1
|
Teuschler LK, Hertzberg RC, McDonald A, Sey YM, Simmons JE. Evaluation of a Proportional Response Addition Approach to Mixture Risk Assessment and Predictive Toxicology Using Data on Four Trihalomethanes from the U.S. EPA's Multiple-Purpose Design Study. TOXICS 2024; 12:240. [PMID: 38668462 PMCID: PMC11053411 DOI: 10.3390/toxics12040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
In this study, proportional response addition (Prop-RA), a model for predicting response from chemical mixture exposure, is demonstrated and evaluated by statistically analyzing data on all possible binary combinations of the four regulated trihalomethanes (THMs). These THMs were the subject of a multipurpose toxicology study specifically designed to evaluate Prop-RA. The experimental design used a set of doses common to all components and mixtures, providing hepatotoxicity data on the four single THMs and the binary combinations. In Prop-RA, the contribution of each component to mixture toxicity is proportional to its fraction in the mixture based on its response at the total mixture dose. The primary analysis consisted of 160 evaluations. Statistically significant departures from the Prop-RA prediction were found for seven evaluations, with three predications that were greater than and four that were less than the predicted response; interaction magnitudes (n-fold difference in response vs. prediction) ranged from 1.3 to 1.4 for the former and 2.6 to 3.8 for the latter. These predictions support the idea that Prop-RA works best with chemicals where the effective dose ranges overlap. Prop-RA does not assume the similarity of toxic action or independence, but it can be applied to a mixture of components that affect the same organ/system, with perhaps unknown toxic modes of action.
Collapse
Affiliation(s)
| | | | - Anthony McDonald
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Yusupha Mahtarr Sey
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jane Ellen Simmons
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
2
|
Golosovskaia E, Örn S, Ahrens L, Chelcea I, Andersson PL. Studying mixture effects on uptake and tissue distribution of PFAS in zebrafish (Danio rerio) using physiologically based kinetic (PBK) modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168738. [PMID: 38030006 DOI: 10.1016/j.scitotenv.2023.168738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously distributed in the aquatic environment. They include persistent, mobile, bioaccumulative, and toxic chemicals and it is therefore critical to increase our understanding on their adsorption, distribution, metabolism, excretion (ADME). The current study focused on uptake of seven emerging PFAS in zebrafish (Danio rerio) and their potential maternal transfer. In addition, we aimed at increasing our understanding on mixture effects on ADME by developing a physiologically based kinetic (PBK) model capable of handling co-exposure scenarios of any number of chemicals. All studied chemicals were taken up in the fish to varying degrees, whereas only perfluorononanoate (PFNA) and perfluorooctanoate (PFOA) were quantified in all analysed tissues. Perfluorooctane sulfonamide (FOSA) was measured at concerningly high concentrations in the brain (Cmax over 15 μg/g) but also in the liver and ovaries. All studied PFAS were maternally transferred to the eggs, with FOSA and 6:2 perfluorooctane sulfonate (6,2 FTSA) showing significant (p < 0.02) signs of elimination from the embryos during the first 6 days of development, while perfluorobutane sulfonate (PFBS), PFNA, and perfluorohexane sulfonate (PFHxS) were not eliminated in embryos during this time-frame. The mixture PBK model resulted in >85 % of predictions within a 10-fold error and 60 % of predictions within a 3-fold error. At studied levels of PFAS exposure, competitive binding was not a critical factor for PFAS kinetics. Gill surface pH influenced uptake for some carboxylates but not the sulfonates. The developed PBK model provides an important tool in understanding kinetics under complex mixture scenarios and this use of New Approach Methodologies (NAMs) is critical in future risk assessment of chemicals and early warning systems.
Collapse
Affiliation(s)
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Ioana Chelcea
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
3
|
Reale E, Zare Jeddi M, Paini A, Connolly A, Duca R, Cubadda F, Benfenati E, Bessems J, S Galea K, Dirven H, Santonen T, M Koch H, Jones K, Sams C, Viegas S, Kyriaki M, Campisi L, David A, Antignac JP, B Hopf N. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 184:108474. [PMID: 38350256 DOI: 10.1016/j.envint.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.
Collapse
Affiliation(s)
- Elena Reale
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | | | - Alison Connolly
- UCD Centre for Safety & Health at Work, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, D04 V1W8, Dublin, Ireland for Climate and Air Pollution Studies, Physics, School of Natural Science and the Ryan Institute, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | - Radu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Hubert Dirven
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Craig Sams
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Machera Kyriaki
- Benaki Phytopathological Institute, 8, Stephanou Delta Street, 14561 Kifissia, Athens, Greece
| | - Luca Campisi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Flashpoint srl, Via Norvegia 56, 56021 Cascina (PI), Italy
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | | | - Nancy B Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| |
Collapse
|
4
|
Rushing BR, Thessen AE, Soliman GA, Ramesh A, Sumner SCJ. The Exposome and Nutritional Pharmacology and Toxicology: A New Application for Metabolomics. EXPOSOME 2023; 3:osad008. [PMID: 38766521 PMCID: PMC11101153 DOI: 10.1093/exposome/osad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The exposome refers to all of the internal and external life-long exposures that an individual experiences. These exposures, either acute or chronic, are associated with changes in metabolism that will positively or negatively influence the health and well-being of individuals. Nutrients and other dietary compounds modulate similar biochemical processes and have the potential in some cases to counteract the negative effects of exposures or enhance their beneficial effects. We present herein the concept of Nutritional Pharmacology/Toxicology which uses high-information metabolomics workflows to identify metabolic targets associated with exposures. Using this information, nutritional interventions can be designed toward those targets to mitigate adverse effects or enhance positive effects. We also discuss the potential for this approach in precision nutrition where nutrients/diet can be used to target gene-environment interactions and other subpopulation characteristics. Deriving these "nutrient cocktails" presents an opportunity to modify the effects of exposures for more beneficial outcomes in public health.
Collapse
Affiliation(s)
- Blake R. Rushing
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Thessen
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ghada A. Soliman
- Department of Environmental, Occupational and Geospatial Health Sciences, City University of New York-Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Susan CJ Sumner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Gastellu T, Le Bizec B, Rivière G. Characterisation of the risk associated with chronic lifetime exposure to mixture of chemical hazards: case study of trace elements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:951-970. [PMID: 37428801 DOI: 10.1080/19440049.2023.2231086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Risk assessment methodology, mostly commonly used, faces the complexity of the environment. Populations are exposed to multiple sources of chemicals throughout life and the chemical mixtures they are exposed change during time (lifestyle factors, regulatory decisions, etc). The risk assessment needs to consider these dynamics and the evolution of the body with age, in order to refine the exposure assessment to chemicals and to predict the health impact of these exposures. This review highlights the latest methodologies developed to improve risk assessment, especially cor heavy metals. The methodologies aim to better describe the chemical toxicokinetic and toxicodynamic as well as the exposure assessment. Human Biomonitoring (HBM) data give great opportunities to link biomarkers of exposure with an adverse effect. Physiologically-Based Toxicokinetic (PBTK) models are more and more used to simulate the evolution of biomarkers in organisms, considering the external exposures and the physiological evolutions. PBTK models may also be used to determine the routes of exposure or to predict the impacts of schemes of exposure. The major limit is the integration of several chemicals in mixture with common adverse effects and the interactions between them.
Collapse
Affiliation(s)
- Thomas Gastellu
- Oniris, INRAE, LABERCA, Nantes, France
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Gilles Rivière
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
6
|
Moriceau MA, Cano-Sancho G, Kim M, Coumoul X, Emond C, Arrebola JP, Antignac JP, Audouze K, Rousselle C. Partitioning of Persistent Organic Pollutants between Adipose Tissue and Serum in Human Studies. TOXICS 2022; 11:toxics11010041. [PMID: 36668767 PMCID: PMC9866963 DOI: 10.3390/toxics11010041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/01/2023]
Abstract
Blood is the most widely used matrix for biomonitoring of persistent organic pollutants (POPs). It is assumed that POPs are homogenously distributed within body lipids at steady state; however, the variability underlying the partitioning of POPs between fat compartments is poorly understood. Hence, the objective of this study was to review the state of the science about the relationships of POPs between adipose tissue and serum in humans. We conducted a narrative literature review of human observational studies reporting concentrations of POPs in paired samples of adipose tissue with other lipid-based compartments (e.g., serum lipids). The searches were conducted in SCOPUS and PUBMED. A meta-regression was performed to identify factors responsible for variability. All included studies reported high variability in the partition coefficients of POPs, mainly between adipose tissue and serum. The number of halogen atoms was the physicochemical variable most strongly and positively associated with the partition ratios, whereas body mass index was the main biological factor positively and significantly associated. To conclude, although this study provides a better understanding of partitioning of POPs to refine physiologically based pharmacokinetic and epidemiological models, further research is still needed to determine other key factors involved in the partitioning of POPs.
Collapse
Affiliation(s)
| | | | - MinJi Kim
- INSERM UMR-S 1124, Université Paris Sorbonne Nord, 93017 Bobigny, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Claude Emond
- School of Public Health, Department of Environmental and Occupational Health, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Juan-Pedro Arrebola
- Department of Preventive Medicine and Public Health, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2a Planta, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Karine Audouze
- INSERM UMR-S 1124, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Christophe Rousselle
- ANSES, European and International Affairs Department, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| |
Collapse
|
7
|
Zhang J, Chang X, Holland TL, Hines DE, Karmaus AL, Bell S, Lee KM. Evaluation of Inhalation Exposures and Potential Health Impacts of Ingredient Mixtures Using in vitro to in vivo Extrapolation. FRONTIERS IN TOXICOLOGY 2022; 3:787756. [PMID: 35295123 PMCID: PMC8915826 DOI: 10.3389/ftox.2021.787756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
In vitro methods offer opportunities to provide mechanistic insight into bioactivity as well as human-relevant toxicological assessments compared to animal testing. One of the challenges for this task is putting in vitro bioactivity data in an in vivo exposure context, for which in vitro to in vivo extrapolation (IVIVE) translates in vitro bioactivity to clinically relevant exposure metrics using reverse dosimetry. This study applies an IVIVE approach to the toxicity assessment of ingredients and their mixtures in e-cigarette (EC) aerosols as a case study. Reported in vitro cytotoxicity data of EC aerosols, as well as in vitro high-throughput screening (HTS) data for individual ingredients in EC liquids (e-liquids) are used. Open-source physiologically based pharmacokinetic (PBPK) models are used to calculate the plasma concentrations of individual ingredients, followed by reverse dosimetry to estimate the human equivalent administered doses (EADs) needed to obtain these plasma concentrations for the total e-liquids. Three approaches (single actor approach, additive effect approach, and outcome-oriented ingredient integration approach) are used to predict EADs of e-liquids considering differential contributions to the bioactivity from the ingredients (humectant carriers [propylene glycol and glycerol], flavors, benzoic acid, and nicotine). The results identified critical factors for the EAD estimation, including the ingredients of the mixture considered to be bioactive, in vitro assay selection, and the data integration approach for mixtures. Further, we introduced the outcome-oriented ingredient integration approach to consider e-liquid ingredients that may lead to a common toxicity outcome (e.g., cytotoxicity), facilitating a quantitative evaluation of in vitro toxicity data in support of human risk assessment.
Collapse
Affiliation(s)
- Jingjie Zhang
- Altria Client Services, LLC, Richmond, VA, United States
- *Correspondence: Jingjie Zhang,
| | - Xiaoqing Chang
- Integrated Laboratory Systems, LLC, Morrisville, NC, United States
| | - Tessa L. Holland
- Lancaster Laboratories, c/o Altria Client Services, LLC, Regulatory Affairs, VA, Richmond, United States
| | - David E. Hines
- Integrated Laboratory Systems, LLC, Morrisville, NC, United States
| | - Agnes L. Karmaus
- Integrated Laboratory Systems, LLC, Morrisville, NC, United States
| | - Shannon Bell
- Integrated Laboratory Systems, LLC, Morrisville, NC, United States
| | - K. Monica Lee
- Altria Client Services, LLC, Richmond, VA, United States
| |
Collapse
|
8
|
Zare Jeddi M, Hopf NB, Viegas S, Price AB, Paini A, van Thriel C, Benfenati E, Ndaw S, Bessems J, Behnisch PA, Leng G, Duca RC, Verhagen H, Cubadda F, Brennan L, Ali I, David A, Mustieles V, Fernandez MF, Louro H, Pasanen-Kase R. Towards a systematic use of effect biomarkers in population and occupational biomonitoring. ENVIRONMENT INTERNATIONAL 2021; 146:106257. [PMID: 33395925 DOI: 10.1016/j.envint.2020.106257] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Effect biomarkers can be used to elucidate relationships between exposure to environmental chemicals and their mixtures with associated health outcomes, but they are often underused, as underlying biological mechanisms are not understood. We aim to provide an overview of available effect biomarkers for monitoring chemical exposures in the general and occupational populations, and highlight their potential in monitoring humans exposed to chemical mixtures. We also discuss the role of the adverse outcome pathway (AOP) framework and physiologically based kinetic and dynamic (PBK/D) modelling to strengthen the understanding of the biological mechanism of effect biomarkers, and in particular for use in regulatory risk assessments. An interdisciplinary network of experts from the European chapter of the International Society for Exposure Science (ISES Europe) and the Organization for Economic Co-operation and Development (OECD) Occupational Biomonitoring activity of Working Parties of Hazard and Exposure Assessment group worked together to map the conventional framework of biomarkers and provided recommendations for their systematic use. We summarized the key aspects of this work here, and discussed these in three parts. Part I, we inventory available effect biomarkers and promising new biomarkers for the general population based on the H2020 Human Biomonitoring for Europe (HBM4EU) initiative. Part II, we provide an overview AOP and PBK/D modelling use that improved the selection and interpretation of effect biomarkers. Part III, we describe the collected expertise from the OECD Occupational Biomonitoring subtask effect biomarkers in prioritizing relevant mode of actions (MoAs) and suitable effect biomarkers. Furthermore, we propose a tiered risk assessment approach for occupational biomonitoring. Several effect biomarkers, especially for use in occupational settings, are validated. They offer a direct assessment of the overall health risks associated with exposure to chemicals, chemical mixtures and their transformation products. Promising novel effect biomarkers are emerging for biomonitoring of the general population. Efforts are being dedicated to prioritizing molecular and biochemical effect biomarkers that can provide a causal link in exposure-health outcome associations. This mechanistic approach has great potential in improving human health risk assessment. New techniques such as in silico methods (e.g. QSAR, PBK/D modelling) as well as 'omics data will aid this process. Our multidisciplinary review represents a starting point for enhancing the identification of effect biomarkers and their mechanistic pathways following the AOP framework. This may help in prioritizing the effect biomarker implementation as well as defining threshold limits for chemical mixtures in a more structured way. Several ex vivo biomarkers have been proposed to evaluate combined effects including genotoxicity and xeno-estrogenicity. There is a regulatory need to derive effect-based trigger values using the increasing mechanistic knowledge coming from the AOP framework to address adverse health effects due to exposure to chemical mixtures. Such a mechanistic strategy would reduce the fragmentation observed in different regulations. It could also stimulate a harmonized use of effect biomarkers in a more comparable way, in particular for risk assessments to chemical mixtures.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Italy
| | - Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Epalinges, Switzerland
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; Comprehensive Health Research Center (CHRC), 1150-090 Lisbon, Portugal; H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Anna Bal Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa, 19, 20156 Milano, Italy
| | - Sophie Ndaw
- INRS-French National Research and Safety Institute, France
| | - Jos Bessems
- VITO - Flemish Institute for Technological Research, Belgium
| | - Peter A Behnisch
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Gabriele Leng
- Currenta GmbH Co. OHG, Institute of Biomonitoring, Leverkusen, Germany
| | - Radu-Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, Dudelange, Luxembourg
| | - Hans Verhagen
- Food Safety & Nutrition Consultancy (FSNConsultancy), Zeist, the Netherlands
| | - Francesco Cubadda
- Istituto Superiore di Sanità-National Institute of Health, Rome, Italy
| | - Lorraine Brennan
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Imran Ali
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Mariana F Fernandez
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, Lisboa and ToxOmics - Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade Nova de Lisboa, Portugal
| | - Robert Pasanen-Kase
- State Secretariat for Economic Affairs (SECO), Labour Directorate Section Chemicals and Work (ABCH), Switzerland.
| |
Collapse
|
9
|
Pletz J, Blakeman S, Paini A, Parissis N, Worth A, Andersson AM, Frederiksen H, Sakhi AK, Thomsen C, Bopp SK. Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment. ENVIRONMENT INTERNATIONAL 2020; 143:105978. [PMID: 32763630 PMCID: PMC7684529 DOI: 10.1016/j.envint.2020.105978] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 06/02/2023]
Abstract
Human biomonitoring (HBM) data can provide insight into co-exposure patterns resulting from exposure to multiple chemicals from various sources and over time. Therefore, such data are particularly valuable for assessing potential risks from combined exposure to multiple chemicals. One way to interpret HBM data is establishing safe levels in blood or urine, called Biomonitoring Equivalents (BE) or HBM health based guidance values (HBM-HBGV). These can be derived by converting established external reference values, such as tolerable daily intake (TDI) values. HBM-HBGV or BE values are so far agreed only for a very limited number of chemicals. These values can be established using physiologically based kinetic (PBK) modelling, usually requiring substance specific models and the collection of many input parameters which are often not available or difficult to find in the literature. The aim of this study was to investigate the suitability and limitations of generic PBK models in deriving BE values for several compounds with a view to facilitating the use of HBM data in the assessment of chemical mixtures at a screening level. The focus was on testing the methodology with two generic models, the IndusChemFate tool and High-Throughput Toxicokinetics package, for two different classes of compounds, phenols and phthalates. HBM data on Danish children and on Norwegian mothers and children were used to evaluate the quality of the predictions and to illustrate, by means of a case study, the overall approach of applying PBK models to chemical classes with HBM data in the context of chemical mixture risk assessment. Application of PBK models provides a better understanding and interpretation of HBM data. However, the study shows that establishing safety threshold levels in urine is a difficult and complex task. The approach might be more straightforward for more persistent chemicals that are analysed as parent compounds in blood but high uncertainties have to be considered around simulated metabolite concentrations in urine. Refining the models may reduce these uncertainties and improve predictions. Based on the experience gained with this study, the performance of the models for other chemicals could be investigated, to improve the accuracy of the simulations.
Collapse
Affiliation(s)
- Julia Pletz
- European Commission, Joint Research Centre (JRC), Ispra, Italy; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK(2)
| | - Samantha Blakeman
- European Commission, Joint Research Centre (JRC), Ispra, Italy; Oceansea Conservación del Medio Ambiente, Cádiz, Spain(2)
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | | | | | | |
Collapse
|
10
|
Bopp SK, Kienzler A, Richarz AN, van der Linden SC, Paini A, Parissis N, Worth AP. Regulatory assessment and risk management of chemical mixtures: challenges and ways forward. Crit Rev Toxicol 2019; 49:174-189. [DOI: 10.1080/10408444.2019.1579169] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Aude Kienzler
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrew P. Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|