1
|
Rao F, Yang J, Li X, Li R, Li Y, Shi X, Liu D, Xu Z. Conserved and Antenna-Biased Odorant Receptor in the Rape Stem Weevil Ceutorhynchus asper Tuned to Green Leaf Volatiles from Hosts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5116-5128. [PMID: 39965772 DOI: 10.1021/acs.jafc.4c11037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The rape stem weevil, Ceutorhynchus asper Roel. (Coleoptera: Curculionidae), is a severe pest of oilseed rape. Currently, little is known about the chemosensory functions of odorant receptors (ORs) in coleopterans such as C. asper. Here, the antennal and body transcriptomes of adult C. asper were sequenced and annotated. In total, 49 ORs were identified in C. asper, and transcriptome and quantitative polymerase chain reaction (qPCR) analyses showed that CaspOR5 was antenna-biased. Phylogenetic analyses suggested that homologs of CaspOR5 were conserved among coleopterans. In single sensillum recordings of transgenic flies, CaspOR5 was found to be narrowly tuned to six green leaf volatiles (GLVs) of oilseed rape. Molecular docking indicated that active sites of CaspOR5 bound to GLVs were highly conserved. (E)-2-hexenol, 1-hexanol, and (Z)-3-hexenol were attractive for both sexes of C. asper, and (E)-2-hexenal was only attractive to male weevils. In conclusion, CaspOR5 can facilitate perception of GLVs, thereby playing crucial roles in host plant search and location of C. asper. Our investigation provides insights into the olfactory functions of the conserved CaspOR5 in Coleoptera and can facilitate future research on developing novel green strategies in management of related pest weevils.
Collapse
Affiliation(s)
- Fuqiang Rao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinghao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rufan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yonghong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Xiaoqin Shi
- College of Language and Culture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Deguang Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Force E, Suray C, Girardin C, Sokolowski MBC, Dacher M. Insights on the nutritional ecology of a nocturnal pollinating insect. INSECT SCIENCE 2025. [PMID: 40035497 DOI: 10.1111/1744-7917.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Nutritional ecology examines the environmental effects on nutritional needs, food intake and foraging behaviors, and the use of nutrients ingested by animals. Adults of many insects' species feed on nectars rich in sugars allowing them to match the nutritional needs necessary for reproduction. Among insects, Lepidoptera are often considered opportunistic foragers that visit a wide variety of available flowers, although with some preferences. While nutritional ecology of diurnal Lepidoptera is beginning to be explored, very little work focuses on nocturnal species because they are complicated to study in the wild. To address this, we used new laboratory approaches to study feeding behaviors (number and duration of visits to artificial flowers, food preferences associated with the texture and odors of the flowers) as well as gustatory detection by antennae (proboscis extension reflex) in the male crop pest moth Agrotis ipsilon. We showed that (i) food responsiveness is age-dependent and increases mainly with sugar quantity and marginally with sugar quality, (ii) diet quality impacts feeding behaviors in the first days of adulthood, and (iii) male moths choose their food through floral cues. Taken together, these data allow to define this species as a generalist forager with a preference for flowers with sugary nectars rich in sucrose, fructose, and glucose. Our results thus provide considerable information on the close links between food sources and nutritional ecology in this species, which is important for guiding future studies on their behavioral ecology, population dynamics, as well as for population monitoring and for regional pest management.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| | - Caroline Suray
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | - Charlotte Girardin
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | | | - Matthieu Dacher
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| |
Collapse
|
3
|
Biswas T, Vogel H, Biedermann PHW, Lehenberger M, Yuvaraj JK, Andersson MN. Few chemoreceptor genes in the ambrosia beetle Trypodendron lineatum may reflect its specialized ecology. BMC Genomics 2024; 25:764. [PMID: 39107741 PMCID: PMC11302349 DOI: 10.1186/s12864-024-10678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chemoreception is crucial for insect fitness, underlying for instance food-, host-, and mate finding. Chemicals in the environment are detected by receptors from three divergent gene families: odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs). However, how the chemoreceptor gene families evolve in parallel with ecological specializations remains poorly understood, especially in the order Coleoptera. Hence, we sequenced the genome and annotated the chemoreceptor genes of the specialised ambrosia beetle Trypodendron lineatum (Coleoptera, Curculionidae, Scolytinae) and compared its chemoreceptor gene repertoires with those of other scolytines with different ecological adaptations, as well as a polyphagous cerambycid species. RESULTS We identified 67 ORs, 38 GRs, and 44 IRs in T. lineatum ('Tlin'). Across gene families, T. lineatum has fewer chemoreceptors compared to related scolytines, the coffee berry borer Hypothenemus hampei and the mountain pine beetle Dendroctonus ponderosae, and clearly fewer receptors than the polyphagous cerambycid Anoplophora glabripennis. The comparatively low number of chemoreceptors is largely explained by the scarcity of large receptor lineage radiations, especially among the bitter taste GRs and the 'divergent' IRs, and the absence of alternatively spliced GR genes. Only one non-fructose sugar receptor was found, suggesting several sugar receptors have been lost. Also, we found no orthologue in the 'GR215 clade', which is widely conserved across Coleoptera. Two TlinORs are orthologous to ORs that are functionally conserved across curculionids, responding to 2-phenylethanol (2-PE) and green leaf volatiles (GLVs), respectively. CONCLUSIONS Trypodendron lineatum reproduces inside the xylem of decaying conifers where it feeds on its obligate fungal mutualist Phialophoropsis ferruginea. Like previous studies, our results suggest that stenophagy correlates with small chemoreceptor numbers in wood-boring beetles; indeed, the few GRs may be due to its restricted fungal diet. The presence of TlinORs orthologous to those detecting 2-PE and GLVs in other species suggests these compounds are important for T. lineatum. Future functional studies should test this prediction, and chemoreceptor annotations should be conducted on additional ambrosia beetle species to investigate whether few chemoreceptors is a general trait in this specialized group of beetles.
Collapse
Affiliation(s)
- Twinkle Biswas
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Peter H W Biedermann
- Chair of Forest Entomology and Protection, University of Freiburg, Stegen-Wittental, Germany
| | | | | | - Martin N Andersson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
| |
Collapse
|
4
|
Fonseca PM, Robe LJ, Carvalho TL, Loreto ELS. Characterization of the chemoreceptor repertoire of a highly specialized fly with comparisons to other Drosophila species. Genet Mol Biol 2024; 47:e20220383. [PMID: 38885260 PMCID: PMC11182316 DOI: 10.1590/1678-4685-gmb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
To explore the diversity of scenarios in nature, animals have evolved tools to interact with different environmental conditions. Chemoreceptors are an important interface component and among them, olfactory receptors (ORs) and gustatory receptors (GRs) can be used to find food and detect healthy resources. Drosophila is a model organism in many scientific fields, in part due to the diversity of species and niches they occupy. The contrast between generalists and specialists Drosophila species provides an important model for studying the evolution of chemoreception. Here, we compare the repertoire of chemoreceptors of different species of Drosophila with that of D. incompta, a highly specialized species whose ecology is restricted to Cestrum flowers, after reporting the preferences of D. incompta to the odor of Cestrum flowers in olfactory tests. We found evidence that the chemoreceptor repertoire in D. incompta is smaller than that presented by species in the Sophophora subgenus. Similar patterns were found in other non-Sophophora species, suggesting the presence of underlying phylogenetic trends. Nevertheless, we also found autapomorphic gene losses and detected some genes that appear to be under positive selection in D. incompta, suggesting that the specific lifestyle of these flies may have shaped the evolution of individual genes in each of these gene families.
Collapse
Affiliation(s)
- Pedro Mesquita Fonseca
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Lizandra Jaqueline Robe
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Tuane Letícia Carvalho
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Elgion Lucio Silva Loreto
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| |
Collapse
|
5
|
Liu W, Li Q. Single-cell transcriptomics dissecting the development and evolution of nervous system in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101201. [PMID: 38608931 DOI: 10.1016/j.cois.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Insects can display a vast repertoire of complex and adaptive behaviors crucial for survival and reproduction. Yet, how the neural circuits underlying insect behaviors are assembled throughout development and remodeled during evolution remains largely obscure. The advent of single-cell transcriptomics has opened new paths to illuminate these historically intractable questions. Insect behavior is governed by its brain, whose functional complexity is realized through operations across multiple levels, from the molecular and cellular to the circuit and organ. Single-cell transcriptomics enables dissecting brain functions across all these levels and allows tracking regulatory dynamics throughout development and under perturbation. In this review, we mainly focus on the achievements of single-cell transcriptomics in dissecting the molecular and cellular architectures of nervous systems in representative insects, then discuss its applications in tracking the developmental trajectory and functional evolution of insect brains.
Collapse
Affiliation(s)
- Weiwei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Yunnan Key Laboratory of Biodiversity Information, Kunming, China.
| | - Qiye Li
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Pullmann-Lindsley H, Huff RM, Boyi J, Pitts RJ. Odorant receptors for floral- and plant-derived volatiles in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). PLoS One 2024; 19:e0302496. [PMID: 38709760 PMCID: PMC11073699 DOI: 10.1371/journal.pone.0302496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Adult mosquitoes require regular sugar meals, including nectar, to survive in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors (ORs) activated by plant volatiles to orient toward flowers or honeydew. The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large gene family of ORs, many of which are likely to detect floral odors. In this study, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti ORs using a panel of environmentally relevant, plant-derived volatile chemicals and a heterologous expression system. Our results support the hypothesis that these odors mediate sensory responses to floral odors in the mosquito's central nervous system, thereby influencing appetitive or aversive behaviors. Further, these ORs are well conserved in other mosquitoes, suggesting they function similarly in diverse species. This information can be used to assess mosquito foraging behavior and develop novel control strategies, especially those that incorporate mosquito bait-and-kill technologies.
Collapse
Affiliation(s)
| | - Robert Mark Huff
- Department of Biology, Baylor University, Waco, TX, United States of America
| | - John Boyi
- Department of Biology, Baylor University, Waco, TX, United States of America
| | - Ronald Jason Pitts
- Department of Biology, Baylor University, Waco, TX, United States of America
| |
Collapse
|
7
|
Yang R, Li D, Yi S, Wei Y, Wang M. Odorant-binding protein 19 in Monochamus alternatus involved in the recognition of a volatile strongly emitted from ovipositing host pines. INSECT SCIENCE 2024; 31:134-146. [PMID: 37358042 DOI: 10.1111/1744-7917.13238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/27/2023]
Abstract
Monochamus alternatus is the primary carrier of pine wood nematodes, which pose a serious threat to Pinus spp. in many countries. Newly emerging M. alternatus adults feed on heathy host pines, while matured adults transfer to stressed host pines for mating and oviposition. Several odorant-binding proteins (OBPs) of M. alternatus have been proved to aid in the complex process of host location. To clarify the corresponding relations between OBPs and pine volatiles, more OBPs need to be studied. In this research, MaltOBP19 showed a specific expression in the antennae and mouthparts of M. alternatus, and it was marked in 4 types of antenna sensilla by immunolocalization. Fluorescence binding assays demonstrated the high binding affinity of MaltOBP19 with camphene and myrcene in vitro. In Y-tube olfactory experiments, M. alternatus adults were attracted by camphene and RNAi of OBP19 via microinjection significantly decreased their attraction index. Myrcene induced phobotaxis, but RNAi had no significant effect on this behavior. Further, we found that ingesting dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of MaltOBP19. These results suggest that MaltOBP19 may play a role in the process of host conversion via the recognition of camphene, which has been identified to be strongly released in stressed host pines. In addition, it is proved that knockdown of OBP can be achieved by oral administration of bacteria-expressed double-stranded RNA in M. alternatus adults, providing a new perspective in the control of M. alternatus.
Collapse
Affiliation(s)
- Ruinan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongzhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shancheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Wei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Pullmann-Lindsley H, Huff R, Boyi J, Pitts RJ. Odorant receptors for floral- and plant-derived volatiles in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562234. [PMID: 38328195 PMCID: PMC10849520 DOI: 10.1101/2023.10.17.562234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Adult mosquitoes require regular sugar meals, usually floral nectar, to survive and flourish in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors activated by plant volatiles that facilitate orientation toward flowers or honeydew. The Yellow Fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large repertoire of odorant receptors, many of which are likely to support floral odor detection and nectar-seeking. In this study, we have employed a heterologous expression system and the two-electrode voltage clamping technique to identify environmentally relevant chemical compounds that activate specific odorant receptors. Importantly, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti odorant receptors likely to mediate appetitive or aversive behavioral responses, thus shaping a critical aspect of the life history of a medically important mosquito. Moreover, the high degree of conservation of these receptors in other disease-transmitting species suggests common mechanisms of floral odor detection. This knowledge can be used to further investigate mosquito foraging behavior to either enhance existing, or develop novel, control strategies, especially those that incorporate mosquito bait-and-kill or attractive toxic sugar bait technologies.
Collapse
Affiliation(s)
| | - Robert Huff
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706
| | - John Boyi
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706
| | - R Jason Pitts
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706
| |
Collapse
|
9
|
Wei ZQ, Wang JX, Guo JM, Liu XL, Yan Q, Zhang J, Dong SL. An odorant receptor tuned to an attractive plant volatile vanillin in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105619. [PMID: 37945255 DOI: 10.1016/j.pestbp.2023.105619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
The insect olfaction plays crucial roles in many important behaviors, in which ORs are key determinants for signal transduction and the olfactory specificity. Spodoptera litura is a typical polyphagous pest, possessing a large repertoire of ORs tuning to broad range of plant odorants. However, the specific functions of those ORs remain mostly unknown. In this study, we functionally characterized one S. litura OR (OR51) that was highly expressed in the adult antennae. First, by using Xenopus oocyte expression and two-electrode voltage clamp recording system (XOE-TEVC), OR51 was found to be strongly and specifically responsive to vanillin (a volatile of S. litura host plants) among 77 tested odorants. Second, electroantennogram (EAG) and Y-tube behavioral experiment showed that vanillin elicited significant EAG response and attraction behavior especially of female adults. This female attraction was further confirmed by the oviposition experiment, in which the soybean plants treated with vanillin were significantly preferred by females for egg-laying. Third, 3D structural modelling and molecular docking were conducted to explore the interaction between OR51 and vanillin, which showed a high affinity (-4.46 kcal/mol) and three residues (Gln163, Phe164 and Ala305) forming hydrogen bonds with vanillin, supporting the specific binding of OR51 to vanillin. In addition, OR51 and its homologs from other seven noctuid species shared high amino acid identities (78-97%) and the same three hydrogen bond forming residues, suggesting a conserved function of the OR in these insects. Taken together, our study provides some new insights into the olfactory mechanisms of host plant finding and suggests potential applications of vanillin in S. litura control.
Collapse
Affiliation(s)
- Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji-Xiang Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Guo T, Feng S, Zhang Y, Li W, Qin Y, Li Z. Chromosome-level genome assembly of Bactrocera correcta provides insights into its adaptation and invasion mechanisms. Genomics 2023; 115:110736. [PMID: 39491176 DOI: 10.1016/j.ygeno.2023.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Bactrocera correcta is an invasive polyphagous pest with significant ecological and economic implications. Understanding its genetic characteristics and the molecular mechanisms that drive its rapid adaptation to new environments requires genomic information. In this study, we successfully assembled the chromosome-level genome of B. correcta using PacBio long-read sequencing, Illumina sequencing, and chromatin conformation capture (Hi-C) methods. The final genome assembly spans a total length of 702.65 Mb. We managed to anchor approximately 86.88% of the assembled contigs into 6 linkage groups, ranging from 17.97 Mb to 166.49 Mb. Additionally, our analysis predicted a total of 21,015 genes, with repetitive sequences accounting for 58.22% of the genome. We further identified retroelements and DNA transposons as the major contributors to the larger size of the B. correcta genome, constituting 36.06% and 30.92% of the repetitive sequences, respectively. Our divergence time estimation placed B. correcta's split from other Bactrocera species at around 5.99-16.71 million years ago. Through gene family analyses, we discovered significant expansions in sensing-related gene families (IR, GR), heat shock proteins (HSP60), and resistance-related gene families (ABC) in B. correcta compared to its closest relatives. Transcriptomic analysis revealed substantial upregulation of HSP genes, especially those from the HSP20 subfamily, in response to high temperatures. The availability of this reference genome serves as a foundation for the identification of precise target genes in B. correcta, facilitating molecular prevention and control strategies.
Collapse
Affiliation(s)
- Tengda Guo
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shiqian Feng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weisong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yujia Qin
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China; Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| |
Collapse
|
11
|
Liu X, Shi L, Khashaveh A, Shan S, Lv B, Gu S, Zhang Y. Loss of Binding Capabilities in an Ecologically Important Odorant Receptor of the Fall Armyworm, Spodoptera frugiperda, by a Single Point Mutation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13003-13013. [PMID: 37625381 DOI: 10.1021/acs.jafc.3c04247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Olfaction plays a crucial role in locating food sources, mates, and spawning sites in the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae). In the current study, SfruOR14, a highly conserved odorant receptor (OR) in lepidopteran species, was newly uncovered in S. frugiperda. In two-electrode voltage clamp recordings, the SfruOR14/Orco complex was narrowly tuned to six volatile compounds including phenylacetaldehyde (PAA), benzaldehyde, heptaldehyde, (E)-2-hexen-1-al, cinnamaldehyde, and 2-phenylethanol, among which PAA showed the strongest binding affinity. Subsequent homology modeling and molecular docking revealed that Phe79, His83, Tyr149, Pro176, Gln177, Leu202, and Thr348 in SfruOR14 were the key binding residues against the six ligands. Finally, as a result of site-directed mutagenesis, the SfruOR14His83Ala mutant completely lost its binding capabilities toward all ligands. Taken together, our findings provide valuable insights into understanding the interaction between SfruOR14 and the chemical ligands including PAA, which can help to design novel olfactory modulators for pest control.
Collapse
Affiliation(s)
- Xiaohe Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Longfei Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Beibei Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Cotton Research, Shanxi Agricultural University, YunCheng 044000, China
| | - Shaohua Gu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Stoldt M, Collin E, Macit MN, Foitzik S. Brain and antennal transcriptomes of host ants reveal potential links between behaviour and the functioning of socially parasitic colonies. Mol Ecol 2023; 32:5170-5185. [PMID: 37540194 DOI: 10.1111/mec.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Insect social parasites are characterized by exploiting the hosts' social behaviour. Why exactly hosts direct their caring behaviour towards these parasites and their offspring remains largely unstudied. One hypothesis is that hosts do not perceive their social environment as altered and accept the parasitic colony as their own. We used the ant Leptothorax acervorum, host of the dulotic, obligate social parasite Harpagoxenus sublaevis, to shed light on molecular mechanisms underlying behavioural exploitation by contrasting tissue-specific transcriptomes in young host workers. Host pupae were experimentally (re-)introduced into fragments of their original, another conspecific, heterospecific or parasitic colony. Brain and antennal mRNA was extracted and sequenced from adult ants after they had lived in the experimental colony for at least 50 days after eclosion. The resulting transcriptomes of L. acervorum revealed that ants were indeed affected by their social environment. Host brain transcriptomes were altered by the presence of social parasites, suggesting that the parasitic environment influences brain activity, which may be linked to behavioural changes. Transcriptional activity in the antennae changed most with the presence of unrelated individuals, regardless of whether they were conspecifics or parasites. This suggests early priming of odour perception, which was further supported by sensory perception of odour as an enriched function of differentially expressed genes. Furthermore, gene expression in the antennae, but not in the brain corresponded to ant worker behaviour before sampling. Our study demonstrated that the exploitation of social behaviours by brood parasites correlates with transcriptomic alterations in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Erwann Collin
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Maide Nesibe Macit
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
13
|
Chen WW, Zhang H, Chen Y, Zeng WH, Li ZQ. Combined use of lipopolysaccharide-binding protein dsRNA and Gram-negative bacteria for pest management of Coptotermes formosanus. PEST MANAGEMENT SCIENCE 2023; 79:2299-2310. [PMID: 36775842 DOI: 10.1002/ps.7405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND RNA interference (RNAi) technology is an environmentally friendly strategy for controlling insect pests. Lipopolysaccharide-binding protein (LBP) recognizes lipopolysaccharides, which are a major outer membrane constituent of Gram-negative bacteria. We propose that the LBP gene is a potential target for termite management; however, to date, no studies have examined this gene in termites. RESULTS In this study, we cloned the LBP gene of Coptotermes formosanus (Cf) and found that the mortality rate of termite workers significantly increased, and the repellence of these workers to Gram-negative bacteria was suppressed after knockdown of CfLBP using double-stranded RNA (dsRNA) injection and feeding. Moreover, the mortality rate of termite workers fed with CfLBP dsRNA and three Gram-negative bacteria (provided separately) was over 50%, which was much higher than that of termites treated with either CfLBP dsRNA or Gram-negative bacteria. Finally, we found that CfLBP impacts the IMD pathway to regulate the immune response of C. formosanus to Gram-negative bacteria. CONCLUSION CfLBP plays a important role in the immune defense of termites against Gram-negative bacteria. It can be used as an immunosuppressant for RNAi-based termite management and is an ideal target for termite control based on the combined use of RNAi and pathogenic bacteria. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wen-Hui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhi-Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Dong JF, Hu ZJ, Dong BX, Tian CH. A mouthpart transcriptome for Spodoptera frugiperda adults: identification of candidate chemoreceptors and investigation of expression patterns. Front Physiol 2023; 14:1193085. [PMID: 37179830 PMCID: PMC10166800 DOI: 10.3389/fphys.2023.1193085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Moth mouthparts, consisting of labial palps and proboscis, not only are the feeding device but also are chemosensory organs for the detection of chemical signals from surrounding environment. Up to now, the chemosensory systems in the mouthpart of moths are largely unknown. Here, we performed systematic analyses of the mouthpart transcriptome of adult Spodoptera frugiperda (Lepidoptera: Noctuidae), a notorious pest that spreads worldwide. A total of 48 chemoreceptors, including 29 odorant receptors (ORs), 9 gustatory receptors (GRs), and 10 ionotropic receptors (IRs), were annotated. Further phylogenetic analyses with these genes and homologs from other insect species determined that specific genes, including ORco, carbon dioxide receptors, pheromone receptor, IR co-receptors, and sugar receptors, were transcribed in the mouthpart of S. frugiperda adults. Subsequently, expression profiling in different chemosensory tissues demonstrated that the annotated ORs and IRs were mainly expressed in S. frugiperda antennae, but one IR was also highly expressed in the mouthparts. In comparison, SfruGRs were mainly expressed in the mouthparts, but 3 GRs were also highly expressed in the antennae or the legs. Further comparison of the mouthpart-biased chemoreceptors using RT-qPCR revealed that the expression of these genes varied significantly between labial palps and proboscises. This study provides the first large-scale description of chemoreceptors in the mouthpart of adult S. frugiperda and provides a foundation for further functional studies of chemoreceptors in the mouthpart of S. frugiperda as well as of other moth species.
Collapse
Affiliation(s)
- Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Zhen-Jie Hu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Bing-Xin Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
| |
Collapse
|
15
|
Dong JF, Yang HB, Li DX, Yu HQ, Tian CH. Identification and expression analysis of chemosensory receptors in the tarsi of fall armyworm, Spodoptera frugiperda (J. E. Smith). Front Physiol 2023; 14:1177297. [PMID: 37101698 PMCID: PMC10123274 DOI: 10.3389/fphys.2023.1177297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Chemosensation of tarsi provides moths with the ability to detect chemical signals which are important for food recognition. However, molecular mechanisms underlying the chemosensory roles of tarsi are still unknown. The fall armyworm Spodoptera frugiperda is a serious moth pest that can damage many plants worldwide. In the current study, we conducted transcriptome sequencing with total RNA extracted from S. frugiperda tarsi. Through sequence assembly and gene annotation, 23 odorant receptors 10 gustatory receptors and 10 inotropic receptors (IRs) were identified. Further phylogenetic analysis with these genes and homologs from other insect species indicated specific genes, including ORco, carbon dioxide receptors, fructose receptor, IR co-receptors, and sugar receptors were expressed in the tarsi of S. frugiperda. Expression profiling with RT-qPCR in different tissues of adult S. frugiperda showed that most annotated SfruORs and SfruIRs were mainly expressed in the antennae, and most SfruGRs were mainly expressed in the proboscises. However, SfruOR30, SfruGR9, SfruIR60a, SfruIR64a, SfruIR75d, and SfruIR76b were also highly enriched in the tarsi of S. frugiperda. Especially SfruGR9, the putative fructose receptor, was predominantly expressed in the tarsi, and with its levels significantly higher in the female tarsi than in the male ones. Moreover, SfruIR60a was also found to be expressed with higher levels in the tarsi than in other tissues. This study not only improves our insight into the tarsal chemoreception systems of S. frugiperda but also provides useful information for further functional studies of chemosensory receptors in S. frugiperda tarsi.
Collapse
Affiliation(s)
- Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Hai-Bo Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Ding-Xu Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Hong-Qi Yu
- Information Center of Ministry of Natural Resources, Beijing, China
- *Correspondence: Hong-Qi Yu, ; Cai-Hong Tian,
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan Province, China
- *Correspondence: Hong-Qi Yu, ; Cai-Hong Tian,
| |
Collapse
|
16
|
Biswas T, Yuvaraj JK, Hansson BS, Löfstedt C, Anderbrant O, Andersson MN. Characterization of olfactory sensory neurons in the striped ambrosia beetle Trypodendron lineatum. Front Physiol 2023; 14:1155129. [PMID: 37020460 PMCID: PMC10067612 DOI: 10.3389/fphys.2023.1155129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction: The striped ambrosia beetle Trypodendron lineatum (Coleoptera, Curculionidae, Scolytinae) is a major forest pest in the Holarctic region. It uses an aggregation pheromone and host and non-host volatiles to locate suitable host trees, primarily stressed or dying conifer trees. The beetles bore into the xylem and inoculate spores of their obligate fungal mutualist Phialophoropsis ferruginea inside their excavated egg galleries, with the fungus serving as the main food source for the developing larvae. Olfactory sensory neuron (OSN) responses to pheromones and host volatiles are poorly understood in T. lineatum and other ambrosia beetles, and nothing is known about potential responses to fungal volatiles. Methods: We screened responses of OSNs present in 170 antennal olfactory sensilla using single sensillum recordings (SSR) and 57 odor stimuli, including pheromones, host and non-host compounds, as well as volatiles produced by P. ferruginea and fungal symbionts of other scolytine beetles. Results and Discussion: Thirteen OSN classes were characterized based on their characteristic response profiles. An OSN class responding to the aggregation pheromone lineatin was clearly the most abundant on the antennae. In addition, four OSN classes responded specifically to volatile compounds originating from the obligate fungal mutualist and three responded to non-host plant volatiles. Our data also show that T. lineatum has OSN classes tuned to pheromones of other bark beetles. Several OSN classes showed similar response profiles to those previously described in the sympatric bark beetle Ips typographus, which may reflect their shared ancestry.
Collapse
Affiliation(s)
- Twinkle Biswas
- Department of Biology, Lund University, Lund, Sweden
- *Correspondence: Twinkle Biswas,
| | | | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
17
|
Duan SG, Lv CL, Liu JH, Yi SC, Yang RN, Liu A, Wang MQ. NlugOBP8 in Nilaparvata lugens Involved in the Perception of Two Terpenoid Compounds from Rice Plant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16323-16334. [PMID: 36511755 DOI: 10.1021/acs.jafc.2c06419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Odorant binding proteins (OBPs) play an important role in insect peripheral olfactory systems and exploring the physiological function of OBPs could facilitate the understanding of insects' chemical communication. Here, the functional analysis of an antenna-based NlugOBP8 from brown planthopper (BPH) Nilaparvata lugens (Stål) was performed both in vitro and in vivo. Recombinant NlugOBP8 exhibited strong binding affinity to 13 out of 26 rice plant volatiles and could form a stable complex with 9 of them according to the fluorescence binding and fluorescence quenching experiments. Circular dichroism spectra demonstrated that six volatiles could give rise to significant conformational change of recombinant NlugOBP8. H-tube olfactometer bioassay confirmed that BPHs were significantly attracted by nerolidol and significantly repelled by linalool, caryophyllene oxide, and terpinolene, respectively. Antennae of dsNlugOBP8-injected BPHs exhibited significantly lower electrophysiological response to linalool and caryophyllene oxide. Moreover, the repellent responses of BPHs to these two volatiles were also impaired upon silencing NlugOBP8. These data suggest that NlugOBP8 is involved in recognizing linalool and caryophyllene oxide and provide additional target for the sustainable control of BPHs.
Collapse
Affiliation(s)
- Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Cai-Lu Lv
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, Hebei061001, P. R. China
| | - Jia-Hui Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Ao Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
18
|
Sun YL, Jiang PS, Dong BX, Tian CH, Dong JF. Candidate chemosensory receptors in the antennae and maxillae of Spodoptera frugiperda (J. E. Smith) larvae. Front Physiol 2022; 13:970915. [PMID: 36187799 PMCID: PMC9520170 DOI: 10.3389/fphys.2022.970915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although most of the damage caused by lepidopteran insects to plants is caused by the larval stage, chemosensory systems have been investigated much more frequently for lepidopteran adults than for larvae. The fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is a polyphagous and worldwide pest. To understand the larval chemosensory system in S. frugiperda, we sequenced and assembled the antennae and maxillae transcriptome of larvae in the sixth instar (larval a-m) using the Illumina platform. A total of 30 putative chemosensory receptor genes were identified, and these receptors included 11 odorant receptors (ORs), 4 gustatory receptors (GRs), and 15 ionotropic receptors/ionotropic glutamate receptors (IRs/iGluRs). Phylogeny tests with the candidate receptors and homologs from other insect species revealed some specific genes, including a fructose receptor, a pheromone receptor, IR co-receptors, CO2 receptors, and the OR co-receptor. Comparison of the expression of annotated genes between S. frugiperda adults and larvae (larval a-m) using RT-qPCR showed that most of the annotated OR and GR genes were predominantly expressed in the adult stage, but that 2 ORs and 1 GR were highly expressed in both the adult antennae and the larval a-m. Although most of the tested IR/iGluR genes were mainly expressed in adult antennae, transcripts of 3 iGluRs were significantly more abundant in the larval a-m than in the adult antennae of both sexes. Comparison of the expression levels of larval a-m expressed chemosensory receptors among the first, fourth, and sixth instars revealed that the expression of some of the genes varied significantly among different larval stages. These results increase our understanding of the chemosensory systems of S. frugiperda larvae and provide a basis for future functional studies aimed at the development of novel strategies to manage this pest.
Collapse
Affiliation(s)
- Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Peng-Shuo Jiang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Bing-Xin Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
19
|
The Genetic Basis of Gene Expression Divergence in Antennae of Two Closely Related Moth Species, Helicoverpa armigera and Helicoverpa assulta. Int J Mol Sci 2022; 23:ijms231710050. [PMID: 36077444 PMCID: PMC9456569 DOI: 10.3390/ijms231710050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The closely related species Helicoverpa armigera (H. armigera) and Helicoverpa assulta (H. assulta) have different host plant ranges and share two principal components of sex pheromones but with reversed ratios. The antennae are the main olfactory organ of insects and play a crucial role in host plant selection and mate seeking. However, the genetic basis for gene expression divergence in the antennae of the two species is unclear. We performed an allele-specific expression (ASE) analysis in the antennal transcriptomes of the two species and their F1 hybrids, examining the connection between gene expression divergence and phenotypic differences. The results show that the proportion of genes classified as all cis was higher than that of all trans in males and reversed in females. The contribution of regulatory patterns to gene expression divergence in males was less than that in females, which explained the functional differentiation of male and female antennae. Among the five groups of F1 hybrids, the fertile males from the cross of H. armigera female and H. assulta male had the lowest proportion of misexpressed genes, and the inferred regulatory patterns were more accurate. By using this group of F1 hybrids, we discovered that cis-related regulations play a crucial role in gene expression divergence of sex pheromone perception-related proteins. These results are helpful for understanding how specific changes in the gene expression of olfactory-related genes can contribute to rapid evolutionary changes in important olfactory traits in closely related moths.
Collapse
|
20
|
Zhang Y, Feng K, Mei R, Li W, Tang F. Analysis of the Antennal Transcriptome and Identification of Tissue-specific Expression of Olfactory-related Genes in Micromelalopha troglodyta (Lepidoptera: Notodontidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:8. [PMID: 36165424 PMCID: PMC9513789 DOI: 10.1093/jisesa/ieac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Micromelalopha troglodyta (Graeser) has been one of the most serious pests on poplars in China. We used Illumina HiSeq 2000 sequencing to construct an antennal transcriptome and identify olfactory-related genes. In total, 142 transcripts were identified, including 74 odorant receptors (ORs), 32 odorant-binding proteins (OBPs), 13 chemosensory proteins (CSPs), 20 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). The genetic relationships were obtained by the phylogenetic tree, and the tissue-specific expression of important olfactory-related genes was determined by quantitative real-time PCR (qRT-PCR). The results showed that most of these genes are abundantly expressed in the antennae and head. In most insects, olfaction plays a key role in foraging, host localization, and searching for mates. Our research lays the foundation for future research on the molecular mechanism of the olfactory system in M. troglodyta. In addition, this study provides a theoretical basis for exploring the relationship between M. troglodyta and their host plants, and for the biological control of M. troglodyta using olfactory receptor as targets.
Collapse
Affiliation(s)
| | | | - Ruolan Mei
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei Province, China
| | | |
Collapse
|
21
|
Zhao Q, Shi L, He W, Li J, You S, Chen S, Lin J, Wang Y, Zhang L, Yang G, Vasseur L, You M. Genomic Variation in the Tea Leafhopper Reveals the Basis of Adaptive Evolution. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1092-1105. [PMID: 36041663 DOI: 10.1016/j.gpb.2022.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
Tea green leafhopper (TGL), Empoasca onukii, is of biological and economic interest. Despite numerous studies, the mechanisms underlying its adaptation and evolution remain enigmatic. Here, we use previously untapped genome and population genetics approaches to examine how the pest adapted to different environmental variables and thus has expanded geographically. We complete a chromosome-level assembly and annotation of the E. onukii genome, showing notable expansions of gene families associated with adaptation to chemoreception and detoxification. Genomic signals indicating balancing selection highlight metabolic pathways involved in adaptation to a wide range of tea varieties grown across ecologically diverse regions. Patterns of genetic variations among 54 E. onukii samples unveil the population structure and evolutionary history across different tea-growing regions in China. Our results demonstrate that the genomic changes in key pathways, including those linked to metabolism, circadian rhythms, and immune system functions, may underlie the successful spread and adaptation of E. onukii. This work highlights the genetic and molecular bases underlying the evolutionary success of a species with broad economic impacts, and provides insights into insect adaptation to host plants, which will ultimately facilitate more sustainable pest management.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longqing Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Chen
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Wang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
22
|
Tom MT, Cortés Llorca L, Bucks S, Bisch-Knaden S, Hansson BS. Sex- and tissue-specific expression of chemosensory receptor genes in a hawkmoth. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.976521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For the nocturnal hawkmoth Manduca sexta, olfactory and gustatory cues are essential for finding partners, food, and oviposition sites. Three chemosensory receptor families, odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs) are involved in the detection of these stimuli. While many chemosensory receptor genes have been identified, knowledge of their expression profile in potentially chemoreceptive organs is incomplete. Here, we studied the expression patterns of chemosensory receptors in different tissues including the antennae, labial palps, proboscis, legs, wings and ovipositor. We compared the receptors’ expression in female and male moths both before and after mating by using the NanoString platform. This tool allowed us to measure expression levels of chemosensory receptor genes in a single reaction using probes designed against 71 OR, 29 IR and 49 GR transcripts. In all tissues investigated, we detected expression of genes from all three receptor families. The highest number of receptors was detected in the antennae (92), followed by the ovipositor (59), while the least number was detected in the hindlegs (21). The highest number of OR genes were expressed in the antennae (63), of which 24 were specific to this main olfactory organ. The highest number of IRs were also expressed in the antennae (16), followed by the ovipositor (15). Likewise, antennae and ovipositor expressed the highest number of GRs (13 and 14). Expression of the OR co-receptor MsexORCo, presumably a prerequisite for OR function, was found in the antennae, labial palps, forelegs and ovipositor. IR co-receptors MsexIR25a and MsexIR76b were expressed across all tested tissues, while expression of the IR co-receptor MsexIR8a was restricted to antennae and ovipositor. Comparing the levels of all 149 transcripts across the nine tested tissues allowed us to identify sex-biased gene expression in the antennae and the legs, two appendages that are also morphologically different between the sexes. However, none of the chemosensory receptors was differentially expressed based on the moths’ mating state. The observed gene expression patterns form a strong base for the functional characterization of chemosensory receptors and the understanding of olfaction and gustation at the molecular level in M. sexta.
Collapse
|
23
|
Roberts RE, Biswas T, Yuvaraj JK, Grosse‐Wilde E, Powell D, Hansson BS, Löfstedt C, Andersson MN. Odorant receptor orthologues in conifer-feeding beetles display conserved responses to ecologically relevant odours. Mol Ecol 2022; 31:3693-3707. [PMID: 35532927 PMCID: PMC9321952 DOI: 10.1111/mec.16494] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Insects are able to detect a plethora of olfactory cues using a divergent family of odorant receptors (ORs). Despite the divergent nature of this family, related species frequently express several evolutionarily conserved OR orthologues. In the largest order of insects, Coleoptera, it remains unknown whether OR orthologues have conserved or divergent functions in different species. Using HEK293 cells, we addressed this question through functional characterization of two groups of OR orthologues in three species of the Curculionidae (weevil) family, the conifer-feeding bark beetles Ips typographus L. ("Ityp") and Dendroctonus ponderosae Hopkins ("Dpon") (Scolytinae), and the pine weevil Hylobius abietis L. ("Habi"; Molytinae). The ORs of H. abietis were annotated from antennal transcriptomes. The results show highly conserved response specificities, with one group of orthologues (HabiOR3/DponOR8/ItypOR6) responding exclusively to 2-phenylethanol (2-PE), and the other group (HabiOR4/DponOR9/ItypOR5) responding to angiosperm green leaf volatiles (GLVs). Both groups of orthologues belong to the coleopteran OR subfamily 2B, and share a common ancestor with OR5 in the cerambycid Megacyllene caryae, also tuned to 2-PE, suggesting a shared evolutionary history of 2-PE receptors across two beetle superfamilies. The detected compounds are ecologically relevant for conifer-feeding curculionids, and are probably linked to fitness, with GLVs being used to avoid angiosperm nonhost plants, and 2-PE being important for intraspecific communication and/or playing a putative role in beetle-microbe symbioses. To our knowledge, this study is the first to reveal evolutionary conservation of OR functions across several beetle species and hence sheds new light on the functional evolution of insect ORs.
Collapse
Affiliation(s)
| | | | | | - Ewald Grosse‐Wilde
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
- Present address:
Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
| | - Daniel Powell
- Department of BiologyLund UniversityLundSweden
- Present address:
Global Change Ecology Research GroupSchool of Science, Technology and EngineeringUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Bill S. Hansson
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | | | | |
Collapse
|
24
|
Sun YL, Dong JF, Yang HB, Li DX, Tian CH. Identification and Characterization of Chemosensory Receptors in the Pheromone Gland-Ovipositor of Spodoptera frugiperda (J. E. Smith). INSECTS 2022; 13:insects13050481. [PMID: 35621815 PMCID: PMC9146910 DOI: 10.3390/insects13050481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Chemical cues are generally thought to be primarily detected by the cephalic organ antennae, maxillary palps, and proboscises in insects. Although several recent studies have reported the chemosensory roles of ovipositors in some moth species, the expression of chemosensory receptors and their functions in the ovipositor remain largely unknown. Here, we systematically analyzed the pheromone gland-ovipositor (PG-OV) transcriptome of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). A total of 26 candidate chemosensory receptor genes were revealed, including 12 odorant receptors (ORs), 4 gustatory receptors (GRs), and 10 ionotropic receptors (IRs). Specific genes including pheromone receptors, ORco, CO2 receptors, sugar receptors, and IR co-receptors were identified. Tissue expression profiling demonstrated that the annotated receptor genes were mainly expressed in the antennae (for ORs and IRs) or proboscis (for GRs), but two ORs, two GRs, and two IRs were also highly enriched in the PG-OV, with expression levels only slightly lower or even similar to those in the antennae/proboscis. This report provides the first large-scale description of chemosensory receptors in the PG-OV of S. frugiperda. It may inspire researchers to investigate how chemosensory receptors function in the ovipositor of S. frugiperda, as well as in the ovipositors of other moths. Abstract Chemoreception by moth ovipositors has long been suggested, but underlying molecular mechanisms are mostly unknown. To reveal such chemosensory systems in the current study, we sequenced and assembled the pheromone gland-ovipositor (PG-OV) transcriptome of females of the fall armyworm, Spodoptera frugiperda, a pest of many crops. We annotated a total of 26 candidate chemosensory receptor genes, including 12 odorant receptors (ORs), 4 gustatory receptors (GRs), and 10 ionotropic receptors (IRs). The relatedness of these chemosensory receptors with those from other insect species was predicted by phylogenetic analyses, and specific genes, including pheromone receptors, ORco, CO2 receptors, sugar receptors, and IR co-receptors, were reported. Although real-time quantitative-PCR analyses of annotated genes revealed that OR and IR genes were mainly expressed in S. frugiperda antennae, two ORs and two IRs expressed in antennae were also highly expressed in the PG-OV. Similarly, GR genes were mainly expressed in the proboscis, but two were also highly expressed in the PG-OV. Our study provides the first large-scale description of chemosensory receptors in the PG-OV of S. frugiperda and provides a foundation for exploring the chemoreception mechanisms of PG-OV in S. frugiperda and in other moth species.
Collapse
Affiliation(s)
- Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (Y.-L.S.); (H.-B.Y.); (D.-X.L.)
| | - Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (Y.-L.S.); (H.-B.Y.); (D.-X.L.)
- Correspondence: (J.-F.D.); (C.-H.T.); Tel.: +86-379-64282345 (J.-F.D.); +86-371-65717371 (C.-H.T.)
| | - Hai-Bo Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (Y.-L.S.); (H.-B.Y.); (D.-X.L.)
| | - Ding-Xu Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (Y.-L.S.); (H.-B.Y.); (D.-X.L.)
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Correspondence: (J.-F.D.); (C.-H.T.); Tel.: +86-379-64282345 (J.-F.D.); +86-371-65717371 (C.-H.T.)
| |
Collapse
|
25
|
Identification and Tissue Expression Profiles of Odorant Receptor Genes in the Green Peach Aphid Myzus persicae. INSECTS 2022; 13:insects13050398. [PMID: 35621734 PMCID: PMC9147661 DOI: 10.3390/insects13050398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022]
Abstract
The green peach aphid Myzus persicae (Hemiptera: Aphididae) relies heavily on its olfactory system to locate plant hosts, find mates, and avoid parasitoids or predators. The insect odorant receptors (ORs) have been proven to play a critical role in the perception of odorants from the environment. In the present study, 33 odorant receptor candidate genes including the Orco gene were identified from the antennal, head, legs and body transcriptomes of M. persicae. Phylogenetic analysis of ORs from seven different orders of insect species suggests that ORs from different insect species are highly divergent and most ORs from the same species formed monophyletic groups. In addition, the aphid ORs were clustered into six different sub-clades in the same clade. Furthermore, the genomic structure of the OR genes also tends to be consistent, suggesting that ORs from the family Aphididae have a relatively close evolutionary relationship. Reads per kilobase per million (RPKM) and tissue expression profiles analyses revealed that 27 out of the 33 MperORs were uniquely or primarily expressed in the antennae, indicating their putative roles in chemoreception. This work provides a foundation to further investigate the molecular and ecological functions of MperORs in the aphid–aphid, aphid–plant and aphid–natural enemy interactions.
Collapse
|
26
|
Xie J, Liu T, Yi C, Liu X, Tang H, Sun Y, Shi W, Khashaveh A, Zhang Y. Antenna-Biased Odorant Receptor HvarOR25 in Hippodamia variegata Tuned to Allelochemicals from Hosts and Habitat Involved in Perceiving Preys. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1090-1100. [PMID: 35072468 DOI: 10.1021/acs.jafc.1c05593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Odorant receptors (ORs) of ladybird Hippodamia variegata play vital chemosensory roles in searching and locating preys. In the current study, 37 ORs were initially identified from the antennal transcriptome of H. variegata. The quantitative polymerase chain reaction demonstrated that several HvarORs including HvarOR25 were specific or enriched in ladybird antennae. In two-electrode voltage clamp recordings, recombinant HvarOR25 was narrowly tuned to six chemical ligands including aphid-induced, aphid-derived, and plant-derived volatiles. In electroantennogram assays, all six volatiles elicited electrophysiological responses. Among the six volatiles, cis-3-hexenyl acetate, hexyl butyrate, hexyl hexanoate, and 3-methyl-3-buten-1-ol were attractive for both sexes of H. variegata. Additionally, molecular docking indicated that HvarOR25 was bound to all ligands with high binding affinities. Taken together, HvarOR25 facilitates perception of preys by recognizing relevant allelochemicals from hosts and habitat. Our findings provide valuable insights into understanding biological functions of HvarORs and help to develop a novel biocontrol strategy based on olfactory-active compounds.
Collapse
Affiliation(s)
- Jiaoxin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Chaoqun Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yang Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Jiang F, Liang L, Wang J, Zhu S. Chromosome-level genome assembly of Bactrocera dorsalis reveals its adaptation and invasion mechanisms. Commun Biol 2022; 5:25. [PMID: 35017661 PMCID: PMC8752857 DOI: 10.1038/s42003-021-02966-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bactrocera dorsalis is an invasive polyphagous pest causing considerable ecological and economic damage worldwide. We report a high-quality chromosome-level genome assembly and combine various transcriptome data to explore the molecular mechanisms of its rapid adaptation to new environments. The expansions of the DDE transposase superfamily and key gene families related to environmental adaptation and enrichment of the expanded and unique gene families in metabolism and defence response pathways explain its environmental adaptability. The relatively high but not significantly different expression of heat-shock proteins, regardless of the environmental conditions, suggests an intrinsic mechanism underlying its adaptation to high temperatures. The mitogen-activated protein kinase pathway plays a key role in adaptation to new environments. The prevalence of duplicated genes in its genome explains the diversity in the B. dorsalis complex. These findings provide insights into the genetic basis of the invasiveness and diversity of B. dorsalis, explaining its rapid adaptation and expansion. Jiang et al. sequence the genome of Bactrocera dorsalis, a destructive and invasive agricultural pest. Insights from this chromosome-level assembly shed light on molecular adaptations that allow for the global invasion and expansion of this pest.
Collapse
Affiliation(s)
- Fan Jiang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Liang Liang
- Academy of Agricultural Planning and Engineering, MARA, Beijing, 100125, China
| | - Jing Wang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China. .,Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Hainan, 572025, China.
| |
Collapse
|
28
|
OUP accepted manuscript. J Mammal 2022. [DOI: 10.1093/jmammal/gyac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Wu Y, Wu M, Hui Z, Hu X, Xu X. Polyphenism in Antennal Sensilla Among Different Adult Morphs of Nonhost-Alternating, Holocyclic Sitobion avenae (Hemiptera: Aphididae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6495619. [PMID: 34982166 PMCID: PMC8725641 DOI: 10.1093/jisesa/ieab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 05/31/2023]
Abstract
Aphids, mainly distributed in temperate zones, exhibit seasonal generation-alternating phenomena. Across the life cycle, different morphs are produced. Sitobion avenae (Fabricius 1775) is a major pest of wheat worldwide. To elucidate olfactory perception of morph-specific behavior across their life cycle, we investigated antennal sensilla among seven morphs using scanning electron microscopy. Trichoid, placoid, coeloconic, and campaniform sensilla were identified. Trichoid sensilla, big multiporous placoid sensilla (primary rhinarium), a group of sensilla (primary rhinaria), and campaniform sensilla showed similar distribution and resemblance among morphs, whereas small multiporous placoid sensilla (secondary rhinaria) exhibited obvious differences. Compared to apterous morphs, alate morphs possessed a greater abundance of secondary rhinaria, with the greatest found in males on antennal segments III-V. Alate virginoparae and alate sexuparae ranged from six to fourteen rhinaria on antennal segment III. Fundatrices, apterous virginoparae and apterous sexuparae only had one or two secondary rhinaria on antennal segment III while they disappeared in oviparae. Secondary rhinaria, lying in a cuticle cavity, are convex or concave in their central part. In males, both forms were present, with a greater proportion of convex form than that of the concave form. Fundatrices and virginoparae had the convex form while sexuparae had the concave form. Polyphenism of secondary rhinaria might suggest their association with the olfactory functions of morph-specific behavior. These results have improved our understanding of the adaptive evolution of the antennal sensilla in nonhost-alternating, holocyclic aphids.
Collapse
Affiliation(s)
- Yuting Wu
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Mengchu Wu
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Zi Hui
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Xiangshun Hu
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Xiangli Xu
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Wang Y, Fang G, Chen X, Cao Y, Wu N, Cui Q, Zhu C, Qian L, Huang Y, Zhan S. The genome of the black cutworm Agrotis ipsilon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103665. [PMID: 34624466 DOI: 10.1016/j.ibmb.2021.103665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The black cutworm (BCW), Agrotis ipsilon, is a worldwide polyphagous and underground pest that causes a high level of economic loss to a wide range of crops through the damage of roots. This species performs non-directed migration throughout East and Southeast Asia seasonally. Lack of a genome information has limited further studies on its unique biology and the development of novel management approaches. In this study, we present a 476 Mb de novo assembly of BCW, along with a consensus gene set of 14,801 protein-coding gene models. Quality controls show that both genome assembly and annotations are high-quality and mostly complete. We focus manual annotation and comparative genomics on gene families that related to the unique attributes of this species, such as nocturnality, long-distance migration, and host adaptation. We find that the BCW genome encodes a similar gene repertoire in various migration-related gene families to the diural migratory butterfly Danaus plexiipus, with additional copies of long wavelength opsin and two eye development-related genes. On the other hand, we find that the genomes of BCW and many other polyphagous lepidopterans encode many more gustatory receptor genes, particularly the lineage-specific expanded bitter receptor genes, than the mono- or oligo-phagous species, suggesting a common role of gustatory receptors (GRs) expansion in host range expansion. The availability of a BCW genome provides valuable resources to study the molecular mechanisms of non-directed migration in lepidopteran pests and to develop novel strategies to control migratory nocturnal pests.
Collapse
Affiliation(s)
- Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xi'en Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ningning Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Cui
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chenxu Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lansa Qian
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Scieuzo C, Nardiello M, Farina D, Scala A, Cammack JA, Tomberlin JK, Vogel H, Salvia R, Persaud K, Falabella P. Hermetia illucens (L.) (Diptera: Stratiomyidae) Odorant Binding Proteins and Their Interactions with Selected Volatile Organic Compounds: An In Silico Approach. INSECTS 2021; 12:814. [PMID: 34564254 PMCID: PMC8469849 DOI: 10.3390/insects12090814] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires the development of methods concentrating oviposition in specific collection devices, while the mass production of larvae and disposing of waste may require substrates that are more palatable and more attractive to the insects. In insects, chemoreception plays an essential role throughout their life cycle, responding to an array of chemical, biological and environmental signals to locate and select food, mates, oviposition sites and avoid predators. To interpret these signals, insects use an arsenal of molecular components, including small proteins called odorant binding proteins (OBPs). Next generation sequencing was used to identify genes involved in chemoreception during the larval and adult stage of BSF, with particular attention to OBPs. The analysis of the de novo adult and larval transcriptome led to the identification of 27 and 31 OBPs for adults and larvae, respectively. Among these OBPs, 15 were common in larval and adult transcriptomes and the tertiary structures of 8 selected OBPs were modelled. In silico docking of ligands confirms the potential interaction with VOCs of interest. Starting from the information about the growth performance of H. illucens on different organic substrates from the agri-food sector, the present work demonstrates a possible correlation between a pool of selected VOCs, emitted by those substrates that are attractive for H. illucens females when searching for oviposition sites, as well as phagostimulants for larvae. The binding affinities between OBPs and selected ligands calculated by in silico modelling may indicate a correlation among OBPs, VOCs and behavioural preferences that will be the basis for further analysis.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marisa Nardiello
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
| | - Donatella Farina
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
| | - Jonathan A. Cammack
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.A.C.); (J.K.T.)
| | - Jeffery K. Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.A.C.); (J.K.T.)
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany;
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Krishna Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
32
|
Roberts RE, Yuvaraj JK, Andersson MN. Codon Optimization of Insect Odorant Receptor Genes May Increase Their Stable Expression for Functional Characterization in HEK293 Cells. Front Cell Neurosci 2021; 15:744401. [PMID: 34552471 PMCID: PMC8450354 DOI: 10.3389/fncel.2021.744401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Insect odorant receptor (OR) genes are routinely expressed in Human Embryonic Kidney (HEK) 293 cells for functional characterization ("de-orphanization") using transient or stable expression. However, progress in this research field has been hampered because some insect ORs are not functional in this system, which may be due to insufficient protein levels. We investigated whether codon optimization of insect OR sequences for expression in human cells could facilitate their functional characterization in HEK293 cells with stable and inducible expression. We tested the olfactory receptor co-receptor (Orco) proteins from the bark beetles Ips typographus ("Ityp") and Dendroctonus ponderosae ("Dpon"), and six ItypORs previously characterized in Xenopus laevis oocytes and/or HEK cells. Western blot analysis indicated that codon optimization yielded increased cellular protein levels for seven of the eight receptors. Our experimental assays demonstrated that codon optimization enabled functional characterization of two ORs (ItypOR25 and ItypOR29) which are unresponsive when expressed from wildtype (non-codon optimized) genes. Similar to previous Xenopus oocyte recordings, ItypOR25 responded primarily to the host/conifer monoterpene (+)-3-carene. ItypOR29 responded primarily to (+)-isopinochamphone and similar ketones produced by fungal symbionts and trees. Codon optimization also resulted in significantly increased responses in ItypOR49 to its pheromone ligand (R)-(-)-ipsdienol, and improved responses to the Orco agonist VUAA1 in ItypOrco. However, codon optimization did not result in functional expression of DponOrco, ItypOR23, ItypOR27, and ItypOR28 despite higher protein levels as indicated by Western blots. We conclude that codon optimization may enable or improve the functional characterization of insect ORs in HEK cells, although this method is not sufficient for all ORs that are not functionally expressed from wildtype genes.
Collapse
|
33
|
Ernst DA, Westerman EL. Stage- and sex-specific transcriptome analyses reveal distinctive sensory gene expression patterns in a butterfly. BMC Genomics 2021; 22:584. [PMID: 34340656 PMCID: PMC8327453 DOI: 10.1186/s12864-021-07819-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/11/2021] [Indexed: 01/24/2023] Open
Abstract
Background Animal behavior is largely driven by the information that animals are able to extract and process from their environment. However, the function and organization of sensory systems often change throughout ontogeny, particularly in animals that undergo indirect development. As an initial step toward investigating these ontogenetic changes at the molecular level, we characterized the sensory gene repertoire and examined the expression profiles of genes linked to vision and chemosensation in two life stages of an insect that goes through metamorphosis, the butterfly Bicyclus anynana. Results Using RNA-seq, we compared gene expression in the heads of late fifth instar larvae and newly eclosed adults that were reared under identical conditions. Over 50 % of all expressed genes were differentially expressed between the two developmental stages, with 4,036 genes upregulated in larval heads and 4,348 genes upregulated in adult heads. In larvae, upregulated vision-related genes were biased toward those involved with eye development, while phototransduction genes dominated the vision genes that were upregulated in adults. Moreover, the majority of the chemosensory genes we identified in the B. anynana genome were differentially expressed between larvae and adults, several of which share homology with genes linked to pheromone detection, host plant recognition, and foraging in other species of Lepidoptera. Conclusions These results revealed promising candidates for furthering our understanding of sensory processing and behavior in the disparate developmental stages of butterflies and other animals that undergo metamorphosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07819-4.
Collapse
Affiliation(s)
- David A Ernst
- Department of Biological Sciences, University of Arkansas, 72701, Fayetteville, AR, USA.
| | - Erica L Westerman
- Department of Biological Sciences, University of Arkansas, 72701, Fayetteville, AR, USA
| |
Collapse
|
34
|
Wang Y, Shi J, Cui H, Wang CZ, Zhao Z. Effects of NPF on larval taste responses and feeding behaviors in Ostrinia furnacalis. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104276. [PMID: 34245800 DOI: 10.1016/j.jinsphys.2021.104276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The insect taste system regulates insect feeding behavior and patterns of food consumption. In this study, we showed that the medial and lateral sensilla styloconica in the mouthparts of 5th-instar Asian corn borer larvae are sensitive to fructose and sucrose in a concentration-dependent way. The two sensilla produced significant electrophysiological responses (greater than100 spikes/s) by exposure to 10 mM fructose or sucrose. However, electrophysiological responses and feeding preferences to fructose or sucrose were inhibited by neuropeptide F double-stranded RNA (dsNPF). Additionally, the medial sensilla styloconica are sensitive to low concentrations of the deterrents caffeine and nicotine. However, starvation, followed by increases in larval npf expression plus feeding, led to increases in spike frequencies of related sensilla to fructose, sucrose, and deterrents. In contrast, these responses were reduced on the dsNPF treatment. Our results suggest that NPF plays an important role influencing caterpillar feeding behavior through regulating the taste neurons of the sensilla styloconica.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jian Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hongying Cui
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Koutroumpa FA, Monsempes C, François MC, Severac D, Montagné N, Meslin C, Jacquin-Joly E. Description of Chemosensory Genes in Unexplored Tissues of the Moth Spodoptera littoralis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.678277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Illumina-based transcriptome sequencing of chemosensory organs has become a standard in deciphering the molecular bases of chemical senses in insects, especially in non-model species. A plethora of antennal transcriptomes is now available in the literature, describing large sets of chemosensory receptors and binding proteins in a diversity of species. However, little is still known on other organs such as mouthparts, legs and ovipositors, which are also known to carry chemosensory sensilla. This is the case of the noctuid Spodoptera littoralis, which has been established as a model insect species in molecular chemical ecology thanks to the description of many—but not all—chemosensory genes. To fulfill this gap, we present here an unprecedented transcriptomic survey of chemosensory tissues in this species. RNAseq from male and female proboscis, labial palps, legs and female ovipositors allowed us to annotate 115 putative chemosensory gene transcripts, including 30 novel genes in this species. Especially, we doubled the number of candidate gustatory receptor transcripts described in this species. We also evidenced ectopic expression of many chemosensory genes. Remarkably, one third of the odorant receptors were found to be expressed in the proboscis. With a total of 196 non-overlapping chemosensory genes annotated, the S. littoralis repertoire is one of the most complete in Lepidoptera. We further evaluated the expression of transcripts between males and females, pinpointing sex-specific transcripts. We identified five female-specific transcripts, including one odorant receptor, one gustatory receptor, one ionotropic receptor and one odorant-binding protein, and one male-specific gustatory receptor. Such sex-biased expression suggests that these transcripts participate in sex-specific behaviors, such as host choice for oviposition in females and/or mating partner recognition in both sexes.
Collapse
|
36
|
Schumann I, Berger M, Nowag N, Schäfer Y, Saumweber J, Scholz H, Thum AS. Ethanol-guided behavior in Drosophila larvae. Sci Rep 2021; 11:12307. [PMID: 34112872 PMCID: PMC8192949 DOI: 10.1038/s41598-021-91677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
Chemosensory signals allow vertebrates and invertebrates not only to orient in its environment toward energy-rich food sources to maintain nutrition but also to avoid unpleasant or even poisonous substrates. Ethanol is a substance found in the natural environment of Drosophila melanogaster. Accordingly, D. melanogaster has evolved specific sensory systems, physiological adaptations, and associated behaviors at its larval and adult stage to perceive and process ethanol. To systematically analyze how D. melanogaster larvae respond to naturally occurring ethanol, we examined ethanol-induced behavior in great detail by reevaluating existing approaches and comparing them with new experiments. Using behavioral assays, we confirm that larvae are attracted to different concentrations of ethanol in their environment. This behavior is controlled by olfactory and other environmental cues. It is independent of previous exposure to ethanol in their food. Moreover, moderate, naturally occurring ethanol concentration of 4% results in increased larval fitness. On the contrary, higher concentrations of 10% and 20% ethanol, which rarely or never appear in nature, increase larval mortality. Finally, ethanol also serves as a positive teaching signal in learning and memory and updates valence associated with simultaneously processed odor information. Since information on how larvae perceive and process ethanol at the genetic and neuronal level is limited, the establishment of standardized assays described here is an important step towards their discovery.
Collapse
Affiliation(s)
- Isabell Schumann
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Michael Berger
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Nadine Nowag
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Yannick Schäfer
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | | | - Henrike Scholz
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Andreas S Thum
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany. .,Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.
| |
Collapse
|
37
|
Arce CC, Theepan V, Schimmel BC, Jaffuel G, Erb M, Machado RA. Plant-associated CO 2 mediates long-distance host location and foraging behaviour of a root herbivore. eLife 2021; 10:65575. [PMID: 33875133 PMCID: PMC8057813 DOI: 10.7554/elife.65575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Insect herbivores use different cues to locate host plants. The importance of CO2 in this context is not well understood. We manipulated CO2 perception in western corn rootworm (WCR) larvae through RNAi and studied how CO2 perception impacts their interaction with their host plant. The expression of a carbon dioxide receptor, DvvGr2, is specifically required for dose-dependent larval responses to CO2. Silencing CO2 perception or scrubbing plant-associated CO2 has no effect on the ability of WCR larvae to locate host plants at short distances (<9 cm), but impairs host location at greater distances. WCR larvae preferentially orient and prefer plants that grow in well-fertilized soils compared to plants that grow in nutrient-poor soils, a behaviour that has direct consequences for larval growth and depends on the ability of the larvae to perceive root-emitted CO2. This study unravels how CO2 can mediate plant–herbivore interactions by serving as a distance-dependent host location cue. Living deep in the ground and surrounded by darkness, soil insects must rely on the chemicals released by plants to find the roots they feed on. Carbon dioxide, for example, is a by-product of plant respiration, which, above ground, is thought to attract moths to flowers and flies to apples; underground, however, its role is still unclear. This gaseous compound can travel through soil and potentially act as a compass for root-eating insects. Yet, it is also produced by decaying plants or animals, which are not edible. It is therefore possible that insects use this signal as a long-range cue to orient themselves, but then switch to another chemical when closer to their target to narrow in on an actual food source. To test this idea, Arce et al. investigated whether carbon dioxide guides the larvae of Western corn rootworm to maize roots. First, the rootworm genes responsible for sensing carbon dioxide were identified and switched off, making the larvae unable to detect this gas. When the genetically engineered rootworms were further than 9cm from maize roots, they were less able to locate that food source; closer to the roots, however, the insects could orient themselves towards the plant. This suggests that the insects use carbon dioxide at long distances but rely on another chemicals to narrow down their search at close range. To confirm this finding, Arce et al. tried absorbing the carbon dioxide using soda lime, leading to similar effects: carbon dioxide sensitive insects stopped detecting the roots at long but not short distances. Additional experiments then revealed that the compound could help insects find the best roots to feed on. Indeed, eating plants that grow on rich terrain – for instance, fertilized soils – helps insects to grow bigger and faster. These roots also release more carbon dioxide, in turn attracting rootworms more frequently. In the United States and Eastern Europe, Western corn rootworms inflict major damage to crops, highlighting the need to understand and manage the link between fertilization regimes, carbon dioxide release and how these pests find their food.
Collapse
Affiliation(s)
- Carla Cm Arce
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vanitha Theepan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Geoffrey Jaffuel
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ricardo Ar Machado
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Klann M, Schacht MI, Benton MA, Stollewerk A. Functional analysis of sense organ specification in the Tribolium castaneum larva reveals divergent mechanisms in insects. BMC Biol 2021; 19:22. [PMID: 33546687 PMCID: PMC7866635 DOI: 10.1186/s12915-021-00948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Abstract Insects and other arthropods utilise external sensory structures for mechanosensory, olfactory, and gustatory reception. These sense organs have characteristic shapes related to their function, and in many cases are distributed in a fixed pattern so that they are identifiable individually. In Drosophila melanogaster, the identity of sense organs is regulated by specific combinations of transcription factors. In other arthropods, however, sense organ subtypes cannot be linked to the same code of gene expression. This raises the questions of how sense organ diversity has evolved and whether the principles underlying subtype identity in D. melanogaster are representative of other insects. Here, we provide evidence that such principles cannot be generalised, and suggest that sensory organ diversification followed the recruitment of sensory genes to distinct sensory organ specification mechanism. Results We analysed sense organ development in a nondipteran insect, the flour beetle Tribolium castaneum, by gene expression and RNA interference studies. We show that in contrast to D. melanogaster, T. castaneum sense organs cannot be categorised based on the expression or their requirement for individual or combinations of conserved sense organ transcription factors such as cut and pox neuro, or members of the Achaete-Scute (Tc ASH, Tc asense), Atonal (Tc atonal, Tc cato, Tc amos), and neurogenin families (Tc tap). Rather, our observations support an evolutionary scenario whereby these sensory genes are required for the specification of sense organ precursors and the development and differentiation of sensory cell types in diverse external sensilla which do not fall into specific morphological and functional classes. Conclusions Based on our findings and past research, we present an evolutionary scenario suggesting that sense organ subtype identity has evolved by recruitment of a flexible sensory gene network to the different sense organ specification processes. A dominant role of these genes in subtype identity has evolved as a secondary effect of the function of these genes in individual or subsets of sense organs, probably modulated by positional cues. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00948-y.
Collapse
Affiliation(s)
- Marleen Klann
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.,Marine Eco-Evo-Devo Unit, Okinawa Institute for Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Magdalena Ines Schacht
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Matthew Alan Benton
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
39
|
Mariette J, Carcaud J, Sandoz JC. The neuroethology of olfactory sex communication in the honeybee Apis mellifera L. Cell Tissue Res 2021; 383:177-194. [PMID: 33447877 DOI: 10.1007/s00441-020-03401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The honeybee Apis mellifera L. is a crucial pollinator as well as a prominent scientific model organism, in particular for the neurobiological study of olfactory perception, learning, and memory. A wealth of information is indeed available about how the worker bee brain detects, processes, and learns about odorants. Comparatively, olfaction in males (the drones) and queens has received less attention, although they engage in a fascinating mating behavior that strongly relies on olfaction. Here, we present our current understanding of the molecules, cells, and circuits underlying bees' sexual communication. Mating in honeybees takes place at so-called drone congregation areas and places high in the air where thousands of drones gather and mate in dozens with virgin queens. One major queen-produced olfactory signal-9-ODA, the major component of the queen pheromone-has been known for decades to attract the drones. Since then, some of the neural pathways responsible for the processing of this pheromone have been unraveled. However, olfactory receptor expression as well as brain neuroanatomical data point to the existence of three additional major pathways in the drone brain, hinting at the existence of 4 major odorant cues involved in honeybee mating. We discuss current evidence about additional not only queen- but also drone-produced pheromonal signals possibly involved in bees' sexual behavior. We also examine data revealing recent evolutionary changes in drone's olfactory system in the Apis genus. Lastly, we present promising research avenues for progressing in our understanding of the neural basis of bees mating behavior.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
40
|
A Chemosensory Protein Detects Antifeedant in Locust ( Locusta migratoria). INSECTS 2020; 12:insects12010001. [PMID: 33374494 PMCID: PMC7822123 DOI: 10.3390/insects12010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023]
Abstract
Simple Summary Chemosensory proteins (CSPs) in insects are small compact polypeptides which can bind and carry hydrophobic semiochemicals. CSPs distribute in many organs of insect and have multiple functions. In chemosensory system, CSPs are thought to be responsible for detecting chemical signals from the environment. In this study, we proved that LmigCSPIII, a CSP in Locusta migratoria is involved in detecting an antifeedant. LmigCSPIII exhibits high binding affinity to α-amylcinnamaldehyde, a natural compound from non-host plant which was subsequently demonstrated to be an effective antifeedant. Knockdown of LmigCSPIII gene by RNA interference showed reduced sensitivity to α-amylcinnamaldehyde but showed no changes in their physiological development or food consumption. Our findings provided new evidence that CSPs can detect antifeedant in chemosensory system of insects. Abstract Chemosensory system is vitally important for animals to select food. Antifeedants that herbivores encounter can interfere with feeding behavior and exert physiological effects. Few studies have assessed the molecular mechanisms underlying the chemoreception of antifeedants. In this study, we demonstrated that a chemosensory protein (CSP) in Locusta migratoria is involved in detecting an antifeedant. This CSP, LmigEST6 (GenBank Acc. No. AJ973420), we named as LmigCSPIII, expressed in sensory organs where chemosensilla are widely distributed. Fluorescent binding experiments indicated that LmigCSPIII exhibits high binding affinity to α-amylcinnamaldehyde (AMCAL), a natural compound from non-host plant. This compound was subsequently demonstrated to be an effective antifeedant to locusts in feeding bioassay. By injection of double-stranded RNA (dsRNA) of LmigCSPIII, we generated LmigCSPIII knockdown locusts. The feeding behaviour assays demonstrated that the LmigCSPIII knockdown locusts had reduced sensitivity to the antifeedant but showed no changes in their physiological development or food consumption. Therefore, we inferred that this chemosensory protein is involved in antifeedant detection.
Collapse
|
41
|
Brito NF, Oliveira DS, Santos TC, Moreira MF, Melo ACA. Current and potential biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 2020; 104:8631-8648. [PMID: 32888038 DOI: 10.1007/s00253-020-10860-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Odorant-binding proteins (OBPs) are small soluble proteins whose biological function is believed to be facilitating olfaction by assisting the transport of volatile chemicals in both vertebrate and insect sensory organs, where they are secreted. Their capability to interact with a broad range of hydrophobic compounds combined with interesting features such as being small, stable, and easy to produce and modify, makes them suitable targets for applied research in various industrial segments, including textile, cosmetic, pesticide, and pharmaceutical, as well as for military, environmental, health, and security field applications. In addition to reviewing already established biotechnological applications of OBPs, this paper also discusses their potential use in prospecting of new technologies. The development of new products for insect population management is currently the most prevailing use for OBPs, followed by biosensor technology, an area that has recently seen a significant increase in studies evaluating their incorporation into sensing devices. Finally, less typical approaches include applications in anchorage systems and analytical tools. KEY POINTS: • Odorant-binding proteins (OBPs) present desired characteristics for applied research. • OBPs are mainly used for developing new products for insect population control. • Incorporation of OBPs into chemosensory devices is a growing area of study. • Less conventional uses for OBPs include anchorage systems and analytical purposes. Graphical Abstract.
Collapse
Affiliation(s)
- Nathália F Brito
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Daniele S Oliveira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Thaisa C Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Monica F Moreira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Claudia A Melo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Sun D, Huang Y, Qin Z, Zhan H, Zhang J, Liu Y, Yang S. Identification of Candidate Olfactory Genes in the Antennal Transcriptome of the Stink Bug Halyomorpha halys. Front Physiol 2020; 11:876. [PMID: 32792985 PMCID: PMC7394822 DOI: 10.3389/fphys.2020.00876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/29/2020] [Indexed: 12/03/2022] Open
Abstract
The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is a serious agricultural and urban pest that has become an invasive species in many parts of the world. Olfaction plays an indispensable role in regulating insect behaviors, such as host plant location, partners searching, and avoidance of predators. In this study, we sequenced and analyzed the antennal transcriptomes of both male and female adults of H. halys to better understand the olfactory mechanisms in this species. A total of 241 candidate chemosensory genes were identified, including 138 odorant receptors (ORs), 24 ionotropic receptors (IRs), 15 gustatory receptors (GRs), 44 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), and three sensory neuron membrane proteins (SNMPs). The results of semi-quantitative reverse transcription PCR (RT-PCR) assays showed that some HhalOBP and HhalCSP genes have tissue-specific and sex-biased expression patterns. Our results provide an insight into the molecular mechanisms of the olfactory system in H. halys and identify potential novel targets for pest control strategies.
Collapse
Affiliation(s)
- Dongdong Sun
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuan Huang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhenjie Qin
- College of Life Sciences, Anhui Normal University, Wuhu, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixia Zhan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jinping Zhang
- MoA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shiyong Yang
- College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory for the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
43
|
Gene Expression and Functional Analyses of Odorant Receptors in Small Hive Beetles ( Aethina tumida). Int J Mol Sci 2020; 21:ijms21134582. [PMID: 32605135 PMCID: PMC7370172 DOI: 10.3390/ijms21134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Olfaction is key to many insects. Odorant receptors (ORs) stand among the key chemosensory receptors mediating the detection of pheromones and kairomones. Small hive beetles (SHBs), Aethina tumida, are parasites of social bee colonies and olfactory cues are especially important for host finding. However, how interactions with their hosts may have shaped the evolution of ORs in the SHB remains poorly understood. Here, for the first time, we analyzed the evolution of SHB ORs through phylogenetic and positive selection analyses. We then tested the expression of selected OR genes in antennae, heads, and abdomens in four groups of adult SHBs: colony odor-experienced/-naive males and females. The results show that SHBs experienced both OR gene losses and duplications, thereby providing a first understanding of the evolution of SHB ORs. Additionally, three candidate ORs potentially involved in host finding and/or chemical communication were identified. Significantly different downregulations of ORs between the abdomens of male and female SHBs exposed to colony odors may reflect that these expression patterns might also reflect other internal events, e.g., oviposition. Altogether, these results provide novel insights into the evolution of SHB ORs and provide a valuable resource for analyzing the function of key genes, e.g., for developing biological control. These results will also help in understanding the chemosensory system in SHBs and other beetles.
Collapse
|
44
|
Drosophila taste neurons as an agonist-screening platform for P2X receptors. Sci Rep 2020; 10:8292. [PMID: 32427920 PMCID: PMC7237442 DOI: 10.1038/s41598-020-65169-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/28/2020] [Indexed: 11/24/2022] Open
Abstract
The P2X receptor family of ATP-gated cation channels are attractive drug targets for pain and inflammatory disease, but no subtype-selective agonists, and few partially selective agonists have been described to date. As proof-of-concept for the discovery of novel P2X receptor agonists, here we demonstrate the use of Drosophila taste neurons heterologously expressing rat P2X2 receptors as a screening platform. We demonstrate that wild-type rat P2X2 expressed in Drosophila is fully functional (ATP EC50 8.7 µM), and that screening of small (2 µl) volumes of a library of 80 adenosine nucleotide analogues is rapid and straightforward. We have determined agonist potency and specificity profiles for rat P2X2 receptors; triphosphate-bearing analogues display broad activity, tolerating a number of substitutions, and diphosphate and monophosphate analogues display very little activity. While several ATP analogues gave responses of similar magnitude to ATP, including the previously identified agonists ATPγS and ATPαS, we were also able to identify a novel agonist, the synthetic analogue 2-fluoro-ATP, and to confirm its agonist activity on rat P2X2 receptors expressed in human cells. These data validate our Drosophila platform as a useful tool for the analysis of agonist structure-activity relationships, and for the screening and discovery of novel P2X receptor agonists.
Collapse
|
45
|
Shan S, Wang SN, Song X, Khashaveh A, Lu ZY, Dhiloo KH, Li RJ, Gao XW, Zhang YJ. Antennal ionotropic receptors IR64a1 and IR64a2 of the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidate) collaboratively perceive habitat and host cues. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103204. [PMID: 31422151 DOI: 10.1016/j.ibmb.2019.103204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 05/12/2023]
Abstract
Ionotropic receptors (IRs), as a member of the conserved chemoreceptor families in the peripheral nervous system, play a critical role in the chemoreception of Drosophila. However, little is known about IRs in Hymenoptera insects. Here, we comprehensively characterized the gene structure, topological map and chemosensory roles of antennal IRs (MmedIRs) in the hymenopteran parasitoid wasp Microplitis mediator. We found that the IRs were conserved across various insect species. In the in situ hybridization assays, most IRs showed female antennae biased features, and there was no co-expression of the IRs and the olfactory receptor co-receptor (ORco). Moreover, three IR co-expressed complexes, IR75u-IR8a, IR64a1-IR8a and IR64a2-IR8a, were detected. Two genes with high similarity, IR64a1 and IR64a2, were located in distinct neurons but projected to the same sensillum. In two-electrode voltage-clamp recordings, IR64a1 was widely tuned to the chemicals from habitat cues released from host plants over long distances, whereas IR64a2 responded to a narrow range host cues and plant odors with low-volatility. Notably, IR64a2 was able to perceive Z9-14: Ald, a vital sex pheromone component that is released from Helicoverpa armigera, which is the preferred host of M. mediator. Furthermore, most ligands of IR64a1 and IR64a2 can trigger electrophysiological responses in female wasps. We propose that IR64a1 and IR64a2 collaboratively perceive habitat and host cues to assist parasitoids in efficiently seeking hosts.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Plant Protection, Agricultural University of Hebei, Baoding, 071000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, 071000, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071000, China
| | - Xi-Wu Gao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
46
|
Liu XL, Yan Q, Yang YL, Hou W, Miao CL, Peng YC, Dong SL. A Gustatory Receptor GR8 Tunes Specifically to D-Fructose in the Common Cutworm Spodoptera litura. INSECTS 2019; 10:insects10090272. [PMID: 31454982 PMCID: PMC6780311 DOI: 10.3390/insects10090272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/25/2022]
Abstract
Gustatory receptors (GRs) are crucial in the peripheral coding of the non-volatile compounds in insects, and thus play important roles in multiple behaviors including feeding, mating, and oviposition. However, little research has been done on GRs in lepidopteran pests. In the current work with Spodoptera litura, an important worldwide crop’s pest, a candidate fructose GR gene (SlitGR8) was cloned in full length, and its spatial and temporal expression profiles were determined by quantitative real-time PCR (qPCR). It revealed that SlitGR8 was highly expressed in antennae of both male and female adults, as well as in larva of first, fifth and sixth instar. Functional analyses were further conducted using the Xenopus oocyte system. SlitGR8 responded specifically to D-fructose among 12 tested sugar compounds. In addition, the behavioral assay demonstrated that both female and male moths could respond with proboscis extension behavior to D-fructose applied onto the antenna, but females showed higher sensitivity than males. The results provide an important base for further elucidation of molecular mechanisms of gustation, and a potential target for development of feeding interfering technique in S. litura.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Lin Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Hou
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Li Miao
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying-Chuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
47
|
González-González A, Rubio-Meléndez ME, Ballesteros GI, Ramírez CC, Palma-Millanao R. Sex- and tissue-specific expression of odorant-binding proteins and chemosensory proteins in adults of the scarab beetle Hylamorpha elegans (Burmeister) (Coleoptera: Scarabaeidae). PeerJ 2019; 7:e7054. [PMID: 31223529 PMCID: PMC6571001 DOI: 10.7717/peerj.7054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/02/2019] [Indexed: 12/04/2022] Open
Abstract
In this study, we addressed the sex- and tissue-specific expression patterns of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Hylamorpha elegans (Burmeister), an important native scarab beetle pest species from Chile. Similar to other members of its family, this scarab beetle exhibit habits that make difficult to control the pest by conventional methods. Hence, alternative ways to manage the pest populations based on chemical communication and signaling (such as disrupting mating or host finding process) are highly desirable. However, developing pest-control methods based on chemical communication requires to understand the molecular basis for pheromone recognition/chemical perception in this species. Thus, with the aim of discovering olfaction-related genes, we obtained the first reference transcriptome assembly of H. elegans. We used different tissues of adult beetles from males and females: antennae and maxillary palps, which are well known for embedded sensory organs. Then, the expression of predicted odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) was analyzed by qRT-PCR. In total, 165 transcripts related to chemoperception were predicted. Of these, 16 OBPs, including one pheromone-binding protein (PBP), and four CSPs were successfully amplified by qRT-PCR. All of these genes were differentially expressed in the sensory tissues with respect to the tibial tissue that was used as a control. The single predicted PBP found was highly expressed in the antennal tissues, particularly in males, while several OBPs and one CSP showed male-biased expression patterns, suggesting that these proteins may participate in sexual recognition process. In addition, a single CSP was expressed at higher levels in female palps than in any other studied condition, suggesting that this CSP would participate in oviposition process. Finally, all four CSPs exhibited palp-biased expression while mixed results were obtained for the expression of the OBPs, which were more abundant in the palps than in the antennae. These results suggest that these chemoperception proteins would be interesting novel targets for control of H. elegans, thus providing a theoretical basis for further studies involving new pest control methods.
Collapse
Affiliation(s)
- Angélica González-González
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María E Rubio-Meléndez
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Maule, Chile
| | - Gabriel I Ballesteros
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Claudio C Ramírez
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Rubén Palma-Millanao
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
48
|
Nakashima A, Ihara N, Shigeta M, Kiyonari H, Ikegaya Y, Takeuchi H. Structured spike series specify gene expression patterns for olfactory circuit formation. Science 2019; 365:science.aaw5030. [PMID: 31171707 DOI: 10.1126/science.aaw5030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Neural circuits emerge through the interplay of genetic programming and activity-dependent processes. During the development of the mouse olfactory map, axons segregate into distinct glomeruli in an olfactory receptor (OR)-dependent manner. ORs generate a combinatorial code of axon-sorting molecules whose expression is regulated by neural activity. However, it remains unclear how neural activity induces OR-specific expression patterns of axon-sorting molecules. We found that the temporal patterns of spontaneous neuronal spikes were not spatially organized but were correlated with the OR types. Receptor substitution experiments demonstrated that ORs determine spontaneous activity patterns. Moreover, optogenetically differentiated patterns of neuronal activity induced specific expression of the corresponding axon-sorting molecules and regulated axonal segregation. Thus, OR-dependent temporal patterns of spontaneous activity play instructive roles in generating the combinatorial code of axon-sorting molecules during olfactory map formation.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Naoki Ihara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0047, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Haruki Takeuchi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan. .,Social Cooperation Program of Evolutional Chemical Safety Assessment System, LECSAS, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Hou Q, Xu L, Liu G, Pang X, Wang X, Zhang Y, You M, Ni Z, Zhao Z, Liang R. Plant-mediated gene silencing of an essential olfactory-related Gqα gene enhances resistance to grain aphid in common wheat in greenhouse and field. PEST MANAGEMENT SCIENCE 2019; 75:1718-1725. [PMID: 30525312 DOI: 10.1002/ps.5292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/26/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Grain aphid (Sitobion avenae F.) is a dominant pest that limits cereal crop production around the globe. Gq proteins have important roles in signal transduction in insect olfaction. Plant-mediated RNA interference (RNAi) has been widely studied in insect control, but its application for the control wheat aphid in the field requires further study. Here, we used double-stranded (ds)RNA feeding to verify the potential of selected Gqα fragments for host-mediated RNAi, and then evaluated the effect of RNAi on aphid olfaction in transgenic wheat in the greenhouse and field. RESULTS Gqα gene was expressed in the aphid life cycle, and a 540 bp fragment shared 98.1% similarity with the reported sequence. dsGqα feeding reduced the expression of Gqα, and both reproduction and molting in the grain aphid. Feeding transgenic lines in the greenhouse downregulated expression of aphid Gqα, and significantly reduced reproduction and molting numbers. Furthermore, our field results indicate that transgenic lines have lower aphid numbers and higher 1000-grain weight than an unsprayed wild-type control. CONCLUSION Plant-mediated silencing of an essential olfactory-related Gqα gene could enhance resistance to grain aphid in common wheat in both the greenhouse and the field. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiling Hou
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Lanjie Xu
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Guoyu Liu
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaomeng Pang
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Xiao Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Yufeng Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Mingshan You
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Zhangwu Zhao
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Rongqi Liang
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Hou Z, Wei C. De novo comparative transcriptome analysis of a rare cicada, with identification of candidate genes related to adaptation to a novel host plant and drier habitats. BMC Genomics 2019; 20:182. [PMID: 30845906 PMCID: PMC6407286 DOI: 10.1186/s12864-019-5547-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/20/2019] [Indexed: 01/18/2023] Open
Abstract
Background Although the importance of host plant chemistry in plant–insect interactions is widely recognized, our understanding about the genetic basis underlying the relationship between changes in midgut proteins and adaptation of plant-feeding insects to novel host plants and habitats is very limited. To address this knowledge gap, the transcriptional profiles of midguts among three populations of the cicada Subpsaltria yangi Chen were compared. Among which, the Hancheng (HC) and Fengxiang (FX) populations occurring in the Loess Plateau feed on Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chow, while the population occurring in a much drier habitat in the Helan (HL) Mountains is locally specialized on a chemically divergent plant, Ephedra lepidosperma C. Y. Cheng. Results Based on comparative analysis, 1826 (HL vs HC) differentially expressed genes (DEGs) and 723 DEGs (HL vs FX) were identified between the populations utilizing different host plants, including 20, 36, 2, 5 and 2 genes related to digestion, detoxification, oxidation-reduction, stress response and water-deprivation response, respectively, and 35 genes presumably associated with osmoregulation. However, only 183 DEGs were identified between the HC and FX populations, including two genes related to detoxification, two genes related to stress response, and one gene presumably associated with osmoregulation. These results suggest that the weakest expression differences were between the populations utilizing the same host plant and occurring in the closest habitats, which may help explain the metabolic mechanism of adaptation in S. yangi populations to novel host plants and new niches. Conclusions The observed differences in gene expression among S. yangi populations are consistent with the hypothesis that the host plant shift and habitat adaptation in the HL population was facilitated by differential regulation of genes related to digestion, detoxification, oxidation-reduction, stress response, water-deprivation response and osmoregulation. The results may inform future studies on the molecular mechanisms underlying the relationship between changes in midgut proteins and adaptation of herbivorous insects to novel host plants and new niches. Electronic supplementary material The online version of this article (10.1186/s12864-019-5547-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zehai Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|