1
|
Sheeler C, Labrada E, Duvick L, Thompson LM, Zhang Y, Orr HT, Cvetanovic M. Expanded ATXN1 alters transcription and calcium signaling in SCA1 human motor neurons differentiated from induced pluripotent stem cells. Neurobiol Dis 2024; 201:106673. [PMID: 39307401 PMCID: PMC11514977 DOI: 10.1016/j.nbd.2024.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited and lethal neurodegenerative disease caused by the abnormal expansion of CAG repeats in the ATAXIN-1 (ATXN1) gene. Pathological studies identified dysfunction and loss of motor neurons (MNs) in the brain stem and spinal cord, which are thought to contribute to premature lethality by affecting the swallowing and breathing of SCA1 patients. However, the molecular and cellular mechanisms of MN pathogenesis remain unknown. To study SCA1 pathogenesis in human MNs, we differentiated induced pluripotent stem cells (iPSCs) derived from SCA1 patients and their unaffected siblings into MNs. We examined proliferation of progenitor cells, neurite outgrowth, spontaneous and glutamate-induced calcium activity of SCA1 MNs to investigate cellular mechanisms of pathogenesis. RNA sequencing was then used to identify transcriptional alterations in iPSC-derived MN progenitors (pMNs) and MNs which could underlie functional changes in SCA1 MNs. We found significantly decreased spontaneous and evoked calcium activity and identified dysregulation of genes regulating calcium signaling in SCA1 MNs. These results indicate that expanded ATXN1 causes dysfunctional calcium signaling in human MNs.
Collapse
Affiliation(s)
- Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States of America
| | - Emmanuel Labrada
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Leslie M Thompson
- Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, United States of America
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Department of Lab Pathology, University of Minnesota, Minneapolis, MN, United States of America
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
2
|
Sukreet S, Rafii MS, Rissman RA. From understanding to action: Exploring molecular connections of Down syndrome to Alzheimer's disease for targeted therapeutic approach. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12580. [PMID: 38623383 PMCID: PMC11016820 DOI: 10.1002/dad2.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Down syndrome (DS) is caused by a third copy of chromosome 21. Alzheimer's disease (AD) is a neurodegenerative condition characterized by the deposition of amyloid-beta (Aβ) plaques and neurofibrillary tangles in the brain. Both disorders have elevated Aβ, tau, dysregulated immune response, and inflammation. In people with DS, Hsa21 genes like APP and DYRK1A are overexpressed, causing an accumulation of amyloid and neurofibrillary tangles, and potentially contributing to an increased risk of AD. As a result, people with DS are a key demographic for research into AD therapeutics and prevention. The molecular links between DS and AD shed insights into the underlying causes of both diseases and highlight potential therapeutic targets. Also, using biomarkers for early diagnosis and treatment monitoring is an active area of research, and genetic screening for high-risk individuals may enable earlier intervention. Finally, the fundamental mechanistic parallels between DS and AD emphasize the necessity for continued research into effective treatments and prevention measures for DS patients at risk for AD. Genetic screening with customized therapy approaches may help the DS population in current clinical studies and future biomarkers.
Collapse
Affiliation(s)
- Sonal Sukreet
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
| | - Michael S. Rafii
- Department of Neurology, Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Robert A. Rissman
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
- Department Physiology and Neuroscience, Alzheimer’s Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
3
|
Dscam1: Is It a Ubiquitous Code for Dendritic Arborization? eNeuro 2023; 10:10/1/ENEURO.0440-22.2023. [PMID: 36702556 PMCID: PMC9884107 DOI: 10.1523/eneuro.0440-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
|
4
|
DeSantis DF, Smith CJ. Tetris in the Nervous System: What Principles of Neuronal Tiling Can Tell Us About How Glia Play the Game. Front Cell Neurosci 2021; 15:734938. [PMID: 34512272 PMCID: PMC8430210 DOI: 10.3389/fncel.2021.734938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/14/2022] Open
Abstract
The precise organization and arrangement of neural cells is essential for nervous system functionality. Cellular tiling is an evolutionarily conserved phenomenon that organizes neural cells, ensuring non-redundant coverage of receptive fields in the nervous system. First recorded in the drawings of Ramon y Cajal more than a century ago, we now have extensive knowledge of the biochemical and molecular mechanisms that mediate tiling of neurons. The advent of live imaging techniques in both invertebrate and vertebrate model organisms has enhanced our understanding of these processes. Despite advancements in our understanding of neuronal tiling, we know relatively little about how glia, an essential non-neuronal component of the nervous system, tile and contribute to the overall spatial arrangement of the nervous system. Here, we discuss lessons learned from neurons and apply them to potential mechanisms that glial cells may use to tile, including cell diversity, contact-dependent repulsion, and chemical signaling. We also discuss open questions in the field of tiling and what new technologies need to be developed in order to better understand glial tiling.
Collapse
Affiliation(s)
- Dana F DeSantis
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Cody J Smith
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
5
|
DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. Neural Dev 2018; 13:22. [PMID: 30219101 PMCID: PMC6138929 DOI: 10.1186/s13064-018-0118-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/26/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Proper patterning of dendritic and axonal arbors is a critical step in the formation of functional neuronal circuits. Developing circuits rely on an array of molecular cues to shape arbor morphology, but the underlying mechanisms guiding the structural formation and interconnectivity of pre- and postsynaptic arbors in real time remain unclear. Here we explore how Down syndrome cell adhesion molecule (DSCAM) differentially shapes the dendritic morphology of central neurons and their presynaptic retinal ganglion cell (RGC) axons in the developing vertebrate visual system. METHODS The cell-autonomous role of DSCAM, in tectal neurons and in RGCs, was examined using targeted single-cell knockdown and overexpression approaches in developing Xenopus laevis tadpoles. Axonal arbors of RGCs and dendritic arbors of tectal neurons were visualized using real-time in vivo confocal microscopy imaging over the course of 3 days. RESULTS In the Xenopus visual system, DSCAM immunoreactivity is present in RGCs, cells in the optic tectum and the tectal neuropil at the time retinotectal synaptic connections are made. Downregulating DSCAM in tectal neurons significantly increased dendritic growth and branching rates while inducing dendrites to take on tortuous paths. Overexpression of DSCAM, in contrast, reduced dendritic branching and growth rate. Functional deficits mediated by tectal DSCAM knockdown were examined using visually guided behavioral assays in swimming tadpoles, revealing irregular behavioral responses to visual stimulus. Functional deficits in visual behavior also corresponded with changes in VGLUT/VGAT expression, markers of excitatory and inhibitory transmission, in the tectum. Conversely, single-cell DSCAM knockdown in the retina revealed that RGC axon arborization at the target is influenced by DSCAM, where axons grew at a slower rate and remained relatively simple. In the retina, dendritic arbors of RGCs were not affected by the reduction of DSCAM expression. CONCLUSIONS Together, our observations implicate DSCAM in the control of both pre- and postsynaptic structural and functional connectivity in the developing retinotectal circuit, where it primarily acts as a neuronal brake to limit and guide postsynaptic dendrite growth of tectal neurons while it also facilitates arborization of presynaptic RGC axons cell autonomously.
Collapse
|
6
|
Julien DP, Chan AW, Barrios J, Mathiaparanam J, Douglass A, Wolman MA, Sagasti A. Zebrafish expression reporters and mutants reveal that the IgSF cell adhesion molecule Dscamb is required for feeding and survival. J Neurogenet 2018; 32:336-352. [PMID: 30204029 DOI: 10.1080/01677063.2018.1493479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Down syndrome cell adhesion molecules (DSCAMs) are broadly expressed in nervous systems and play conserved roles in programmed cell death, neuronal migration, axon guidance, neurite branching and spacing, and synaptic targeting. However, DSCAMs appear to have distinct functions in different vertebrate animals, and little is known about their functions outside the retina. We leveraged the genetic tractability and optical accessibility of larval zebrafish to investigate the expression and function of a DSCAM family member, dscamb. Using targeted genome editing to create transgenic reporters and loss-of-function mutant alleles, we discovered that dscamb is expressed broadly throughout the brain, spinal cord, and peripheral nervous system, but is not required for overall structural organization of the brain. Despite the absence of obvious anatomical defects, homozygous dscamb mutants were deficient in their ability to ingest food and rarely survived to adulthood. Thus, we have discovered a novel function for dscamb in feeding behavior. The mutant and transgenic lines generated in these studies will provide valuable tools for identifying the molecular and cellular bases of these behaviors.
Collapse
Affiliation(s)
- Donald P Julien
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| | - Alex W Chan
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| | - Joshua Barrios
- b Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| | - Jaffna Mathiaparanam
- c Department of Integrative Biology , University of Wisconsin , Madison , WI , USA
| | - Adam Douglass
- b Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| | - Marc A Wolman
- c Department of Integrative Biology , University of Wisconsin , Madison , WI , USA
| | - Alvaro Sagasti
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| |
Collapse
|
7
|
A genome-wide search for new imprinted genes in the human placenta identifies DSCAM as the first imprinted gene on chromosome 21. Eur J Hum Genet 2018; 27:49-60. [PMID: 30206355 DOI: 10.1038/s41431-018-0267-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 11/08/2022] Open
Abstract
We identified, through a genome-wide search for new imprinted genes in the human placenta, DSCAM (Down Syndrome Cellular Adhesion Molecule) as a paternally expressed imprinted gene. Our work revealed the presence of a Differentially Methylated Region (DMR), located within intron 1 that might regulate the imprinting in the region. This DMR showed a maternal allele methylation, compatible with its paternal expression. We showed that DSCAM is present in endothelial cells and the syncytiotrophoblast layer of the human placenta. In mouse, Dscam expression is biallelic in foetal brain and placenta excluding any possible imprinting in these tissues. This gene encodes a cellular adhesion molecule mainly known for its role in neurone development but its function in the placenta remains unclear. We report here the first imprinted gene located on human chromosome 21 with potential clinical implications.
Collapse
|
8
|
Boyer NP, Gupton SL. Revisiting Netrin-1: One Who Guides (Axons). Front Cell Neurosci 2018; 12:221. [PMID: 30108487 PMCID: PMC6080411 DOI: 10.3389/fncel.2018.00221] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
Proper patterning of the nervous system requires that developing axons find appropriate postsynaptic partners; this entails microns to meters of extension through an extracellular milieu exhibiting a wide range of mechanical and chemical properties. Thus, the elaborate networks of fiber tracts and non-fasciculated axons evident in mature organisms are formed via complex pathfinding. The macroscopic structures of axon projections are highly stereotyped across members of the same species, indicating precise mechanisms guide their formation. The developing axon exhibits directionally biased growth toward or away from external guidance cues. One of the most studied guidance cues is netrin-1, however, its presentation in vivo remains debated. Guidance cues can be secreted to form soluble or chemotactic gradients or presented bound to cells or the extracellular matrix to form haptotactic gradients. The growth cone, a highly specialized dynamic structure at the end of the extending axon, detects these guidance cues via transmembrane receptors, such as the netrin-1 receptors deleted in colorectal cancer (DCC) and UNC5. These receptors orchestrate remodeling of the cytoskeleton and cell membrane through both chemical and mechanotransductive pathways, which result in traction forces generated by the cytoskeleton against the extracellular environment and translocation of the growth cone. Through intracellular signaling responses, netrin-1 can trigger either attraction or repulsion of the axon. Here we review the mechanisms by which the classical guidance cue netrin-1 regulates intracellular effectors to respond to the extracellular environment in the context of axon guidance during development of the central nervous system and discuss recent findings that demonstrate the critical importance of mechanical forces in this process.
Collapse
Affiliation(s)
- Nicholas P. Boyer
- Neurobiology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci 2017; 74:4133-4157. [PMID: 28631008 PMCID: PMC5643215 DOI: 10.1007/s00018-017-2572-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
The protocadherins (Pcdhs), which make up the most diverse group within the cadherin superfamily, were first discovered in the early 1990s. Data implicating the Pcdhs, including ~60 proteins encoded by the tandem Pcdha, Pcdhb, and Pcdhg gene clusters and another ~10 non-clustered Pcdhs, in the regulation of neural development have continually accumulated, with a significant expansion of the field over the past decade. Here, we review the many roles played by clustered and non-clustered Pcdhs in multiple steps important for the formation and function of neural circuits, including dendrite arborization, axon outgrowth and targeting, synaptogenesis, and synapse elimination. We further discuss studies implicating mutation or epigenetic dysregulation of Pcdh genes in a variety of human neurodevelopmental and neurological disorders. With recent structural modeling of Pcdh proteins, the prospects for uncovering molecular mechanisms of Pcdh extracellular and intracellular interactions, and their role in normal and disrupted neural circuit formation, are bright.
Collapse
Affiliation(s)
- Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Armitage SAO, Kurtz J, Brites D, Dong Y, Du Pasquier L, Wang HC. Dscam1 in Pancrustacean Immunity: Current Status and a Look to the Future. Front Immunol 2017. [PMID: 28649249 PMCID: PMC5465998 DOI: 10.3389/fimmu.2017.00662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Down syndrome cell adhesion molecule 1 (Dscam1) gene is an extraordinary example of diversity: by combining alternatively spliced exons, thousands of isoforms can be produced from just one gene. So far, such diversity in this gene has only been found in insects and crustaceans, and its essential part in neural wiring has been well-characterized for Drosophila melanogaster. Ten years ago evidence from D. melanogaster showed that the Dscam1 gene is involved in insect immune defense and work on Anopheles gambiae indicated that it is a hypervariable immune receptor. These exciting findings showed that via processes of somatic diversification insects have the possibility to produce unexpected immune molecule diversity, and it was hypothesized that Dscam1 could provide the mechanistic underpinnings of specific immune responses. Since these first publications the quest to understand the function of this gene has uncovered fascinating insights from insects and crustaceans. However, we are still far from a complete understanding of how Dscam1 functions in relation to parasites and pathogens and its full relevance for the immune system. In this Hypothesis and Theory article, we first briefly introduce Dscam1 and what we know so far about how it might function in immunity. By focusing on seven questions, we then share our sometimes contrasting thoughts on what the evidence tells us so far, what essential experiments remain to be done, and the future prospects, with the aim to provide a multiangled view on what this fascinating gene has to do with immune defense.
Collapse
Affiliation(s)
- Sophie A O Armitage
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Daniela Brites
- Tuberculosis Research Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, United States
| | | | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Jia YL, Fu ZX, Zhang BH, Jia YJ. Hippocampal overexpression of Down syndrome cell adhesion molecule in amyloid precursor protein transgenic mice. ACTA ACUST UNITED AC 2017; 50:e6049. [PMID: 28513774 PMCID: PMC5479388 DOI: 10.1590/1414-431x20176049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/20/2017] [Indexed: 11/25/2022]
Abstract
Down syndrome cell adhesion molecule (DSCAM) is located within the Down syndrome critical region of chromosome 21. DSCAM is a broadly expressed neurodevelopmental protein involved in synaptogenesis, neurite outgrowth, and axon guidance. We previously demonstrated DSCAM overexpression in the cortex of amyloid precursor protein (APP) transgenic mice, suggesting possible regulatory interactions between APP and DSCAM. APP mice exhibit deficits in hippocampus-dependent learning and memory. In this preliminary study, we examined age-related changes in DSCAM expression within the hippocampus in 16 APP transgenic mice (1, 3, 6 and 12 months old). Hippocampus-dependent spatial memory was assessed in APP mice and age-matched wild type littermates (WTs) using the Morris water maze (MWM). The cellular distribution of hippocampal DSCAM and total expression at both mRNA and protein levels were measured by immunohistochemistry, qRT-PCR, and western blotting, respectively. APP mice exhibited spatial memory deficits in the MWM. Intense DSCAM immunoreactivity was observed in the dentate gyrus granule cell layer and hippocampal stratum pyramidale. Total hippocampal DSCAM mRNA and protein expression levels were substantially higher in APP mice than WTs at 1 and 3 months of age. Expression decreased with age in both groups but remained higher in APP mice. DSCAM is overexpressed in the hippocampus over the first 12 months of life in APP mice, but especially during maturation to adulthood. In conclusion, these results suggest an association between DSCAM and APP mice, which is characterized by neuropathology and behavioral deficits. These results provide some clues for future studies on the role of DSCAM overexpression in the precocious cognitive decline observed in APP transgenic mice.
Collapse
Affiliation(s)
- Y L Jia
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Neurology, The Central Hospital of Kaifeng, Kaifeng, Henan Province, China
| | - Z X Fu
- Department of Neurology, The Central Hospital of Kaifeng, Kaifeng, Henan Province, China
| | - B H Zhang
- Department of Neurology, The Central Hospital of Kaifeng, Kaifeng, Henan Province, China
| | - Y J Jia
- Department of Neurology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
12
|
Li SA, Cheng L, Yu Y, Wang JH, Chen Q. Structural basis of Dscam1 homodimerization: Insights into context constraint for protein recognition. SCIENCE ADVANCES 2016; 2:e1501118. [PMID: 27386517 PMCID: PMC4928987 DOI: 10.1126/sciadv.1501118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/29/2016] [Indexed: 02/05/2023]
Abstract
The Drosophila neural receptor Dscam1 (Down syndrome cell adhesion molecule 1) plays an essential role in neuronal wiring and self-avoidance. Dscam1 potentially encodes 19,008 ectodomains through alternative RNA splicing and exhibits exquisite isoform-specific homophilic binding, which makes it an exceptional example for studying protein binding specificity. However, structural information on Dscam1 is limited, which hinders illumination of the mechanism of Dscam1 isoform-specific recognition. Whether different Dscam1 isoforms adopt the same dimerization mode remains a subject of debate. We present 12 Dscam1 crystal structures, provide direct evidence indicating that all isoforms adopt a conserved homodimer geometry in a modular fashion, identify two mechanisms for the Ig2 binding domain to dispel electrostatic repulsion during dimerization, decode Ig2 binding specificity by a central motif at its symmetry center, uncover the role of glycosylation in Dscam1 homodimerization, and find electrostatic potential complementarity to help define the binding region and the antiparallel binding mode. We then propose a concept that the context of a protein may set restrictions to regulate its binding specificity, which provides a better understanding of protein recognition.
Collapse
Affiliation(s)
- Shu-Ang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Linna Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Jia-Huai Wang
- Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Pediatrics and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| |
Collapse
|
13
|
Yip ZC, Heiman MG. Duplication of a Single Neuron in C. elegans Reveals a Pathway for Dendrite Tiling by Mutual Repulsion. Cell Rep 2016; 15:2109-2117. [PMID: 27239028 DOI: 10.1016/j.celrep.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/16/2016] [Accepted: 04/24/2016] [Indexed: 11/30/2022] Open
Abstract
Simple cell-cell interactions can give rise to complex cellular patterns. For example, neurons of the same type can interact to create a complex patchwork of non-overlapping dendrite arbors, a pattern known as dendrite tiling. Dendrite tiling often involves mutual repulsion between neighboring neurons. While dendrite tiling is found across nervous systems, the nematode Caenorhabditis elegans has a relatively simple nervous system with few opportunities for tiling. Here, we show that genetic duplication of a single neuron, PVD, is sufficient to create dendrite tiling among the resulting ectopic neurons. We use laser ablation to show that this tiling is mediated by mutual repulsion between neighbors. Furthermore, we find that tiling requires a repulsion signal (UNC-6/Netrin and its receptors UNC-40/DCC and UNC-5) that normally patterns the PVD dendrite arbor. These results demonstrate that an apparently complex cellular pattern can emerge in a simple nervous system merely by increasing neuron number.
Collapse
Affiliation(s)
- Zhiqi Candice Yip
- Division of Genetics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Maxwell G Heiman
- Division of Genetics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Pérez-Núñez R, Barraza N, Gonzalez-Jamett A, Cárdenas AM, Barnier JV, Caviedes P. Overexpressed Down Syndrome Cell Adhesion Molecule (DSCAM) Deregulates P21-Activated Kinase (PAK) Activity in an In Vitro Neuronal Model of Down Syndrome: Consequences on Cell Process Formation and Extension. Neurotox Res 2016; 30:76-87. [PMID: 26966010 DOI: 10.1007/s12640-016-9613-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
In humans, Down syndrome (DS) is caused by the presence of an extra copy of autosome 21. The most striking finding in DS patients is intellectual disability and the onset of Alzheimer's disease (AD)-like neuropathology in adulthood. Gene overdose is most likely to underlie both developmental impairments, as well as altered neuronal function in DS. Lately, the disruption of cellular signaling and regulatory pathways has been implicated in DS pathophysiology, and many of such pathways may represent common targets for diverse DS-related genes, which could in turn represent attractive therapeutical targets. In this regard, one DS-related gene Down Syndrome Cell Adhesion Molecule (DSCAM), has important functions in neuronal proliferation, maturation, and synaptogenesis. p21-associated kinases (PAKs) appear as a most interesting possibility for study, as DSCAM is known to regulate the PAKs pathway. Hence, in DS, overexpressed DSCAM could deregulate PAKs activity and affect signaling pathways that regulate synaptic plasticity such as dendritic spine dynamics and axon guidance and growth. In the present work, we used an immortalized cell line derived from the cerebral cortex of an animal model of DS such as the trisomy 16 (Ts16) fetal mouse (named CTb), and a similar cell line established from a normal littermate (named CNh), to study the effect of DSCAM in the PAKs pathway. The present study shows that DSCAM is overexpressed in CTb cells by approximately twofold, compared to CNh cells. Congruently, PAK1, as well as its downstream effectors LIMK and cofilin, stay phosphorylated for longer periods after DSCAM activation in the CTb cells, leading to an altered actin dynamics, expressed as an increased basal F/G ratio and reduced neurite growth, in the trisomic condition. The present work presents the correlation between DSCAM gene overexpression and a dysregulation of the PAK pathway, resulting in altered morphological parameters of neuronal plasticity in the trisomic cell line, namely decreased number and length of processes.
Collapse
Affiliation(s)
- Ramón Pérez-Núñez
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - Natalia Barraza
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | | | | | - Jean-Vianney Barnier
- Neuroscience Paris-Saclay Institute, UMR 9197, CNRS-Université Paris-Sud, 91400, Orsay Cedex, France
| | - Pablo Caviedes
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile.
| |
Collapse
|
15
|
Synaptic circuits and their variations within different columns in the visual system of Drosophila. Proc Natl Acad Sci U S A 2015; 112:13711-6. [PMID: 26483464 DOI: 10.1073/pnas.1509820112] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We reconstructed the synaptic circuits of seven columns in the second neuropil or medulla behind the fly's compound eye. These neurons embody some of the most stereotyped circuits in one of the most miniaturized of animal brains. The reconstructions allow us, for the first time to our knowledge, to study variations between circuits in the medulla's neighboring columns. This variation in the number of synapses and the types of their synaptic partners has previously been little addressed because methods that visualize multiple circuits have not resolved detailed connections, and existing connectomic studies, which can see such connections, have not so far examined multiple reconstructions of the same circuit. Here, we address the omission by comparing the circuits common to all seven columns to assess variation in their connection strengths and the resultant rates of several different and distinct types of connection error. Error rates reveal that, overall, <1% of contacts are not part of a consensus circuit, and we classify those contacts that supplement (E+) or are missing from it (E-). Autapses, in which the same cell is both presynaptic and postsynaptic at the same synapse, are occasionally seen; two cells in particular, Dm9 and Mi1, form ≥ 20-fold more autapses than do other neurons. These results delimit the accuracy of developmental events that establish and normally maintain synaptic circuits with such precision, and thereby address the operation of such circuits. They also establish a precedent for error rates that will be required in the new science of connectomics.
Collapse
|
16
|
Keeler AB, Molumby MJ, Weiner JA. Protocadherins branch out: Multiple roles in dendrite development. Cell Adh Migr 2015; 9:214-26. [PMID: 25869446 DOI: 10.1080/19336918.2014.1000069] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The proper formation of dendritic arbors is a critical step in neural circuit formation, and as such defects in arborization are associated with a variety of neurodevelopmental disorders. Among the best gene candidates are those encoding cell adhesion molecules, including members of the diverse cadherin superfamily characterized by distinctive, repeated adhesive domains in their extracellular regions. Protocadherins (Pcdhs) make up the largest group within this superfamily, encompassing over 80 genes, including the ∼60 genes of the α-, β-, and γ-Pcdh gene clusters and the non-clustered δ-Pcdh genes. An additional group includes the atypical cadherin genes encoding the giant Fat and Dachsous proteins and the 7-transmembrane cadherins. In this review we highlight the many roles that Pcdhs and atypical cadherins have been demonstrated to play in dendritogenesis, dendrite arborization, and dendritic spine regulation. Together, the published studies we discuss implicate these members of the cadherin superfamily as key regulators of dendrite development and function, and as potential therapeutic targets for future interventions in neurodevelopmental disorders.
Collapse
Key Words
- CNR, Cadherin related neuronal receptor
- CTCF, CCCTC-binding factor
- CaMKII, Ca2+/calmodulin-dependent protein kinase II.
- Celsr, Cadherin EGF LAG 7-pass G-type receptor 1
- DSCAM, Down syndrome cell adhesion molecule
- Dnmt3b, DNA (cytosine-5-)-methyltransferase 3 β
- Ds, Dachsous
- EC, extracellular cadherin
- EGF, Epidermal growth factor
- FAK, Focal adhesion kinase
- FMRP, Fragile X mental retardation protein
- Fj, Four jointed
- Fjx1, Four jointed box 1
- GPCR, G-protein-coupled receptor
- Gogo, Golden Goal
- LIM domain, Lin11, Isl-1 & Mec-3 domain
- MARCKS, Myristoylated alanine-rich C-kinase substrate
- MEF2, Myocyte enhancer factor 2
- MEK3, Mitogen-activated protein kinase kinase 3
- PCP, planar cell polarity
- PKC, Protein kinase C
- PSD, Post-synaptic density
- PYK2, Protein tyrosine kinase 2
- Pcdh
- Pcdh, Protocadherin
- RGC, Retinal ganglion cell
- RNAi, RNA interference
- Rac1, Ras-related C3 botulinum toxin substrate 1
- S2 cells, Schneider 2 cells
- SAC, starburst amacrine cell
- TAF1, Template-activating factor 1
- TAO2β, Thousand and one amino acid protein kinase 2 β
- TM, transmembrane
- arborization
- atypical cadherin
- branching
- cadherin superfamily
- cell adhesion
- da neuron, dendritic arborization neuron
- dendritic
- dendritic spine
- dendritogenesis
- fmi, Flamingo
- md neuron, multiple dendrite neuron
- neural circuit formation
- p38 MAPK, p38 mitogen-activated protein kinase
- self avoidance
- synaptogenesis
Collapse
Affiliation(s)
- Austin B Keeler
- a Department of Biology ; Neuroscience Graduate Program; University of Iowa ; Iowa City , IA USA
| | | | | |
Collapse
|
17
|
Enright JM, Lawrence KA, Hadzic T, Corbo JC. Transcriptome profiling of developing photoreceptor subtypes reveals candidate genes involved in avian photoreceptor diversification. J Comp Neurol 2014; 523:649-68. [PMID: 25349106 DOI: 10.1002/cne.23702] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022]
Abstract
Avian photoreceptors are a diverse class of neurons, comprised of four single cones, the two members of the double cone, and rods. The signaling events and transcriptional regulators driving the differentiation of these diverse photoreceptors are largely unknown. In addition, many distinctive features of photoreceptor subtypes, including spectral tuning, oil droplet size and pigmentation, synaptic targets, and spatial patterning, have been well characterized, but the molecular mechanisms underlying these attributes have not been explored. To identify genes specifically expressed in distinct chicken (Gallus gallus) photoreceptor subtypes, we developed fluorescent reporters that label photoreceptor subpopulations, isolated these subpopulations by using fluorescence-activated cell sorting, and subjected them to next-generation sequencing. By comparing the expression profiles of photoreceptors labeled with rhodopsin, red opsin, green opsin, and violet opsin reporters, we have identified hundreds of differentially expressed genes that may underlie the distinctive features of these photoreceptor subtypes. These genes are involved in a variety of processes, including phototransduction, transcriptional regulation, cell adhesion, maintenance of intra- and extracellular structure, and metabolism. Of particular note are a variety of differentially expressed transcription factors, which may drive and maintain photoreceptor diversity, and cell adhesion molecules, which may mediate spatial patterning of photoreceptors and act to establish retinal circuitry. These analyses provide a framework for future studies that will dissect the role of these various factors in the differentiation of avian photoreceptor subtypes.
Collapse
Affiliation(s)
- Jennifer M Enright
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110-1024
| | | | | | | |
Collapse
|
18
|
Roles for DSCAM and DSCAML1 in central nervous system development and disease. ADVANCES IN NEUROBIOLOGY 2014; 8:249-70. [PMID: 25300140 DOI: 10.1007/978-1-4614-8090-7_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DSCAMs (Down syndrome cell adhesion molecules) are a group of immunoglobulin-like transmembrane proteins that contain fibronectin III domains. The founding member of the family was isolated in a positional cloning study that sought to identify genes located on chromosome 21 at the locus 21q22.2-q22.3 that is implicated in the neurological and cardiac phenotypes associated with Down's syndrome. In Drosophila, Dscam proteins are involved in neuronal wiring, while in vertebrates, the role of these cell adhesion molecules in neurogenesis, dendritogenesis, axonal outgrowth, synaptogenesis, and synaptic plasticity is only just beginning to be understood. In this chapter, we will review the functions ascribed to the two paralogous proteins found in humans, DSCAM and DSCAML1 (DSCAM-like 1), based on findings in knockout mice. The signaling pathways downstream of DSCAM activation and the role of DSCAM miss-expression in disease will be also discussed, particularly with regard to the intellectual disability in Down's syndrome.
Collapse
|
19
|
Lah GJE, Li JSS, Millard SS. Cell-specific alternative splicing of Drosophila Dscam2 is crucial for proper neuronal wiring. Neuron 2014; 83:1376-88. [PMID: 25175881 DOI: 10.1016/j.neuron.2014.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 01/11/2023]
Abstract
How a finite number of genes specify a seemingly infinite number of neuronal connections is a central question in neurobiology. Alternative splicing has been proposed to increase proteome diversity in the brain. Here we show that cell-specific alternative splicing of a cell-surface protein is crucial for neuronal wiring. Down syndrome cell adhesion molecule 2 (Dscam2) is a conserved homophilic binding protein that can induce repulsion between opposing neurons. In the fly visual system, L1 and L2 neurons both require Dscam2 repulsion, but paradoxically, they also physically contact each other. We found that the cell-specific expression of two biochemically distinct alternative isoforms of Dscam2 prevents these cells from repelling each other. Phenotypes were observed in the axon terminals of L1 and L2 when they expressed the incorrect isoform, demonstrating a requirement for distinct isoforms. We conclude that cell-specific alternative splicing is a mechanism for achieving proper connectivity between neurons.
Collapse
Affiliation(s)
- Grace Ji-Eun Lah
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joshua Shing Shun Li
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - S Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
20
|
Wang GZ, Marini S, Ma X, Yang Q, Zhang X, Zhu Y. Improvement of Dscam homophilic binding affinity throughout Drosophila evolution. BMC Evol Biol 2014; 14:186. [PMID: 25158691 PMCID: PMC4243935 DOI: 10.1186/s12862-014-0186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Background Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is known that thousands of isoforms bind themselves through specific homophilic interactions, a process which provides the basis for cellular self-recognition. Detailed biochemical studies of specific isoforms strongly suggest that homophilic binding, i.e. the formation of homodimers by identical Dscam1 isomers, is of great importance for the self-avoidance of neurons. Due to experimental limitations, it is currently impossible to measure the homophilic binding affinities for all 19,000 potential isoforms. Results Here we reconstructed the DNA sequences of an ancestral Dscam form (which likely existed approximately 40 ~ 50 million years ago) using a comparative genomic approach. On the basis of this sequence, we established a working model to predict the self-binding affinities of all isoforms in both the current and the ancestral genome, using machine-learning methods. Detailed computational analysis was performed to compare the self-binding affinities of all isoforms present in these two genomes. Our results revealed that 1) isoforms containing newly derived variable domains exhibit higher self-binding affinities than those with conserved domains, and 2) current isoforms display higher self-binding affinities than their counterparts in the ancient genome. As thousands of Dscam isoforms are needed for the self-avoidance of the neuron, we propose that an increase in self-binding affinity provides the basis for the successful evolution of the arthropod brain. Conclusions Our data presented here provide an excellent model for future experimental studies of the binding behavior of Dscam isoforms. The results of our analysis indicate that evolution favored the rise of novel variable domains thanks to their higher self-binding affinities, rather than selection merely on the basis of simple expansion of isoform diversity, as that this particular selection process would have established the powerful mechanisms required for neuronal self-avoidance. Thus, we reveal here a new molecular mechanism for the successful evolution of arthropod brains. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0186-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Xuegong Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | | |
Collapse
|
21
|
Reese BE, Keeley PW. Design principles and developmental mechanisms underlying retinal mosaics. Biol Rev Camb Philos Soc 2014; 90:854-76. [PMID: 25109780 DOI: 10.1111/brv.12139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023]
Abstract
Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, U.S.A
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, U.S.A
| |
Collapse
|
22
|
Abstract
The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Kim JH, Wang X, Coolon R, Ye B. Dscam expression levels determine presynaptic arbor sizes in Drosophila sensory neurons. Neuron 2013; 78:827-38. [PMID: 23764288 DOI: 10.1016/j.neuron.2013.05.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/19/2022]
Abstract
Expression of the Down syndrome cell-adhesion molecule (Dscam) is increased in the brains of patients with several neurological disorders. Although Dscam is critically involved in many aspects of neuronal development, little is known about either the mechanism that regulates its expression or the functional consequences of dysregulated Dscam expression. Here, we show that Dscam expression levels serve as an instructive code for the size control of presynaptic arbor. Two convergent pathways, involving dual leucine zipper kinase (DLK) and fragile X mental retardation protein (FMRP), control Dscam expression through protein translation. Defects in this regulation of Dscam translation lead to exuberant presynaptic arbor growth in Drosophila somatosensory neurons. Our findings uncover a function of Dscam in presynaptic size control and provide insights into how dysregulated Dscam may contribute to the pathogenesis of neurological disorders.
Collapse
Affiliation(s)
- Jung Hwan Kim
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- S. Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1662;
| | - Wesley B. Grueber
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032;
| |
Collapse
|
25
|
Abstract
A compact genome and a tiny brain make Drosophila the prime model to understand the neural substrate of behavior. The neurogenetic efforts to reveal neural circuits underlying Drosophila vision started about half a century ago, and now the field is booming with sophisticated genetic tools, rich behavioral assays, and importantly, a greater number of scientists joining from different backgrounds. This review will briefly cover the structural anatomy of the Drosophila visual system, the animal’s visual behaviors, the genes involved in assembling these circuits, the new and powerful techniques, and the challenges ahead for ultimately identifying the general principles of biological computation in the brain.
A typical brain utilizes a great many compact neural circuits to collect and process information from the internal biological and external environmental worlds and generates motor commands for observable behaviors. The fruit fly Drosophila melanogaster, despite of its miniature body and tiny brain, can survive in almost any corner of the world.1 It can find food, court mate, fight rival conspecific, avoid predators, and amazingly fly without crashing into trees. Drosophila vision and its underlying neuronal machinery has been a key research model for at least half century for neurogeneticists.2 Given the efforts invested on the visual system, this animal model is likely to offer the first full understanding of how visual information is computed by a multi-cellular organism. Furthermore, research in Drosophila has revealed many genes that play crucial roles in the formation of functional brains across species. The architectural similarities between the visual systems of Drosophila and vertebrate at the molecular, cellular, and network levels suggest new principles discovered at the circuit level on the relationship between neurons and behavior in Drosophila shall also contribute greatly to our understanding of the general principles for how bigger brains work.3 I start with the anatomy of Drosophila visual system, which surprisingly still contains many uncharted areas.
Collapse
Affiliation(s)
- Yan Zhu
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| |
Collapse
|
26
|
Hansen M, Walmod PS. IGSF9 family proteins. Neurochem Res 2013; 38:1236-51. [PMID: 23417431 DOI: 10.1007/s11064-013-0999-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/22/2022]
Abstract
The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene, whereas vertebrates contain two to four genes. In cnidarians, the gene appears to encode a secreted protein, but transmembrane isoforms of the protein have also evolved, and in many species, alternative splicing facilitates the expression of both transmembrane and secreted isoforms. In most species, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle and mammalian IGSF9 proteins are contradictory.
Collapse
Affiliation(s)
- Maria Hansen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, University of Copenhagen, Building 24.2, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
27
|
Yeh YC, Lee CW, Pan YW, Hsu YJ, Hung HY, Chen YM, Lin HY, Chen TY, Yang HL, Wang HC. Identification and characterization of DSCAM isoforms isolated from orange-spotted grouper Epinephelus coioides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:148-159. [PMID: 22627126 DOI: 10.1016/j.dci.2012.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/01/2012] [Accepted: 05/06/2012] [Indexed: 06/01/2023]
Abstract
The Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin (Ig) superfamily member, was first identified from human and subsequently isolated from both vertebrates and invertebrates. Recent studies have shown that the DSCAM molecule serves diverse functions in neurodevelopment, such as axon guidance and neuronal migration. Most studies on DSCAM, however, have focused on mammals and arthropods, and our present knowledge of bony fish DSCAM is still limited. In this study, orange-spotted grouper Epinephelus coioides was used as an animal model to explore the possible functions of DSCAM. Two DSCAM isoforms were isolated, namely EcDSCAM A and EcDSCAM B, with lengths of 1648 and 2025 amino acids, respectively. The classical domain structure (i.e. 9Ig-4FNIII-1Ig-2FNIII-Transmembrane domain-Cytoplasmic tail) was also found in the coding regions of these two EcDSCAMs. Phylogenetic analysis showed that in the vertebrate DSCAM clade, the EcDSCAMs and various teleost DSCAMs were clustered into a subclade. Real-time PCR revealed that EcDSCAM B is the major EcDSCAM isoform, with the expression of EcDSCAM B being significantly higher than that of EcDSCAM A. During the first 14days after hatching (dph), increases in the expression of the two EcDSCAMs were observed at 2-4 and 8-11dph. EcDSCAM is expressed mainly in the intestine, nerve-related tissues, and stomach. Optic nerve transection analysis showed that EcDSCAM was up-regulated during optic nerve regeneration after optic nerve injury. We also investigated whether DSCAM expression was affected by viral nervous necrosis (VNN) disease or vibriosis. We found that when grouper were challenged with nervous necrosis virus (NNV), there were no meaningful changes in DSCAM expression, but challenge with Vibrio anguillarum led to a decrease in EcDSCAM levels in the brain. This decrease may be related to the pathogenesis of V. anguillarum.
Collapse
Affiliation(s)
- Ying-Chun Yeh
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kurshan PT, Shen K. Dendritic patterning: three-dimensional position determines dendritic avoidance capability. Curr Biol 2012; 22:R192-4. [PMID: 22440803 DOI: 10.1016/j.cub.2012.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons develop mutually exclusive dendritic domains through self-avoidance and tiling mechanisms. Two recent studies establish that this process is dependent on the restriction of dendrites to a two-dimensional plane through interactions with the extracellular matrix.
Collapse
Affiliation(s)
- Peri T Kurshan
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
29
|
Garrett AM, Burgess RW. Candidate molecular mechanisms for establishing cell identity in the developing retina. Dev Neurobiol 2012; 71:1258-72. [PMID: 21630473 DOI: 10.1002/dneu.20926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the developing nervous system, individual neurons must occupy appropriate positions within circuits. This requires that these neurons recognize and form connections with specific pre- and postsynaptic partners. Cellular recognition is also required for the spacing of cell bodies and the arborization of dendrites, factors that determine the inputs onto a given neuron. These issues are particularly evident in the retina, where different types of neurons are evenly spaced relative to other cells of the same type. This establishes a reiterated columnar circuitry resembling the insect retina. Establishing these mosaic patterns requires that cells of a given type (homotypic cells) be able to sense their neighbors. Therefore, both synaptic specificity and mosaic spacing require cellular identifiers. In synaptic specificity, recognition often occurs between different types of cells in a pre- and postsynaptic pairing. In mosaic spacing, recognition is often occurring between different cells of the same type, orhomotypic self-recognition. Dendritic arborization can require recognition of different neurites of the same cell, or isoneuronal self-recognition. The retina is an extremely amenable system for studying the molecular identifiers that drive these various forms of recognition. The different neuronal types in the retina are well defined, and the genetic tools for marking cell types are increasingly available. In this review we will summarize retinal anatomy and describe cell types in the retina and how they are defined. We will then describe the requirements of a recognition code and discuss newly emerging candidate molecular mechanisms for recognition that may meet these requirements.
Collapse
|
30
|
Kim ME, Shrestha BR, Blazeski R, Mason CA, Grueber WB. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons. Neuron 2012; 73:79-91. [PMID: 22243748 DOI: 10.1016/j.neuron.2011.10.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2011] [Indexed: 10/14/2022]
Abstract
Dendrites achieve characteristic spacing patterns during development to ensure appropriate coverage of territories. Mechanisms of dendrite positioning via repulsive dendrite-dendrite interactions are beginning to be elucidated, but the control, and importance, of dendrite positioning relative to their substrate is poorly understood. We found that dendritic branches of Drosophila dendritic arborization sensory neurons can be positioned either at the basal surface of epidermal cells, or enclosed within epidermal invaginations. We show that integrins control dendrite positioning on or within the epidermis in a cell autonomous manner by promoting dendritic retention on the basal surface. Loss of integrin function in neurons resulted in excessive self-crossing and dendrite maintenance defects, the former indicating a role for substrate interactions in self-avoidance. In contrast to a contact-mediated mechanism, we find that integrins prevent crossings that are noncontacting between dendrites in different three-dimensional positions, revealing a requirement for combined dendrite-dendrite and dendrite-substrate interactions in self-avoidance.
Collapse
Affiliation(s)
- Michelle E Kim
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
31
|
Ropireddy D, Bachus SE, Ascoli GA. Non-homogeneous stereological properties of the rat hippocampus from high-resolution 3D serial reconstruction of thin histological sections. Neuroscience 2012; 205:91-111. [PMID: 22245503 DOI: 10.1016/j.neuroscience.2011.12.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
Abstract
Integrating hippocampal anatomy from neuronal dendrites to whole system may help elucidate its relation to function. Toward this aim, we digitally traced the cytoarchitectonic boundaries of the dentate gyrus (DG) and areas CA3/CA1 throughout their entire longitudinal extent from high-resolution images of thin cryostatic sections of adult rat brain. The 3D computational reconstruction identified all isotropic 16 μm voxels with appropriate subregions and layers (http://krasnow1.gmu.edu/cn3/hippocampus3d). Overall, DG, CA3, and CA1 occupied comparable volumes (15.3, 12.2, and 18.8 mm(3), respectively), but displayed substantial rostrocaudal volumetric gradients: CA1 made up more than half of the posterior hippocampus, whereas CA3 and DG were more prominent in the anterior regions. The CA3/CA1 ratio increased from ∼0.4 to ∼1 septo-temporally because of a specific change in stratum radiatum volume. Next we virtually embedded 1.8 million neuronal morphologies stochastically resampled from 244 digital reconstructions, emulating the dense packing of granular and pyramidal layers, and appropriately orienting the principal dendritic axes relative to local curvature. The resulting neuropil occupancy reproduced recent electron microscopy data measured in a restricted location. Extension of this analysis across each layer and subregion over the whole hippocampus revealed highly non-homogeneous dendritic density. In CA1, dendritic occupancy was >60% higher temporally than septally (0.46 vs. 0.28, s.e.m. ∼0.05). CA3 values varied both across subfields (from 0.35 in CA3b/CA3c to 0.50 in CA3a) and layers (0.48, 0.34, and 0.27 in oriens, radiatum, and lacunosum-moleculare, respectively). Dendritic occupancy was substantially lower in DG, especially in the supra-pyramidal blade (0.18). The computed probability of dendrodendritic collision significantly correlated with expression of the membrane repulsion signal Down syndrome cell adhesion molecule (DSCAM). These heterogeneous stereological properties reflect and complement the non-uniform molecular composition, circuit connectivity, and computational function of the hippocampus across its transverse, longitudinal, and laminar organization.
Collapse
Affiliation(s)
- D Ropireddy
- Center for Neural Informatics, Structures, and Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | | | | |
Collapse
|
32
|
Abstract
During neural development in Drosophila, the ability of neurite branches to recognize whether they are from the same or different neurons depends crucially on the molecule Dscam1. In particular, this recognition depends on the stochastic acquisition of a unique combination of Dscam1 isoforms out of a large set of possible isoforms. To properly interpret these findings, it is crucial to understand the combinatorics involved, which has previously been attempted only using stochastic simulations for some specific parameter combinations. Here we present closed-form solutions for the general case. These reveal the relationships among the key variables and how these constrain possible biological scenarios.
Collapse
Affiliation(s)
- Elizabeth M. Forbes
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jonathan J. Hunt
- Queensland Brain Institute and School of Mathematics and Physics, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Geoffrey J. Goodhill
- Queensland Brain Institute and School of Mathematics and Physics, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
33
|
Zhang L, Song NN, Chen JY, Huang Y, Li H, Ding YQ. Satb2 is required for dendritic arborization and soma spacing in mouse cerebral cortex. ACTA ACUST UNITED AC 2011; 22:1510-9. [PMID: 21885532 DOI: 10.1093/cercor/bhr215] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Self-avoidance is a mechanism by which dendrites from the same neuron repel one another in order to establish uniform coverage of the dendritic field. The importance of self-avoidance for the development of complex arborization patterns has been highlighted by studies of Drosophila sensory and mouse retinal neurons. However, it is unclear whether branch patterning in the mammalian central nervous system is also governed by this strategy. We reduced Satb2 expression in a population of layer II/III pyramidal neurons in vivo by RNA interference and found that the somas of Satb2-deficient neurons clumped together, and their dendrites failed to expand laterally but instead formed fascicles. Furthermore, experiments showed that reducing Satb2 caused the adhesion of not only neighboring Satb2-deficient neurons but also neighboring wild-type neurons. Our results indicate a cell autonomous and non-cell autonomous role for Satb2 in regulating the adhesive and/or repulsive properties of cerebral pyramidal neurons.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
34
|
Kaneko M, Yamaguchi K, Eiraku M, Sato M, Takata N, Kiyohara Y, Mishina M, Hirase H, Hashikawa T, Kengaku M. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation. PLoS One 2011; 6:e20108. [PMID: 21655286 PMCID: PMC3105010 DOI: 10.1371/journal.pone.0020108] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/02/2011] [Indexed: 11/18/2022] Open
Abstract
Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.
Collapse
Affiliation(s)
- Megumi Kaneko
- Laboratory for Neural Cell Polarity, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Kazuhiko Yamaguchi
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Mototsugu Eiraku
- Laboratory for Neural Cell Polarity, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Motohiko Sato
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Norio Takata
- Hirase Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Yoshimoto Kiyohara
- Laboratory for Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hajime Hirase
- Hirase Research Unit, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Tsutomu Hashikawa
- Laboratory for Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Mineko Kengaku
- Laboratory for Neural Cell Polarity, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
35
|
Jia YL, Jing LJ, Li JY, Lu JJ, Han R, Wang SY, Peng T, Jia YJ. Expression and significance of DSCAM in the cerebral cortex of APP transgenic mice. Neurosci Lett 2011; 491:153-7. [PMID: 21241773 DOI: 10.1016/j.neulet.2011.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
Abstract
Down syndrome cell adhesion molecule (DSCAM) plays important roles in the regulation of synaptogenesis, neurite outgrowth, axon guidance and synapse formation. Overexpression of DSCAM in Down syndrome (DS) may be involved in the pathogenesis of mental retardation through an inhibitory action on synaptogenesis/neurite outgrowth, and in the precocious dementia associated with an amyloid precursor protein (APP) dosage effect with enhanced plaque formation. In this report we examined the expression of DSCAM in the cerebral cortex of APP transgenic mice versus age-matched wild-type mice. We found that the level of DSCAM expression increased with increasing age in both groups of mice, up to a maximum at 3 months old. The level of DSCAM expression in APP transgenic mice was significantly higher than in the age-matched wild types. We propose that overexpression of DSCAM in the cerebral cortex might play an important role in the learning and memory defects of APP transgenic mice.
Collapse
Affiliation(s)
- Yong-Lin Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian She Road, Zhengzhou, Henan Province 450052, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
NMDA-mediated regulation of DSCAM dendritic local translation is lost in a mouse model of Down's syndrome. J Neurosci 2010; 30:13537-48. [PMID: 20926679 DOI: 10.1523/jneurosci.3457-10.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Down's syndrome cell adhesion molecule (DSCAM) belongs to the Down's syndrome critical region of human chromosome 21, and it encodes a cell adhesion molecule involved in dendrite morphology and neuronal wiring. Although the function of DSCAM in the adult brain is unknown, its expression pattern suggests a role in synaptic plasticity. Local mRNA translation is a key process in axonal growth, dendritogenesis, and synaptogenesis during development, and in synaptic plasticity in adulthood. Here, we report the dendritic localization of DSCAM mRNA in the adult mouse hippocampus, where it associates with CPEB1 [cytoplasmic polyadenylation element (CPE) binding protein 1], an important regulator of mRNA transport and local translation. We identified five DSCAM isoforms produced by alternative polyadenylation bearing different combinations of regulatory CPE motifs. Overexpression of DSCAM in hippocampal neurons inhibited dendritic branching. Interestingly, dendritic levels of DSCAM mRNA and protein were increased in hippocampal neurons from Ts1Cje mice, a model of Down's syndrome. Most importantly, DSCAM dendritic translation was rapidly induced by NMDA in wild-type, but not in Ts1Cje neurons. We propose that impairment of the NMDA-mediated regulation of DSCAM translation may contribute to the alterations in dendritic morphology and/or synaptic plasticity in Down's syndrome.
Collapse
|
37
|
Cameron S, Rao Y. Molecular mechanisms of tiling and self-avoidance in neural development. Mol Brain 2010; 3:28. [PMID: 20937126 PMCID: PMC2959082 DOI: 10.1186/1756-6606-3-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/11/2010] [Indexed: 11/10/2022] Open
Abstract
Recent studies have begun to unravel the molecular basis of tiling and self-avoidance, two important cellular mechanisms that shape neuronal circuitry during development in both invertebrates and vertebrates. Dscams and Turtle (Tutl), two Ig superfamily proteins, have been shown to mediate contact-dependent homotypic interactions in tiling and self-avoidance. By contrast, the Activin pathway regulates axonal tiling in a contact-independent manner. These cell surface signals may directly or indirectly regulate the activity of the Tricornered kinase pathway and/or other intracellular signaling pathways to prevent the overlap between same-type neuronal arbors in the sensory or synaptic input field.
Collapse
Affiliation(s)
- Scott Cameron
- McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
38
|
Reese BE. Development of the retina and optic pathway. Vision Res 2010; 51:613-32. [PMID: 20647017 DOI: 10.1016/j.visres.2010.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/04/2010] [Accepted: 07/13/2010] [Indexed: 12/30/2022]
Abstract
Our understanding of the development of the retina and visual pathways has seen enormous advances during the past 25years. New imaging technologies, coupled with advances in molecular biology, have permitted a fuller appreciation of the histotypical events associated with proliferation, fate determination, migration, differentiation, pathway navigation, target innervation, synaptogenesis and cell death, and in many instances, in understanding the genetic, molecular, cellular and activity-dependent mechanisms underlying those developmental changes. The present review considers those advances associated with the lineal relationships between retinal nerve cells, the production of retinal nerve cell diversity, the migration, patterning and differentiation of different types of retinal nerve cells, the determinants of the decussation pattern at the optic chiasm, the formation of the retinotopic map, and the establishment of ocular domains within the thalamus.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|
39
|
Grueber WB, Sagasti A. Self-avoidance and tiling: Mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol 2010; 2:a001750. [PMID: 20573716 DOI: 10.1101/cshperspect.a001750] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spatial pattern of branches within axonal or dendritic arbors and the relative arrangement of neighboring arbors with respect to one another impact a neuron's potential connectivity. Although arbors can adopt diverse branching patterns to suit their functions, evenly spread branches that avoid clumping or overlap are a common feature of many axonal and dendritic arbors. The degree of overlap between neighboring arbors innervating a surface is also characteristic within particular neuron types. The arbors of some populations of neurons innervate a target with a comprehensive and nonoverlapping "tiled" arrangement, whereas those of others show substantial territory overlap. This review focuses on cellular and molecular studies that have provided insight into the regulation of spatial arrangements of neurite branches within and between arbors. These studies have revealed principles that govern arbor arrangements in dendrites and axons in both vertebrates and invertebrates. Diverse molecular mechanisms controlling the spatial patterning of sister branches and neighboring arbors have begun to be elucidated.
Collapse
Affiliation(s)
- Wesley B Grueber
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
40
|
Abstract
Type-specific dendrite morphology is a hallmark of the neuron and has important functional implications in determining what signals a neuron receives and how these signals are integrated. During the past two decades, studies on dendritic arborization neurons in Drosophila melanogaster have started to identify mechanisms of dendrite morphogenesis that may have broad applicability to vertebrate species. Transcription factors, receptor-ligand interactions, various signalling pathways, local translational machinery, cytoskeletal elements, Golgi outposts and endosomes have been identified as contributors to the organization of dendrites of individual neurons and the placement of these dendrites in the neuronal circuitry. Further insight into these mechanisms will improve our understanding of how the nervous system functions and might help to identify the underlying causes of some neurological and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, 1550 4th Street, San Francisco 94158, USA.
| | | |
Collapse
|
41
|
Keeley PW, Reese BE. Morphology of dopaminergic amacrine cells in the mouse retina: independence from homotypic interactions. J Comp Neurol 2010; 518:1220-31. [PMID: 20148440 PMCID: PMC2865197 DOI: 10.1002/cne.22270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To determine the role of homotypic interactions between neighboring dopaminergic amacrine (DA) cells upon dendritic morphogenesis, the morphology of single cells was examined relative to the positioning of all neighboring homotypic cells. For each labeled cell, the dendritic field was reconstructed, its Voronoi domain was calculated, and the two were related. The dendritic fields of DA cells were observed to be large, sparse, and highly irregular. Dendrites readily overlapped those of neighboring cells, showing no evidence for dendritic tiling or inter-digitation consistent with homotypic repulsion or avoidance. Furthermore, a direct comparison of dendritic field area with the Voronoi domain area of the same cell showed no evidence for dendritic growth being constrained or biased by the local distribution of homotypic neighbors in wild-type retinas. A comparison of the processes of adjacent filled cells confirmed their immediate proximity to one another within the inner plexiform layer, indicating that they do not engage in mutual avoidance by coursing at different depths. Together, these results suggest that the morphogenesis of DA cells is independent of homotypic interactions. However, in the absence of the pro-apoptotic Bax gene, which yields a fourfold increase in DA cell number, a small but significant reduction in dendritic field size was obtained, although not so great as would be predicted by the increase in density. The present results are considered in light of recent studies on the role of cell adhesion molecules expressed by developing DA cells.
Collapse
Affiliation(s)
- Patrick W Keeley
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9625, USA
| | | |
Collapse
|
42
|
|
43
|
Groh C, Meinertzhagen IA. Brain plasticity in Diptera and Hymenoptera. Front Biosci (Schol Ed) 2010; 2:268-88. [PMID: 20036946 DOI: 10.2741/s63] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To mediate different types of behaviour, nervous systems need to coordinate the proper operation of their neural circuits as well as short- and long-term alterations that occur within those circuits. The latter ultimately devolve upon specific changes in neuronal structures, membrane properties and synaptic connections that are all examples of plasticity. This reorganization of the adult nervous system is shaped by internal and external influences both during development and adult maturation. In adults, behavioural experience is a major driving force of neuronal plasticity studied particularly in sensory systems. The range of adaptation depends on features that are important to a particular species, and is therefore specific, so that learning is essential for foraging in honeybees, while regenerative capacities are important in hemimetabolous insects with long appendages. Experience is usually effective during a critical period in early adult life, when neural function becomes tuned to future conditions in an insect's life. Tuning occur at all levels, in synaptic circuits, neuropile volumes, and behaviour. There are many examples, and this review incorporates only a select few, mainly those from Diptera and Hymenoptera.
Collapse
Affiliation(s)
- Claudia Groh
- Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4J1
| | | |
Collapse
|
44
|
Schmidt O, Söderhäll K, Theopold U, Faye I. Role of adhesion in arthropod immune recognition. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:485-504. [PMID: 19743913 DOI: 10.1146/annurev.ento.54.110807.090618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The recognition and inactivation of toxins and pathogens are mediated by a combination of cell-free and cellular mechanisms. A number of soluble and membrane-bound pattern recognition molecules interact with elicitors to become involved in both cell-free inactivation as well as cellular uptake reactions. Here we describe the possible recognition and effector function of key arthropod immune proteins, such as peroxinectin, hemolin, and hemomucin, as an outcome of changes in adhesiveness, which drive self-assembly reactions leading to cell-free coagulation and cellular uptake reactions. The fact that some of these proteins are essential for immune and developmental functions in some species, but are not found in closely related species, may point to the existence of multiprotein assemblies, which are conserved at the mechanistic level and can function with more than one combination of protein constituents.
Collapse
Affiliation(s)
- Otto Schmidt
- Insect Molecular Biology, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | | | | | | |
Collapse
|
45
|
Brierley DJ, Blanc E, Reddy OV, VijayRaghavan K, Williams DW. Dendritic targeting in the leg neuropil of Drosophila: the role of midline signalling molecules in generating a myotopic map. PLoS Biol 2009; 7:e1000199. [PMID: 19771147 PMCID: PMC2737123 DOI: 10.1371/journal.pbio.1000199] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/12/2009] [Indexed: 01/19/2023] Open
Abstract
Neural maps are emergent, highly ordered structures that are essential for organizing and presenting synaptic information. Within the embryonic nervous system of Drosophila motoneuron dendrites are organized topographically as a myotopic map that reflects their pattern of innervation in the muscle field. Here we reveal that this fundamental organizational principle exists in adult Drosophila, where the dendrites of leg motoneurons also generate a myotopic map. A single postembryonic neuroblast sequentially generates different leg motoneuron subtypes, starting with those innervating proximal targets and medial neuropil regions and producing progeny that innervate distal muscle targets and lateral neuropil later in the lineage. Thus the cellular distinctions in peripheral targets and central dendritic domains, which make up the myotopic map, are linked to the birth-order of these motoneurons. Our developmental analysis of dendrite growth reveals that this myotopic map is generated by targeting. We demonstrate that the medio-lateral positioning of motoneuron dendrites in the leg neuropil is controlled by the midline signalling systems Slit-Robo and Netrin-Fra. These results reveal that dendritic targeting plays a major role in the formation of myotopic maps and suggests that the coordinate spatial control of both pre- and postsynaptic elements by global neuropilar signals may be an important mechanism for establishing the specificity of synaptic connections.
Collapse
Affiliation(s)
- David J. Brierley
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Eric Blanc
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - O. Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Darren W. Williams
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
46
|
Corty MM, Matthews BJ, Grueber WB. Molecules and mechanisms of dendrite development in Drosophila. Development 2009; 136:1049-61. [PMID: 19270170 DOI: 10.1242/dev.014423] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurons are one of the most morphologically diverse cell types, in large part owing to their intricate dendrite branching patterns. Dendrites are structures that are specialized to receive and process inputs in neurons, thus their specific morphologies reflect neural connectivity and influence information flow through circuits. Recent studies in Drosophila on the molecular basis of dendrite diversity, dendritic guidance, the cell biology of dendritic branch patterning and territory formation have identified numerous intrinsic and extrinsic cues that shape diverse features of dendrites. As we discuss in this review, many of the mechanisms that are being elucidated show conservation in diverse systems.
Collapse
Affiliation(s)
- Megan M Corty
- Center for Neurobiology and Behavior, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|