately chose XGBoost to develop the CAD diagnosis algorithm. The performance of the CAD diagnosis algorithm developed solely based on risk factors was ACC = 0.730, Precision = 0.811, AUC = 0.763. When tongue features were integrated, the performance of the CAD diagnosis algorithm improved to ACC = 0.760, Precision = 0.773, AUC = 0.786, Recall = 0.850, indicating an enhancement in performance. Conclusion The use of tongue images in the diagnosis of CAD is feasible, and the inclusion of these features can enhance the performance of existing CAD diagnosis algorithms. We have customized this novel CAD diagnosis algorithm, which offers the advantages of being noninvasive, simple, and cost-effective. It is suitable for large-scale screening of CAD among hypertensive populations. Tongue image features may emerge as potential biomarkers and new risk indicators for CAD.
Collapse
Affiliation(s)
- Mengyao Duan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Boyan Mao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Zijian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chuhao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixi Hu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Gupta S, Dubey AK, Singh R, Kalra MK, Abraham A, Kumari V, Laird JR, Al-Maini M, Gupta N, Singh I, Viskovic K, Saba L, Suri JS. Four Transformer-Based Deep Learning Classifiers Embedded with an Attention U-Net-Based Lung Segmenter and Layer-Wise Relevance Propagation-Based Heatmaps for COVID-19 X-ray Scans. Diagnostics (Basel) 2024; 14:1534. [PMID: 39061671 PMCID: PMC11275579 DOI: 10.3390/diagnostics14141534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Diagnosing lung diseases accurately is crucial for proper treatment. Convolutional neural networks (CNNs) have advanced medical image processing, but challenges remain in their accurate explainability and reliability. This study combines U-Net with attention and Vision Transformers (ViTs) to enhance lung disease segmentation and classification. We hypothesize that Attention U-Net will enhance segmentation accuracy and that ViTs will improve classification performance. The explainability methodologies will shed light on model decision-making processes, aiding in clinical acceptance. Methodology: A comparative approach was used to evaluate deep learning models for segmenting and classifying lung illnesses using chest X-rays. The Attention U-Net model is used for segmentation, and architectures consisting of four CNNs and four ViTs were investigated for classification. Methods like Gradient-weighted Class Activation Mapping plus plus (Grad-CAM++) and Layer-wise Relevance Propagation (LRP) provide explainability by identifying crucial areas influencing model decisions. Results: The results support the conclusion that ViTs are outstanding in identifying lung disorders. Attention U-Net obtained a Dice Coefficient of 98.54% and a Jaccard Index of 97.12%. ViTs outperformed CNNs in classification tasks by 9.26%, reaching an accuracy of 98.52% with MobileViT. An 8.3% increase in accuracy was seen while moving from raw data classification to segmented image classification. Techniques like Grad-CAM++ and LRP provided insights into the decision-making processes of the models. Conclusions: This study highlights the benefits of integrating Attention U-Net and ViTs for analyzing lung diseases, demonstrating their importance in clinical settings. Emphasizing explainability clarifies deep learning processes, enhancing confidence in AI solutions and perhaps enhancing clinical acceptance for improved healthcare results.
Collapse
Affiliation(s)
- Siddharth Gupta
- Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India;
| | - Arun K. Dubey
- Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India; (A.K.D.); (N.G.)
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India;
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| | - Ajith Abraham
- Department of Computer Science, Bennett University, Greater Noida 201310, India;
| | - Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Neha Gupta
- Department of Information Technology, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India; (A.K.D.); (N.G.)
| | - Inder Singh
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Klaudija Viskovic
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy;
| | - Luca Saba
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA;
| | - Jasjit S. Suri
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA;
- Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India
- Department of Computer Science & Engineering, Symbiosis Institute of Technology, Nagpur Campus 440008, Symbiosis International (Deemed University), Pune 412115, India
| |
Collapse
|
5
|
Singh M, Kumar A, Khanna NN, Laird JR, Nicolaides A, Faa G, Johri AM, Mantella LE, Fernandes JFE, Teji JS, Singh N, Fouda MM, Singh R, Sharma A, Kitas G, Rathore V, Singh IM, Tadepalli K, Al-Maini M, Isenovic ER, Chaturvedi S, Garg D, Paraskevas KI, Mikhailidis DP, Viswanathan V, Kalra MK, Ruzsa Z, Saba L, Laine AF, Bhatt DL, Suri JS. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine 2024; 73:102660. [PMID: 38846068 PMCID: PMC11154124 DOI: 10.1016/j.eclinm.2024.102660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Background The field of precision medicine endeavors to transform the healthcare industry by advancing individualised strategies for diagnosis, treatment modalities, and predictive assessments. This is achieved by utilizing extensive multidimensional biological datasets encompassing diverse components, such as an individual's genetic makeup, functional attributes, and environmental influences. Artificial intelligence (AI) systems, namely machine learning (ML) and deep learning (DL), have exhibited remarkable efficacy in predicting the potential occurrence of specific cancers and cardiovascular diseases (CVD). Methods We conducted a comprehensive scoping review guided by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. Our search strategy involved combining key terms related to CVD and AI using the Boolean operator AND. In August 2023, we conducted an extensive search across reputable scholarly databases including Google Scholar, PubMed, IEEE Xplore, ScienceDirect, Web of Science, and arXiv to gather relevant academic literature on personalised medicine for CVD. Subsequently, in January 2024, we extended our search to include internet search engines such as Google and various CVD websites. These searches were further updated in March 2024. Additionally, we reviewed the reference lists of the final selected research articles to identify any additional relevant literature. Findings A total of 2307 records were identified during the process of conducting the study, consisting of 564 entries from external sites like arXiv and 1743 records found through database searching. After 430 duplicate articles were eliminated, 1877 items that remained were screened for relevancy. In this stage, 1241 articles remained for additional review after 158 irrelevant articles and 478 articles with insufficient data were removed. 355 articles were eliminated for being inaccessible, 726 for being written in a language other than English, and 281 for not having undergone peer review. Consequently, 121 studies were deemed suitable for inclusion in the qualitative synthesis. At the intersection of CVD, AI, and precision medicine, we found important scientific findings in our scoping review. Intricate pattern extraction from large, complicated genetic datasets is a skill that AI algorithms excel at, allowing for accurate disease diagnosis and CVD risk prediction. Furthermore, these investigations have uncovered unique genetic biomarkers linked to CVD, providing insight into the workings of the disease and possible treatment avenues. The construction of more precise predictive models and personalised treatment plans based on the genetic profiles of individual patients has been made possible by the revolutionary advancement of CVD risk assessment through the integration of AI and genomics. Interpretation The systematic methodology employed ensured the thorough examination of available literature and the inclusion of relevant studies, contributing to the robustness and reliability of the study's findings. Our analysis stresses a crucial point in terms of the adaptability and versatility of AI solutions. AI algorithms designed in non-CVD domains such as in oncology, often include ideas and tactics that might be modified to address cardiovascular problems. Funding No funding received.
Collapse
Affiliation(s)
- Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
- Bennett University, 201310, Greater Noida, India
| | - Ashish Kumar
- Bennett University, 201310, Greater Noida, India
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, 110001, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Gavino Faa
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura E. Mantella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | | | - Jagjit S. Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, 248002, India
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, 22901, VA, USA
| | - George Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY1, Dudley, UK
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, 95823, USA
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | | | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 110010, Serbia
| | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | | | | | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | | | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Andrew F. Laine
- Departments of Biomedical and Radiology, Columbia University, New York, NY, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
- Department of Computer Science, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
6
|
Bhagawati M, Paul S, Mantella L, Johri AM, Laird JR, Singh IM, Singh R, Garg D, Fouda MM, Khanna NN, Cau R, Abraham A, Al-Maini M, Isenovic ER, Sharma AM, Fernandes JFE, Chaturvedi S, Karla MK, Nicolaides A, Saba L, Suri JS. Deep learning approach for cardiovascular disease risk stratification and survival analysis on a Canadian cohort. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1283-1303. [PMID: 38678144 DOI: 10.1007/s10554-024-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The quantification of carotid plaque has been routinely used to predict cardiovascular risk in cardiovascular disease (CVD) and coronary artery disease (CAD). To determine how well carotid plaque features predict the likelihood of CAD and cardiovascular (CV) events using deep learning (DL) and compare against the machine learning (ML) paradigm. The participants in this study consisted of 459 individuals who had undergone coronary angiography, contrast-enhanced ultrasonography, and focused carotid B-mode ultrasound. Each patient was tracked for thirty days. The measurements on these patients consisted of maximum plaque height (MPH), total plaque area (TPA), carotid intima-media thickness (cIMT), and intraplaque neovascularization (IPN). CAD risk and CV event stratification were performed by applying eight types of DL-based models. Univariate and multivariate analysis was also conducted to predict the most significant risk predictors. The DL's model effectiveness was evaluated by the area-under-the-curve measurement while the CV event prediction was evaluated using the Cox proportional hazard model (CPHM) and compared against the DL-based concordance index (c-index). IPN showed a substantial ability to predict CV events (p < 0.0001). The best DL system improved by 21% (0.929 vs. 0.762) over the best ML system. DL-based CV event prediction showed a ~ 17% increase in DL-based c-index compared to the CPHM (0.86 vs. 0.73). CAD and CV incidents were linked to IPN and carotid imaging characteristics. For survival analysis and CAD prediction, the DL-based system performs superior to ML-based models.
Collapse
Affiliation(s)
- Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Inder M Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Rajesh Singh
- Division of Research and Innovation, UTI, Uttaranchal University, Dehradun, India
| | - Deepak Garg
- School of Cowereter Science and Artificial Intelligence, SR University, Warangal, Telangana, 506371, India
| | - Mostafa M Fouda
- Department of ECE, Idaho State University, Pocatello, ID, 83209, USA
| | | | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | | | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Mannudeep K Karla
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia, Cyprus
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA.
- Department of ECE, Idaho State University, Pocatello, ID, 83209, USA.
- Department of CE, Graphic Era Deemed to be University, 248002, Dehradun, India.
| |
Collapse
|
7
|
van Assen M, Beecy A, Gershon G, Newsome J, Trivedi H, Gichoya J. Implications of Bias in Artificial Intelligence: Considerations for Cardiovascular Imaging. Curr Atheroscler Rep 2024; 26:91-102. [PMID: 38363525 DOI: 10.1007/s11883-024-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW Bias in artificial intelligence (AI) models can result in unintended consequences. In cardiovascular imaging, biased AI models used in clinical practice can negatively affect patient outcomes. Biased AI models result from decisions made when training and evaluating a model. This paper is a comprehensive guide for AI development teams to understand assumptions in datasets and chosen metrics for outcome/ground truth, and how this translates to real-world performance for cardiovascular disease (CVD). RECENT FINDINGS CVDs are the number one cause of mortality worldwide; however, the prevalence, burden, and outcomes of CVD vary across gender and race. Several biomarkers are also shown to vary among different populations and ethnic/racial groups. Inequalities in clinical trial inclusion, clinical presentation, diagnosis, and treatment are preserved in health data that is ultimately used to train AI algorithms, leading to potential biases in model performance. Despite the notion that AI models themselves are biased, AI can also help to mitigate bias (e.g., bias auditing tools). In this review paper, we describe in detail implicit and explicit biases in the care of cardiovascular disease that may be present in existing datasets but are not obvious to model developers. We review disparities in CVD outcomes across different genders and race groups, differences in treatment of historically marginalized groups, and disparities in clinical trials for various cardiovascular diseases and outcomes. Thereafter, we summarize some CVD AI literature that shows bias in CVD AI as well as approaches that AI is being used to mitigate CVD bias.
Collapse
Affiliation(s)
- Marly van Assen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.
| | - Ashley Beecy
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Information Technology, NewYork-Presbyterian, New York, NY, USA
| | - Gabrielle Gershon
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Janice Newsome
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Hari Trivedi
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Judy Gichoya
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Huang Y, Guo J, Chen WH, Lin HY, Tang H, Wang F, Xu H, Bian J. A scoping review of fair machine learning techniques when using real-world data. J Biomed Inform 2024; 151:104622. [PMID: 38452862 PMCID: PMC11146346 DOI: 10.1016/j.jbi.2024.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/19/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE The integration of artificial intelligence (AI) and machine learning (ML) in health care to aid clinical decisions is widespread. However, as AI and ML take important roles in health care, there are concerns about AI and ML associated fairness and bias. That is, an AI tool may have a disparate impact, with its benefits and drawbacks unevenly distributed across societal strata and subpopulations, potentially exacerbating existing health inequities. Thus, the objectives of this scoping review were to summarize existing literature and identify gaps in the topic of tackling algorithmic bias and optimizing fairness in AI/ML models using real-world data (RWD) in health care domains. METHODS We conducted a thorough review of techniques for assessing and optimizing AI/ML model fairness in health care when using RWD in health care domains. The focus lies on appraising different quantification metrics for accessing fairness, publicly accessible datasets for ML fairness research, and bias mitigation approaches. RESULTS We identified 11 papers that are focused on optimizing model fairness in health care applications. The current research on mitigating bias issues in RWD is limited, both in terms of disease variety and health care applications, as well as the accessibility of public datasets for ML fairness research. Existing studies often indicate positive outcomes when using pre-processing techniques to address algorithmic bias. There remain unresolved questions within the field that require further research, which includes pinpointing the root causes of bias in ML models, broadening fairness research in AI/ML with the use of RWD and exploring its implications in healthcare settings, and evaluating and addressing bias in multi-modal data. CONCLUSION This paper provides useful reference material and insights to researchers regarding AI/ML fairness in real-world health care data and reveals the gaps in the field. Fair AI/ML in health care is a burgeoning field that requires a heightened research focus to cover diverse applications and different types of RWD.
Collapse
Affiliation(s)
- Yu Huang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Jingchuan Guo
- Pharmaceutical Outcomes & Policy, University of Florida, Gainesville, FL, USA
| | - Wei-Han Chen
- Pharmaceutical Outcomes & Policy, University of Florida, Gainesville, FL, USA
| | - Hsin-Yueh Lin
- Pharmaceutical Outcomes & Policy, University of Florida, Gainesville, FL, USA
| | - Huilin Tang
- Pharmaceutical Outcomes & Policy, University of Florida, Gainesville, FL, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA; Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, New York, NY, USA
| | - Hua Xu
- Section of Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, CT, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Wang Z, Sun Z, Yu L, Wang Z, Li L, Lu X. Machine learning-based prediction of composite risk of cardiovascular events in patients with stable angina pectoris combined with coronary heart disease: development and validation of a clinical prediction model for Chinese patients. Front Pharmacol 2024; 14:1334439. [PMID: 38269285 PMCID: PMC10806135 DOI: 10.3389/fphar.2023.1334439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Objective: To develop a risk score model for the occurrence of composite cardiovascular events (CVE) in patients with stable angina pectoris (SA) combined with coronary heart disease (CHD) by comparing the modeling effects of various machine learning (ML) algorithms. Methods: In this prospective study, 690 patients with SA combined with CHD attending the Department of Integrative Cardiology, China-Japan Friendship Hospital, from October 2020 to October 2021 were included. The data set was randomly divided into a training group and a testing group in a 7:3 ratio in the per-protocol set (PPS). Model variables were screened using the least absolute shrinkage selection operator (LASSO) regression, univariate analysis, and multifactor logistic regression. Then, nine ML algorithms are integrated to build the model and compare the model effects. Individualized risk assessment was performed using the SHapley Additive exPlanation (SHAP) and nomograms, respectively. The model discrimination was evaluated by receiver operating characteristic curve (ROC), the calibration ability of the model was evaluated by calibration plot, and the clinical applicability of the model was evaluated by decision curve analysis (DCA). This study was approved by the Clinical Research Ethics Committee of China-Japan Friendship Hospital (2020-114-K73). Results: 690 patients were eligible to finish the complete follow-up in the PPS. After LASSO screening and multifactorial logistic regression analysis, physical activity level, taking antiplatelets, Traditional Chinese medicine treatment, Gensini score, Seattle Angina Questionnaire (SAQ)-exercise capacity score, and SAQ-anginal stability score were found to be predictors of the occurrence of CVE. The above predictors are modeled, and a comprehensive comparison of the modeling effectiveness of multiple ML algorithms is performed. The results show that the Light Gradient Boosting Machine (LightGBM) model is the best model, with an area under the curve (AUC) of 0.95 (95% CI = 0.91-1.00) for the test set, Accuracy: 0.90, Sensitivity: 0.87, and Specificity: 0.96. Interpretation of the model using SHAP highlighted the Gensini score as the most important predictor. Based on the multifactorial logistic regression modeling, a nomogram, and online calculators have been developed for clinical applications. Conclusion: We developed the LightGBM optimization model and the multifactor logistic regression model, respectively. The model is interpreted using SHAP and nomogram. This provides an option for early prediction of CVE in patients with SA combined with CHD.
Collapse
Affiliation(s)
- Zihan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linghua Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitian Wang
- Science Faculty, University of Auckland, Auckland, New Zealand
| | - Lin Li
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyan Lu
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Kumari V, Kumar N, Kumar K S, Kumar A, Skandha SS, Saxena S, Khanna NN, Laird JR, Singh N, Fouda MM, Saba L, Singh R, Suri JS. Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look. J Cardiovasc Dev Dis 2023; 10:485. [PMID: 38132653 PMCID: PMC10743870 DOI: 10.3390/jcdd10120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND MOTIVATION Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. METHODS Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. FINDINGS AND CONCLUSIONS UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach.
Collapse
Affiliation(s)
- Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Naresh Kumar
- Department of Applied Computational Science and Engineering, G L Bajaj Institute of Technology and Management, Greater Noida 201310, India
| | - Sampath Kumar K
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Ashish Kumar
- School of CSET, Bennett University, Greater Noida 201310, India;
| | - Sanagala S. Skandha
- Department of CSE, CMR College of Engineering and Technology, Hyderabad 501401, India;
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIT Bhubaneswar, Bhubaneswar 751003, India;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy;
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India;
| | - Jasjit S. Suri
- Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Science & Engineering, Graphic Era, Deemed to be University, Dehradun 248002, India
- Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
11
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
12
|
Al-Maini M, Maindarkar M, Kitas GD, Khanna NN, Misra DP, Johri AM, Mantella L, Agarwal V, Sharma A, Singh IM, Tsoulfas G, Laird JR, Faa G, Teji J, Turk M, Viskovic K, Ruzsa Z, Mavrogeni S, Rathore V, Miner M, Kalra MK, Isenovic ER, Saba L, Fouda MM, Suri JS. Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review. Rheumatol Int 2023; 43:1965-1982. [PMID: 37648884 DOI: 10.1007/s00296-023-05415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA. To enhance the accuracy of CVD/Stroke risk assessment in the RA framework, a proposed approach involves combining genomic-based biomarkers (GBBM) derived from plasma and/or serum samples with innovative non-invasive radiomic-based biomarkers (RBBM), such as measurements of synovial fluid, plaque area, and plaque burden. This review presents two hypotheses: (i) RBBM and GBBM biomarkers exhibit a significant correlation and can precisely detect the severity of CVD/Stroke in RA patients. (ii) Artificial Intelligence (AI)-based preventive, precision, and personalized (aiP3) CVD/Stroke risk AtheroEdge™ model (AtheroPoint™, CA, USA) that utilizes deep learning (DL) to accurately classify the risk of CVD/stroke in RA framework. The authors conducted a comprehensive search using the PRISMA technique, identifying 153 studies that assessed the features/biomarkers of RBBM and GBBM for CVD/Stroke. The study demonstrates how DL models can be integrated into the AtheroEdge™-aiP3 framework to determine the risk of CVD/Stroke in RA patients. The findings of this review suggest that the combination of RBBM with GBBM introduces a new dimension to the assessment of CVD/Stroke risk in the RA framework. Synovial fluid levels that are higher than normal lead to an increase in the plaque burden. Additionally, the review provides recommendations for novel, unbiased, and pruned DL algorithms that can predict CVD/Stroke risk within a RA framework that is preventive, precise, and personalized.
Collapse
Affiliation(s)
- Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
- Asia Pacific Vascular Society, New Delhi, 110001, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, M13 9PL, UK
| | - Narendra N Khanna
- Asia Pacific Vascular Society, New Delhi, 110001, India
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, 110001, India
| | | | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Vikas Agarwal
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Aman Sharma
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124, Thessaloniki, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124, Cagliari, Italy
| | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753, Delmenhorst, Germany
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, UHID, 10 000, Zagreb, Croatia
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, 95823, USA
| | - Martin Miner
- Men's Health Centre, Miriam Hospital Providence, Providence, RI, 02906, USA
| | - Manudeep K Kalra
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
13
|
Singh J, Singh N, Fouda MM, Saba L, Suri JS. Attention-Enabled Ensemble Deep Learning Models and Their Validation for Depression Detection: A Domain Adoption Paradigm. Diagnostics (Basel) 2023; 13:2092. [PMID: 37370987 DOI: 10.3390/diagnostics13122092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Depression is increasingly prevalent, leading to higher suicide risk. Depression detection and sentimental analysis of text inputs in cross-domain frameworks are challenging. Solo deep learning (SDL) and ensemble deep learning (EDL) models are not robust enough. Recently, attention mechanisms have been introduced in SDL. We hypothesize that attention-enabled EDL (aeEDL) architectures are superior compared to attention-not-enabled SDL (aneSDL) or aeSDL models. We designed EDL-based architectures with attention blocks to build eleven kinds of SDL model and five kinds of EDL model on four domain-specific datasets. We scientifically validated our models by comparing "seen" and "unseen" paradigms (SUP). We benchmarked our results against the SemEval (2016) sentimental dataset and established reliability tests. The mean increase in accuracy for EDL over their corresponding SDL components was 4.49%. Regarding the effect of attention block, the increase in the mean accuracy (AUC) of aeSDL over aneSDL was 2.58% (1.73%), and the increase in the mean accuracy (AUC) of aeEDL over aneEDL was 2.76% (2.80%). When comparing EDL vs. SDL for non-attention and attention, the mean aneEDL was greater than aneSDL by 4.82% (3.71%), and the mean aeEDL was greater than aeSDL by 5.06% (4.81%). For the benchmarking dataset (SemEval), the best-performing aeEDL model (ALBERT+BERT-BiLSTM) was superior to the best aeSDL (BERT-BiLSTM) model by 3.86%. Our scientific validation and robust design showed a difference of only 2.7% in SUP, thereby meeting the regulatory constraints. We validated all our hypotheses and further demonstrated that aeEDL is a very effective and generalized method for detecting symptoms of depression in cross-domain settings.
Collapse
Affiliation(s)
- Jaskaran Singh
- Department of Computer Science, Graphic Era, Deemed to be University, Dehradun 248002, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Luca Saba
- Department of Neurology, University of Cagliari, 09124 Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 94203, USA
| |
Collapse
|
14
|
Schumann A, Gaser C, Sabeghi R, Schulze PC, Festag S, Spreckelsen C, Bär KJ. Using machine learning to estimate the calendar age based on autonomic cardiovascular function. Front Aging Neurosci 2023; 14:899249. [PMID: 36755773 PMCID: PMC9899796 DOI: 10.3389/fnagi.2022.899249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction Aging is accompanied by physiological changes in cardiovascular regulation that can be evaluated using a variety of metrics. In this study, we employ machine learning on autonomic cardiovascular indices in order to estimate participants' age. Methods We analyzed a database including resting state electrocardiogram and continuous blood pressure recordings of healthy volunteers. A total of 884 data sets met the inclusion criteria. Data of 72 other participants with an BMI indicating obesity (>30 kg/m²) were withheld as an evaluation sample. For all participants, 29 different cardiovascular indices were calculated including heart rate variability, blood pressure variability, baroreflex function, pulse wave dynamics, and QT interval characteristics. Based on cardiovascular indices, sex and device, four different approaches were applied in order to estimate the calendar age of healthy subjects, i.e., relevance vector regression (RVR), Gaussian process regression (GPR), support vector regression (SVR), and linear regression (LR). To estimate age in the obese group, we drew normal-weight controls from the large sample to build a training set and a validation set that had an age distribution similar to the obesity test sample. Results In a five-fold cross validation scheme, we found the GPR model to be suited best to estimate calendar age, with a correlation of r=0.81 and a mean absolute error of MAE=5.6 years. In men, the error (MAE=5.4 years) seemed to be lower than that in women (MAE=6.0 years). In comparison to normal-weight subjects, GPR and SVR significantly overestimated the age of obese participants compared with controls. The highest age gap indicated advanced cardiovascular aging by 5.7 years in obese participants. Discussion In conclusion, machine learning can be used to estimate age on cardiovascular function in a healthy population when considering previous models of biological aging. The estimated age might serve as a comprehensive and readily interpretable marker of cardiovascular function. Whether it is a useful risk predictor should be investigated in future studies.
Collapse
Affiliation(s)
- Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Rassoul Sabeghi
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - P. Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Jena University Hospital, Jena, Germany
| | - Sven Festag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
- SMITH Consortium of the German Medical Informatics Initiative, Leipzig, Germany
| | - Cord Spreckelsen
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
- SMITH Consortium of the German Medical Informatics Initiative, Leipzig, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Moore JS, Nesbit MA, Moore T. Appraisal of Cardiovascular Risk Factors, Biomarkers, and Ocular Imaging in Cardiovascular Risk Prediction. Curr Cardiol Rev 2023; 19:72-81. [PMID: 37497700 PMCID: PMC10636798 DOI: 10.2174/1573403x19666230727101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
Cardiovascular disease remains a leading cause of death worldwide despite the use of available cardiovascular disease risk prediction tools. Identification of high-risk individuals via risk stratification and screening at sub-clinical stages, which may be offered by ocular screening, is important to prevent major adverse cardiac events. Retinal microvasculature has been widely researched for potential application in both diabetes and cardiovascular disease risk prediction. However, the conjunctival microvasculature as a tool for cardiovascular disease risk prediction remains largely unexplored. The purpose of this review is to evaluate the current cardiovascular risk assessment methods, identifying gaps in the literature that imaging of the ocular microcirculation may have the potential to fill. This review also explores the themes of machine learning, risk scores, biomarkers, medical imaging, and clinical risk factors. Cardiovascular risk classification varies based on the population assessed, the risk factors included, and the assessment methods. A more tailored, standardised and feasible approach to cardiovascular risk prediction that utilises technological and medical imaging advances, which may be offered by ocular imaging, is required to support cardiovascular disease prevention strategies and clinical guidelines.
Collapse
Affiliation(s)
- Julie S. Moore
- School of Biomedical Sciences, Ulster University, York St, Belfast BT15 1ED, United Kingdom
- Integrated Diagnostics Laboratory, Ulster University, 3-5a Frederick St, Belfast, Northern Ireland, United Kingdom
| | - M. Andrew Nesbit
- School of Biomedical Sciences, Ulster University, York St, Belfast BT15 1ED, United Kingdom
- Integrated Diagnostics Laboratory, Ulster University, 3-5a Frederick St, Belfast, Northern Ireland, United Kingdom
| | - Tara Moore
- School of Biomedical Sciences, Ulster University, York St, Belfast BT15 1ED, United Kingdom
- Integrated Diagnostics Laboratory, Ulster University, 3-5a Frederick St, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
16
|
Ding Y, Sun Y, Liu C, Jiang Q, Chen F, Cao Y. SERS-Based Biosensors Combined with Machine Learning for Medical Application. ChemistryOpen 2023; 12:e202200192. [PMID: 36627171 PMCID: PMC9831797 DOI: 10.1002/open.202200192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has shown strength in non-invasive, rapid, trace analysis and has been used in many fields in medicine. Machine learning (ML) is an algorithm that can imitate human learning styles and structure existing content with the knowledge to effectively improve learning efficiency. Integrating SERS and ML can have a promising future in the medical field. In this review, we summarize the applications of SERS combined with ML in recent years, such as the recognition of biological molecules, rapid diagnosis of diseases, developing of new immunoassay techniques, and enhancing SERS capabilities in semi-quantitative measurements. Ultimately, the possible opportunities and challenges of combining SERS with ML are addressed.
Collapse
Affiliation(s)
- Yan Ding
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Yang Sun
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Cheng Liu
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Qiao‐Yan Jiang
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Feng Chen
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| | - Yue Cao
- Department of Forensic MedicineNanjing Medical UniversityNanjing211166P.R. China
| |
Collapse
|
17
|
Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Singh IM, Laird JR, Fatemi M, Alizad A, Saba L, Agarwal V, Sharma A, Teji JS, Al-Maini M, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Mohanty L, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Kitas GD, Fouda MM, Chaturvedi S, Kalra MK, Suri JS. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare (Basel) 2022; 10:2493. [PMID: 36554017 PMCID: PMC9777836 DOI: 10.3390/healthcare10122493] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Motivation: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Objective: Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. Methodology: PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. Conclusions: The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | | | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - Lopamudra Mohanty
- Department of Computer Science, ABES Engineering College, Ghaziabad 201009, India
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
18
|
Khanna NN, Maindarkar MA, Viswanathan V, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji JS, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study. J Clin Med 2022; 11:6844. [PMID: 36431321 PMCID: PMC9693632 DOI: 10.3390/jcm11226844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | | | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Egkomi 2408, Cyprus
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
19
|
Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment. Comput Biol Med 2022; 149:106017. [DOI: 10.1016/j.compbiomed.2022.106017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 12/18/2022]
|
20
|
Jain PK, Dubey A, Saba L, Khanna NN, Laird JR, Nicolaides A, Fouda MM, Suri JS, Sharma N. Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm. J Cardiovasc Dev Dis 2022; 9:326. [PMID: 36286278 PMCID: PMC9604424 DOI: 10.3390/jcdd9100326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.
Collapse
Affiliation(s)
- Pankaj K. Jain
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishek Dubey
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy
| | - Narender N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospital, New Delhi 110076, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Heath St. Helena, St. Helena, CA 94574, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2409, Cyprus
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Neeraj Sharma
- Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India
| |
Collapse
|
21
|
Venkatesh S, Bravo M, Schaaf T, Koller M, Sundeen K, Samadani U. Consequences of inequity in the neurosurgical workforce: Lessons from traumatic brain injury. Front Surg 2022; 9:962867. [PMID: 36117842 PMCID: PMC9475291 DOI: 10.3389/fsurg.2022.962867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Women and minorities leave or fail to advance in the neurosurgical workforce more frequently than white men at all levels from residency to academia. The consequences of this inequity are most profound in fields such as traumatic brain injury (TBI), which lacks objective measures. We evaluated published articles on TBI clinical research and found that TBI primary investigators or corresponding authors were 86·5% White and 59·5% male. First authors from the resulting publications were 92.6% white. Most study participants were male (68%). 64·4% of NIH-funded TBI clinical trials did not report or recruit any black subjects and this number was even higher for other races and the Hispanic ethnicity. We propose several measures for mitigation of the consequences of the inequitable workforce in traumatic brain injury that could potentially contribute to more equitable outcomes. The most immediately feasible of these is validation and establishment of objective measures for triage and prognostication that are less susceptible to bias than current protocols. We call for incorporation of gender and race neutral metrics for TBI evaluation to standardize classification of injury. We offer insights into how socioeconomic factors contribute to increased death rates from women and minority groups. We propose the need to study how these disparities are caused by unfair health insurance reimbursement practices. Surgical and clinical research inequities have dire consequences, and until those inequities can be corrected, mitigation of those consequences requires system wide change.
Collapse
Affiliation(s)
- Shivani Venkatesh
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MNUnited States
| | - Marcela Bravo
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MNUnited States
| | - Tory Schaaf
- Surgical Services, Minneapolis VA Medical Center, Minneapolis, MNUnited States
| | - Michael Koller
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MNUnited States
| | - Kiera Sundeen
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MNUnited States
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MNUnited States
- Surgical Services, Minneapolis VA Medical Center, Minneapolis, MNUnited States
- Correspondence: Uzma Samadani
| |
Collapse
|
22
|
Suri JS, Agarwal S, Saba L, Chabert GL, Carriero A, Paschè A, Danna P, Mehmedović A, Faa G, Jujaray T, Singh IM, Khanna NN, Laird JR, Sfikakis PP, Agarwal V, Teji JS, R Yadav R, Nagy F, Kincses ZT, Ruzsa Z, Viskovic K, Kalra MK. Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation. J Med Syst 2022; 46:62. [PMID: 35988110 PMCID: PMC9392994 DOI: 10.1007/s10916-022-01850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Variations in COVID-19 lesions such as glass ground opacities (GGO), consolidations, and crazy paving can compromise the ability of solo-deep learning (SDL) or hybrid-deep learning (HDL) artificial intelligence (AI) models in predicting automated COVID-19 lung segmentation in Computed Tomography (CT) from unseen data leading to poor clinical manifestations. As the first study of its kind, “COVLIAS 1.0-Unseen” proves two hypotheses, (i) contrast adjustment is vital for AI, and (ii) HDL is superior to SDL. In a multicenter study, 10,000 CT slices were collected from 72 Italian (ITA) patients with low-GGO, and 80 Croatian (CRO) patients with high-GGO. Hounsfield Units (HU) were automatically adjusted to train the AI models and predict from test data, leading to four combinations—two Unseen sets: (i) train-CRO:test-ITA, (ii) train-ITA:test-CRO, and two Seen sets: (iii) train-CRO:test-CRO, (iv) train-ITA:test-ITA. COVILAS used three SDL models: PSPNet, SegNet, UNet and six HDL models: VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-SegNet, and ResNet-UNet. Two trained, blinded senior radiologists conducted ground truth annotations. Five types of performance metrics were used to validate COVLIAS 1.0-Unseen which was further benchmarked against MedSeg, an open-source web-based system. After HU adjustment for DS and JI, HDL (Unseen AI) > SDL (Unseen AI) by 4% and 5%, respectively. For CC, HDL (Unseen AI) > SDL (Unseen AI) by 6%. The COVLIAS-MedSeg difference was < 5%, meeting regulatory guidelines.Unseen AI was successfully demonstrated using automated HU adjustment. HDL was found to be superior to SDL.
Collapse
|
23
|
Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji J, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Pareek G, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report. J Cardiovasc Dev Dis 2022; 9:268. [PMID: 36005433 PMCID: PMC9409845 DOI: 10.3390/jcdd9080268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
24
|
Teji JS, Jain S, Gupta SK, Suri JS. NeoAI 1.0: Machine learning-based paradigm for prediction of neonatal and infant risk of death. Comput Biol Med 2022; 147:105639. [DOI: 10.1016/j.compbiomed.2022.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
|
25
|
Agarwal M, Agarwal S, Saba L, Chabert GL, Gupta S, Carriero A, Pasche A, Danna P, Mehmedovic A, Faa G, Shrivastava S, Jain K, Jain H, Jujaray T, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Sobel DW, Miner M, Balestrieri A, Sfikakis PP, Tsoulfas G, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Yadav RR, Nagy F, Kincses ZT, Ruzsa Z, Naidu S, Viskovic K, Kalra MK, Suri JS. Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0. Comput Biol Med 2022; 146:105571. [PMID: 35751196 PMCID: PMC9123805 DOI: 10.1016/j.compbiomed.2022.105571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. METHOD ology: The proposed study uses multicenter ∼9,000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted. RESULTS Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions. CONCLUSIONS Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department of Computer Science Engineering, Bennett University, India
| | - Sushant Agarwal
- Department of Computer Science Engineering, PSIT, Kanpur, India; Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Suneet Gupta
- Department of Computer Science Engineering, Bennett University, India
| | - Alessandro Carriero
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Alessio Pasche
- Depart of Radiology, "Maggiore della Carità" Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Pietro Danna
- Depart of Radiology, "Maggiore della Carità" Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | | | - Gavino Faa
- Department of Pathology - AOU of Cagliari, Italy
| | - Saurabh Shrivastava
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Kanishka Jain
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Harsh Jain
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Tanay Jujaray
- Dept of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | - Amer M Johri
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | | | | | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK; Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, Canada
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and Univ. of Nicosia Medical School, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Mostafa Fatemi
- Dept. of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN, USA
| | - Azra Alizad
- Dept. of Radiology, Mayo Clinic College of Medicine and Science, MN, USA
| | | | | | - Frence Nagy
- Department of Radiology, University of Szeged, 6725, Hungary
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Budapest, Hungary
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| | | | - Manudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jasjit S Suri
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India; Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
26
|
Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, Faa G, Saxena S, Singh IM, Chadha PS, Turk M, Johri A, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji JS, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Paraskevas KI, Kalra M, Ruzsa Z, Fouda MM. Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics (Basel) 2022; 12:1543. [PMID: 35885449 PMCID: PMC9324237 DOI: 10.3390/diagnostics12071543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Luca Saba
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751029, India;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sofia Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | | | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Mansfield, OH 44905, USA;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology, and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Zoltán Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| |
Collapse
|
27
|
Khanna NN, Maindarkar M, Saxena A, Ahluwalia P, Paul S, Srivastava SK, Cuadrado-Godia E, Sharma A, Omerzu T, Saba L, Mavrogeni S, Turk M, Laird JR, Kitas GD, Fatemi M, Barqawi AB, Miner M, Singh IM, Johri A, Kalra MM, Agarwal V, Paraskevas KI, Teji JS, Fouda MM, Pareek G, Suri JS. Cardiovascular/Stroke Risk Assessment in Patients with Erectile Dysfunction-A Role of Carotid Wall Arterial Imaging and Plaque Tissue Characterization Using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics (Basel) 2022; 12:1249. [PMID: 35626404 PMCID: PMC9141739 DOI: 10.3390/diagnostics12051249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The role of erectile dysfunction (ED) has recently shown an association with the risk of stroke and coronary heart disease (CHD) via the atherosclerotic pathway. Cardiovascular disease (CVD)/stroke risk has been widely understood with the help of carotid artery disease (CTAD), a surrogate biomarker for CHD. The proposed study emphasizes artificial intelligence-based frameworks such as machine learning (ML) and deep learning (DL) that can accurately predict the severity of CVD/stroke risk using carotid wall arterial imaging in ED patients. METHODS Using the PRISMA model, 231 of the best studies were selected. The proposed study mainly consists of two components: (i) the pathophysiology of ED and its link with coronary artery disease (COAD) and CHD in the ED framework and (ii) the ultrasonic-image morphological changes in the carotid arterial walls by quantifying the wall parameters and the characterization of the wall tissue by adapting the ML/DL-based methods, both for the prediction of the severity of CVD risk. The proposed study analyzes the hypothesis that ML/DL can lead to an accurate and early diagnosis of the CVD/stroke risk in ED patients. Our finding suggests that the routine ED patient practice can be amended for ML/DL-based CVD/stroke risk assessment using carotid wall arterial imaging leading to fast, reliable, and accurate CVD/stroke risk stratification. SUMMARY We conclude that ML and DL methods are very powerful tools for the characterization of CVD/stroke in patients with varying ED conditions. We anticipate a rapid growth of these tools for early and better CVD/stroke risk management in ED patients.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Mahesh Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (M.M.); (S.P.)
- Stroke Monitoring and Diagnostic Division, AtheroPoint, Roseville, CA 95661, USA;
| | - Ajit Saxena
- Department of Urology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (M.M.); (S.P.)
| | - Saurabh K. Srivastava
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad 244001, India;
| | - Elisa Cuadrado-Godia
- Department of Neurology, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (T.O.); (M.T.)
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09124 Cagliari, Italy;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (T.O.); (M.T.)
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, NY 55905, USA;
| | - Al Baha Barqawi
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint, Roseville, CA 95661, USA;
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | | | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA;
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint, Roseville, CA 95661, USA;
| |
Collapse
|
28
|
Paraskevas KI, Saba L, Suri JS. Applications of Artificial Intelligence in Vascular Diseases. Angiology 2022; 73:597-598. [PMID: 35364002 DOI: 10.1177/00033197221087779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luca Saba
- Department of Radiology, 97863Azienda Ospedaliera Universitaria Di Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPointTM, Roseville, CA, USA
| |
Collapse
|
29
|
Suri JS, Paul S, Maindarkar MA, Puvvula A, Saxena S, Saba L, Turk M, Laird JR, Khanna NN, Viskovic K, Singh IM, Kalra M, Krishnan PR, Johri A, Paraskevas KI. Cardiovascular/Stroke Risk Stratification in Parkinson's Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. Metabolites 2022; 12:metabo12040312. [PMID: 35448500 PMCID: PMC9033076 DOI: 10.3390/metabo12040312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical examination, and a lack of big data configuration, there have been no well-explained bias-free AI investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The most fundamental cause of CVD/stroke damage due to PD is cardiac autonomic dysfunction due to neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally, we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the PD framework.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Correspondence: ; Tel.: +1-(916)-749-5628
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Maheshrao A. Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Annu’s Hospitals for Skin & Diabetes, Gudur 524101, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India;
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy;
| | - Monika Turk
- Deparment of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India;
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| |
Collapse
|