1
|
Xie Q, Tong C, Xiong X. An overview of the co-transcription factor NACC1: Beyond its pro-tumor effects. Life Sci 2024; 336:122314. [PMID: 38030057 DOI: 10.1016/j.lfs.2023.122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Nucleus accumbens-associated protein 1 (NACC1) is a member of the broad complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein families, mainly exerting its biological functions as a transcription co-regulator. NACC1 forms homo- or hetero-dimers through the BTB/POZ or BANP, E5R, and NACC1 (BEN) domain with other transcriptional regulators to regulate downstream signals. Recently, the overexpression of NACC1 has been observed in various tumors and is positively associated with tumor progression, high recurrence rate, indicating poor prognosis. NACC1 also regulates biological processes such as embryonic development, stem cell pluripotency, innate immunity, and related diseases. Our review combines recent research to summarize advancements in the structure, biological functions, and relative molecular mechanisms of NACC1. The future development of NACC1 clinical appliances is also discussed.
Collapse
Affiliation(s)
- Qing Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Savitikadi P, Palika R, Pullakhandam R, Reddy GB, Reddy SS. Dietary zinc inadequacy affects neurotrophic factors and proteostasis in the rat brain. Nutr Res 2023; 116:80-88. [PMID: 37421933 DOI: 10.1016/j.nutres.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Zinc (Zn) deficiency has many adverse effects, including growth retardation, loss of appetite, vascular diseases, cognitive and memory impairment, and neurodegenerative diseases. In the current study, we investigated the hypothesis that dietary Zn inadequacy affects neurotrophic factors and proteostasis in the brain. Three-week-old Wistar/Kyoto male rats were fed either a Zn-deficient diet (D; < 1 mg Zn/kg diet; n = 18) or pair-fed with the control diet (C; 48 mg Zn/kg diet; n = 9) for 4 weeks. Subsequently, the rats in the D group were subdivided into two groups (n = 9), in which one group continued to receive a Zn-deficient diet, whereas the other received a Zn-supplemented diet (R; 48 mg Zn/kg diet) for 3 more weeks, after which the rats were sacrificed to collect their brain tissue. Markers of endoplasmic reticulum stress, ubiquitin-proteasome system, autophagy, and apoptosis, along with neurotrophic factors, were investigated by immunoblotting. Proteasomal activity was analyzed by the spectrofluorometric method. The results showed an altered ubiquitin-proteasome system and autophagy components and increased gliosis, endoplasmic reticulum stress, and apoptosis markers in Zn-deficient rats compared with the control group. Zinc repletion for 3 weeks could partially restore these alterations, indicating a necessity for an extended duration of Zn supplementation. In conclusion, a decline in Zn concentrations below a critical threshold may trigger multiple pathways, leading to brain-cell apoptosis.
Collapse
Affiliation(s)
- Pandarinath Savitikadi
- Biochemistry Division, ICMR - National Institute of Nutrition, Hyderabad, India, 500 007
| | - Ravindranadh Palika
- Drug Safety Division, ICMR - National Institute of Nutrition, Hyderabad, India, 500 007
| | - Raghu Pullakhandam
- Drug Safety Division, ICMR - National Institute of Nutrition, Hyderabad, India, 500 007
| | - G Bhanuprakash Reddy
- Biochemistry Division, ICMR - National Institute of Nutrition, Hyderabad, India, 500 007
| | - S Sreenivasa Reddy
- Biochemistry Division, ICMR - National Institute of Nutrition, Hyderabad, India, 500 007.
| |
Collapse
|
3
|
Lawrence JA, Aguilar-Calvo P, Ojeda-Juárez D, Khuu H, Soldau K, Pizzo DP, Wang J, Malik A, Shay TF, Sullivan EE, Aulston B, Song SM, Callender JA, Sanchez H, Geschwind MD, Roy S, Rissman RA, Trejo J, Tanaka N, Wu C, Chen X, Patrick GN, Sigurdson CJ. Diminished Neuronal ESCRT-0 Function Exacerbates AMPA Receptor Derangement and Accelerates Prion-Induced Neurodegeneration. J Neurosci 2023; 43:3970-3984. [PMID: 37019623 PMCID: PMC10219035 DOI: 10.1523/jneurosci.1878-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Endolysosomal defects in neurons are central to the pathogenesis of prion and other neurodegenerative disorders. In prion disease, prion oligomers traffic through the multivesicular body (MVB) and are routed for degradation in lysosomes or for release in exosomes, yet how prions impact proteostatic pathways is unclear. We found that prion-affected human and mouse brain showed a marked reduction in Hrs and STAM1 (ESCRT-0), which route ubiquitinated membrane proteins from early endosomes into MVBs. To determine how the reduction in ESCRT-0 impacts prion conversion and cellular toxicity in vivo, we prion-challenged conditional knockout mice (male and female) having Hrs deleted from neurons, astrocytes, or microglia. The neuronal, but not astrocytic or microglial, Hrs-depleted mice showed a shortened survival and an acceleration in synaptic derangements, including an accumulation of ubiquitinated proteins, deregulation of phosphorylated AMPA and metabotropic glutamate receptors, and profoundly altered synaptic structure, all of which occurred later in the prion-infected control mice. Finally, we found that neuronal Hrs (nHrs) depletion increased surface levels of the cellular prion protein, PrPC, which may contribute to the rapidly advancing disease through neurotoxic signaling. Taken together, the reduced Hrs in the prion-affected brain hampers ubiquitinated protein clearance at the synapse, exacerbates postsynaptic glutamate receptor deregulation, and accelerates neurodegeneration.SIGNIFICANCE STATEMENT Prion diseases are rapidly progressive neurodegenerative disorders characterized by prion aggregate spread through the central nervous system. Early disease features include ubiquitinated protein accumulation and synapse loss. Here, we investigate how prion aggregates alter ubiquitinated protein clearance pathways (ESCRT) in mouse and human prion-infected brain, discovering a marked reduction in Hrs. Using a prion-infection mouse model with neuronal Hrs (nHrs) depleted, we show that low neuronal Hrs is detrimental and markedly shortens survival time while accelerating synaptic derangements, including ubiquitinated protein accumulation, indicating that Hrs loss exacerbates prion disease progression. Additionally, Hrs depletion increases the surface distribution of prion protein (PrPC), linked to aggregate-induced neurotoxic signaling, suggesting that Hrs loss in prion disease accelerates disease through enhancing PrPC-mediated neurotoxic signaling.
Collapse
Affiliation(s)
- Jessica A Lawrence
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Patricia Aguilar-Calvo
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Daniel Ojeda-Juárez
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Helen Khuu
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Katrin Soldau
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Jin Wang
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Adela Malik
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Erin E Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brent Aulston
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Seung Min Song
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Julia A Callender
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Henry Sanchez
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Nobuyuki Tanaka
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
- Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Xu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Gentry N Patrick
- Department of Biology, University of California, San Diego, La Jolla, California 92093
| | - Christina J Sigurdson
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, California 95616
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
4
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
5
|
Gu X, Lai D, Liu S, Chen K, Zhang P, Chen B, Huang G, Cheng X, Lu C. Hub Genes, Diagnostic Model, and Predicted Drugs Related to Iron Metabolism in Alzheimer's Disease. Front Aging Neurosci 2022; 14:949083. [PMID: 35875800 PMCID: PMC9300955 DOI: 10.3389/fnagi.2022.949083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease, remains unclear in terms of its underlying causative genes and effective therapeutic approaches. Meanwhile, abnormalities in iron metabolism have been demonstrated in patients and mouse models with AD. Therefore, this study sought to find hub genes based on iron metabolism that can influence the diagnosis and treatment of AD. First, gene expression profiles were downloaded from the GEO database, including non-demented (ND) controls and AD samples. Fourteen iron metabolism-related gene sets were downloaded from the MSigDB database, yielding 520 iron metabolism-related genes. The final nine hub genes associated with iron metabolism and AD were obtained by differential analysis and WGCNA in brain tissue samples from GSE132903. GO analysis revealed that these genes were mainly involved in two major biological processes, autophagy and iron metabolism. Through stepwise regression and logistic regression analyses, we selected four of these genes to construct a diagnostic model of AD. The model was validated in blood samples from GSE63061 and GSE85426, and the AUC values showed that the model had a relatively good diagnostic performance. In addition, the immune cell infiltration of the samples and the correlation of different immune factors with these hub genes were further explored. The results suggested that these genes may also play an important role in immunity to AD. Finally, eight drugs targeting these nine hub genes were retrieved from the DrugBank database, some of which were shown to be useful for the treatment of AD or other concomitant conditions, such as insomnia and agitation. In conclusion, this model is expected to guide the diagnosis of patients with AD by detecting the expression of several genes in the blood. These hub genes may also assist in understanding the development and drug treatment of AD.
Collapse
Affiliation(s)
- Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Xuefeng Gu
| | - Donglin Lai
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kaijie Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bing Chen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Gang Huang
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Xiaoqin Cheng
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Changlian Lu
| |
Collapse
|
6
|
Yap CC, Mason AJ, Winckler B. Dynamics and distribution of endosomes and lysosomes in dendrites. Curr Opin Neurobiol 2022; 74:102537. [DOI: 10.1016/j.conb.2022.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/16/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
|
7
|
Ito A, Fukaya M, Okamoto H, Sakagami H. Physiological and Pathological Roles of the Cytohesin Family in Neurons. Int J Mol Sci 2022; 23:5087. [PMID: 35563476 PMCID: PMC9104363 DOI: 10.3390/ijms23095087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
The cytohesin proteins, consisting of four closely related members (cytohesins-1, -2, -3, and -4), are a subfamily of the Sec7 domain-containing guanine nucleotide exchange factors for ADP ribosylation factors (Arfs), which are critical regulators of membrane trafficking and actin cytoskeleton remodeling. Recent advances in molecular biological techniques and the development of a specific pharmacological inhibitor for cytohesins, SecinH3, have revealed the functional involvement of the cytohesin-Arf pathway in diverse neuronal functions from the formation of axons and dendrites, axonal pathfinding, and synaptic vesicle recycling, to pathophysiological processes including chronic pain and neurotoxicity induced by proteins related to neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer's disease. Here, we review the physiological and pathological roles of the cytohesin-Arf pathway in neurons and discuss the future directions of this research field.
Collapse
Affiliation(s)
- Akiko Ito
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| |
Collapse
|
8
|
Reddy Addi U, Jakhotia S, Reddy SS, Reddy GB. Advanced glycation end products in brain during aging. Chem Biol Interact 2022; 355:109840. [PMID: 35104490 DOI: 10.1016/j.cbi.2022.109840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/03/2022]
Abstract
Aging is a main risk factor for many diseases including neurodegenerative disorders. Numerous theories and mechanisms including accumulation of advanced glycation end products (AGEs) have been put forward in explaining brain aging. However, a focused study on the status of AGEs in the brain during progressive aging in connection with interrelated cellular processes like ubiquitin-proteasome system (UPS), unfolded protein response, autophagy-lysosome system and apoptosis is lacking. Hence, in this study, we investigated the levels of AGEs in the brain of 5-, 10-, 15- and 20-months old WNIN rats. Endoplasmic reticulum (ER) stress response, UPS components, autophagy flux, neurotrophic and presynaptic markers along with cell death markers were analyzed by immunoblotting. The neuronal architecture was analyzed by H&E and Nissl staining. The results demonstrated progressive accumulation of AGEs in the brain during aging. Adaptive ER stress response was observed by 10-months while maladaptive ER stress response was seen at 15- and 20-months of age along with impaired UPS and autophagy, and perturbations in neuronal growth factors. All these disturbances intensify with age to further exaggerate cell death mechanisms. There was a shrinkage of the cell size with aging and Congo-red staining revealed β-amyloid accumulation in higher ages. Together these results suggest that progressive accumulation of AGEs with aging in the brain may lead to neuronal damage by affecting ER homeostasis, UPS, autophagic flux, and neuronal growth factors.
Collapse
Affiliation(s)
- Utkarsh Reddy Addi
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Sneha Jakhotia
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - S Sreenivasa Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India.
| | | |
Collapse
|
9
|
Iwata S, Morikawa M, Takei Y, Hirokawa N. An activity-dependent local transport regulation via degradation and synthesis of KIF17 underlying cognitive flexibility. SCIENCE ADVANCES 2020; 6:6/51/eabc8355. [PMID: 33328231 PMCID: PMC7744090 DOI: 10.1126/sciadv.abc8355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Synaptic weight changes among postsynaptic densities within a single dendrite are regulated by the balance between localized protein degradation and synthesis. However, the molecular mechanism via these opposing regulatory processes is still elusive. Here, we showed that the molecular motor KIF17 was locally degraded and synthesized in an N-methyl-d-aspartate receptor (NMDAR)-mediated activity-dependent manner. Accompanied by the degradation of KIF17, its transport was temporarily dampened in dendrites. We also observed that activity-dependent local KIF17 synthesis driven by its 3' untranslated region (3'UTR) occurred at dendritic shafts, and the newly synthesized KIF17 moved along the dendrites. Furthermore, hippocampus-specific deletion of Kif17 3'UTR disrupted KIF17 synthesis induced by fear memory retrieval, leading to impairment in extinction of fear memory. These results indicate that the regulation of the KIF17 transport is driven by the single dendrite-restricted cycle of degradation and synthesis that underlies cognitive flexibility.
Collapse
Affiliation(s)
- Suguru Iwata
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Momo Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Gong M, Ye S, Li WX, Zhang J, Liu Y, Zhu J, Lv W, Zhang H, Wang J, Lu A, He K. Regulatory function of praja ring finger ubiquitin ligase 2 mediated by the P2rx3/P2rx7 axis in mouse hippocampal neuronal cells. Am J Physiol Cell Physiol 2020; 318:C1123-C1135. [PMID: 32267716 DOI: 10.1152/ajpcell.00070.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Praja2 (Pja2), a member of the growing family of mammalian RING E3 ubiquitin ligases, is reportedly involved in not only several types of cancer but also neurological diseases and disorders, but the genetic mechanism underlying the regulation of Pja2 in the nervous system remains unclear. To study the cellular and molecular functions of Pja2 in mouse hippocampal neuronal cells (MHNCs), we used gain- and loss-of-function manipulations of Pja2 in HT-22 cells and tested their regulatory effects on three Alzheimer's disease (AD) genes and cell proliferation. The results revealed that the expression of AD markers, including amyloid beta precursor protein (App), microtubule-associated protein tau (Mapt), and gamma-secretase activating protein (Gsap), could be inhibited by Pja2 overexpression and activated by Pja2 knockdown. In addition, HT-22 cell proliferation was enhanced by Pja2 upregulation and suppressed by its downregulation. We also evaluated and quantified the targets that responded to the enforced expression of Pja2 by RNA-Seq, and the results showed that purinergic receptor P2X, ligand-gated ion channel 3 and 7 (P2rx3 and P2rx7), which show different expression patterns in the critical calcium signaling pathway, mediated the regulatory effect of Pja2 in HT-22 cells. Functional studies indicated that Pja2 regulated HT-22 cells development and AD marker genes by inhibiting P2rx3 but promoting P2rx7, a gene downstream of P2rx3. In conclusion, our results provide new insights into the regulatory function of the Pja2 gene in MHNCs and thus underscore the potential relevance of this molecule to the pathophysiology of AD.
Collapse
Affiliation(s)
- Mengting Gong
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jian Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yanjun Liu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jie Zhu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenwen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jing Wang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China.,School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
11
|
Proteomic mapping of Drosophila transgenic elav.L-GAL4/+ brain as a tool to illuminate neuropathology mechanisms. Sci Rep 2020; 10:5430. [PMID: 32214222 PMCID: PMC7096425 DOI: 10.1038/s41598-020-62510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Drosophila brain has emerged as a powerful model system for the investigation of genes being related to neurological pathologies. To map the proteomic landscape of fly brain, in a high-resolution scale, we herein employed a nano liquid chromatography-tandem mass spectrometry technology, and high-content catalogues of 7,663 unique peptides and 2,335 single proteins were generated. Protein-data processing, through UniProt, DAVID, KEGG and PANTHER bioinformatics subroutines, led to fly brain-protein classification, according to sub-cellular topology, molecular function, implication in signaling and contribution to neuronal diseases. Given the importance of Ubiquitin Proteasome System (UPS) in neuropathologies and by using the almost completely reassembled UPS, we genetically targeted genes encoding components of the ubiquitination-dependent protein-degradation machinery. This analysis showed that driving RNAi toward proteasome components and regulators, using the GAL4-elav.L driver, resulted in changes to longevity and climbing-activity patterns during aging. Our proteomic map is expected to advance the existing knowledge regarding brain biology in animal species of major translational-research value and economical interest.
Collapse
|
12
|
Al Mamun A, Uddin MS, Kabir MT, Khanum S, Sarwar MS, Mathew B, Rauf A, Ahmed M, Ashraf GM. Exploring the Promise of Targeting Ubiquitin-Proteasome System to Combat Alzheimer’s Disease. Neurotox Res 2020; 38:8-17. [DOI: 10.1007/s12640-020-00185-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
|
13
|
Liu K, Jones S, Minis A, Rodriguez J, Molina H, Steller H. PI31 Is an Adaptor Protein for Proteasome Transport in Axons and Required for Synaptic Development. Dev Cell 2019; 50:509-524.e10. [PMID: 31327739 DOI: 10.1016/j.devcel.2019.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/18/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Protein degradation by the ubiquitin-proteasome system is critical for neuronal function. Neurons utilize microtubule-dependent molecular motors to allocate proteasomes to synapses, but how proteasomes are coupled to motors and how this is regulated to meet changing demand for protein breakdown remain largely unknown. We show that the conserved proteasome-binding protein PI31 serves as an adaptor to couple proteasomes with dynein light chain proteins (DYNLL1/2). The inactivation of PI31 inhibited proteasome motility in axons and disrupted synaptic proteostasis, structure, and function. Moreover, phosphorylation of PI31 by p38 MAPK enhanced binding to DYNLL1/2 and promoted the directional movement of proteasomes in axons, suggesting a mechanism to regulate loading of proteasomes onto motors. Inactivation of PI31 in mouse neurons attenuated proteasome movement in axons, indicating this process is conserved. Because mutations affecting PI31 activity are associated with human neurodegenerative diseases, impairment of PI31-mediated axonal transport of proteasomes may contribute to these disorders.
Collapse
Affiliation(s)
- Kai Liu
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sandra Jones
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Adi Minis
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jose Rodriguez
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
14
|
Cao J, Zhong MB, Toro CA, Zhang L, Cai D. Endo-lysosomal pathway and ubiquitin-proteasome system dysfunction in Alzheimer's disease pathogenesis. Neurosci Lett 2019; 703:68-78. [PMID: 30890471 PMCID: PMC6760990 DOI: 10.1016/j.neulet.2019.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 03/11/2019] [Indexed: 01/04/2023]
Abstract
Several lines of evidence have shown that defects in the endo-lysosomal autophagy degradation pathway and the ubiquitin-proteasome system play a role in Alzheimer's Disease (AD) pathogenesis and pathophysiology. Early pathological changes, such as marked enlargement of endosomal compartments, gradual accumulation of autophagic vacuoles (AVs) and lysosome dyshomeostasis, are well-recognized in AD. In addition to these pathological indicators, many genetic variants of key regulators in the endo-lysosomal autophagy networks and the ubiquitin-proteasome system have been found to be associated with AD. Furthermore, altered expression levels of key proteins in these pathways have been found in AD human brain tissues, primary cells and AD mouse models. In this review, we discuss potential disease mechanisms underlying the dysregulation of protein homeostasis governing systems. While the importance of two major protein degradation pathways in AD pathogenesis has been highlighted, targeted therapy at key components of these pathways has great potential in developing novel therapeutic interventions for AD. Future investigations are needed to define molecular mechanisms by which these complex regulatory systems become malfunctional at specific stages of AD development and progression, which will facilitate future development of novel therapeutic interventions. It is also critical to investigate all key components of the protein degradation pathways, both upstream and downstream, to improve our abilities to manipulate transport pathways with higher efficacy and less side effects.
Collapse
Affiliation(s)
- Jiqing Cao
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China.
| | - Margaret B Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Barnard College of Columbia University, New York, NY 10027, United States.
| | - Carlos A Toro
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Larry Zhang
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Dongming Cai
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Neurology Section, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Latina V, Caioli S, Zona C, Ciotti MT, Borreca A, Calissano P, Amadoro G. NGF-Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and Animal AD-Model. Front Cell Neurosci 2018; 12:487. [PMID: 30618634 PMCID: PMC6300588 DOI: 10.3389/fncel.2018.00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer's disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers "dying-back" degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.
Collapse
Affiliation(s)
| | | | - Cristina Zona
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonella Borreca
- Institute of Cellular Biology and Neurobiology – National Research Council, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology – National Research Council, Rome, Italy
| |
Collapse
|
16
|
Genome-wide transcriptional profiling of central amygdala and orbitofrontal cortex during incubation of methamphetamine craving. Neuropsychopharmacology 2018; 43:2426-2434. [PMID: 30072726 PMCID: PMC6180053 DOI: 10.1038/s41386-018-0158-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023]
Abstract
Methamphetamine (Meth) seeking progressively increases after withdrawal (incubation of Meth craving), but the transcriptional mechanisms that contribute to this incubation are unknown. Here we used RNA-sequencing to analyze transcriptional profiles associated with incubation of Meth craving in central amygdala (CeA) and orbitofrontal cortex (OFC), two brain areas previously implicated in relapse to drug seeking. We trained rats to self-administer either saline (control condition) or Meth (10 days; 9 h/day, 0.1 mg/kg/infusion). Next, we collected brain tissue from CeA and OFC on withdrawal day 2 (when Meth seeking is low and non-incubated) and on day 35 (when Meth seeking is high and incubated), for subsequent RNA-sequencing. In CeA, we identified 10-fold more differentially expressed genes (DEGs) on withdrawal day 35 than day 2. These genes were enriched for several biological processes, including protein ubiquitination and histone methylation. In OFC, we identified much fewer expression changes than in CeA, with more DEGs on withdrawal day 2 than on day 35. There was a significant overlap between upregulated genes on withdrawal day 2 and downregulated genes on withdrawal day 35 in OFC. Our analyses highlight the CeA as a key region of transcriptional regulation associated with incubation of Meth seeking. In contrast, transcriptional regulation in OFC may contribute to Meth seeking during early withdrawal. Overall, these findings provide a unique resource of gene expression data for future studies examining transcriptional mechanisms in CeA that mediate Meth seeking after prolonged withdrawal.
Collapse
|
17
|
Bustamante HA, González AE, Cerda-Troncoso C, Shaughnessy R, Otth C, Soza A, Burgos PV. Interplay Between the Autophagy-Lysosomal Pathway and the Ubiquitin-Proteasome System: A Target for Therapeutic Development in Alzheimer's Disease. Front Cell Neurosci 2018; 12:126. [PMID: 29867359 PMCID: PMC5954036 DOI: 10.3389/fncel.2018.00126] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of age-related dementia leading to severe irreversible cognitive decline and massive neurodegeneration. While therapeutic approaches for managing symptoms are available, AD currently has no cure. AD associates with a progressive decline of the two major catabolic pathways of eukaryotic cells—the autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS)—that contributes to the accumulation of harmful molecules implicated in synaptic plasticity and long-term memory impairment. One protein recently highlighted as the earliest initiator of these disturbances is the amyloid precursor protein (APP) intracellular C-terminal membrane fragment β (CTFβ), a key toxic agent with deleterious effects on neuronal function that has become an important pathogenic factor for AD and a potential biomarker for AD patients. This review focuses on the involvement of regulatory molecules and specific post-translational modifications (PTMs) that operate in the UPS and ALP to control a single proteostasis network to achieve protein balance. We discuss how these aspects can contribute to the development of novel strategies to strengthen the balance of key pathogenic proteins associated with AD.
Collapse
Affiliation(s)
- Hianara A Bustamante
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Alexis E González
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| | - Cristobal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ronan Shaughnessy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola Otth
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia V Burgos
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Saldate JJ, Shiau J, Cazares VA, Stuenkel EL. The ubiquitin-proteasome system functionally links neuronal Tomosyn-1 to dendritic morphology. J Biol Chem 2017; 293:2232-2246. [PMID: 29269412 DOI: 10.1074/jbc.m117.815514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/02/2017] [Indexed: 12/29/2022] Open
Abstract
Altering the expression of Tomosyn-1 (Tomo-1), a soluble, R-SNARE domain-containing protein, significantly affects behavior in mice, Drosophila, and Caenorhabditis elegans Yet, the mechanisms that modulate Tomo-1 expression and its regulatory activity remain poorly defined. Here, we found that Tomo-1 expression levels influence postsynaptic spine density. Tomo-1 overexpression increased dendritic spine density, whereas Tomo-1 knockdown (KD) decreased spine density. These findings identified a novel action of Tomo-1 on dendritic spines, which is unique because it occurs independently of Tomo-1's C-terminal R-SNARE domain. We also demonstrated that the ubiquitin-proteasome system (UPS), which is known to influence synaptic strength, dynamically regulates Tomo-1 protein levels. Immunoprecipitated and affinity-purified Tomo-1 from cultured rat hippocampal neurons was ubiquitinated, and the levels of ubiquitinated Tomo-1 dramatically increased upon pharmacological proteasome blockade. Moreover, Tomo-1 ubiquitination appeared to be mediated through an interaction with the E3 ubiquitin ligase HRD1, as immunoprecipitation of Tomo-1 from neurons co-precipitated HRD1, and this interaction increases upon proteasome inhibition. Further, in vitro reactions indicated direct, HRD1 concentration-dependent Tomo-1 ubiquitination. We also noted that the UPS regulates both Tomo-1 expression and functional output, as HRD1 KD in hippocampal neurons increased Tomo-1 protein level and dendritic spine density. Notably, the effect of HRD1 KD on spine density was mitigated by additional KD of Tomo-1, indicating a direct HRD1/Tomo-1 effector relationship. In summary, our results indicate that the UPS is likely to participate in tuning synaptic efficacy and spine dynamics by precise regulation of neuronal Tomo-1 levels.
Collapse
Affiliation(s)
| | - Jason Shiau
- the Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor, Michigan 48109-5624
| | - Victor A Cazares
- the Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor, Michigan 48109-5624
| | - Edward L Stuenkel
- From the Neuroscience Graduate Program and .,the Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor, Michigan 48109-5624
| |
Collapse
|
19
|
Sunkaria A, Yadav A, Bhardwaj S, Sandhir R. Postnatal Proteasome Inhibition Promotes Amyloid-β Aggregation in Hippocampus and Impairs Spatial Learning in Adult Mice. Neuroscience 2017; 367:47-59. [DOI: 10.1016/j.neuroscience.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/09/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
|
20
|
Li Q, Kellner DA, Hatch HAM, Yumita T, Sanchez S, Machold RP, Frank CA, Stavropoulos N. Conserved properties of Drosophila Insomniac link sleep regulation and synaptic function. PLoS Genet 2017; 13:e1006815. [PMID: 28558011 PMCID: PMC5469494 DOI: 10.1371/journal.pgen.1006815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/13/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022] Open
Abstract
Sleep is an ancient animal behavior that is regulated similarly in species ranging from flies to humans. Various genes that regulate sleep have been identified in invertebrates, but whether the functions of these genes are conserved in mammals remains poorly explored. Drosophila insomniac (inc) mutants exhibit severely shortened and fragmented sleep. Inc protein physically associates with the Cullin-3 (Cul3) ubiquitin ligase, and neuronal depletion of Inc or Cul3 strongly curtails sleep, suggesting that Inc is a Cul3 adaptor that directs the ubiquitination of neuronal substrates that impact sleep. Three proteins similar to Inc exist in vertebrates—KCTD2, KCTD5, and KCTD17—but are uncharacterized within the nervous system and their functional conservation with Inc has not been addressed. Here we show that Inc and its mouse orthologs exhibit striking biochemical and functional interchangeability within Cul3 complexes. Remarkably, KCTD2 and KCTD5 restore sleep to inc mutants, indicating that they can substitute for Inc in vivo and engage its neuronal targets relevant to sleep. Inc and its orthologs localize similarly within fly and mammalian neurons and can traffic to synapses, suggesting that their substrates may include synaptic proteins. Consistent with such a mechanism, inc mutants exhibit defects in synaptic structure and physiology, indicating that Inc is essential for both sleep and synaptic function. Our findings reveal that molecular functions of Inc are conserved through ~600 million years of evolution and support the hypothesis that Inc and its orthologs participate in an evolutionarily conserved ubiquitination pathway that links synaptic function and sleep regulation. Sleep is ubiquitous among animals and is regulated in a similar manner across phylogeny, but whether conserved molecular mechanisms govern sleep is poorly defined. The Insomniac protein is vital for sleep in Drosophila and is a putative adaptor for the Cul3 ubiquitin ligase. We show that two mammalian orthologs of Insomniac can restore sleep to flies lacking Insomniac, indicating that the molecular functions of these proteins are conserved through evolution. Our comparative analysis reveals that Insomniac and its mammalian orthologs can localize to neuronal synapses and that Insomniac impacts synaptic structure and physiology. Our findings suggest that Insomniac and its mammalian orthologs are components of an evolutionarily conserved ubiquitination pathway that links synaptic function and the regulation of sleep.
Collapse
Affiliation(s)
- Qiuling Li
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States of America
| | - David A. Kellner
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States of America
| | - Hayden A. M. Hatch
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States of America
| | - Tomohiro Yumita
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States of America
| | - Sandrine Sanchez
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States of America
| | - Robert P. Machold
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States of America
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Interdisciplinary Programs in Genetics, Neuroscience, and MCB, University of Iowa, Iowa City, IA, United States of America
| | - Nicholas Stavropoulos
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hall EA, Nahorski MS, Murray LM, Shaheen R, Perkins E, Dissanayake KN, Kristaryanto Y, Jones RA, Vogt J, Rivagorda M, Handley MT, Mali GR, Quidwai T, Soares DC, Keighren MA, McKie L, Mort RL, Gammoh N, Garcia-Munoz A, Davey T, Vermeren M, Walsh D, Budd P, Aligianis IA, Faqeih E, Quigley AJ, Jackson IJ, Kulathu Y, Jackson M, Ribchester RR, von Kriegsheim A, Alkuraya FS, Woods CG, Maher ER, Mill P. PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. Am J Hum Genet 2017; 100:706-724. [PMID: 28413018 PMCID: PMC5420347 DOI: 10.1016/j.ajhg.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022] Open
Abstract
During neurotransmission, synaptic vesicles undergo multiple rounds of exo-endocytosis, involving recycling and/or degradation of synaptic proteins. While ubiquitin signaling at synapses is essential for neural function, it has been assumed that synaptic proteostasis requires the ubiquitin-proteasome system (UPS). We demonstrate here that turnover of synaptic membrane proteins via the endolysosomal pathway is essential for synaptic function. In both human and mouse, hypomorphic mutations in the ubiquitin adaptor protein PLAA cause an infantile-lethal neurodysfunction syndrome with seizures. Resulting from perturbed endolysosomal degradation, Plaa mutant neurons accumulate K63-polyubiquitylated proteins and synaptic membrane proteins, disrupting synaptic vesicle recycling and neurotransmission. Through characterization of this neurological intracellular trafficking disorder, we establish the importance of ubiquitin-mediated endolysosomal trafficking at the synapse.
Collapse
Affiliation(s)
- Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Michael S Nahorski
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK; Department of Medical Genetics, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 OXY, UK
| | - Lyndsay M Murray
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Emma Perkins
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Kosala N Dissanayake
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Yosua Kristaryanto
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Ross A Jones
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Julie Vogt
- West Midlands Regional Genetics Service, Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | - Manon Rivagorda
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Mark T Handley
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Girish R Mali
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tooba Quidwai
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Dinesh C Soares
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lisa McKie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Richard L Mort
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Noor Gammoh
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle NE2 4HH, UK
| | - Matthieu Vermeren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Diana Walsh
- West Midlands Regional Genetics Service, Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | - Peter Budd
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Irene A Aligianis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh 11211, Saudi Arabia
| | - Alan J Quigley
- NHS Lothian, Department of Paediatric Radiology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Ian J Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Mandy Jackson
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Richard R Ribchester
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK; Department of Medical Genetics, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 OXY, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 OXY, UK.
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
22
|
Shivarama Shetty M, Sajikumar S. 'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 2017; 35:22-35. [PMID: 28065806 DOI: 10.1016/j.arr.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging.
Collapse
|
23
|
Sachser RM, Haubrich J, Lunardi PS, de Oliveira Alvares L. Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology 2016; 112:94-103. [PMID: 27425202 DOI: 10.1016/j.neuropharm.2016.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Over the past years, extensive research in experimental cognitive neuroscience has provided a comprehensive understanding about the role of ionotropic glutamate receptor (IGluR)-dependent signaling underpinning postsynaptic plasticity induced by long-term potentiation (LTP), the leading cellular basis of long-term memory (LTM). However, despite the fact that iGluR-mediated postsynaptic plasticity regulates the formation and persistence of LTP and LTM, here we discuss the state-of-the-art regarding the mechanisms underpinning both LTP and LTM decay. First, we review the crucial roles that iGluRs play on memory encoding and stabilization. Second, we discuss the latest findings in forgetting considering hippocampal GluA2-AMPAR trafficking at postsynaptic sites as well as dendritic spine remodeling possibly involved in LTP decay. Third, on the role of retrieving consolidated LTMs, we discuss the mechanisms involved in memory destabilization that occurs followed reactivation that share striking similarities with the neurobiological basis of forgetting. Fourth, since different AMPAR subunits as well as postsynaptic scaffolding proteins undergo ubiquitination, the ubiquitin-proteasome system (UPS) is discussed in light of memory decay. In conclusion, we provide an integrated overview revealing some of the mechanisms determining memory forgetting that are mediated by iGluRs. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Ricardo Marcelo Sachser
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Santana Lunardi
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
24
|
Gong B, Radulovic M, Figueiredo-Pereira ME, Cardozo C. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer's Disease and Spinal Cord Injury. Front Mol Neurosci 2016; 9:4. [PMID: 26858599 PMCID: PMC4727241 DOI: 10.3389/fnmol.2016.00004] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick’s disease and Down’s syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions.
Collapse
Affiliation(s)
- Bing Gong
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA
| | - Miroslav Radulovic
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, and the Graduate School and University Center, The City University of New York New York, NY, USA
| | - Christopher Cardozo
- Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA; Medicine, James J. Peters Veteran Affairs Medical CenterBronx, NY, USA; National Center of Excellence for the Medical Consequences of Spinal Cord Injury (SCI)Bronx, NY, USA
| |
Collapse
|
25
|
Synaptic strength is bidirectionally controlled by opposing activity-dependent regulation of Nedd4-1 and USP8. J Neurosci 2015; 34:16637-49. [PMID: 25505317 DOI: 10.1523/jneurosci.2452-14.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The trafficking of AMPA receptors (AMPARs) to and from synapses is crucial for synaptic plasticity. Previous work has demonstrated that AMPARs undergo activity-dependent ubiquitination by the E3 ubiquitin ligase Nedd4-1, which promotes their internalization and degradation in lysosomes. Here, we define the molecular mechanisms involved in ubiquitination and deubiquitination of AMPARs. We report that Nedd4-1 is rapidly redistributed to dendritic spines in response to AMPAR activation and not in response to NMDA receptor (NMDAR) activation in cultured rat neurons. In contrast, NMDAR activation directly antagonizes Nedd4-1 function by promoting the deubiquitination of AMPARs. We show that NMDAR activation causes the rapid dephosphorylation and activation of the deubiquitinating enzyme (DUB) USP8. Surface AMPAR levels and synaptic strength are inversely regulated by Nedd4-1 and USP8. Strikingly, we show that homeostatic downscaling of synaptic strength is accompanied by an increase and decrease in Nedd4-1 and USP8 protein levels, respectively. Furthermore, we show that Nedd4-1 is required for homeostatic loss of surface AMPARs and downscaling of synaptic strength. This study provides the first mechanistic evidence for rapid and opposing activity-dependent control of a ubiquitin ligase and DUB at mammalian CNS synapses. We propose that the dynamic regulation of these opposing forces is critical in maintaining synapses and scaling them during homeostatic plasticity.
Collapse
|
26
|
Figueiredo LS, Dornelles AS, Petry FS, Falavigna L, Dargél VA, Köbe LM, Aguzzoli C, Roesler R, Schröder N. Two waves of proteasome-dependent protein degradation in the hippocampus are required for recognition memory consolidation. Neurobiol Learn Mem 2015; 120:1-6. [PMID: 25687693 DOI: 10.1016/j.nlm.2015.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/21/2015] [Accepted: 02/06/2015] [Indexed: 12/13/2022]
Abstract
Healthy neuronal function and synaptic modification require a concert of synthesis and degradation of proteins. Increasing evidence indicates that protein turnover mediated by proteasome activity is involved in long-term synaptic plasticity and memory. However, its role in different phases of memory remains debated, and previous studies have not examined the possible requirement of protein degradation in recognition memory. Here, we show that the proteasome inhibitor, lactacystin (LAC), infused into the CA1 area of the hippocampus at two specific time points during consolidation, impairs 24-retention of memory for object recognition in rats. Administration of LAC after retrieval did not affect retention. These findings provide the first evidence for a requirement of proteasome activity in recognition memory, indicate that protein degradation in the hippocampus is necessary during selective time windows of memory consolidation, and further our understanding of the role of protein turnover in memory formation.
Collapse
Affiliation(s)
- Luciana S Figueiredo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil; National Institute for Translational Medicine, 90035-003 Porto Alegre, RS, Brazil
| | - Arethuza S Dornelles
- National Institute for Translational Medicine, 90035-003 Porto Alegre, RS, Brazil; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Fernanda S Petry
- National Institute for Translational Medicine, 90035-003 Porto Alegre, RS, Brazil; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Lucio Falavigna
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | - Vinicius A Dargél
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | - Luiza M Köbe
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | - Cristiano Aguzzoli
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | - Rafael Roesler
- National Institute for Translational Medicine, 90035-003 Porto Alegre, RS, Brazil; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | - Nadja Schröder
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil; National Institute for Translational Medicine, 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Massaly N, Francès B, Moulédous L. Roles of the ubiquitin proteasome system in the effects of drugs of abuse. Front Mol Neurosci 2015; 7:99. [PMID: 25610367 PMCID: PMC4285073 DOI: 10.3389/fnmol.2014.00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Because of its ability to regulate the abundance of selected proteins the ubiquitin proteasome system (UPS) plays an important role in neuronal and synaptic plasticity. As a result various stages of learning and memory depend on UPS activity. Drug addiction, another phenomenon that relies on neuroplasticity, shares molecular substrates with memory processes. However, the necessity of proteasome-dependent protein degradation for the development of addiction has been poorly studied. Here we first review evidences from the literature that drugs of abuse regulate the expression and activity of the UPS system in the brain. We then provide a list of proteins which have been shown to be targeted to the proteasome following drug treatment and could thus be involved in neuronal adaptations underlying behaviors associated with drug use and abuse. Finally we describe the few studies that addressed the need for UPS-dependent protein degradation in animal models of addiction-related behaviors.
Collapse
Affiliation(s)
- Nicolas Massaly
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique UMR 5169 Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089 Toulouse, France ; Université Paul Sabatier Toulouse III Toulouse, France
| | - Bernard Francès
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique UMR 5169 Toulouse, France ; Université Paul Sabatier Toulouse III Toulouse, France
| | - Lionel Moulédous
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089 Toulouse, France ; Université Paul Sabatier Toulouse III Toulouse, France
| |
Collapse
|
28
|
Zheng C, Geetha T, Babu JR. Failure of ubiquitin proteasome system: risk for neurodegenerative diseases. NEURODEGENER DIS 2014; 14:161-75. [PMID: 25413678 DOI: 10.1159/000367694] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is the primary proteolytic quality control system in cells and has an essential function in the nervous system. UPS dysfunction has been linked to neurodegenerative conditions, including Alzheimer's, Parkinson's and Huntington's diseases. The pathology of neurodegenerative diseases is characterized by the abnormal accumulation of insoluble protein aggregates or inclusion bodies within neurons. The failure or dysregulation of the UPS prevents the degradation of misfolded/aberrant proteins, leading to deficient synaptic function that eventually affects the nervous system. In this review, we discuss the UPS and its physiological roles in the nervous system, its influence on neuronal function, and how UPS dysfunction contributes to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Ala., USA
| | | | | |
Collapse
|
29
|
Naskar S, Wan H, Kemenes G. pT305-CaMKII stabilizes a learning-induced increase in AMPA receptors for ongoing memory consolidation after classical conditioning. Nat Commun 2014; 5:3967. [PMID: 24875483 PMCID: PMC4048835 DOI: 10.1038/ncomms4967] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/25/2014] [Indexed: 12/02/2022] Open
Abstract
The role of CaMKII in learning-induced activation and trafficking of AMPA receptors (AMPARs) is well established. However, the link between the phosphorylation state of CaMKII and the agonist-triggered proteasomal degradation of AMPARs during memory consolidation remains unknown. Here we describe a novel CaMKII-dependent mechanism by which a learning-induced increase in AMPAR levels is stabilized for consolidation of associative long-term memory. Six hours after classical conditioning the levels of both autophosphorylated pT305-CaMKII and GluA1 type AMPAR subunits are significantly elevated in the ganglia containing the learning circuits of the snail Lymnaea stagnalis. CaMKIINtide treatment significantly reduces the learning-induced elevation of both pT305-CaMKII and GluA1 levels and impairs associative long-term memory. Inhibition of proteasomal activity offsets the deleterious effects of CaMKIINtide on both GluA1 levels and long-term memory. These findings suggest that increased levels of pT305-CaMKII play a role in AMPAR dependent memory consolidation by reducing proteasomal degradation of GluA1 receptor subunits.
Collapse
Affiliation(s)
- Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Huimin Wan
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
30
|
Kudryashova IV. Molecular mechanisms of short-term plasticity as a basis of frequency coding: The role of proteolytic systems. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Wang X, Patel ND, Hui D, Pal R, Hafez MM, Sayed-Ahmed MM, Al-Yahya AA, Michaelis EK. Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice. BMC Neurosci 2014; 15:37. [PMID: 24593767 PMCID: PMC3973933 DOI: 10.1186/1471-2202-15-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/24/2014] [Indexed: 11/22/2022] Open
Abstract
Background Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice. Results During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young. Conclusions Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinkun Wang
- Higuchi Biosciences Center, University of Kansas, 2099 Constant Ave,, Lawrence, KS 66047, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Otero MG, Alloatti M, Cromberg LE, Almenar-Queralt A, Encalada SE, Pozo Devoto VM, Bruno L, Goldstein LSB, Falzone TL. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function. J Cell Sci 2014; 127:1537-49. [PMID: 24522182 DOI: 10.1242/jcs.140780] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria G Otero
- Instituto de Biología Celular y Neurociencias (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires CP 1121, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Laeremans A, Van de Plas B, Clerens S, Van den Bergh G, Arckens L, Hu TT. Protein expression dynamics during postnatal mouse brain development. J Exp Neurosci 2013; 7:61-74. [PMID: 25157209 PMCID: PMC4089830 DOI: 10.4137/jen.s12453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation.
Collapse
Affiliation(s)
- Annelies Laeremans
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
| | - Babs Van de Plas
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
| | - Stefan Clerens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium. ; Group of Food & Bio-based Products, AgResearch Ltd., Christchurch, New Zealand
| | - Gert Van den Bergh
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium. ; Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood. Int J Dev Neurosci 2013; 31:560-7. [PMID: 23850969 DOI: 10.1016/j.ijdevneu.2013.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/30/2013] [Accepted: 06/30/2013] [Indexed: 11/22/2022] Open
Abstract
Exposure to excessive glucocorticoids during fetal development period contributes to later life psychopathology. Prenatal stress decreases dendritic spine density and impair LTP in the hippocampus of rat pups, however, the mechanisms regulating these changes are still unclear. Glutamate receptors are localized in the postsynaptic density. PSD-95 is a postsynaptic scaffolding protein that plays a role in synaptic maturation and regulation of the synaptic strength and plasticity. PSD-95 interacts with other proteins to form the protein networks that promote dendritic spine formation. The present study investigated the effect of prenatal stress on the levels of scaffolding proteins of NMDA receptor in the hippocampus in order to explain how prenatal stress alters the amount of NMDA receptor in the pups' brain. Pregnant rats were randomly assigned to either the prenatal stress (PS) or the control group (C). The pregnant rats in the PS group were restrained in a plexiglas restrainer for 4h/day during the GD 14-21. Control rats were left undisturbed for the duration of their pregnancies. The amount of PSD-95, SPAR, NR2A and NR2B, as well as the levels of Snk Polo-like kinase 2 and the SCF β-TrCP ubiquitin ligase were measured in the hippocampus of the offspring. The results show that prenatal stress induces a reduction in the amount of NR2B and NR2A subunits in the hippocampus of rat pups, parallel to the decrease in PSD-95 and SPAR at P40 and P60. Moreover, prenatal stress increases Snk and β-TrCP in the hippocampus of rat pups, and the timing correlates with the decrease of SPAR and PSD-95. Prenatal stress also induces a significantly increases in the level of ubiquitinated SPAR in the hippocampus of rat pups at adulthood. The results suggest that degradation of SPAR via UPS system may contribute to the loss of PSD-95 and NMDA receptor subunits in the hippocampus of rat pups at adulthood. In conclusion, the present work demonstrates that the developing brain is critically influenced by glucocorticoids, especially during pre- and early postnatal period, which can have long-term effects on brain development. In addition, an involvement of the UPS system in the prenatal stress model has led to a greater understanding of the effects of prenatal stress later on in life.
Collapse
|
35
|
Lin YS, Cheng TH, Chang CP, Chen HM, Chern Y. Enhancement of brain-type creatine kinase activity ameliorates neuronal deficits in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:742-53. [DOI: 10.1016/j.bbadis.2013.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 12/27/2022]
|
36
|
Jarome TJ, Helmstetter FJ. The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem 2013; 105:107-16. [PMID: 23623827 DOI: 10.1016/j.nlm.2013.03.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 02/01/2023]
Abstract
Numerous studies have supported the idea that de novo protein synthesis is critical for synaptic plasticity and normal long-term memory formation. This requirement for protein synthesis has been shown for several different types of fear memories, exists in multiple brain regions and circuits, and is necessary for different stages of memory creation and storage. However, evidence has recently begun to accumulate suggesting that protein degradation through the ubiquitin-proteasome system is an equally important regulator of memory formation. Here we review those recent findings on protein degradation and memory formation and stability and propose a model explaining how protein degradation may be contributing to various aspects of memory and synaptic plasticity. We conclude that protein degradation may be the major factor regulating many of the molecular processes that we know are important for fear memory formation and stability in the mammalian brain.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Psychology, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | | |
Collapse
|
37
|
Tian X, Wu C. The role of ubiquitin-mediated pathways in regulating synaptic development, axonal degeneration and regeneration: insights from fly and worm. J Physiol 2013; 591:3133-43. [PMID: 23613532 DOI: 10.1113/jphysiol.2012.247940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The covalent attachment of the 76 amino acid peptide ubiquitin to target proteins is a rapid and reversible modification that regulates protein stability, activity and localization. As such, it is a potent mechanism for sculpting the synapse. Recent studies from two genetic model organisms, Caenorhabditis elegans and Drosophila, have provided mounting evidence that ubiquitin-mediated pathways play important roles in controlling the presynaptic size, synaptic elimination and stabilization, synaptic transmission, postsynaptic receptor abundance, axonal degeneration and regeneration. While the data supporting the requirement of ubiquitination/deubiquitination for normal synaptic development and repair are compelling, detailed analyses of signalling events up- and downstream of these ubiquitin modifications are often challenging. This article summarizes the related research conducted in worms and flies and provides insight into the fundamental questions facing this field.
Collapse
Affiliation(s)
- Xiaolin Tian
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
38
|
Hai J, Lin Q, Wu YF, Huang XS, Zhang GY, Wang F. Effects of N-stearoyl-L-tyrosine on the hippocampal ubiquitin-proteasome system in rats with chronic cerebral hypoperfusion. Neurol Res 2013; 35:734-43. [PMID: 23562289 DOI: 10.1179/1743132812y.0000000154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Chronic cerebral hypoperfusion (CCH) leads to neurodegeneration and cognitive impairment. Ubiquitinated protein aggregates are commonly present in neurodegenerative disorders and are believed to cause neuronal degeneration. Here, we investigated the effects of N-stearoyl-L-tyrosine (NSTyr) on the hippocampal ubiquitin-proteasome system (UPS) in rats with CCH. METHODS After induction of CCH, NSTyr was intraperitoneally administered daily for 3 months. Protein aggregation was analyzed by ethanolic phosphotungstic acid (EPTA) electron microscopy (EM), immunogold EM, laser-scanning confocal microscopy, and Western blot. Proteasome peptidase activity was measured by peptidase activity assays. RESULTS By using EPTA EM, immunogold EM and high-resolution laser-scanning confocal microscopy, we found that CCH resulted in the accumulation of ubiquitinated protein aggregates in rat hippocampal CA1 neurons. Western blot revealed that the levels of free ubiquitin were significantly reduced and that the levels of ubiquitinated proteins were markedly increased in the hippocampus of CCH rats. Direct activity measurements demonstrated that proteasome peptidase activity in the hippocampal region of rats was decreased after CCH induction. In the hippocampal tissue of CCH rats treated with NSTyr, however, ubiquitinated protein aggregates decreased and proteasome peptidase activity increased. DISCUSSION These data indicate that NSTyr may exert protective effects on rat hippocampal UPS function via endogenous regulation.
Collapse
Affiliation(s)
- Jian Hai
- Tongji University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
39
|
Ubiquitination of neurotransmitter receptors and postsynaptic scaffolding proteins. Neural Plast 2013; 2013:432057. [PMID: 23431475 PMCID: PMC3574743 DOI: 10.1155/2013/432057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/26/2012] [Indexed: 12/19/2022] Open
Abstract
The human brain is made up of an extensive network of neurons that communicate by forming specialized connections called synapses. The amount, location, and dynamic turnover of synaptic proteins, including neurotransmitter receptors and synaptic scaffolding molecules, are under complex regulation and play a crucial role in synaptic connectivity and plasticity, as well as in higher brain functions. An increasing number of studies have established ubiquitination and proteasome-mediated degradation as universal mechanisms in the control of synaptic protein homeostasis. In this paper, we focus on the role of the ubiquitin-proteasome system (UPS) in the turnover of major neurotransmitter receptors, including glutamatergic and nonglutamatergic receptors, as well as postsynaptic receptor-interacting proteins.
Collapse
|
40
|
Chadwick L, Gentle L, Strachan J, Layfield R. Review: unchained maladie - a reassessment of the role of Ubb(+1) -capped polyubiquitin chains in Alzheimer's disease. Neuropathol Appl Neurobiol 2012; 38:118-31. [PMID: 22082077 DOI: 10.1111/j.1365-2990.2011.01236.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular misreading allows the formation of mutant proteins in the absence of gene mutations. A mechanism has been proposed by which a frameshift mutant of the ubiquitin protein, Ubb(+1) , which accumulates in an age-dependent manner as a result of molecular misreading, contributes to neuropathology in Alzheimer's disease (Lam et al. 2000). Specifically, in the Ubb(+1) -mediated proteasome inhibition hypothesis Ubb(+1) 'caps' unanchored (that is, nonsubstrate linked) polyubiquitin chains, which then act as dominant inhibitors of the 26S proteasome. A review of subsequent literature indicates that this original hypothesis is broadly supported, and offers new insights into the mechanisms accounting for the age-dependent accumulation of Ubb(+1) , and how Ubb(+1) -mediated proteasome inhibition may contribute to Alzheimer's disease. Further, recent studies have highlighted a physiological role for free endogenous unanchored polyubiquitin chains in the direct activation of certain protein kinases. This raises the possibility that Ubb(+1) -capped unanchored polyubiquitin chains could also exert harmful effects through the aberrant activation of tau or other ubiquitin-dependent kinases, neuronal NF-κB activity or NF-κB-mediated neuroinflammatory processes.
Collapse
Affiliation(s)
- L Chadwick
- School of Biomedical Sciences, University of Nottingham, UK
| | | | | | | |
Collapse
|
41
|
Abstract
It has become increasingly evident that protein degradation via the ubiquitin proteasome system plays a fundamental role in the development, maintenance and remodeling of synaptic connections in the CNS. We and others have recently described the activity-dependent regulation of proteasome activity and recruitment of proteasomes into spine compartments involving the phosphorylation of the 19S ATPase subunit, Rpt6, by the plasticity kinase Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα) (Bingol and Schuman, 2006; Djakovic et al., 2009; Bingol et al, 2010). Here, we investigated the role of Rpt6 phosphorylation on proteasome function and synaptic strength. Utilizing a phospho-specific antibody we verified that Rpt6 is phosphorylated at Serine 120 (S120) by CaMKIIα. In addition, we found that Rpt6 is phosphorylated by CaMKIIα in an activity-dependent manner. Furthermore, we showed that a serine 120 to aspartic acid phospho-mimetic mutant of Rpt6 (S120D) increases its resistance to detergent extraction in rat hippocampal dendrites, indicating phosphorylated Rpt6 may promote the tethering of proteasomes to scaffolds and cytoskeletal components. Expression of Rpt6 S120D decreased miniature EPSC (mEPSC) amplitude, while expression of a phospho-dead mutant (S120A) increased mEPSC amplitude. Surprisingly, homeostatic scaling of mEPSC amplitude produced by chronic application of bicuculline or tetrodotoxin is both mimicked and occluded by altered Rpt6 phosphorylation. Together, these data suggest that CaMKII-dependent phosphorylation of Rpt6 at S120 may be an important regulatory mechanism for proteasome-dependent control of synaptic remodeling in slow homeostatic plasticity.
Collapse
|
42
|
Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome. PLoS One 2011; 6:e28927. [PMID: 22174927 PMCID: PMC3236230 DOI: 10.1371/journal.pone.0028927] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
Abstract
Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation.
Collapse
|
43
|
Kudryashova IV. Structural and functional modifications of presynaptic afferents: Do they correlate with learning mechanisms? NEUROCHEM J+ 2011. [DOI: 10.1134/s181971241104009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Strømme P, Dobrenis K, Sillitoe RV, Gulinello M, Ali NF, Davidson C, Micsenyi MC, Stephney G, Ellevog L, Klungland A, Walkley SU. X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal-lysosomal dysfunction. Brain 2011; 134:3369-83. [PMID: 21964919 PMCID: PMC3212719 DOI: 10.1093/brain/awr250] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/13/2011] [Accepted: 07/30/2011] [Indexed: 11/15/2022] Open
Abstract
Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium-hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium-hydrogen exchanger 6 deficiency would most likely disrupt the endosomal-lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium-hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for β-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium-hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal-lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions, which in concert could provide a unified explanation for the cellular and clinical phenotypes in humans with SLC9A6 mutations.
Collapse
Affiliation(s)
- Petter Strømme
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- 2 Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Ullevål Hospital, 0424 Oslo, Norway
- 3 Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Kostantin Dobrenis
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roy V. Sillitoe
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Gulinello
- 4 Behavioural Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nafeeza F. Ali
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cristin Davidson
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthew C. Micsenyi
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gloria Stephney
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Linda Ellevog
- 3 Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- 5 Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway
| | - Arne Klungland
- 3 Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- 5 Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway
| | - Steven U. Walkley
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
45
|
Schwarz LA, Patrick GN. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins. Mol Cell Neurosci 2011; 49:387-93. [PMID: 21884797 DOI: 10.1016/j.mcn.2011.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023] Open
Abstract
Extracellular signaling between cells is often transduced via receptors that reside at the cell membrane. In neurons this receptor-mediated signaling can promote a variety of cellular events such as differentiation, axon outgrowth and guidance, and synaptic development and function. Endocytic membrane trafficking of receptors ensures that the strength and duration of an extracellular signal is properly regulated. The covalent modification of membrane proteins by ubiquitin is a key biological mechanism controlling receptor internalization and endocytic sorting to recycling and degradative pathways in many cell types. In this review we highlight recent findings regarding the ubiquitin-dependent trafficking and turnover of receptors in neurons and the implications for neuronal development and function.
Collapse
Affiliation(s)
- Lindsay A Schwarz
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
46
|
Surakul P, Weerachatyanukul W, Chutabhakdikul N. Repeated carbenoxolone injections during late pregnancy alter Snk-SPAR and PSD-95 expression in the hippocampus of rat pups. Neurosci Lett 2011; 494:75-9. [PMID: 21362453 DOI: 10.1016/j.neulet.2011.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 01/24/2023]
Abstract
Homeostasis of circulating cortisol is maintained by the 11β-HSD2 enzyme which inactivates cortisol into cortisone. It is abundantly expressed in the placenta where it protects the fetus from high levels of maternal glucocorticoids (GCs). Maternal administration of Carbenoxolone (Cbx), a powerful 11β-HSD2 inhibitor, leads to an increase in fetal cortisol. Previous data showed that intrauterine environment plays a crucial role in determining hippocampal structure and function. Exposure of pregnant rats to high levels of GC leads to low birth weight in offspring and an increased risk of age related memory and cognitive deficits later in life. Glutamate receptors are localized in the postsynaptic density (PSD), where many signaling proteins, cytoskeleton proteins, and ion channels are found. Any change in the number of these molecules can influence the morphology and function of the dendritic spine. We proposed that repeated Cbx injections during late pregnancy may alter the scaffolding proteins of the NMDA receptor in the pup's brain. We investigated the effects of repeated maternal Cbx injections on the scaffolding proteins of NMDA receptor in the hippocampus of rat pups. We showed that injecting pregnant rats with Cbx injections (30mg/kg) during GD 14-21 leads to a significant decrease in SPAR (Spine Associated Rap Guanylate kinase activating protein) (p<0.001) and PSD-95 (p<0.05) but a significant increase in Snk (Serum inducible kinase) (p<0.001) in the pup's hippocampus at P40. In general, Snk is induced by neuronal activity and plays an important role in phosphorylating SPAR. The phosphorylated SPAR is then recognized and degraded by ubiquitin proteasome system (UPS), causing the depletion of SPAR and PSD-95 from the spines. The results suggest that fetal exposure to excessive GC levels may activate the Snk/SPAR pathway and lead to the depletion of SPAR and PSD-95. Since GCs drugs are commonly used in various obstetric and pediatric conditions, it is important to consider the risks and benefits of prenatal GCs exposure in order to prevent neurodevelopmental delay in the offspring.
Collapse
Affiliation(s)
- Pornprom Surakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | | | | |
Collapse
|
47
|
Zeier Z, Madorsky I, Xu Y, Ogle WO, Notterpek L, Foster TC. Gene expression in the hippocampus: regionally specific effects of aging and caloric restriction. Mech Ageing Dev 2010; 132:8-19. [PMID: 21055414 DOI: 10.1016/j.mad.2010.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
We measured changes in gene expression, induced by aging and caloric restriction (CR), in three hippocampal subregions. When analysis included all regions, aging was associated with expression of genes linked to mitochondrial dysfunction, inflammation, and stress responses, and in some cases, expression was reversed by CR. An age-related increase in ubiquintination was observed, including increased expression of ubiquitin conjugating enzyme genes and cytosolic ubiquitin immunoreactivity. CR decreased cytosolic ubiquitin and upregulated deubiquitinating genes. Region specific analyses indicated that CA1 was more susceptible to aging stress, exhibiting a greater number of altered genes relative to CA3 and the dentate gyrus (DG), and an enrichment of genes related to the immune response and apoptosis. CA3 and the DG were more responsive to CR, exhibiting marked changes in the total number of genes across diet conditions, reversal of age-related changes in p53 signaling, glucocorticoid receptor signaling, and enrichment of genes related to cell survival and neurotrophic signaling. Finally, CR differentially influenced genes for synaptic plasticity in CA1 and CA3. It is concluded that regional disparity in response to aging and CR relates to differences in vulnerability to stressors, the availability of neurotrophic, and cell survival mechanisms, and differences in cell function.
Collapse
Affiliation(s)
- Zane Zeier
- Department of Neuroscience, McKnight Brain Institute, University of Florida, P.O. Box 100244, Gainesville, FL 32610-0244, USA
| | | | | | | | | | | |
Collapse
|
48
|
Histone H1 poly[ADP]-ribosylation regulates the chromatin alterations required for learning consolidation. J Neurosci 2010; 30:13305-13. [PMID: 20926656 DOI: 10.1523/jneurosci.3010-10.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Memory formation requires changes in gene expression, which are regulated by the activation of transcription factors and by changes in epigenetic factors. Poly[ADP]-ribosylation of nuclear proteins has been postulated as a chromatin modification involved in memory consolidation, although the mechanisms involved are not well characterized. Here we demonstrate that poly[ADP]-ribose polymerase 1 (PARP-1) activity and the poly[ADP]-ribosylation of proteins over a specific time course is required for the changes in synaptic plasticity related to memory stabilization in mice. At the molecular level, histone H1 poly[ADP]-ribosylation was evident in the hippocampus after the acquisition period, and it was selectively released in a PARP-1-dependent manner at the promoters of cAMP response element-binding protein and nuclear factor-κB dependent genes associated with learning and memory. These findings suggest that histone H1 poly[ADP]-ribosylation, and its loss at specific loci, is an epigenetic mechanism involved in the reprogramming of neuronal gene expression required for memory consolidation.
Collapse
|
49
|
Abstract
Neurons are highly specialized cells whose connectivity at synapses subserves rapid information transfer in the brain. Proper information processing, learning, and memory storage in the brain requires continuous remodeling of synaptic networks. Such remodeling includes synapse formation, elimination, synaptic protein turnover, and changes in synaptic transmission. An emergent mechanism for regulating synapse function is posttranslational modification through the ubiquitin pathway at the postsynaptic membrane. Here, we discuss recent findings implicating ubiquitination and protein degradation in postsynaptic function and plasticity. We describe postsynaptic ubiquitination pathways and their role in brain development, neuronal physiology, and brain disorders.
Collapse
Affiliation(s)
- Angela M Mabb
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
50
|
Keil JM, Shen Z, Briggs SP, Patrick GN. Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS). PLoS One 2010; 5:e13465. [PMID: 20976103 PMCID: PMC2956693 DOI: 10.1371/journal.pone.0013465] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 09/07/2010] [Indexed: 12/02/2022] Open
Abstract
The ubiquitin proteasome system (UPS) mediates the majority of protein degradation in eukaryotic cells. The UPS has recently emerged as a key degradation pathway involved in synapse development and function. In order to better understand the function of the UPS at synapses we utilized a genetic and proteomic approach to isolate and identify novel candidate UPS substrates from biochemically purified synaptic membrane preparations. Using these methods, we have identified Stromal interacting molecule 1 (STIM1). STIM1 is as an endoplasmic reticulum (ER) calcium sensor that has been shown to regulate store-operated Ca2+ entry (SOCE). We have characterized STIM1 in neurons, finding STIM1 is expressed throughout development with stable, high expression in mature neurons. As in non-excitable cells, STIM1 is distributed in a membranous and punctate fashion in hippocampal neurons. In addition, a population of STIM1 was found to exist at synapses. Furthermore, using surface biotinylation and live-cell labeling methods, we detect a subpopulation of STIM1 on the surface of hippocampal neurons. The role of STIM1 as a regulator of SOCE has typically been examined in non-excitable cell types. Therefore, we examined the role of the UPS in STIM1 and SOCE function in HEK293 cells. While we find that STIM1 is ubiquitinated, its stability is not altered by proteasome inhibitors in cells under basal conditions or conditions that activate SOCE. However, we find that surface STIM1 levels and thapsigargin (TG)-induced SOCE are significantly increased in cells treated with proteasome inhibitors. Additionally, we find that the overexpression of POSH (Plenty of SH3′s), an E3 ubiquitin ligase recently shown to be involved in the regulation of Ca2+ homeostasis, leads to decreased STIM1 surface levels. Together, these results provide evidence for previously undescribed roles of the UPS in the regulation of STIM1 and SOCE function.
Collapse
Affiliation(s)
- Jeffrey M. Keil
- Section of Neurobiology, Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Steven P. Briggs
- Section of Cell and Developmental Biology, Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Gentry N. Patrick
- Section of Neurobiology, Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|