1
|
Lu EH, Rusyn I, Chiu WA. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:28-62. [PMID: 39390665 PMCID: PMC11614695 DOI: 10.1080/10937404.2024.2412571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory dose-response assessments traditionally rely on in vivo data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several "traditional" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including in silico, in vitro, and in vivo approaches, might be applied across KDMs. Further, the false dichotomy between "traditional" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve in vitro dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.
Collapse
Affiliation(s)
- En-Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
2
|
Simon TW, Ryman J, Becker RA. Commentary: Value of information case study strongly supports use of the Threshold of Toxicological Concern (TTC). Regul Toxicol Pharmacol 2024; 149:105594. [PMID: 38555099 DOI: 10.1016/j.yrtph.2024.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024]
Abstract
A Value of Information (VOI) analysis can play a key role in decision-making for adopting new approach methodologies (NAMs). We applied EPA's recently developed VOI framework to the Threshold of Toxicological Concern (TTC). Obtaining/deriving a TTC value for use as a toxicity reference value (TRV) for substances with limited toxicity data was shown to provide equivalent or greater health protection, immense return on investment (ROI), greater net benefit, and substantially lower costs of delay (CoD) compared with TRVs derived from either traditional human health assessment (THHA) chronic toxicity testing in lab animals or the 5-day in vivo EPA Transcriptomic Assessment Product (ETAP). For all nine exposure scenarios examined, the TTC was more economical terms of CoD and ROI than the ETAP or the THHA; expected net benefit was similar for the TTC and ETAP with both of these more economical than the THHA The TTC ROI was immensely greater (5,000,000-fold on average) than the ROI for THHA and the ETAP ROI (100,000-fold on average). These results support the use of the TTC for substances within its domain of applicability to waive requiring certain in vivo tests, or at a minimum, as an initial screening step before conducting either the ETAP or THHA in vivo studies.
Collapse
|
3
|
Karamertzanis PG, Patlewicz G, Sannicola M, Paul-Friedman K, Shah I. Systematic Approaches for the Encoding of Chemical Groups: A Case Study. Chem Res Toxicol 2024; 37:600-619. [PMID: 38498310 PMCID: PMC11258607 DOI: 10.1021/acs.chemrestox.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Regulatory authorities aim to organize substances into groups to facilitate prioritization within hazard and risk assessment processes. Often, such chemical groupings are not explicitly defined by structural rules or physicochemical property information. This is largely due to how these groupings are developed, namely, a manual expert curation process, which in turn makes updating and refining groupings, as new substances are evaluated, a practical challenge. Herein, machine learning methods were leveraged to build models that could preliminarily assign substances to predefined groups. A set of 86 groupings containing 2,184 substances as published on the European Chemicals Agency (ECHA) website were mapped to the U.S. Environmental Protection Agency (EPA) Distributed Toxicity Structure Database (DSSTox) content to extract chemical and structural information. Substances were represented using Morgan fingerprints, and two machine learning approaches were used to classify test substances into 56 groups containing at least 10 substances with a structural representation in the data set: k-nearest neighbor (kNN) and random forest (RF), that led to mean 5-fold cross-validation test accuracies (average F1 scores) of 0.781 and 0.853, respectively. With a 9% improvement, the RF classifier was significantly more accurate than KNN (p-value = 0.001). The approach offers promise as a means of the initial profiling of new substances into predefined groups to facilitate prioritization efforts and streamline the assessment of new substances when earlier groupings are available. The algorithm to fit and use these models has been made available in the accompanying repository, thereby enabling both use of the produced models and refitting of these models, as new groupings become available by regulatory authorities or industry.
Collapse
Affiliation(s)
- Panagiotis G Karamertzanis
- Computational Assessment and Alternative Methods, European Chemicals Agency (ECHA), Telakkakatu 6, Helsinki 00150, Finland
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure (CCTE), US EPA, 109 TW Alexander Dr, Research Triangle Park, North Carolina 27711, United States
| | - Marta Sannicola
- Computational Assessment and Alternative Methods, European Chemicals Agency (ECHA), Telakkakatu 6, Helsinki 00150, Finland
| | - Katie Paul-Friedman
- Center for Computational Toxicology and Exposure (CCTE), US EPA, 109 TW Alexander Dr, Research Triangle Park, North Carolina 27711, United States
| | - Imran Shah
- Center for Computational Toxicology and Exposure (CCTE), US EPA, 109 TW Alexander Dr, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
4
|
Szabo D, Falconer TM, Fisher CM, Heise T, Phillips AL, Vas G, Williams AJ, Kruve A. Online and Offline Prioritization of Chemicals of Interest in Suspect Screening and Non-targeted Screening with High-Resolution Mass Spectrometry. Anal Chem 2024; 96:3707-3716. [PMID: 38380899 PMCID: PMC10918621 DOI: 10.1021/acs.analchem.3c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Recent advances in high-resolution mass spectrometry (HRMS) have enabled the detection of thousands of chemicals from a single sample, while computational methods have improved the identification and quantification of these chemicals in the absence of reference standards typically required in targeted analysis. However, to determine the presence of chemicals of interest that may pose an overall impact on ecological and human health, prioritization strategies must be used to effectively and efficiently highlight chemicals for further investigation. Prioritization can be based on a chemical's physicochemical properties, structure, exposure, and toxicity, in addition to its regulatory status. This Perspective aims to provide a framework for the strategies used for chemical prioritization that can be implemented to facilitate high-quality research and communication of results. These strategies are categorized as either "online" or "offline" prioritization techniques. Online prioritization techniques trigger the isolation and fragmentation of ions from the low-energy mass spectra in real time, with user-defined parameters. Offline prioritization techniques, in contrast, highlight chemicals of interest after the data has been acquired; detected features can be filtered and ranked based on the relative abundance or the predicted structure, toxicity, and concentration imputed from the tandem mass spectrum (MS2). Here we provide an overview of these prioritization techniques and how they have been successfully implemented and reported in the literature to find chemicals of elevated risk to human and ecological environments. A complete list of software and tools is available from https://nontargetedanalysis.org/.
Collapse
Affiliation(s)
- Drew Szabo
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Travis M. Falconer
- Forensic
Chemistry Center, Office of Regulatory Science, Office of Regulatory
Affairs, US Food and Drug Administration, Cincinnati, Ohio 45237, United States
| | - Christine M. Fisher
- Center
for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland 20740, United States
| | - Ted Heise
- MED
Institute Inc, West Lafayette, Indiana 47906, United States
| | - Allison L. Phillips
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Gyorgy Vas
- VasAnalytical, Flemington, New Jersey 08822, United States
- Intertek
Pharmaceutical Services, Whitehouse, New Jersey 08888, United States
| | - Antony J. Williams
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, US Environmental Protection
Agency, Durham, North Carolina 27711, United States
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department
of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
5
|
Bowden AM, Escher SE, Rose J, Sadekar N, Patlewicz G, O'Keeffe L, Bury D, Hewitt NJ, Giusti A, Rothe H. Workshop report: Challenges faced in developing inhalation thresholds of Toxicological Concern (TTC) - State of the science and next steps. Regul Toxicol Pharmacol 2023; 142:105434. [PMID: 37302561 PMCID: PMC10494708 DOI: 10.1016/j.yrtph.2023.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
A challenging step in human risk assessment of chemicals is the derivation of safe thresholds. The Threshold of Toxicological Concern (TTC) concept is one option which can be used for the safety evaluation of substances with a limited toxicity dataset, but for which exposure is sufficiently low. The application of the TTC is generally accepted for orally or dermally exposed cosmetic ingredients; however, these values cannot directly be applied to the inhalation route because of differences in exposure route versus oral and dermal. Various approaches of an inhalation TTC concept have been developed over recent years to address this. A virtual workshop organized by Cosmetics Europe, held in November 2020, shared the current state of the science regarding the applicability of existing inhalation TTC approaches to cosmetic ingredients. Key discussion points included the need for an inhalation TTC for local respiratory tract effects in addition to a systemic inhalation TTC, dose metrics, database building and quality of studies, definition of the chemical space and applicability domain, and classification of chemicals with different potencies. The progress made to date in deriving inhalation TTCs was highlighted, as well as the next steps envisaged to develop them further for regulatory acceptance and use.
Collapse
Affiliation(s)
- Anthony M Bowden
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, UK.
| | | | | | - Nikaeta Sadekar
- Research Institute for Fragrance Materials, Inc., Mahwah, NJ, USA
| | - Grace Patlewicz
- Center for Computational and Exposure, US Environmental Protection Agency, RTP, NC, 27711, USA
| | | | - Dagmar Bury
- L'Oréal Research & Innovation, Clichy, France
| | | | | | - Helga Rothe
- SciConT (formerly at Coty), Darmstadt, Germany
| |
Collapse
|
6
|
Ong KJ, Tejeda-Saldana Y, Duffy B, Holmes D, Kukk K, Shatkin JA. Cultured Meat Safety Research Priorities: Regulatory and Governmental Perspectives. Foods 2023; 12:2645. [PMID: 37509737 PMCID: PMC10379195 DOI: 10.3390/foods12142645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
As with every new technology, safety demonstration is a critical component of bringing products to market and gaining public acceptance for cultured meat and seafood. This manuscript develops research priorities from the findings of a series of interviews and workshops with governmental scientists and regulators from food safety agencies in fifteen jurisdictions globally. The interviews and workshops aimed to identify the key safety questions and priority areas of research. Participants raised questions about which aspects of cultured meat and seafood production are novel, and the implications of the paucity of public information on the topic. Novel parameters and targets may require the development of new analytical methods or adaptation and validation of existing ones, including for a diversity of product types and processes. Participants emphasized that data sharing of these efforts would be valuable, similar to those already developed and used in the food and pharmaceutical fields. Contributions to such databases from the private and public sectors would speed general understanding as well as efforts to make evaluations more efficient. In turn, these resources, combined with transparent risk assessment, will be critical elements of building consumer trust in cultured meat and seafood products.
Collapse
Affiliation(s)
| | | | | | - Dwayne Holmes
- Stichting New Harvest Netherlands, 1052 Amsterdam, The Netherlands
| | - Kora Kukk
- Vireo Advisors, LLC, Boston, MA 02130, USA
| | | |
Collapse
|
7
|
Sica VP, Friberg MA, Teufel AG, Streicher-Scott JL, Hu P, Sauer UG, Krivos KL, Price JM, Baker TR, Abbinante-Nissen JM, Woeller KE. Safety assessment scheme for menstrual cups and application for the evaluation of a menstrual cup comprised of medical grade silicone. EBioMedicine 2022; 86:104339. [PMID: 36370636 PMCID: PMC9664401 DOI: 10.1016/j.ebiom.2022.104339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Ensuring menstrual cup safety is paramount, yet a menstrual cup safety assessment scheme is lacking. This paper presents a quadripartite scheme, showing how it can be applied. METHODS The Tampax Menstrual Cup was evaluated in the safety assessment scheme: (1) Biocompatibility and chemical safety of cup constituents. Extractables were obtained under different use condition; exposure-based risk assessments (EBRA) were conducted for extractables exceeding thresholds of toxicological concern. (2) Physical impact to vaginal mucosa. After physical evaluations, the Tampax Cup and another cup were assessed in a randomised double-blinded, two-product, two-period cross-over clinical trial (65 women, mean age 34.2 years). (3) Impact to vaginal microbiota (in vitro mixed microflora assay and evaluation of vaginal swabs). (4) In vitro growth of Staphylococcus aureus and toxic shock syndrome toxin-1 (TSST-1) production. FINDINGS Biocompatibility assessments and EBRA of cup constituents showed no safety concerns. In the randomised clinical trial, all potentially product-related adverse effects were mild, vaginal exams were unremarkable, no clinically relevant pH changes occurred, post-void residual urine volume with and without cup were similar, and self-reported measures of comfort along with reports of burning, itching and stinging between cups were comparable. Cup use had no effect on microbial growth in vitro or in the 62 subjects who completed the trial or on in vitro TSST-1 production. INTERPRETATION The quadripartite safety assessment scheme allows evaluation of menstrual cup safety. The Tampax Cup is safe and well-tolerated upon intended use. As with all feminine hygiene products, post-market safety surveillance confirmed this conclusion. FUNDING By Procter & Gamble.
Collapse
Affiliation(s)
- Vincent P Sica
- The Procter and Gamble Company, Corporate Functions Analytical, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Maria A Friberg
- The Procter and Gamble Company, Baby, Feminine and Family Care Microbiology, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Amber G Teufel
- The Procter and Gamble Company, Baby, Feminine and Family Care Microbiology, 6280 Center Hill Rd., Cincinnati, OH, 45224, USA
| | - Jan L Streicher-Scott
- The Procter and Gamble Company, Feminine Care Clinical, 6110 Center Hill Rd., Cincinnati, OH, 45224, USA
| | - Ping Hu
- The Procter and Gamble Company, Corporate Biosciences, 8700 Mason Montgomery Rd., Mason, OH, USA
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Hallstattfeld 16, 85579, Neubiberg, Germany
| | - Kady L Krivos
- The Procter and Gamble Company, Corporate Functions Analytical, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Jason M Price
- The Procter and Gamble Company, Corporate Functions Analytical, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Timothy R Baker
- The Procter and Gamble Company, Corporate Functions Analytical, 8700 Mason Montgomery Rd., Mason, OH, 45040, USA
| | - Joan M Abbinante-Nissen
- The Procter and Gamble Company, Global Product Stewardship, Feminine Care, 6110 Center Hill Rd., Cincinnati, OH, 45224, USA
| | - Kara E Woeller
- The Procter and Gamble Company, Global Product Stewardship, Feminine Care, 6110 Center Hill Rd., Cincinnati, OH, 45224, USA.
| |
Collapse
|
8
|
Patlewicz G, Nelms M, Rua D. Evaluating the utility of the Threshold of Toxicological Concern (TTC) and its exclusions in the biocompatibility assessment of extractable chemical substances from medical devices. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 24:1-11. [PMID: 36405647 PMCID: PMC9671081 DOI: 10.1016/j.comtox.2022.100246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Threshold of Toxicological Concern (TTC) is a pragmatic approach used to establish safe thresholds below which there can be no appreciable risk to human health. Here, a large inventory of ~45,000 substances (referred to as the LRI dataset) was profiled through the Kroes TTC decision module within Toxtree v3.1 to assign substances into their respective TTC categories. Four thousand and two substances were found to be not applicable for the TTC approach. However, closer examination of these substances uncovered several implementation issues: substances represented in their salt forms were automatically assigned as not appropriate for TTC when many of these contained essential metals as counter ions which would render them TTC applicable. High Potency Carcinogens and dioxin-like substances were not fully captured based on the rules currently implemented in the software. Phosphorus containing substances were considered exclusions when many of them would be appropriate for TTC. Refinements were proposed to address the limitations in the current software implementation. A second component of the study explored a set of substances representative of those released from medical devices and compared them to the LRI dataset as well as other toxicity datasets to investigate their structural similarity. A third component of the study sought to extend the exclusion rules to address application to substances released from medical devices that lack toxicity data. The refined rules were then applied to this dataset and the TTC assignments were compared. This case study demonstrated the importance of evaluating the software implementation of an established TTC workflow, identified certain limitations and explored potential refinements when applying these concepts to medical devices.
Collapse
Affiliation(s)
- Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27709, USA
| | - Mark Nelms
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
- RTI International, Durham, NC, USA
| | - Diego Rua
- Center for Devices and Radiological Health (CDRH), US Food & Drug Administration (FDA), Silver Spring, MD, USA
| |
Collapse
|
9
|
Sabbioni G, Castaño A, Esteban López M, Göen T, Mol H, Riou M, Tagne-Fotso R. Literature review and evaluation of biomarkers, matrices and analytical methods for chemicals selected in the research program Human Biomonitoring for the European Union (HBM4EU). ENVIRONMENT INTERNATIONAL 2022; 169:107458. [PMID: 36179646 DOI: 10.1016/j.envint.2022.107458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Humans are potentially exposed to a large amount of chemicals present in the environment and in the workplace. In the European Human Biomonitoring initiative (Human Biomonitoring for the European Union = HBM4EU), acrylamide, mycotoxins (aflatoxin B1, deoxynivalenol, fumonisin B1), diisocyanates (4,4'-methylenediphenyl diisocyanate, 2,4- and 2,6-toluene diisocyanate), and pyrethroids were included among the prioritized chemicals of concern for human health. For the present literature review, the analytical methods used in worldwide biomonitoring studies for these compounds were collected and presented in comprehensive tables, including the following parameter: determined biomarker, matrix, sample amount, work-up procedure, available laboratory quality assurance and quality assessment information, analytical techniques, and limit of detection. Based on the data presented in these tables, the most suitable methods were recommended. According to the paradigm of biomonitoring, the information about two different biomarkers of exposure was evaluated: a) internal dose = parent compounds and metabolites in urine and blood; and b) the biologically effective = dose measured as blood protein adducts. Urine was the preferred matrix used for deoxynivalenol, fumonisin B1, and pyrethroids (biomarkers of internal dose). Markers of the biological effective dose were determined as hemoglobin adducts for diisocyanates and acrylamide, and as serum-albumin-adducts of aflatoxin B1 and diisocyanates. The analyses and quantitation of the protein adducts in blood or the metabolites in urine were mostly performed with LC-MS/MS or GC-MS in the presence of isotope-labeled internal standards. This review also addresses the critical aspects of the application, use and selection of biomarkers. For future biomonitoring studies, a more comprehensive approach is discussed to broaden the selection of compounds.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Università della Svizzera Italiana (USI), Research and Transfer Service, Lugano, Switzerland; Institute of Environmental and Occupational Toxicology, Airolo, Switzerland; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (IPASUM), Erlangen, Germany.
| | - Hans Mol
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, the Netherlands.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| | - Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The National Public Health Agency, Saint-Maurice, France.
| |
Collapse
|
10
|
Arnot JA, Toose L, Armitage JM, Sangion A, Looky A, Brown TN, Li L, Becker RA. Developing an internal threshold of toxicological concern (iTTC). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:877-884. [PMID: 36347933 PMCID: PMC9731903 DOI: 10.1038/s41370-022-00494-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Threshold of Toxicological Concern (TTC) approaches are used for chemical safety assessment and risk-based priority setting for data poor chemicals. TTCs are derived from in vivo No Observed Effect Level (NOEL) datasets involving an external administered dose from a single exposure route, e.g., oral intake rate. Thus, a route-specific TTC can only be compared to a route-specific exposure estimate and such TTCs cannot be used for other exposure scenarios such as aggregate exposures. OBJECTIVE Develop and apply a method for deriving internal TTCs (iTTCs) that can be used in chemical assessments for multiple route-specific exposures (e.g., oral, inhalation or dermal) or aggregate exposures. METHODS Chemical-specific toxicokinetics (TK) data and models are applied to calculate internal concentrations (whole-body and blood) from the reported administered oral dose NOELs used to derive the Munro TTCs. The new iTTCs are calculated from the 5th percentile of cumulative distributions of internal NOELs and the commonly applied uncertainty factor of 100 to extrapolate animal testing data for applications in human health assessment. RESULTS The new iTTCs for whole-body and blood are 0.5 nmol/kg and 0.1 nmol/L, respectively. Because the iTTCs are expressed on a molar basis they are readily converted to chemical mass iTTCs using the molar mass of the chemical of interest. For example, the median molar mass in the dataset is 220 g/mol corresponding to an iTTC of 22 ng/L-blood (22 pg/mL-blood). The iTTCs are considered broadly applicable for many organic chemicals except those that are genotoxic or acetylcholinesterase inhibitors. The new iTTCs can be compared with measured or estimated whole-body or blood exposure concentrations for chemical safety screening and priority-setting. SIGNIFICANCE Existing Threshold of Toxicological Concern (TTC) approaches are limited in their applications for route-specific exposure scenarios only and are not suitable for chemical risk and safety assessments under conditions of aggregate exposure. New internal Threshold of Toxicological Concern (iTTC) values are developed to address data gaps in chemical safety estimation for multi-route and aggregate exposures.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada.
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Liisa Toose
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
| | | | - Alessandro Sangion
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Trevor N Brown
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
| | - Li Li
- School of Public Health, University of Nevada Reno, Reno, NV, USA
| | | |
Collapse
|
11
|
Wambaugh JF, Rager JE. Exposure forecasting - ExpoCast - for data-poor chemicals in commerce and the environment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:783-793. [PMID: 36347934 PMCID: PMC9742338 DOI: 10.1038/s41370-022-00492-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 05/10/2023]
Abstract
Estimates of exposure are critical to prioritize and assess chemicals based on risk posed to public health and the environment. The U.S. Environmental Protection Agency (EPA) is responsible for regulating thousands of chemicals in commerce and the environment for which exposure data are limited. Since 2009 the EPA's ExpoCast ("Exposure Forecasting") project has sought to develop the data, tools, and evaluation approaches required to generate rapid and scientifically defensible exposure predictions for the full universe of existing and proposed commercial chemicals. This review article aims to summarize issues in exposure science that have been addressed through initiatives affiliated with ExpoCast. ExpoCast research has generally focused on chemical exposure as a statistical systems problem intended to inform thousands of chemicals. The project exists as a companion to EPA's ToxCast ("Toxicity Forecasting") project which has used in vitro high-throughput screening technologies to characterize potential hazard posed by thousands of chemicals for which there are limited toxicity data. Rapid prediction of chemical exposures and in vitro-in vivo extrapolation (IVIVE) of ToxCast data allow for prioritization based upon risk of adverse outcomes due to environmental chemical exposure. ExpoCast has developed (1) integrated modeling approaches to reliably predict exposure and IVIVE dose, (2) highly efficient screening tools for chemical prioritization, (3) efficient and affordable tools for generating new exposure and dose data, and (4) easily accessible exposure databases. The development of new exposure models and databases along with the application of technologies like non-targeted analysis and machine learning have transformed exposure science for data-poor chemicals. By developing high-throughput tools for chemical exposure analytics and translating those tools into public health decisions ExpoCast research has served as a crucible for identifying and addressing exposure science knowledge gaps.
Collapse
Affiliation(s)
- John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA.
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Julia E Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Nicolas CI, Linakis MW, Minto MS, Mansouri K, Clewell RA, Yoon M, Wambaugh JF, Patlewicz G, McMullen PD, Andersen ME, Clewell III HJ. Estimating provisional margins of exposure for data-poor chemicals using high-throughput computational methods. Front Pharmacol 2022; 13:980747. [PMID: 36278238 PMCID: PMC9586287 DOI: 10.3389/fphar.2022.980747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Current computational technologies hold promise for prioritizing the testing of the thousands of chemicals in commerce. Here, a case study is presented demonstrating comparative risk-prioritization approaches based on the ratio of surrogate hazard and exposure data, called margins of exposure (MoEs). Exposures were estimated using a U.S. EPA’s ExpoCast predictive model (SEEM3) results and estimates of bioactivity were predicted using: 1) Oral equivalent doses (OEDs) derived from U.S. EPA’s ToxCast high-throughput screening program, together with in vitro to in vivo extrapolation and 2) thresholds of toxicological concern (TTCs) determined using a structure-based decision-tree using the Toxtree open source software. To ground-truth these computational approaches, we compared the MoEs based on predicted noncancer TTC and OED values to those derived using the traditional method of deriving points of departure from no-observed adverse effect levels (NOAELs) from in vivo oral exposures in rodents. TTC-based MoEs were lower than NOAEL-based MoEs for 520 out of 522 (99.6%) compounds in this smaller overlapping dataset, but were relatively well correlated with the same (r2 = 0.59). TTC-based MoEs were also lower than OED-based MoEs for 590 (83.2%) of the 709 evaluated chemicals, indicating that TTCs may serve as a conservative surrogate in the absence of chemical-specific experimental data. The TTC-based MoE prioritization process was then applied to over 45,000 curated environmental chemical structures as a proof-of-concept for high-throughput prioritization using TTC-based MoEs. This study demonstrates the utility of exploiting existing computational methods at the pre-assessment phase of a tiered risk-based approach to quickly, and conservatively, prioritize thousands of untested chemicals for further study.
Collapse
Affiliation(s)
- Chantel I. Nicolas
- Office of Chemical Safety and Pollution Prevention, US EPA, Washington, DC, United States
| | | | | | - Kamel Mansouri
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, United States
| | | | | | - John F. Wambaugh
- Center for Computational Toxicology and Exposure Office of Research and Development, US EPA, Research Triangle Park, NC, United States
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure Office of Research and Development, US EPA, Research Triangle Park, NC, United States
| | | | | | | |
Collapse
|
13
|
Lea I, Pham LL, Antonijevic T, Thompson C, Borghoff SJ. Assessment of the applicability of the threshold of toxicological concern for per- and polyfluoroalkyl substances. Regul Toxicol Pharmacol 2022; 133:105190. [PMID: 35662637 DOI: 10.1016/j.yrtph.2022.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
While toxicity information is available for selected PFAS, little or no information is available for most, thereby necessitating a resource-effective approach to screen and prioritize those needing further safety assessment. The threshold of toxicological concern (TTC) approach proposes a de minimis exposure value based on chemical structure and toxicology of similar substances. The applicability of the TTC approach to PFAS was tested by incorporating a data set of no-observed-adverse-effect level (NOAEL) values for 27 PFAS into the Munro TTC data set. All substances were assigned into Cramer Class III and the cumulative distribution of the NOAELs evaluated. The TTC value for the PFAS-enriched data set was not statistically different compared to the Munro data set. Derived human exposure level for the PFAS-enriched data set was 1.3 μg/kg/day. Structural chemical profiles showed the PFAS-enriched data set had distinct chemotypes with lack of similarity to substances in the Munro data set using Maximum Common Structures. The incorporation of these 27 PFAS did not significantly change TTC Cramer Class III distribution and expanded the chemical space, supporting the potential use of the TTC approach for PFAS chemicals.
Collapse
Affiliation(s)
- Isabel Lea
- ToxStrategies, 1249 Kildaire Farm Road, #134, Cary, NC, 27511, USA
| | - Ly Ly Pham
- ToxStrategies Inc., 23123 Cinco Ranch Blvd, Katy, TX, 77494, USA
| | | | - Chad Thompson
- ToxStrategies Inc., 23123 Cinco Ranch Blvd, Katy, TX, 77494, USA
| | - Susan J Borghoff
- ToxStrategies, 1249 Kildaire Farm Road, #134, Cary, NC, 27511, USA.
| |
Collapse
|
14
|
Moreau M, Mallick P, Smeltz M, Haider S, Nicolas CI, Pendse SN, Leonard JA, Linakis MW, McMullen PD, Clewell RA, Clewell HJ, Yoon M. Considerations for Improving Metabolism Predictions for In Vitro to In Vivo Extrapolation. FRONTIERS IN TOXICOLOGY 2022; 4:894569. [PMID: 35573278 PMCID: PMC9099212 DOI: 10.3389/ftox.2022.894569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
High-throughput (HT) in vitro to in vivo extrapolation (IVIVE) is an integral component in new approach method (NAM)-based risk assessment paradigms, for rapidly translating in vitro toxicity assay results into the context of in vivo exposure. When coupled with rapid exposure predictions, HT-IVIVE supports the use of HT in vitro assays for risk-based chemical prioritization. However, the reliability of prioritization based on HT bioactivity data and HT-IVIVE can be limited as the domain of applicability of current HT-IVIVE is generally restricted to intrinsic clearance measured primarily in pharmaceutical compounds. Further, current approaches only consider parent chemical toxicity. These limitations occur because current state-of-the-art HT prediction tools for clearance and metabolite kinetics do not provide reliable data to support HT-IVIVE. This paper discusses current challenges in implementation of IVIVE for prioritization and risk assessment and recommends a path forward for addressing the most pressing needs and expanding the utility of IVIVE.
Collapse
Affiliation(s)
- Marjory Moreau
- ScitoVation, LLC, Durham, NC, United States
- *Correspondence: Marjory Moreau,
| | | | | | | | | | | | - Jeremy A. Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | | | | | | | | | | |
Collapse
|
15
|
Barron MG, Otter RR, Connors KA, Kienzler A, Embry MR. Ecological Thresholds of Toxicological Concern: A Review. FRONTIERS IN TOXICOLOGY 2022; 3:640183. [PMID: 35295098 PMCID: PMC8915905 DOI: 10.3389/ftox.2021.640183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
The ecological threshold of toxicological concern (ecoTTC) is analogous to traditional human health-based TTCs but with derivation and application to ecological species. An ecoTTC is computed from the probability distribution of predicted no effect concentrations (PNECs) derived from either chronic or extrapolated acute toxicity data for toxicologically or chemically similar groups of chemicals. There has been increasing interest in using ecoTTCs in screening level environmental risk assessments and a computational platform has been developed for derivation with aquatic species toxicity data (https://envirotoxdatabase.org/). Current research and development areas include assessing mode of action-based chemical groupings, conservatism in estimated PNECs and ecoTTCs compared to existing regulatory values, and the influence of taxa (e.g., algae, invertebrates, and fish) composition in the distribution of PNEC values. The ecoTTC continues to develop as a valuable alternative strategy within the toolbox of traditional and new approach methods for ecological chemical assessment. This brief review article describes the ecoTTC concept and potential applications in ecological risk assessment, provides an overview of the ecoTTC workflow and how the values can be derived, and highlights recent developments and ongoing research. Future applications of ecoTTC concept in different disciplines are discussed along with opportunities for its use.
Collapse
Affiliation(s)
- Mace G Barron
- U.S. EPA, Office of Research & Development, Gulf Breeze, FL, United States
| | - Ryan R Otter
- The Data Science Institute, Middle Tennessee State University, Murfreesboro, TN, United States
| | | | - Aude Kienzler
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Michelle R Embry
- Health and Environmental Sciences Institute, Washington, DC, United States
| |
Collapse
|
16
|
Beal MA, Gagne M, Kulkarni SA, Patlewicz G, Thomas RS, Barton-Maclaren TS. Implementing in vitro bioactivity data to modernize priority setting of chemical inventories. ALTEX 2022; 39:123-139. [PMID: 34818430 PMCID: PMC8973434 DOI: 10.14573/altex.2106171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
Internationally, there are thousands of existing and newly introduced chemicals in commerce, highlighting the ongoing importance of innovative approaches to identify emerging chemicals of concern. For many chemicals, there is a paucity of hazard and exposure data. Thus, there is a crucial need for efficient and robust approaches to address data gaps and support risk-based prioritization. Several studies have demonstrated the utility of in vitro bioactivity data from the ToxCast program in deriving points of departure (PODs). ToxCast contains data for nearly 1,400 endpoints per chemical, and the bioactivity concentrations, indicative of potential adverse outcomes, can be converted to human-equivalent PODs using high-throughput toxicokinetics (HTTK) modeling. However, data gaps need to be addressed for broader application: the limited chemical space of HTTK and quantitative high-throughput screening data. Here we explore the applicability of in silico models to address these data needs. Specifically, we used ADMET predictor for HTTK predictions and a generalized read-across approach to predict ToxCast bioactivity potency. We applied these models to profile 5,801 chemicals on Canada’s Domestic Substances List (DSL). To evaluate the approach’s performance, bioactivity PODs were compared with in vivo results from the EPA Toxicity Values database for 1,042 DSL chemicals. Comparisons demonstrated that the bioactivity PODs, based on ToxCast data or read-across, were conservative for 95% of the chemicals. Comparing bioactivity PODs to human exposure estimates supports the identification of chemicals of potential interest for further work. The bioactivity workflow shows promise as a powerful screening tool to support effective triaging of chemical inventories.
Collapse
Affiliation(s)
- Marc A. Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Matthew Gagne
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Sunil A. Kulkarni
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Russell S. Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | |
Collapse
|
17
|
Li L, Sangion A, Wania F, Armitage JM, Toose L, Hughes L, Arnot JA. Development and Evaluation of a Holistic and Mechanistic Modeling Framework for Chemical Emissions, Fate, Exposure, and Risk. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:127006. [PMID: 34882502 PMCID: PMC8658982 DOI: 10.1289/ehp9372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Large numbers of chemicals require evaluation to determine if their production and use pose potential risks to ecological and human health. For most chemicals, the inadequacy and uncertainty of chemical-specific data severely limit the application of exposure- and risk-based methods for screening-level assessments, priority setting, and effective management. OBJECTIVE We developed and evaluated a holistic, mechanistic modeling framework for ecological and human health assessments to support the safe and sustainable production, use, and disposal of organic chemicals. METHODS We consolidated various models for simulating the PROduction-To-EXposure (PROTEX) continuum with empirical data sets and models for predicting chemical property and use function information to enable high-throughput (HT) exposure and risk estimation. The new PROTEX-HT framework calculates exposure and risk by integrating mechanistic computational modules describing chemical behavior and fate in the socioeconomic system (i.e., life cycle emissions), natural and indoor environments, various ecological receptors, and humans. PROTEX-HT requires only molecular structure and chemical tonnage (i.e., annual production or consumption volume) as input information. We evaluated the PROTEX-HT framework using 95 organic chemicals commercialized in the United States and demonstrated its application in various exposure and risk assessment contexts. RESULTS Seventy-nine percent and 97% of the PROTEX-HT human exposure predictions were within one and two orders of magnitude, respectively, of independent human exposure estimates inferred from biomonitoring data. PROTEX-HT supported screening and ranking chemicals based on various exposure and risk metrics, setting chemical-specific maximum allowable tonnage based on user-defined toxicological thresholds, and identifying the most relevant emission sources, environmental media, and exposure routes of concern in the PROTEX continuum. The case study shows that high chemical tonnage did not necessarily result in high exposure or health risks. CONCLUSION Requiring only two chemical-specific pieces of information, PROTEX-HT enables efficient screening-level evaluations of existing and premanufacture chemicals in various exposure- and risk-based contexts. https://doi.org/10.1289/EHP9372.
Collapse
Affiliation(s)
- Li Li
- School of Public Health, University of Nevada, Reno, Reno, Nevada, USA
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alessandro Sangion
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Liisa Toose
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
| | - Lauren Hughes
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
| | - Jon A. Arnot
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- ARC Arnot Research and Consulting, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Meffe R, de Santiago-Martín A, Teijón G, Martínez Hernández V, López-Heras I, Nozal L, de Bustamante I. Pharmaceutical and transformation products during unplanned water reuse: Insights into natural attenuation, plant uptake and human health impact under field conditions. ENVIRONMENT INTERNATIONAL 2021; 157:106835. [PMID: 34450549 DOI: 10.1016/j.envint.2021.106835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
In urban and periurban areas, agricultural soils are often irrigated with surface water containing a complex mixture of contaminants due to wastewater treatment plant (WWTP) effluent discharges. The unplanned water reuse of these resources for crop irrigation can represent a pathway for contaminant propagation and a potential health risk due to their introduction in the food chain. The aim of this study is to provide data about the magnitude of attenuation processes and plant uptake, allowing for a reliable assessment of contaminant transfer among compartments and of the human health risk derived from unplanned water reuse activities. Target compounds are 25 pharmaceuticals, including transformation products (TPs). The field site is an agricultural parcel where maize is irrigated by a gravity-fed surface system supplied by the Jarama river, a water course strongly impacted by WWTP effluents. Throughout the 3-month irrigation period, irrigation water and water infiltrating through the vadose zone were sampled. The agricultural soil was collected before and after the irrigation campaign, and maize was sampled before harvesting. All selected compounds are detected in irrigation water (up to 12,867 ng L-1). Metformin, two metamizole TPs and valsartan occur with the highest concentrations. For most pharmaceuticals, results demonstrate a high natural attenuation during soil infiltration (>60%). However, leached concentrations of some compounds can be still at concern level (>400 ng L-1). A persistent behavior is observed for carbamazepine, carbamazepine epoxide and sulfamethoxazole. Pharmaceutical soil contents are in the order of ng g-1 and positively ionized compounds accumulate more effectively. Results also indicate the presence of a constant pool of drugs in soils. Only neutral and cationic pharmaceuticals are taken up in maize tissues, mainly in the roots. There is an insignificant threat to human health derived from maize consumption however, additional toxicity tests are recommended for 4AAA and acetaminophen.
Collapse
Affiliation(s)
- Raffaella Meffe
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Alcalá de Henares, Spain.
| | | | - Gloria Teijón
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Alcalá de Henares, Spain
| | | | - Isabel López-Heras
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Alcalá de Henares, Spain
| | - Leonor Nozal
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Alcalá de Henares, Spain; Center of Applied Chemistry and Biotechnology (CQAB), FGUA and University of Alcalá, A-II km 33,6, 28871 Alcalá de Henares, Spain
| | - Irene de Bustamante
- IMDEA Water Institute, Avda. Punto Com 2, 28805 Alcalá de Henares, Spain; Geology, Geography and Environment Department, Faculty of Sciences, External Campus of the University of Alcalá, Ctra. A-II km 33,6, 28871 Alcalá de Henares, Spain
| |
Collapse
|
19
|
Plugge H, Das N, Kostal J. Toward a Universal Acute Fish Threshold of Toxicological Concern. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1740-1749. [PMID: 33492718 DOI: 10.1002/etc.4991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Threshold of toxicological concern (TTC) is a concept that has been around for decades in human health sciences. Ecotoxicology recently adopted a variant of this concept as eco-TTC. Adoption of the concept of TTC considerably reduces the amount of animal testing required for regulatory purposes. We provide an application of a universal TTC for the entirety of acute fish toxicity data (i.e., establishment of an exposure level below which there would be minimal probability of acute fish toxicity for any chemical, without consideration of mechanism of action). We calculated TTC values for a number of subgroups using various approaches. These approaches were evaluated using data from a cohort of 69 999 acute fish toxicological assays. This database was normalized/curated for units, exposure duration, quality assurance/control, and duplicates, which reduced it to 47 694 assays. Data were not normally but log-normally distributed, making geometric means the most appropriate statistical parameter. Thus, we developed descriptive statistics using geometric means with 95, 99, and 99.9% confidence intervals. Various assessment factors (akin to predicted-no-effect concentration derivation) were applied to the geometric means to derive TTCs. Other approaches employed were the calculation of y = 0 intercepts as well as development of 95 and 99.75% cutoffs of cumulative data as well as modular uncertainty scoring tool (MUST) analysis. All of the methodologies derived highly congruent TTCs ranging from to 2 to 8 μg/L except for the 99.75th percentile cutoff of 0.3 μg/L. The data would be most useful in making a binary testing/no testing required decision. For acute fish toxicity, a TTC value of 2 μg/L was most appropriate, based on the 95th percentile of data distribution without any assessment factor. Environ Toxicol Chem 2021;40:1740-1749. © 2021 SETAC.
Collapse
Affiliation(s)
- Hans Plugge
- Safer Chemical Analytics Group, Verisk 3E, Bethesda, Maryland, USA
| | - Nihar Das
- Safer Chemical Analytics Group, Verisk 3E, Bethesda, Maryland, USA
- Environment, Health & Safety Services Division, IDS Infotech, Mohali, Punjab, India
| | - Jakub Kostal
- Department of Chemistry, George Washington University, Washington, DC, USA
| |
Collapse
|
20
|
Pradeep P, Judson R, DeMarini DM, Keshava N, Martin TM, Dean J, Gibbons CF, Simha A, Warren SH, Gwinn MR, Patlewicz G. Evaluation of Existing QSAR Models and Structural Alerts and Development of New Ensemble Models for Genotoxicity Using a Newly Compiled Experimental Dataset. ACTA ACUST UNITED AC 2021; 18. [PMID: 34504984 DOI: 10.1016/j.comtox.2021.100167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulatory agencies world-wide face the challenge of performing risk-based prioritization of thousands of substances in commerce. In this study, a major effort was undertaken to compile a large genotoxicity dataset (54,805 records for 9299 substances) from several public sources (e.g., TOXNET, COSMOS, eChemPortal). The names and outcomes of the different assays were harmonized, and assays were annotated by type: gene mutation in Salmonella bacteria (Ames assay) and chromosome mutation (clastogenicity) in vitro or in vivo (chromosome aberration, micronucleus, and mouse lymphoma Tk +/- assays). This dataset was then evaluated to assess genotoxic potential using a categorization scheme, whereby a substance was considered genotoxic if it was positive in at least one Ames or clastogen study. The categorization dataset comprised 8442 chemicals, of which 2728 chemicals were genotoxic, 5585 were not and 129 were inconclusive. QSAR models (TEST and VEGA) and the OECD Toolbox structural alerts/profilers (e.g., OASIS DNA alerts for Ames and chromosomal aberrations) were used to make in silico predictions of genotoxicity potential. The performance of the individual QSAR tools and structural alerts resulted in balanced accuracies of 57-73%. A Naïve Bayes consensus model was developed using combinations of QSAR models and structural alert predictions. The 'best' consensus model selected had a balanced accuracy of 81.2%, a sensitivity of 87.24% and a specificity of 75.20%. This in silico scheme offers promise as a first step in ranking thousands of substances as part of a prioritization approach for genotoxicity.
Collapse
Affiliation(s)
- Prachi Pradeep
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Richard Judson
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David M DeMarini
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Nagalakshmi Keshava
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Todd M Martin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jeffry Dean
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Catherine F Gibbons
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Anita Simha
- ORAU, contractor to U.S. Environmental Protection Agency through the National Student Services Contract, Research Triangle Park, North Carolina, USA
| | - Sarah H Warren
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Maureen R Gwinn
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Ellison CA, Api AM, Becker RA, Efremenko AY, Gadhia S, Hack CE, Hewitt NJ, Varcin M, Schepky A. Internal Threshold of Toxicological Concern (iTTC): Where We Are Today and What Is Possible in the Near Future. FRONTIERS IN TOXICOLOGY 2021; 2:621541. [PMID: 35296119 PMCID: PMC8915896 DOI: 10.3389/ftox.2020.621541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
The Threshold of Toxicological Concern (TTC) is a risk assessment tool for evaluating low-level exposure to chemicals with limited toxicological data. A next step in the ongoing development of TTC is to extend this concept further so that it can be applied to internal exposures. This refinement of TTC based on plasma concentrations, referred to as internal TTC (iTTC), attempts to convert the chemical-specific external NOAELs (in mg/kg/day) in the TTC database to an estimated internal exposure. A multi-stakeholder collaboration formed, with the aim of establishing an iTTC suitable for human safety risk assessment. Here, we discuss the advances and future directions for the iTTC project, including: (1) results from the systematic literature search for metabolism and pharmacokinetic data for the 1,251 chemicals in the iTTC database; (2) selection of ~350 chemicals that will be included in the final iTTC; (3) an overview of the in vitro caco-2 and in vitro hepatic metabolism studies currently being generated for the iTTC chemicals; (4) demonstrate how PBPK modeling is being utilized to convert a chemical-specific external NOAEL to an internal exposure; (5) perspective on the next steps in the iTTC project.
Collapse
Affiliation(s)
- Corie A Ellison
- The Procter and Gamble Company, Cincinnati, OH, United States
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Woodcliff Lake, NJ, United States
| | | | - Alina Y Efremenko
- ScitoVation, Limited Liability Company (LLC), Durham, NC, United States
| | - Sanket Gadhia
- Research Institute for Fragrance Materials, Woodcliff Lake, NJ, United States
| | - C Eric Hack
- ScitoVation, Limited Liability Company (LLC), Durham, NC, United States
| | | | | | | |
Collapse
|
22
|
Nelms MD, Patlewicz G. Derivation of New Threshold of Toxicological Concern Values for Exposure via Inhalation for Environmentally-Relevant Chemicals. FRONTIERS IN TOXICOLOGY 2020; 2:580347. [PMID: 35296122 PMCID: PMC8915872 DOI: 10.3389/ftox.2020.580347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mark D. Nelms
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
- *Correspondence: Grace Patlewicz
| |
Collapse
|
23
|
The TTC Data Mart: An interactive browser for threshold of toxicological concern calculations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.comtox.2020.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Sabbioni G, Berset JD, Day BW. Is It Realistic to Propose Determination of a Lifetime Internal Exposome? Chem Res Toxicol 2020; 33:2010-2021. [PMID: 32672951 DOI: 10.1021/acs.chemrestox.0c00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biomonitoring of xenobiotics has been performed for many years in occupational and environmental medicine. It has revealed hidden exposures and the exposure of workers could be reduced. Although most of the toxic effects of chemicals on humans were discovered in workers, the scientific community has more recently focused on environmental samples. In several countries, urinary and blood samples have been collected and analyzed for xenobiotics. Health, biochemical, and clinical parameters were measured in the biomonitoring program of the Unites States. The data were collected and evaluated as group values, comparing races, ages, and gender. The term exposome was created in order to relate chemical exposure to health effects together with the terms genome, proteome, and transcriptome. Internal exposures were mostly established with snapshot measurements, which can lead to an obvious misclassification of the individual exposures. Albumin and hemoglobin adducts of xenobiotics reflect the exposure of a larger time frame, up to 120 days. It is likely that only a small fraction of xenobiotics form such adducts. In addition, adduct analyses are more work intensive than the measurement of xenobiotics and metabolites in urine and/or blood. New technology, such as high-resolution mass spectrometry, will enable the discovery of new compounds that have been overlooked in the past, since over 300,000 chemicals are commercially available and most likely also present in the environment. Yet, quantification will be challenging, as it was for the older methods. At this stage, determination of a lifetime internal exposome is very unrealistic. Instead of an experimental approach with a large number of people, which is economically and scientifically not feasible, in silico methods should be developed further to predict exposure, toxicity, and potential health effects of mixtures. The computer models will help to focus internal exposure investigations on smaller groups of people and smaller number of chemicals.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Jean-Daniel Berset
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
| | - Billy W Day
- Medantox LLC, Pittsburgh, Pennsylvania 15241, United States.,ReNeuroGen LLC, Elm Grove, Wisconsin 53122, United States
| |
Collapse
|
25
|
Pham LL, Borghoff SJ, Thompson CM. Comparison of threshold of toxicological concern (TTC) values to oral reference dose (RfD) values. Regul Toxicol Pharmacol 2020; 113:104651. [DOI: 10.1016/j.yrtph.2020.104651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
|
26
|
Gooderham NJ, Cohen SM, Eisenbrand G, Fukushima S, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Bastaki M, Linman MJ, Taylor SV. The safety evaluation of food flavoring substances: the role of genotoxicity studies. Crit Rev Toxicol 2020; 50:1-27. [PMID: 32162576 DOI: 10.1080/10408444.2020.1712589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Flavor and Extract Manufacturers Association (FEMA) Expert Panel relies on the weight of evidence from all available data in the safety evaluation of flavoring substances. This process includes data from genotoxicity studies designed to assess the potential of a chemical agent to react with DNA or otherwise cause changes to DNA, either in vitro or in vivo. The Panel has reviewed a large number of in vitro and in vivo genotoxicity studies during the course of its ongoing safety evaluations of flavorings. The adherence of genotoxicity studies to standardized protocols and guidelines, the biological relevance of the results from those studies, and the human relevance of these studies are all important considerations in assessing whether the results raise specific concerns for genotoxic potential. The Panel evaluates genotoxicity studies not only for evidence of genotoxicity hazard, but also for the probability of risk to the consumer in the context of exposure from their use as flavoring substances. The majority of flavoring substances have given no indication of genotoxic potential in studies evaluated by the FEMA Expert Panel. Examples illustrating the assessment of genotoxicity data for flavoring substances and the consideration of the factors noted above are provided. The weight of evidence approach adopted by the FEMA Expert Panel leads to a rational assessment of risk associated with consumer intake of flavoring substances under the conditions of use.
Collapse
Affiliation(s)
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gerhard Eisenbrand
- Food Chemistry & Toxicology, University of Kaiserslautern (retired), Heidelberg, Germany
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| | - Matthew J Linman
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| |
Collapse
|
27
|
Nelms MD, Pradeep P, Patlewicz G. Evaluating potential refinements to existing Threshold of Toxicological Concern (TTC) values for environmentally-relevant compounds. Regul Toxicol Pharmacol 2019; 109:104505. [PMID: 31639428 DOI: 10.1016/j.yrtph.2019.104505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022]
Abstract
The Toxic Substances Control Act (TSCA) mandates the US EPA perform risk-based prioritisation of chemicals in commerce and then, for high-priority substances, develop risk evaluations that integrate toxicity data with exposure information. One approach being considered for data poor chemicals is the Threshold of Toxicological Concern (TTC). Here, TTC values derived using oral (sub)chronic No Observable (Adverse) Effect Level (NO(A)EL) data from the EPA's Toxicity Values database (ToxValDB) were compared with published TTC values from Munro et al. (1996). A total of 4554 chemicals with structures present in ToxValDB were assigned into their respective TTC categories using the Toxtree software tool, of which toxicity data was available for 1304 substances. The TTC values derived from ToxValDB were similar, but not identical to the Munro TTC values: Cramer I ((ToxValDB) 37.3 c. f. (Munro) 30 μg/kg-day), Cramer II (34.6 c. f. 9.1 μg/kg-day) and Cramer III (3.9 c. f. 1.5 μg/kg-day). Cramer III 5th percentile values were found to be statistically different. Chemical features of the two Cramer III datasets were evaluated to account for the differences. TTC values derived from this expanded dataset substantiated the original TTC values, reaffirming the utility of TTC as a promising tool in a risk-based prioritisation approach.
Collapse
Affiliation(s)
- Mark D Nelms
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA; Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27709, USA
| | - Prachi Pradeep
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA; Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27709, USA
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
28
|
Eckardt M, Schneider J, Simat TJ. In vitro intestinal digestibility of cyclic aromatic polyester oligomers from polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1882-1894. [DOI: 10.1080/19440049.2019.1658903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Martin Eckardt
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Jasmin Schneider
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Thomas J. Simat
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
29
|
Transforming regulatory safety evaluations using New Approach Methodologies: A perspective of an industrial toxicologist. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Eckardt M, Hetzel L, Brenz F, Simat TJ. Release and migration of cyclic polyester oligomers from bisphenol A non-intent polyester-phenol-coatings into food simulants and infant food - a comprehensive study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:681-703. [PMID: 31140944 DOI: 10.1080/19440049.2019.1616831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Coatings for cans or closures are essential to protect the metal from corrosion and the food from migration of hazardous metal ions. Since coatings are no inert materials, they can release substances of potential health concern into food. In the present study, a comprehensive analysis is presented for a complex two-layered polyester-phenol-coating commercially used for metal closures of complementary infant food in sterilised glass jars. Focussed on the identity and migration of cyclic polyester oligomers as a kind of predictable non-intentionally added substances, polyester resin raw materials (n = 3) as well as individual coating layers (n = 3) were characterised by several analytical strategies (size exclusion chromatography, high-performance liquid chromatography mass spectrometry, diode array detection, charged aerosol detection, monomer determination after alkaline hydrolysis, overall migrate). The main polyester monomers were terephthalic acid, isophthalic acid, trimellitic acid, ethylene glycol, diethylene glycol, neopentylglycol, 2-methyl-1,3-propanediol, 1,4-butanediol and tricyclodecanedimethanol. The coatings were extracted with solvents acetonitrile and ethanol (24 h, 60°C), food simulants 50% ethanol, 20% ethanol and water (1 h, 121°C) as well as homemade and commercial baby food (1 h, 121°C). The released total polyester content determined by alkaline hydrolysis ranged from 288 µg/dm2 (water, 1 h, 121°C) to 6154 µg/dm2 (acetonitrile, 24 h, 60°C). However, individual cyclic oligomers, mainly dimers, were released from the coating to up to about 140 µg/dm2. Migration into infant food was best represented by the food simulants water (up to 1% fat) and 20% ethanol (up to 5% fat). Cyclic polyester oligomers are classified as Cramer III substances by the threshold of toxicological concern concept associated to an exposure threshold of 1.5 µg/kg body weight per day. Exposure to cyclic polyester oligomers might be a potential concern for highly exposed infants.
Collapse
Affiliation(s)
- Martin Eckardt
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Lisa Hetzel
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Fabrian Brenz
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| | - Thomas J Simat
- Chair for Food Chemistry and Food and Skin Contact Materials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|