1
|
Yan Y, Chen J, Cui L, Fei Q, Wang N, Ma Y. Development of oriented multi-enzyme strengthens waste activated sludge disintegration and anaerobic digestion: Performance, components transformation and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121614. [PMID: 38943750 DOI: 10.1016/j.jenvman.2024.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Low methane production and long retention time are the main dilemmas in current anaerobic digestion (AD) of waste activated sludge (WAS). This work used WAS as only substrate to prepare oriented multi-enzyme (ME) that directly used for WAS pretreatment. Under the optimal parameters, the highest activities of protease and amylase in ME could respectively reach 16.5 U/g and 580 U/g, and the corresponding methane production attained 197 mLCH4/g VS, which was increased by 70.4% compared to blank group. It was found that ME pretreatment could strengthen WAS disintegration and organic matters dissolution, lead to the soluble chemical oxygen demand (SCOD) was increased from the initial 486 mg/L to 2583 mg/L, and the corresponding volatile suspended solid (VSS) and extracellular polymeric substances (EPS) were reduced by 27% and 73.8%, respectively. The results of three-dimensional excitation-emission matrix (3D-EEM) and Fourier transform infrared spectroscopy (FTIR) indicated that protein disintegration may be the critical step during the process of WAS hydrolysis with ME, of which the release of tyrosine-like proteins achieved the better biodegradability of WAS, while the results of X-ray photoelectron spectroscopy (XPS) showed that the formation of protein derivatives was the main harmful factor that could extend the lag phase of AD process. Microbial communities analysis further suggested that ME pretreatment facilitated the enrichment of acetogenic bacteria and acetotrophic methanogens, which caused the transition of the methanogenesis pathway from hydrogenotrophic to acetotrophic. This study is expected to furnish valuable insight for ME pretreatment on enhancing WAS disintegration and methane production.
Collapse
Affiliation(s)
- Yiming Yan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxin Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lihui Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Nan Wang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Yang T, Xiao Y, Zhao X, Li D, Ma Z, Li W, Gong T, Zhang T, Huang N, Xi B. Transformation pathways of the carbon-containing group compounds during municipal sludge pyrolysis treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:26-34. [PMID: 38377766 DOI: 10.1016/j.wasman.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Municipal sludge contains abundant amounts of carbon, with contents ranging from 14 % to 38 %. The various carbon-containing group compounds can be converted into beneficial products, but pollutants and greenhouse gases are also released through the municipal sludge pyrolysis process. Ascertaining the pathways by which carbon-containing group compounds is converted and transformed is crucial for addressing pollution concerns and promoting recycling. This study explored the transformation pathways of carbon-containing group compounds during the pyrolysis process of municipal sludge. The results showed that the three major carbon-containing group compounds including protein (61 %), cellulose (9 %), and hemicellulose (7 %), had significantly different pyrolysis temperature of 600 °C, 400 °C and 300 °C. In terms of gas pollution, most carbon was fully pyrolyzed into CO2. While the temperature raised up to 500 °C, a part of the CO2 converted into CO. Meanwhile, the various carbon-containing compounds exhibited distinct effects on gas production, which CH4 was produced more with cellulose and protein presenting in the sludge. When temperature increased to 700 °C, the 60 % of the carbon-containing group compounds were transformed into liquid and solid. The pyrolysis liquid in the low-temperature stage (30-300 °C) contained a relatively high aliphatics content and lower organooxygen species (OOSs) content (at 200 °C), suggesting a potential for resource utilization. The yield of CO in the gas rapidly increased as the temperature increased in the high-temperature stage (500-700 °C). The insights from this study hold practical implications for enhancing municipal sludge pyrolysis efficiency, reducing pollution, and facilitating more sustainable and resource-efficient practices.
Collapse
Affiliation(s)
- Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yi Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710000, PR China
| | - Xin Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Dongyang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhifei Ma
- School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tiancheng Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ting Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
3
|
Khan U, Bilal M, Adil HM, Darlington N, Khan A, Khan N, Ihsanullah I. Hydrogen from sewage sludge: Production methods, influencing factors, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170696. [PMID: 38340850 DOI: 10.1016/j.scitotenv.2024.170696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The rising global population and rapid industrialization have frequently resulted in a significant escalation in energy requirements. Hydrogen, renowned for its eco-friendly and renewable characteristics, has garnered substantial interest as a fuel alternative to address the energy needs currently fulfilled by fossil fuels. Embracing such energy substitutes holds pivotal importance in advancing environmental sustainability, aiding in the reduction of greenhouse gas emissions - the primary catalysts of global warming and climate fluctuations. This study elucidates recent trends in sewage sludge (SS)-derived hydrogen through diverse production pathways and critically evaluates the impact of varying parameters on hydrogen yield. Furthermore, a detailed analysis of the breakdown of the hydrogen generation process from SS is provided, along with an assessment of its economic dimensions. The review culminates by illuminating key obstacles in the adoption of this innovative technology, accompanied by practical recommendations to surmount these challenges. This comprehensive analysis is expected to attract considerable interest from stakeholders within the hydrogen production domain, fostering substantial engagement.
Collapse
Affiliation(s)
- Usman Khan
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Krakow 31-155, Poland
| | - Muhammad Bilal
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Hossain Md Adil
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Krakow 31-155, Poland
| | - Nnabodo Darlington
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Krakow 31-155, Poland
| | - Ahsan Khan
- Center of Excellence in Particle Technology and Material Processing, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nouman Khan
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, KPK, Pakistan
| | - I Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
4
|
Sun L, Li M, Liu B, Li R, Deng H, Zhu X, Zhu X, Tsang DCW. Machine learning for municipal sludge recycling by thermochemical conversion towards sustainability. BIORESOURCE TECHNOLOGY 2024; 394:130254. [PMID: 38151207 DOI: 10.1016/j.biortech.2023.130254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The sustainable disposal of high-moisture municipal sludge (MS) has received increasing attention. Thermochemical conversion technologies can be used to recycle MS into liquid/gas bio-fuel and value-added solid products. In this review, we compared energy recovery potential of common thermochemical technologies (i.e., incineration, pyrolysis, hydrothermal conversion) for MS disposal via statistical methods, which indicated that hydrothermal conversion had a great potential in achieving energy recovery from MS. The application of machine learning (ML) in MS recycling was discussed to decipher complex relationships among MS components, process parameters and physicochemical reactions. Comprehensive ML models should be developed considering successive reaction processes of thermochemical conversion in future studies. Furthermore, challenges and prospects were proposed to improve effectiveness of ML for energizing thermochemical conversion of MS regarding data collection and preprocessing, model optimization and interpretability. This review sheds light on mechanism exploration of MS thermochemical recycling by ML, and provide practical guidance for MS recycling.
Collapse
Affiliation(s)
- Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingxuan Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Bingyou Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruohong Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Huanzhong Deng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiefei Zhu
- School of Advanced Energy, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinzhe Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
5
|
Hämäläinen A, Kokko M, Tolvanen H, Kinnunen V, Rintala J. Towards the implementation of hydrothermal carbonization for nutrients, carbon, and energy recovery in centralized biogas plant treating sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:99-108. [PMID: 37984264 DOI: 10.1016/j.wasman.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
In recent years, extensive experimental research on hydrothermal carbonization (HTC) of sewage sludge has been performed, to study the effects of process conditions on hydrochar characteristics and nutrient, carbon, and energy recovery from sewage sludge. To promote the implementation of HTC, this study assessed HTC (230 °C, 30 min) integration into an advanced centralized biogas plant by analyzing its theoretical effects on the fates of sewage sludge solids, nitrogen, phosphorus, and carbon. The study used the mass and nutrient flows and concentrations obtained from laboratory studies, and the studied biogas plant had an original layout that employed hygienization. HTC integration decreased the solid product volume by up to 56 % and, increased the recovery of ammonium in ammonia water by 33 % and methane by 1.4 %, while increasing the biogas plant energy demand by 4 %. The changes in the nutrient and solids flows and their recovery potentials show the need to consider the rearrangements of the liquid and gas flows in the biogas plant and the re-dimensioning of stripping process.
Collapse
Affiliation(s)
- Anna Hämäläinen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33104 Tampere University, Finland.
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33104 Tampere University, Finland
| | - Henrik Tolvanen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33104 Tampere University, Finland
| | - Viljami Kinnunen
- Gasum Ltd. Revontulenpuisto 2 C, P.O. Box 21, 02151 Espoo, Finland
| | - Jukka Rintala
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33104 Tampere University, Finland
| |
Collapse
|
6
|
Xiong Q, Li Y, Hou C, Yang J, Zhou X, Ma X, Zuo X, Wu X. How microplastics affect sludge pyrolysis behavior: Thermogravimetry-mass spectrum analysis and biochar characteristics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:108-116. [PMID: 39491306 DOI: 10.1016/j.wasman.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
The concentration of microplastics (MPs) in sewage sludge (SS) ranged from 1600 to 56400 particles per kilogram of dried SS (MPs: dried SS = 0.14-5.09), so its effect on SS pyrolysis performance should not be negligible. This study attempted to investigate the effect of typical MPs, including polypropylene (PP), polyethylene (PE), and polyvinyl chloride (PVC), on the pyrolysis performance (pyrolysis characteristics and major gaseous product evolution) of SS and their biochar characteristics via thermogravimetry-mass spectrometry (TG-MS) and physicochemical property analysis of biochar. The results showed that the PVC MPs enhanced the pyrolysis of SS, while the PP and PE MPs had an inhibitory effect. The total amounts of gas products tended to decrease with all MPs addition. However, the proportions of combustible components (H2, CH4, and C2H2) increased. Among the biochar products, the presence of PVC MPs during the pyrolysis of SS resulted in a more porous, stable and aromatic biochar.
Collapse
Affiliation(s)
- Qiao Xiong
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei 435002, China; Huangshi Key Laboratory of Prevention and Control of Soil Pollution (Hubei Normal University), Huangshi, Hubei 435002, China
| | - Yinqiu Li
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei 435002, China; Huangshi Key Laboratory of Prevention and Control of Soil Pollution (Hubei Normal University), Huangshi, Hubei 435002, China
| | - Chaohua Hou
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Jie Yang
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Xiangjun Zhou
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Xiao Ma
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Xiangru Zuo
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Xiang Wu
- School of Resources and Environmental Science, Hubei University, Wuhan 430062, China.
| |
Collapse
|
7
|
AlMohamadi H, Alamoudi M, Yameen MZ, Naqvi SR. An integrated approach for the extraction of lipids from marine macroalgae consortium using RSM optimization and thermo-kinetic analysis. CHEMOSPHERE 2023; 338:139623. [PMID: 37487986 DOI: 10.1016/j.chemosphere.2023.139623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
This work presents an integrated approach for the extraction of lipids from marine macroalgae using RSM optimization and thermo-kinetic analysis. The lipids were extracted from marine macroalgal biomass using a Soxhlet extractor. The Soxhlet extraction parameters, including temperature (60-80 °C), solvent-to-algae ratio (3:1-7:1), algal particle size (0.05-0.25 mm), and extraction time (60-180 min), were optimized using RSM to achieve the maximum possible lipid extraction yield from marine macroalgae. The highest lipid extraction yield of 12.76% was obtained using the optimized conditions, which included an extraction temperature of 72 °C, a solvent-to-algae ratio of 5:1, an algal particle size of 0.16 mm, and an extraction time of 134 min. The kinetic analysis revealed an activation energy of 52.79 kJ mol-1 for the Soxhlet extraction process. The thermodynamic analysis of the Soxhlet extraction process demonstrated the following results: ΔH = 49.98 kJ mol-1, ΔS = -128.24 J K-1 mol-1, and ΔG = 93.98 kJ mol-1. The GC-MS analysis confirmed that the extracted algal lipids exhibited a composition of 14.20% palmitic acid, 4.89% stearic acid, and 76.97% oleic acid. The physiochemical analysis ensured that the extracted algal lipids possess excellent qualities, making them desirable for sustainable biofuel production.
Collapse
Affiliation(s)
- Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Majed Alamoudi
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Muhammad Zubair Yameen
- Laboratory of Alternative Fuels & Sustainability, School of Chemical & Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Salman Raza Naqvi
- Laboratory of Alternative Fuels & Sustainability, School of Chemical & Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
8
|
Liu Y, Liu Y, Wang S, Chen T, Gao B, Gao H, Wang H. Independent parallel pyrolysis kinetics of model components in sewage sludge analyzed by BPM neural network. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97486-97497. [PMID: 37594705 DOI: 10.1007/s11356-023-29184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Analyzing the kinetic behavior of sewage sludge pyrolysis is essential for the design of efficient reactors to produce biofuel and syngas. To understand the complex pyrolysis process of sewage sludge, we pyrolyzed six model components (i.e., cellulose, hemicellulose, lignin, protein, soluble sugars, and lipid) using a thermogravimetric analyzer. The effects of the heating rate on the pyrolysis process were examined at four different heating rates (5, 15, 25, and 50 °C/min). As temperature increased, the derivative thermogravimetric peaks shifted to higher temperature zones. The temperature ranges of the maximum mass loss rate for cellulose, hemicellulose, lignin, protein, soluble sugars, and lipid were within 326.1-368.0 °C, 288.7-315.5 °C, 375.1-429.4 °C, 291.9-308.0 °C, 251.0-314.1 °C, and 410.8-454.1 °C, respectively. The apparent activation energies of the model components were obtained using non-isothermal kinetic analysis methods (Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose). In addition, a back-propagation artificial neural network with a momentum algorithm (BPM) was developed to predict the relationship between the pyrolysis experiment and the activation value. The best BPM model (BPM5) for predicting the cellulose pyrolysis was identified.
Collapse
Affiliation(s)
- Yanting Liu
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, China
| | - Yanjun Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Sheng Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Bingli Gao
- Planning and Construction Bureau of Xiong'an New Area, Xiong'an, 071700, Hebei, China
| | - Hang Gao
- School of Emergency Science and Engineering, Jilin Jianzhu University, Changchun, Jilin, 130018, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Lin W, Zhou J, Sun S. Cadmium and lead removal by Mg/Fe bimetallic oxide-loaded sludge-derived biochar: batch adsorption, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86866-86878. [PMID: 37410325 DOI: 10.1007/s11356-023-28574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Biochar is a valuable adsorbent for the removal of heavy metals from water, and it is important to explore ways to increase its heavy metal adsorption capacity. In this study, Mg/Fe bimetallic oxide was loaded onto sewage sludge-derived biochar to enhance its heavy metal adsorption capacity. Batch adsorption experiments for the removal of Pb(II) and Cd(II) were performed to evaluate the removal efficiency of Mg/Fe layer bimetallic oxide-loaded sludge-derived biochar ((Mg/Fe)LDO-ASB). The physicochemical properties of (Mg/Fe)LDO-ASB and corresponding adsorption mechanisms were studied. The maximum adsorption capacities of (Mg/Fe)LDO-ASB for Pb(II) and Cd(II), which were calculated by isotherm model, were 408.31 and 270.41 mg/g, respectively. Adsorption kinetics and isotherms analysis showed that the dominant adsorption process of Pb(II) and Cd(II) uptake by (Mg/Fe)LDO-ASB was spontaneous chemisorption and heterogeneous multilayer adsorption, and film diffusion was the rate-limiting step. SEM-EDS, FTIR, XRD, and XPS analyses revealed that the Pb and Cd adsorption processes of (Mg/Fe)LDO-ASB involved oxygen-containing functional group complexation, mineral precipitation, electron-π-metal interactions, and ion exchange. The order of their contribution was as follows: mineral precipitation (Pb: 87.92% and Cd: 79.91%) > ion exchange (Pb: 9.84% and Cd: 16.45%) > metal-π interaction (Pb: 0.85% and Cd: 0.73%) > oxygen-containing functional group complexation (Pb: 1.39% and Cd: 2.91%). Mineral precipitation was the main adsorption mechanism, and ion exchange played a crucial role in Pb and Cd adsorption.
Collapse
Affiliation(s)
- Weixiong Lin
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiali Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| |
Collapse
|
10
|
Ling CCY, Li SFY. Synergistic interactions between sewage sludge, polypropylene, and high-density polyethylene during co-pyrolysis: An investigation based on iso-conversional model-free methods and master plot analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131600. [PMID: 37182467 DOI: 10.1016/j.jhazmat.2023.131600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Sewage sludge (SS) is a hazardous by-product of wastewater treatment processes that requires careful management for minimal environmental impacts and effective resource recovery. Through thermochemical processes such as pyrolysis, clean energy is recovered from SS in the form of bio-oil, biogas, and biochar. To improve the yield and quality of products, the co-pyrolysis of more than two materials is increasingly gaining interest. Here, the thermal behaviour, kinetics, and synergistic interactions during the co-pyrolysis of SS with polypropylene (PP) and high-density polyethylene (HDPE) were comparatively evaluated with thermogravimetric analysis at different mixing ratios and heat rates. Activation energies and reaction mechanisms were determined through iso-conversional model-free methods and master plot analysis. Evolved gases were monitored with thermogravimetric-mass spectrometry. Increased volatile conversion and degradation rates, and reduced activation energies during co-pyrolysis were mediated by synergistic interactions between H-radicals of PP/HDPE and oxygenated intermediates of SS. Contrary to the pyrolysis of SS, PP and HDPE, the co-pyrolysis processes are predominantly diffusion-controlled. Insights into the co-pyrolysis processes of SS/PP and SS/HDPE gained from this work provide the theoretical support for subsequent investigation, facilitate design of waste-to-energy reactor, and aid the adoption of the technology to harness the bioenergy potential of the feedstocks.
Collapse
Affiliation(s)
- Crystal Chia Yin Ling
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
11
|
Amin N, Aslam M, Khan Z, Yasin M, Hossain S, Shahid MK, Inayat A, Samir A, Ahmad R, Murshed MN, Khurram MS, El Sayed ME, Ghauri M. Municipal solid waste treatment for bioenergy and resource production: Potential technologies, techno-economic-environmental aspects and implications of membrane-based recovery. CHEMOSPHERE 2023; 323:138196. [PMID: 36842558 DOI: 10.1016/j.chemosphere.2023.138196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
World estimated municipal solid waste generating at an alarming rate and its disposal is a severe concern of today's world. It is equivalent to 0.79 kg/d per person footprint and causing climate change; health hazards and other environmental issues which need attention on an urgent basis. Waste to energy (WTE) considers as an alternative renewable energy potential to recover energy from waste and reduce the global waste problems. WTE reduced the burden on fossil fuels for energy generation, waste volumes, environmental, and greenhouse gases emissions. This critical review aims to evaluate the source of solid waste generation and the possible routes of waste management such as biological landfill and thermal treatment (Incineration, pyrolysis, and gasification). Moreover, a comparative evaluation of different technologies was reviewed in terms of economic and environmental aspects along with their limitations and advantages. Critical literature revealed that gasification seemed to be the efficient route and environmentally sustainable. In addition, a framework for the gasification process, gasifier types, and selection of gasifiers for MSW was presented. The country-wise solutions recommendation was proposed for solid waste management with the least impact on the environment. Furthermore, key issues and potential perspectives that require urgent attention to facilitate global penetration are highlighted. Finally, practical implications of membrane and comparison membrane-based separation technology with other conventional technologies to recover bioenergy and resources were discussed. It is expected that this study will lead towards practical solution for future advancement in terms of economic and environmental concerns, and also provide economic feasibility and practical implications for global penetration.
Collapse
Affiliation(s)
- Naila Amin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan; Department of Chemical Engineering and Technology, University of Gujrat, Hafiz Hayat campus, Gujrat, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - Zakir Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Shakhawat Hossain
- Department of Industrial and Production Engineering, Jashore University of Science and Technology, Jessore, 7408, Bangladesh
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Yuseonggu, Daejeon, 34134, Republic of Korea
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Samir
- Physics Department, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia; Center of Plasma Technology, Al-Azhar University, Cairo, Egypt
| | - Rizwan Ahmad
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences & Technology (PAF-IAST), Haripur, Pakistan
| | - Mohammad N Murshed
- Physics Department, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
| | - Muhammad Shahzad Khurram
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Mohamed E El Sayed
- Physics Department, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
| | - Moinuddin Ghauri
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
12
|
Sulaiman M, Rabbani FA, Iqbal T, Kazmi MA, Yasin S, Mujtaba M, Kalam M, Almomani F. Impact of eco-friendly chemical pretreatment on physicochemical and surface mechanical properties of sustainable lignocellulosic agricultural waste. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
13
|
Investigation of catalytic pyrolysis of Spirulina for bio-oil production. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
14
|
Characteristics of Solidified Carbon Dioxide and Perspectives for Its Sustainable Application in Sewage Sludge Management. Int J Mol Sci 2023; 24:ijms24032324. [PMID: 36768646 PMCID: PMC9916872 DOI: 10.3390/ijms24032324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Appropriate management is necessary to mitigate the environmental impacts of wastewater sludge. One lesser-known technology concerns the use of solidified CO2 for dewatering, sanitization, and digestion improvement. Solidified CO2 is a normal byproduct of natural gas treatment processes and can also be produced by dedicated biogas upgrading technologies. The way solidified CO2 is sourced is fully in line with the principles of the circular economy and carbon dioxide mitigation. The aim of this review is to summarize the current state of knowledge on the production and application of solid CO2 in the pretreatment and management of sewage sludge. Using solidified CO2 for sludge conditioning causes effective lysis of microbial cells, which destroys activated sludge flocs, promotes biomass fragmentation, facilitates efficient dispersion of molecular associations, modifies cell morphology, and denatures macromolecules. Solidified CO2 can be used as an attractive tool to sanitize and dewater sludge and as a pretreatment technology to improve methane digestion and fermentative hydrogen production. Furthermore, it can also be incorporated into a closed CO2 cycle of biogas production-biogas upgrading-solidified CO2 production-sludge disintegration-digestion-biogas production. This feature not only bolsters the technology's capacity to improve the performance and cost-effectiveness of digestion processes, but can also help reduce atmospheric CO2 emissions, a crucial advantage in terms of environment protection. This new approach to solidified CO2 generation and application largely counteracts previous limitations, which are mainly related to the low cost-effectiveness of the production process.
Collapse
|
15
|
Bai J, Li Y, Song B, Wang Q. Activation of peroxymonosulfate by modified coagulation sludge for bisphenol A degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78832-78847. [PMID: 35699880 DOI: 10.1007/s11356-022-21419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
This study used coagulation sludge from a landfill leachate treatment to prepare a modified coagulation sludge (MCS) catalyst by the limited oxygen pyrolysis method, and the adsorption, degradation efficiency, and reaction mechanism of bisphenol A (BPA) in the MCS activated peroxymonosulfate (MCS/PMS) process were investigated. The pyrolysis temperature determined the adsorption capacity and the activation ability of MCS. At a pyrolysis temperature of 300 °C for 2 h, the MCS300-2 test material had the best adsorption capacity for BPA, while MCS450-2 prepared at a pyrolysis temperature of 450 °C for 2 h had a better catalytic performance towards PMS. In the MCS/PMS process, BPA (20 mg/L) could be completely degraded at 120 min under room temperature when the initial pH = 7, PMS dosage = 3 g/L, and MCS dosage = 0.3 g/L. Radical quenching experiments indicated that both hydroxyl radical (·OH) and sulfate radical (SO4-·) existed in the MCS/PMS process, and ·OH played a major role in BPA degradation. The changes in morphology, functional groups, components, and surface element valence state of MCS catalysts before and after the reaction were investigated. It was found that the BPA degradation reaction was a coupled adsorption and oxidation process, in which homogenous in situ and heterogeneous effects were included in the reactions. In addition, the stability of the MCS/PMS process was verified in different environmental scenarios, including ultrapure water, tap water, and municipal wastewater. Furthermore, the degradation intermediates (such as p-hydroxyl phenol and p-hydroxybenzoic acid) of BPA were determined by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and the reaction mechanisms in the MCS/PMS process were investigated.
Collapse
Affiliation(s)
- Jie Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yihui Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qing Wang
- Xingrong Renewable Energy Co., Ltd., Chengdu, 610000, China.
| |
Collapse
|
16
|
Pyrolysis and Co-Combustion of Semi-Dry Sewage Sludge and Bituminous Coal: Kinetics and Combustion Characteristics. Catalysts 2022. [DOI: 10.3390/catal12101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To reduce the energy consumption and cost of the drying of sewage sludge (SS) and to ensure stability during combustion, the pyrolysis and co-combustion characteristics of semi-dry SS after the dehydration of flocculant and bituminous coal (BC) were studied in this work. The results show that the decrease in moisture content accelerates the release of volatile substances, and the increase in heating rate can also enhance the release of water and volatile matters. Furthermore, in the co-combustion of semi-dry SS and BC, the increase in mixing ratio (from 0% to 60%) of semi-dry SS caused the ignition and burnout temperature to decrease from 481 °C to 214 °C and from 702 °C to 627 °C, respectively. During co-combustion, the infrared spectra showed that the temperature range of 300–700 °C was the main gas precipitation area, and the main gaseous products were CO2, NOx, SO2, and volatile organic pollutants (VOCs).
Collapse
|
17
|
Li Y, Xu M, Li Q, Gai A, Yang T, Li R. Study on the Properties and Heavy Metal Solidification Characteristics of Sintered Ceramsites Composed of Magnesite Tailings, Sewage Sludge, and Coal Gangue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11128. [PMID: 36078840 PMCID: PMC9518390 DOI: 10.3390/ijerph191711128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of industry, the disposal of industrial solid waste needs to be solved urgently in China. Thus, an effective disposal method should be proposed to recycle these solid wastes in an environmentally friendly and sustainable manner. In this paper, ceramsite was prepared from sewage sludge (SS), magnesite tailings (MTs), and coal gangue (CG). The influence of the material ratio and sintering temperature on the properties of the ceramsite was investigated. The results show that the ceramsite had better properties when the following parameters were used: a ratio of SS: CG: MT of 4.5:4:1.5; a sintering temperature of 1250 °C; a compressive strength of 11.2 MPa (or it can be rounded to 11; our major remark relates to significant figures, and they should be up to 2-3 figures, according to measurement errors); a water absorption of 3.54%; and apparent and bulk densities of 1.19 and 0.81 g/cm3, respectively. The strength was superior to more than twice the 900-density grade prescribed by the Chinese national standard. After sintering, most of the heavy metals in the ceramsite mainly existed in the form of residue state (FD), meaning that they were highly stable. The leaching concentrations of Zn and Ni from the ceramsite were 0.72 and 0.25 mg/L lower than the prescribed regulatory limits (2.0 and 0.1 mg/L). The overall pollution toxicity index (OPTI) was only 240, less than that of raw pellets, indicating that the environmental risk is low. Not only did the ceramsite, prepared from SS, CG, and MT, exhibit excellent chemical properties, but it also proved to be an environmentally safe material. Therefore, it is an effective approach to realize the collaborative treatment of SS, CG, and MT by preparing ceramsite.
Collapse
Affiliation(s)
- Yanlong Li
- The Key Laboratory of Clean Energy in Liaoning Province, College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | | | | | | | | | - Rundong Li
- The Key Laboratory of Clean Energy in Liaoning Province, College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
18
|
Investigation of Pyrolysis Behavior of Sewage Sludge by Thermogravimetric Analysis Coupled with Fourier Transform Infrared Spectrometry Using Different Heating Rates. ENERGIES 2022. [DOI: 10.3390/en15145116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, pyrolysis of municipal sewage sludge samples from different sources including cattle and chicken manure as well as brook mud, was investigated using a thermogravimetric analysis coupled with a Fourier transform infrared spectrometer (TG-FTIR) at different heating rates (25, 50 and 100 °C/min). In order to determine the kinetic parameters, Arrhenius, model-free Kissinger–Akira–Sunose (KAS), as well as Friedman and Flynn–Wall–Ozawa (FWO) methods were compared. The thermogravimetric results revealed that pyrolysis involved different stages, and that the main decomposition reactions took place in the range of 200–600 °C. In this range, decomposition of biodegradable components (e.g., lipids and polysaccharides), proteins and carbohydrates occurred; meanwhile, there were samples (e.g., cattle manure, brook mud) in which the decomposition step could be observed even at temperatures above 700 °C. According to the Arrhenius method, the activation energies of the first decomposition stage were between 25.6 and 85.4 kJ/mol, while the activation energies of the second and third stages were in the ranges of 11.4–36.3 kJ/mol and 20.2–135 kJ/mol, respectively. The activation energies were also calculated by the KAS, Friedman and FWO methods, which were in the range of 100–300 kJ/mol for municipal sewage sludge or distillery sludge, and ranged between 9.6 and 240 kJ/mol for cattle manure, chicken manure and brook mud samples.
Collapse
|
19
|
Hämäläinen A, Kokko M, Chatterjee P, Kinnunen V, Rintala J. The effects of digestate pyrolysis liquid on the thermophilic anaerobic digestion of sewage sludge - Perspective for a centralized biogas plant using thermal hydrolysis pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 147:73-82. [PMID: 35623263 DOI: 10.1016/j.wasman.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The use of pyrolysis process to valorize digestate from anaerobic digestion (AD) of municipal sewage sludge for biochar production was piloted in a central biogas plant. The pyrolysis also generates pyrolysis liquid with high organics and nutrient contents that currently has no value and requires treatment, which could potentially be done in AD. As the pyrolysis liquid may contain inhibitory compounds, we investigated the effects of adding the pyrolysis liquid on AD of sewage sludge and thermal hydrolysis pretreated sewage sludge (THSS) simulating the full-scale centralized biogas plant conditions. In batch assays, the pyrolysis liquid as such did not produce any methane, and the 1% and 5% (v/w) shares suppressed the methane production from THSS by 14-19%, while a smaller decrease in methane production was observed with sewage sludge. However, in the semi-continuous reactor experiments, pyrolysis liquid at a 1% (v/w) share was added in sewage sludge or THSS feed without affecting the methane yields or digestate characteristics. The laboratory results indicated that pyrolysis liquid can be treated in AD, while extrapolating the results to the centralized biogas plant indicated minor increase in the overall methane production and an increased potential for ammonium recovery.
Collapse
Affiliation(s)
- Anna Hämäläinen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O.Box 541, 33104 Tampere University, Finland
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O.Box 541, 33104 Tampere University, Finland
| | - Pritha Chatterjee
- Faculty of Engineering and Natural Sciences, Tampere University, P.O.Box 541, 33104 Tampere University, Finland; Department of Civil Engineering, Indian Institute of Technology Hyberabad, Hyberabad, India
| | | | - Jukka Rintala
- Faculty of Engineering and Natural Sciences, Tampere University, P.O.Box 541, 33104 Tampere University, Finland
| |
Collapse
|
20
|
Biochar Synthesis from Mineral- and Ash-Rich Waste Biomass, Part 1: Investigation of Thermal Decomposition Mechanism during Slow Pyrolysis. MATERIALS 2022; 15:ma15124130. [PMID: 35744189 PMCID: PMC9227128 DOI: 10.3390/ma15124130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
Synthesizing biochar from mineral- and ash-rich waste biomass (MWB), a by-product of human activities in urban areas, can result in renewable and versatile multi-functional materials, which can also cater to the need of solid waste management. Hybridizing biochar with minerals, silicates, and metals is widely investigated to improve parent functionalities. MWB intrinsically possesses such foreign materials. The pyrolysis of such MWB is kinetically complex and requires detailed investigation. Using TGA-FTIR, this study investigates and compares the kinetics and decomposition mechanism during pyrolysis of three types of MWB: (i) mineral-rich banana peduncle (BP), (ii) ash-rich sewage sludge (SS), and (iii) mineral and ash-rich anaerobic digestate (AD). The results show that the pyrolysis of BP, SS, and AD is exothermic, catalyzed by its mineral content, with heat of pyrolysis 5480, 4066, and 1286 kJ/kg, respectively. The pyrolysis favors char formation kinetics mainly releasing CO2 and H2O. The secondary tar reactions initiate from ≈318 °C (BP), 481 °C (SS), and 376 °C (AD). Moreover, negative apparent activation energies are intrinsic to their kinetics after 313 °C (BP), 448 °C (SS), and 339 °C (AD). The results can support in tailoring and controlling sustainable biochar synthesis from slow pyrolysis of MWB.
Collapse
|
21
|
Chang H, Zhao Y, Zhao S, Damgaard A, Christensen TH. Review of inventory data for the thermal treatment of sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 146:106-118. [PMID: 35588648 DOI: 10.1016/j.wasman.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The thermal treatment of sewage sludge has gained much interest in recent years, as exemplified by the 269 papers found in the scientific literature for the period 2010-2021. We identified 140 datasets in 57 papers presenting inventory data related to mass flows, energy and emissions for the incineration, gasification and pyrolysis of sewage sludge. Sewage sludge incineration (excess oxygen, 850-950 ℃) is an established technology; however, data on flue gas cleaning and air emissions are scarce. The recovery of energy is close to the amount of energy used for incinerating dried sludge (0.2 kWh/kg TS), while dewatered sludge incineration uses more energy (1-2 kWh/kg TS) than what can be recovered. Sewage sludge gasification (limited oxygen, 650-950 ℃) is an experimental technology with four outputs (kg/kg sludge TS): char 0.43, tar 0.02, fly ash 0.06 and syngas 0.53. The data vary significantly in this regard, suggesting than many factors affect the performance of the gasification process. Sewage sludge pyrolysis (no oxygen, 400-800 ℃) is an experimental technology with five outputs (kg/kg sludge TS): char 0.53, tar 0.21, water < 0.05, fly ash set to zero and syngas 0.21. The values are somewhat different for digested sludge. Energy consumption for the pyrolysis of sewage sludge cannot be estimated from the literature. The current literature provides useful data on the main flows of thermal technologies, although large variations are in evidence. However, data are limited on energy consumption and recovery in general, and they are scarce on direct emissions to the air from incineration.
Collapse
Affiliation(s)
- Huimin Chang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Silan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Anders Damgaard
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Thomas H Christensen
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
22
|
Comparison of Optimisation Algorithms for Centralised Anaerobic Co-Digestion in a Real River Basin Case Study in Catalonia. SENSORS 2022; 22:s22051857. [PMID: 35271002 PMCID: PMC8915032 DOI: 10.3390/s22051857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022]
Abstract
Anaerobic digestion (AnD) is a process that allows the conversion of organic waste into a source of energy such as biogas, introducing sustainability and circular economy in waste treatment. AnD is an intricate process because of multiple parameters involved, and its complexity increases when the wastes are from different types of generators. In this case, a key point to achieve good performance is optimisation methods. Currently, many tools have been developed to optimise a single AnD plant. However, the study of a network of AnD plants and multiple waste generators, all in different locations, remains unexplored. This novel approach requires the use of optimisation methodologies with the capacity to deal with a highly complex combinatorial problem. This paper proposes and compares the use of three evolutionary algorithms: ant colony optimisation (ACO), genetic algorithm (GA) and particle swarm optimisation (PSO), which are especially suited for this type of application. The algorithms successfully solve the problem, using an objective function that includes terms related to quality and logistics. Their application to a real case study in Catalonia (Spain) shows their usefulness (ACO and GA to achieve maximum biogas production and PSO for safer operation conditions) for AnD facilities.
Collapse
|
23
|
Hu M, Deng W, Hu M, Chen G, Zhou P, Zhou Y, Su Y. Preparation of binder-less activated char briquettes from pyrolysis of sewage sludge for liquid-phase adsorption of methylene blue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113601. [PMID: 34450300 DOI: 10.1016/j.jenvman.2021.113601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/15/2021] [Accepted: 08/22/2021] [Indexed: 05/04/2023]
Abstract
Binder-less activated char briquettes from sewage sludge were prepared and used for the liquid-phase adsorption of methylene blue. The properties of sludge char briquettes prepared under the different initial sludge moisture content, compression pressure, and heating rate were systematically investigated through the tests of thermogravimetric analysis (TGA), scanning electron microscopy (SEM), surface and mechanical properties, burn-off rates, methylene blue adsorption kinetics and isotherms. All of the prepared briquettes presented hierarchical structures and microporous/mesoporous characteristics, and the increase of initial sludge moisture content from 10 to 30 wt% resulted in a great increase of surface area (SBET), total pore volume (VT), apparent density, and a slight decrease of mechanical performance. The decrease of compression pressure markedly enhanced the equilibrium adsorption capacity (qe, exp), owing to the decreased diffusion resistance and blockage of diffusion pathways inside briquettes. In consideration of the mechanical performance and adsorption capacity, the optimum preparation condition was obtained at the initial moisture content of 30 wt%, compression pressure of 25 MPa, and heating rate of 10 °C/min, in which the axial compressive strength (ACS) and qe, exp of the prepared briquettes were as high as 22.2 ± 3.1 kg/m2 and 316.9 mg/g. The results also showed that the equilibrium adsorption data fit well into the pseudo-first order model system, and the adsorption isotherms followed the Langmuir isotherm model, suggesting that the adsorption process was attributed to physical adsorption, and was inclined to happen on the adsorption sites with the same energy level. Finally, the thermal regeneration tests demonstrated that the binder-less briquette had a good regeneration performance and was worthy of reusing for industrial applications.
Collapse
Affiliation(s)
- Menghao Hu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai, 201620, PR China
| | - Wenyi Deng
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai, 201620, PR China.
| | - Mingtao Hu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai, 201620, PR China
| | - Guang Chen
- Shanghai SMI Wastewater Treatment Co., Ltd., 1851 Longdong Road, Shanghai, 200086, PR China
| | - Piren Zhou
- Shanghai SMI Wastewater Treatment Co., Ltd., 1851 Longdong Road, Shanghai, 200086, PR China
| | - Yi Zhou
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai, 201620, PR China
| | - Yaxin Su
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang Dist., Shanghai, 201620, PR China
| |
Collapse
|
24
|
Evaluation of the Thermal Behavior, Synergistic Catalysis, and Pollutant Emissions during the Co-Combustion of Sewage Sludge and Coal Gasification Fine Slag Residual Carbon. Catalysts 2021. [DOI: 10.3390/catal11101142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The conversion of solid waste into energy through combustion is sustainable and economical. This study aims to comprehensively evaluate and quantify the co-combustion characteristics, synergistic catalysis, and gaseous pollutant emission patterns of sewage sludge (SS) and coal gasification fine slag residual carbon (RC) as well as their blends through thermogravimetry coupled with mass spectrometry (TG-MS). The results showed that the co-combustion of SS and RC can not only improve the ignition and burnout property but also maintain the combustion stability and comprehensive combustion performance at a better level. The kinetic analysis results showed that a first-order chemical reaction and three-dimensional diffusion are the reaction mechanisms during the co-combustion of SS and RC. The synergistic catalysis between SS and RC can well explain the changes in activation energy and reaction mechanism. Furthermore, the blending ratio of SS is recommended to be maintained at 40% because of the lowest activation energy (Ea = 81.6 kJ/mol) and the strongest synergistic effect (Xi = 0.36). The emission of gaseous pollutants is corresponding to the primary combustion stages of SS, RC, and their blends. In co-combustion, the NH3, HCN, NOx, and SO2 emissions gradually rise with the increase of SS proportion in the blends due to the high content of organic compounds in SS.
Collapse
|