1
|
Wang H, Li Y, Li X, Sun Z, Yu F, Pashang A, Kulasiri D, Li HW, Chen H, Hou H, Zhang Y. The Primary Cilia are Associated with the Axon Initial Segment in Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407405. [PMID: 39804991 PMCID: PMC11884599 DOI: 10.1002/advs.202407405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/16/2024] [Indexed: 01/16/2025]
Abstract
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive. To study the link between the primary cilia and neuronal excitability, manipulation of somatostatin receptor 3 (SSTR3) is investigated, as an example of how alterations in ciliary signaling may affect neuronal activity. It is found that aberrant SSTR3 expression perturbed not only ciliary morphology but also disrupted ciliary signaling cascades. Genetic deletion of SSTR3 resulted in perturbed spatial memory and synaptic plasticity. The axon initial segment (AIS) is a specialized region in the axon where action potentials are initiated. Interestingly, loss of ciliary SSTR3 led to decrease of Akt-dependent cyclic AMP-response element binding protein (CREB)-mediated transcription at the AIS, specifically downregulating AIS master organizer adaptor protein ankyrin G (AnkG) expression. In addition, alterations of other ciliary proteins serotonin 6 receptor (5-HT6R)and intraflagellar transport protein 88 (IFT88) also induced length changes of the AIS. The findings elucidate a specific interaction between the primary cilia and AIS, providing insight into the impact of the primary cilia on neuronal excitability and circuit integrity.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Yu Li
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Xin Li
- Beijing Life Science AcademyBeijing102200China
| | - Zehui Sun
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Fengdan Yu
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Abolghasem Pashang
- Centre for Advanced Computational Solutions (C‐fACS)AGLS facultyLincoln UniversityCanterbury7647New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C‐fACS)AGLS facultyLincoln UniversityCanterbury7647New Zealand
| | - Hung Wing Li
- Department of ChemistryThe Chinese University of Hong KongHong Kong999077China
| | - Huan Chen
- Beijing Life Science AcademyBeijing102200China
| | - Hongwei Hou
- Beijing Life Science AcademyBeijing102200China
| | - Yan Zhang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| |
Collapse
|
2
|
Di Re J, Marini M, Hussain SI, Singh AK, Venkatesh A, Alshammari MA, Alshammari TK, Hamoud ARA, Imami AS, Haghighijoo Z, Fularcyzk N, Stertz L, Hawes D, Mosebarger A, Jernigan J, Chaljub C, Nehme R, Walss-Bass C, Schulmann A, Vawter MP, McCullumsmith R, Damoiseaux RD, Limon A, Labate D, Wells MF, Laezza F. βIV spectrin abundancy, cellular distribution and sensitivity to AKT/GSK3 regulation in schizophrenia. Mol Psychiatry 2025:10.1038/s41380-025-02917-1. [PMID: 39920295 DOI: 10.1038/s41380-025-02917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with unclear biological mechanisms. Spectrins, cytoskeletal proteins linked to neurodevelopmental disorders, are regulated by the AKT/GSK3 pathway, which is implicated in SCZ. However, the impact of SCZ-related dysregulation of this pathway on spectrin expression and distribution remains unexplored. Here, we show that βIV spectrin protein levels were reduced in neurons of the dorsolateral prefrontal cortex in SCZ postmortem samples compared to healthy control (HC) from the Human Brain Collection Core (HBCC). To investigate potential links between βIV spectrin and the AKT/GSK3 pathway, we analyzed the PsychEncode dataset, revealing elevated SPTBN4 and AKT2 mRNA levels with correlated gene transcription in both HCs and individuals with SCZ. Next, computational tools were employed to identify potential AKT and GSK3 phosphorylation sites on βIV spectrin, and two GSK3 sites were validated through in vitro assays. To assess whether βIV spectrin distribution and sensitivity to AKT/GSK3 are altered in SCZ, we used iPSC-derived neurons from two independent cohorts of patients with significantly increased familial genetic risk for the disorder. Alteration in βIV spectrin levels and sensitivity to AKT/GSK3 inhibitors were consistently observed across both cohorts. Importantly, a Random Forest classifier applied to βIV spectrin imaging achieved up to 98% accuracy in classifying cells by diagnosis in postmortem samples, and by diagnosis or diagnosis × perturbation in iPSC samples. These findings reveal altered βIV spectrin levels and AKT/GSK3 sensitivity in SCZ, identifying βIV spectrin image-based endophenotypes as robust, generalizable predictive biomarkers of SCZ, with the potential for scalable clinical applications.
Collapse
Affiliation(s)
- Jessica Di Re
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Michela Marini
- Department of Mathematics, University of Houston, Houston, TX, USA
| | | | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Akshaya Venkatesh
- MD-PhD Combined Program, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Musaad A Alshammari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul-Rizaq Ali Hamoud
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ali Sajid Imami
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Zahra Haghighijoo
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Laura Stertz
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Derek Hawes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Angela Mosebarger
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jordan Jernigan
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Claire Chaljub
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Consuelo Walss-Bass
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Anton Schulmann
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Robert McCullumsmith
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, Promedica, Toledo, OH, USA
| | - Robert D Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Agenor Limon
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Demetrio Labate
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - Michael F Wells
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
3
|
Stevens NA, Lankisch K, Draguhn A, Engelhardt M, Both M, Thome C. Increased Interhemispheric Connectivity of a Distinct Type of Hippocampal Pyramidal Cells. J Neurosci 2024; 44:e0440232023. [PMID: 38123997 PMCID: PMC10869156 DOI: 10.1523/jneurosci.0440-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Neurons typically generate action potentials at their axon initial segment based on the integration of synaptic inputs. In many neurons, the axon extends from the soma, equally weighting dendritic inputs. A notable exception is found in a subset of hippocampal pyramidal cells where the axon emerges from a basal dendrite. This structure allows these axon-carrying dendrites (AcDs) a privileged input route. We found that in male mice, such cells in the CA1 region receive stronger excitatory input from the contralateral CA3, compared with those with somatic axon origins. This is supported by a higher count of putative synapses from contralateral CA3 on the AcD. These findings, combined with prior observations of their distinct role in sharp-wave ripple firing, suggest a key role of this neuron subset in coordinating bi-hemispheric hippocampal activity during memory-centric oscillations.
Collapse
Affiliation(s)
- Nikolas Andreas Stevens
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Katja Lankisch
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Maren Engelhardt
- Institute of Anatomy and Cell Biology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Martin Both
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Christian Thome
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305
| |
Collapse
|
4
|
Gilloteaux J, De Swert K, Suain V, Nicaise C. Thalamic Neuron Resilience during Osmotic Demyelination Syndrome (ODS) Is Revealed by Primary Cilium Outgrowth and ADP-ribosylation factor-like protein 13B Labeling in Axon Initial Segment. Int J Mol Sci 2023; 24:16448. [PMID: 38003639 PMCID: PMC10671465 DOI: 10.3390/ijms242216448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
A murine osmotic demyelinating syndrome (ODS) model was developed through chronic hyponatremia, induced by desmopressin subcutaneous implants, followed by precipitous sodium restoration. The thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) relay nuclei were the most demyelinated regions where neuroglial damage could be evidenced without immune response. This report showed that following chronic hyponatremia, 12 h and 48 h time lapses after rebalancing osmolarity, amid the ODS-degraded outskirts, some resilient neuronal cell bodies built up primary cilium and axon hillock regions that extended into axon initial segments (AIS) where ADP-ribosylation factor-like protein 13B (ARL13B)-immunolabeled rod-like shape content was revealed. These AIS-labeled shaft lengths appeared proportional with the distance of neuronal cell bodies away from the ODS damaged epicenter and time lapses after correction of hyponatremia. Fine structure examination verified these neuron abundant transcriptions and translation regions marked by the ARL13B labeling associated with cell neurotubules and their complex cytoskeletal macromolecular architecture. This necessitated energetic transport to organize and restore those AIS away from the damaged ODS core demyelinated zone in the murine model. These labeled structures could substantiate how thalamic neuron resilience occurred as possible steps of a healing course out of ODS.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- URPhyM, NARILIS, Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (J.G.); (K.D.S.)
- Department of Anatomical Sciences, St George’s University School of Medicine, Newcastle upon Tyne NE1 JG8, UK
| | - Kathleen De Swert
- URPhyM, NARILIS, Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (J.G.); (K.D.S.)
| | - Valérie Suain
- Laboratoire d’Histologie Générale, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Bruxelles, Belgium;
| | - Charles Nicaise
- URPhyM, NARILIS, Université de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (J.G.); (K.D.S.)
| |
Collapse
|
5
|
Ma F, Akolkar H, Xu J, Liu Y, Popova D, Xie J, Youssef MM, Benosman R, Hart RP, Herrup K. The Amyloid Precursor Protein Modulates the Position and Length of the Axon Initial Segment. J Neurosci 2023; 43:1830-1844. [PMID: 36717226 PMCID: PMC10010458 DOI: 10.1523/jneurosci.0172-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the β-amyloid (Aβ) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aβ are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase in App gene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+ reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown of App block the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aβ, either fibrillar or oligomeric, has no effect. In culture, APPSwe (a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and βIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS. In vivo as in vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD.SIGNIFICANCE STATEMENT While the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity. In vivo and in vitro, modest amounts of excess APP alter the properties of the axon initial segment. The β-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia.
Collapse
Affiliation(s)
- Fulin Ma
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Himanshu Akolkar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
| | - Jiaan Xie
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mark M Youssef
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ryad Benosman
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
6
|
LaFever BJ, Imamura F. Effects of nasal inflammation on the olfactory bulb. J Neuroinflammation 2022; 19:294. [PMID: 36494744 PMCID: PMC9733073 DOI: 10.1186/s12974-022-02657-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Sinonasal diseases, such as rhinosinusitis, affect up to 12% of individuals each year which constitutes these diseases as some of the most common medical conditions in the world. Exposure to environmental pathogens and toxicants via the nasal cavity can result in a severe inflammatory state commonly observed in these conditions. It is well understood that the epithelial and neuronal cells lining the olfactory mucosa, including olfactory sensory neurons (OSNs), are significantly damaged in these diseases. Prolonged inflammation of the nasal cavity may also lead to hyposmia or anosmia. Although various environmental agents induce inflammation in different ways via distinct cellular and molecular interactions, nasal inflammation has similar consequences on the structure and homeostatic function of the olfactory bulb (OB) which is the first relay center for olfactory information in the brain. Atrophy of the OB occurs via thinning of the superficial OB layers including the olfactory nerve layer, glomerular layer, and superficial external plexiform layer. Intrabulbar circuits of the OB which include connectivity between OB projection neurons, OSNs, and interneurons become significantly dysregulated in which synaptic pruning and dendritic retraction take place. Furthermore, glial cells and other immune cells become hyperactivated and induce a state of inflammation in the OB which results in upregulated cytokine production. Moreover, many of these features of nasal inflammation are present in the case of SARS-CoV-2 infection. This review summarizes the impact of nasal inflammation on the morphological and physiological features of the rodent OB.
Collapse
Affiliation(s)
- Brandon J. LaFever
- grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033 USA
| | - Fumiaki Imamura
- grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033 USA
| |
Collapse
|
7
|
Dziadkowiak E, Nowakowska-Kotas M, Budrewicz S, Koszewicz M. Pathology of Initial Axon Segments in Chronic Inflammatory Demyelinating Polyradiculoneuropathy and Related Disorders. Int J Mol Sci 2022; 23:13621. [PMID: 36362407 PMCID: PMC9658771 DOI: 10.3390/ijms232113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is based on a combination of clinical, electrodiagnostic and laboratory features. The different entities of the disease include chronic immune sensory polyradiculopathy (CISP) and autoimmune nodopathies. It is debatable whether CIDP occurring in the course of other conditions, i.e., monoclonal IgG or IgA gammopathy, should be treated as a separate disease entity from idiopathic CIDP. This study aims to evaluate the molecular differences of the nodes of Ranvier and the initial axon segment (AIS) and juxtaparanode region (JXP) as the potential cause of phenotypic variation of CIDP while also seeking new pathomechanisms since JXP is sequestered behind the paranode and autoantibodies may not access the site easily. The authors initially present the structure of the different parts of the neuron and its functional significance, then discuss the problem of whether damage to the juxtaparanodal region, Schwann cells and axons could cause CIDP or if these damages should be separated as separate disease entities. In particular, AIS's importance for modulating neural excitability and carrying out transport along the axon is highlighted. The disclosure of specific pathomechanisms, including novel target antigens, in the heterogeneous CIDP syndrome is important for diagnosing and treating these patients.
Collapse
|
8
|
Jung K, Choi Y, Kwon HB. Cortical control of chandelier cells in neural codes. Front Cell Neurosci 2022; 16:992409. [PMID: 36299494 PMCID: PMC9588934 DOI: 10.3389/fncel.2022.992409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Various cortical functions arise from the dynamic interplay of excitation and inhibition. GABAergic interneurons that mediate synaptic inhibition display significant diversity in cell morphology, electrophysiology, plasticity rule, and connectivity. These heterogeneous features are thought to underlie their functional diversity. Emerging attention on specific properties of the various interneuron types has emphasized the crucial role of cell-type specific inhibition in cortical neural processing. However, knowledge is still limited on how each interneuron type forms distinct neural circuits and regulates network activity in health and disease. To dissect interneuron heterogeneity at single cell-type precision, we focus on the chandelier cell (ChC), one of the most distinctive GABAergic interneuron types that exclusively innervate the axon initial segments (AIS) of excitatory pyramidal neurons. Here we review the current understanding of the structural and functional properties of ChCs and their implications in behavioral functions, network activity, and psychiatric disorders. These findings provide insights into the distinctive roles of various single-type interneurons in cortical neural coding and the pathophysiology of cortical dysfunction.
Collapse
|
9
|
LaFever BJ, Kawasawa YI, Ito A, Imamura F. Pathological consequences of chronic olfactory inflammation on neurite morphology of olfactory bulb projection neurons. Brain Behav Immun Health 2022; 21:100451. [PMID: 35360408 PMCID: PMC8960895 DOI: 10.1016/j.bbih.2022.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic olfactory inflammation (COI) in conditions such as chronic rhinosinusitis significantly impairs the functional and anatomical components of the olfactory system. COI induced by intranasal administration of lipopolysaccharide (LPS) results in atrophy, gliosis, and pro-inflammatory cytokine production in the olfactory bulb (OB). Although chronic rhinosinusitis patients have smaller OBs, the consequences of olfactory inflammation on OB neurons are largely unknown. In this study, we investigated the neurological consequences of COI on OB projection neurons, mitral cells (MCs) and tufted cells (TCs). To induce COI, we performed unilateral intranasal administration of LPS to mice for 4 and 10 weeks. Effects of COI on the OB were examined using RNA-sequencing approaches and immunohistochemical analyses. We found that repeated LPS administration upregulated immune-related biological pathways in the OB after 4 weeks. We also determined that the length of TC lateral dendrites in the OB significantly decreased after 10 weeks of COI. The axon initial segment of TCs decreased in number and in length after 10 weeks of COI. The lateral dendrites and axon initial segments of MCs, however, were largely unaffected. In addition, dendritic arborization and AIS reconstruction both took place following a 10-week recovery period. Our findings suggest that olfactory inflammation specifically affects TCs and their integrated circuitry, whereas MCs are potentially protected from this condition. This data demonstrates unique characteristics of the OBs ability to undergo neuroplastic changes in response to stress. Early-stage chronic olfactory inflammation activates the interferon-γ-driven inflammatory pathways in the olfactory bulb. Tufted cells undergo neurite dysregulation in response to chronic olfactory inflammation. Mitral cells and interneurons in the external plexiform layer are largely unaffected by chronic olfactory inflammation. Tufted cells experience complete recovery from neurite dysregulation following a period of ceased inflammation
Collapse
Affiliation(s)
- Brandon J. LaFever
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033, USA
- Institute for Personalized Medicine, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033, USA
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033, USA
- Corresponding author. Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
10
|
Tian T, Quintana-Urzainqui I, Kozić Z, Pratt T, Price DJ. Pax6 loss alters the morphological and electrophysiological development of mouse prethalamic neurons. Development 2022; 149:274738. [PMID: 35224626 PMCID: PMC8977098 DOI: 10.1242/dev.200052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022]
Abstract
Pax6 is a well-known regulator of early neuroepithelial progenitor development. Its constitutive loss has a particularly strong effect on the developing prethalamus, causing it to become extremely hypoplastic. To overcome this difficulty in studying the long-term consequences of Pax6 loss for prethalamic development, we used conditional mutagenesis to delete Pax6 at the onset of neurogenesis and studied the developmental potential of the mutant prethalamic neurons in vitro. We found that Pax6 loss affected their rates of neurite elongation, the location and length of their axon initial segments, and their electrophysiological properties. Our results broaden our understanding of the long-term consequences of Pax6 deletion in the developing mouse forebrain, suggesting that it can have cell-autonomous effects on the structural and functional development of some neurons. Summary: Pax6 impacts neurite extension, axon initial segment properties and the ability to fire normal action potentials in maturing neurons, revealing actions extending beyond those previously characterised in progenitors.
Collapse
Affiliation(s)
- Tian Tian
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Idoia Quintana-Urzainqui
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Zrinko Kozić
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas Pratt
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J. Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
11
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
12
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
13
|
Tamada H, Kiryu-Seo S, Sawada S, Kiyama H. Axonal injury alters the extracellular glial environment of the axon initial segment and allows substantial mitochondrial influx into axon initial segment. J Comp Neurol 2021; 529:3621-3632. [PMID: 34235750 DOI: 10.1002/cne.25212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022]
Abstract
The axon initial segment (AIS) is structurally and functionally distinct from other regions of the axon, yet alterations in the milieu of the AIS after brain injury have not been well characterized. In this study, we have examined extracellular and intracellular changes in the AIS after hypoglossal nerve injury. Microglial adhesions to the AIS were rarely observed in healthy controls, whereas microglial adhesions to the AIS became apparent in the axonal injury model. Regarding intra-AIS morphology, we focused on mitochondria because mitochondrial flow into the injured axon appears critical for axonal regeneration. To visualize mitochondria specifically in injured axons, we used Atf3:BAC transgenic mice whose mitochondria were labeled with GFP in response to nerve injury. These mice clearly showed mitochondrial localization in the AIS after nerve injury. To precisely confirm the light microscopic observations, we performed three-dimensional ultrastructural analysis using focused ion beam/scanning electron microscopy (FIB/SEM). Although the healthy AIS was not surrounded by microglia, tight microglial adhesions with thick processes adhering to the AIS were observed after injury. FIB/SEM simultaneously allowed the observation of mitochondrial localization in the AIS. In the AIS of non-injured neurons, few mitochondria were observed, whereas mitochondria were abundantly localized in the cell body, axon hillock, and axon. Intriguingly, in the injured AIS, numerous mitochondria were observed throughout the AIS. Taken together, axonal injury changes the extracellular glial environment surrounding the AIS and intracellular mitochondrial localization in the AIS. These changes would be crucial responses, perhaps for injured neurons to regenerate after axonal injury.
Collapse
Affiliation(s)
- Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumiko Kiryu-Seo
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sohgo Sawada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Lipkin AM, Cunniff MM, Spratt PWE, Lemke SM, Bender KJ. Functional Microstructure of Ca V-Mediated Calcium Signaling in the Axon Initial Segment. J Neurosci 2021; 41:3764-3776. [PMID: 33731449 PMCID: PMC8084313 DOI: 10.1523/jneurosci.2843-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 01/12/2023] Open
Abstract
The axon initial segment (AIS) is a specialized neuronal compartment in which synaptic input is converted into action potential (AP) output. This process is supported by a diverse complement of sodium, potassium, and calcium channels (CaV). Different classes of sodium and potassium channels are scaffolded at specific sites within the AIS, conferring unique functions, but how calcium channels are functionally distributed within the AIS is unclear. Here, we use conventional two-photon laser scanning and diffraction-limited, high-speed spot two-photon imaging to resolve AP-evoked calcium dynamics in the AIS with high spatiotemporal resolution. In mouse layer 5 prefrontal pyramidal neurons, calcium influx was mediated by a mix of CaV2 and CaV3 channels that differentially localized to discrete regions. CaV3 functionally localized to produce nanodomain hotspots of calcium influx that coupled to ryanodine-sensitive stores, whereas CaV2 localized to non-hotspot regions. Thus, different pools of CaVs appear to play distinct roles in AIS function.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is the site where synaptic input is transformed into action potential (AP) output. It achieves this function through a diverse complement of sodium, potassium, and calcium channels (CaV). While the localization and function of sodium channels and potassium channels at the AIS is well described, less is known about the functional distribution of CaVs. We used high-speed two-photon imaging to understand activity-dependent calcium dynamics in the AIS of mouse neocortical pyramidal neurons. Surprisingly, we found that calcium influx occurred in two distinct domains: CaV3 generates hotspot regions of calcium influx coupled to calcium stores, whereas CaV2 channels underlie diffuse calcium influx between hotspots. Therefore, different CaV classes localize to distinct AIS subdomains, possibly regulating distinct cellular processes.
Collapse
Affiliation(s)
- Anna M Lipkin
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Margaret M Cunniff
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Perry W E Spratt
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Stefan M Lemke
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Kevin J Bender
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, California 94158
| |
Collapse
|
15
|
Pathak S, Parkar H, Tripathi S, Kale A. Ofloxacin as a Disruptor of Actin Aggresome "Hirano Bodies": A Potential Repurposed Drug for the Treatment of Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:591579. [PMID: 33132905 PMCID: PMC7573105 DOI: 10.3389/fnagi.2020.591579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023] Open
Abstract
There is a growing number of aging populations that are more prone to the prevalence of neuropathological disorders. Two major diseases that show a late onset of the symptoms include Alzheimer’s disorder (AD) and Parkinson’s disorder (PD), which are causing an unexpected social and economic impact on the families. A large number of researches in the last decade have focused upon the role of amyloid precursor protein, Aβ-plaque, and intraneuronal neurofibrillary tangles (tau-proteins). However, there is very few understanding of actin-associated paracrystalline structures formed in the hippocampus region of the brain and are called Hirano bodies. These actin-rich inclusion bodies are known to modulate the synaptic plasticity and employ conspicuous effects on long-term potentiation and paired-pulse paradigms. Since the currently known drugs have very little effect in controlling the progression of these diseases, there is a need to develop therapeutic agents, which can have improved efficacy and bioavailability, and can transport across the blood–brain barrier. Moreover, finding novel targets involving compound screening is both laborious and is an expensive process in itself followed by equally tedious Food and Drug Administration (FDA) approval exercise. Finding alternative functions to the already existing FDA-approved molecules for reversing the progression of age-related proteinopathies is of utmost importance. In the current study, we decipher the role of a broad-spectrum general antibiotic (Ofloxacin) on actin polymerization dynamics using various biophysical techniques like right-angle light scattering, dynamic light scattering, circular dichroism spectrometry, isothermal titration calorimetry, scanning electron microscopy, etc. We have also performed in silico docking studies to deduce a plausible mechanism of the drug binding to the actin. We report that actin gets disrupted upon binding to Ofloxacin in a concentration-dependent manner. We have inferred that Ofloxacin, when attached to a drug delivery system, can act as a good candidate for the treatment of neuropathological diseases.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| | - Haifa Parkar
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| | - Sarita Tripathi
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| | - Avinash Kale
- School of Chemical Sciences, University of Mumbai - Department of Atomic Energy Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai, India
| |
Collapse
|
16
|
Schiapparelli LM, Shah SH, Ma Y, McClatchy DB, Sharma P, Li J, Yates JR, Goldberg JL, Cline HT. The Retinal Ganglion Cell Transportome Identifies Proteins Transported to Axons and Presynaptic Compartments in the Visual System In Vivo. Cell Rep 2020; 28:1935-1947.e5. [PMID: 31412257 PMCID: PMC6707540 DOI: 10.1016/j.celrep.2019.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/03/2019] [Accepted: 07/12/2019] [Indexed: 11/26/2022] Open
Abstract
The brain processes information and generates cognitive and motor outputs through functions of spatially organized proteins in different types of neurons. More complete knowledge of proteins and their distributions within neuronal compartments in intact circuits would help in the understanding of brain function. We used unbiased in vivo protein labeling with intravitreal NHS-biotin for discovery and analysis of endogenous axonally transported proteins in the visual system using tandem mass spectrometric proteomics, biochemistry, and both light and electron microscopy. Purification and proteomic analysis of biotinylated peptides identified ~1,000 proteins transported from retinal ganglion cells into the optic nerve and ~575 biotinylated proteins recovered from presynaptic compartments of lateral geniculate nucleus and superior colliculus. Approximately 360 biotinylated proteins were differentially detected in the two retinal targets. This study characterizes axonally transported proteins in the healthy adult visual system by analyzing proteomes from multiple compartments of retinal ganglion cell projections in the intact brain. Axonal protein transport is essential for circuit function. Schiapparelli et al. use unbiased in vivo protein labeling and mass spectrometry to identify ~1,000 proteins in the “RGC axonal transportome.” About 350 retinal proteins are differentially transported to the lateral geniculate nucleus or the superior colliculus, indicating target-specific diversity in presynaptic protein content.
Collapse
Affiliation(s)
- Lucio M Schiapparelli
- Department of Neuroscience and the Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sahil H Shah
- Department of Neuroscience and the Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037, USA; Neuroscience Graduate Program and Medical Scientist Training Program, University of California, San Diego, La Jolla, CA 92093, USA; Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA 94303, USA
| | - Yuanhui Ma
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel B McClatchy
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pranav Sharma
- Department of Neuroscience and the Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jianli Li
- Department of Neuroscience and the Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey L Goldberg
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA 94303, USA
| | - Hollis T Cline
- Department of Neuroscience and the Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Booker SA, Simões de Oliveira L, Anstey NJ, Kozic Z, Dando OR, Jackson AD, Baxter PS, Isom LL, Sherman DL, Hardingham GE, Brophy PJ, Wyllie DJ, Kind PC. Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome. Cell Rep 2020; 32:107988. [PMID: 32783927 PMCID: PMC7435362 DOI: 10.1016/j.celrep.2020.107988] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1-/y mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1-/y neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1-/y mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.
Collapse
Affiliation(s)
- Sam A. Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Corresponding author
| | - Laura Simões de Oliveira
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK
| | - Natasha J. Anstey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Zrinko Kozic
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Owen R. Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Adam D. Jackson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Paul S. Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632, USA
| | - Diane L. Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter J. Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David J.A. Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Peter C. Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India,Corresponding author
| |
Collapse
|
18
|
Di Re J, Kayasandik C, Botello-Lins G, Labate D, Laezza F. Imaging of the Axon Initial Segment. ACTA ACUST UNITED AC 2020; 89:e78. [PMID: 31532918 DOI: 10.1002/cpns.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The axon initial segment (AIS) is the first 20- to 60-μm segment of the axon proximal to the soma of a neuron. This highly specialized subcellular domain is the initiation site of the action potential and contains a high concentration of voltage-gated ion channels held in place by a complex nexus of scaffolding and regulatory proteins that ensure proper electrical activity of the neuron. Studies have shown that dysfunction of many AIS channels and scaffolding proteins occurs in a variety of neuropsychiatric and neurodegenerative diseases, raising the need to develop accurate methods for visualization and quantification of the AIS and its protein content in models of normal and disease conditions. In this article, we describe methods for immunolabeling AIS proteins in cultured neurons and brain slices as well as methods for quantifying protein expression and pattern distribution using fluorescent labeling of these proteins. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jessica Di Re
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | - Cihan Kayasandik
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey
| | - Gonzalo Botello-Lins
- Biotechnology Program, Clear Falls High School, Clear Creek Independent School District, League City, Texas
| | - Demetrio Labate
- Department of Mathematics, University of Houston, Houston, Texas
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
19
|
Locally Activating TrkB Receptor Generates Actin Waves and Specifies Axonal Fate. Cell Chem Biol 2019; 26:1652-1663.e4. [PMID: 31678045 DOI: 10.1016/j.chembiol.2019.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 01/15/2023]
Abstract
Actin waves are filamentous actin (F-actin)-rich structures that initiate in the somato-neuritic area and move toward neurite ends. The upstream cues that initiate actin waves are poorly understood. Here, using an optogenetic approach (Opto-cytTrkB), we found that local activation of the TrkB receptor around the neurite end initiates actin waves and triggers neurite elongation. During actin wave generation, locally activated TrkB signaling in the distal neurite was functionally connected with preferentially localized Rac1 and its signaling pathways in the proximal region. Moreover, TrkB activity changed the location of ankyrinG--the master organizer of the axonal initial segment-and initiated the stimulated neurite to acquire axonal characteristics. Taken together, these findings suggest that local Opto-cytTrkB activation switches the fate from minor to major axonal neurite during neuronal polarization by generating actin waves.
Collapse
|
20
|
Sriroopreddy R, Sajeed R, P R, C S. Differentially expressed gene (DEG) based protein-protein interaction (PPI) network identifies a spectrum of gene interactome, transcriptome and correlated miRNA in nondisjunction Down syndrome. Int J Biol Macromol 2018; 122:1080-1089. [PMID: 30218739 DOI: 10.1016/j.ijbiomac.2018.09.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Down syndrome, a genetic disorder of known attribution reveals several types of brain abnormalities resulting in mental retardation, inadequacy in speech and memory. In this study, we have presented a consolidative network approach to comprehend the intricacy of the associated genes of Down syndrome. In this analysis, the differentially expressed genes (DEG's) were identified and the central networks were constructed as upregulated and downregulated. Subsequently, GNB5, CDC42, SPTAN1, GNG2, GNAZ, PRKACB, SST, CD44, FGF2, PHLPP1, APP, and FYN were identified as the candidate hub genes by using topological parameters. Later, Fpclass a PPI tool identified WASP gene, a co-expression interacting partner with highest network topology. Moreover, an enhanced enrichment pathway namely Opioid signaling was obtained using ClueGo, depicting the roles of the hub genes in signaling and neuronal mechanisms. The transcriptional regulatory factors and the common miRNA connected to them were identified by using MatInspector and miRTarbase. Later, a regulatory network constructed showed that PLAG, T2FB, CREB, NEUR, and GATA were the most commonly connected transcriptional factors and hsa-miR-122-5p was the most prominent miRNA. In a nutshell, these hub genes and the enriched pathway could help understand at a molecular level and eventually used as therapeutic targets for Down syndrome.
Collapse
Affiliation(s)
- Ramireddy Sriroopreddy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Rakshanda Sajeed
- Department of Analytics, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Raghuraman P
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Sudandiradoss C
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
21
|
Costa AR, Pinto-Costa R, Sousa SC, Sousa MM. The Regulation of Axon Diameter: From Axonal Circumferential Contractility to Activity-Dependent Axon Swelling. Front Mol Neurosci 2018; 11:319. [PMID: 30233318 PMCID: PMC6131297 DOI: 10.3389/fnmol.2018.00319] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
In the adult nervous system axon caliber varies widely amongst different tracts. When considering a given axon, its diameter can further fluctuate in space and time, according to processes including the distribution of organelles and activity-dependent mechanisms. In addition, evidence is emerging supporting that in axons circumferential tension/contractility is present. Axonal diameter is generically regarded as being regulated by neurofilaments. When neurofilaments are absent or low, microtubule-dependent mechanisms can also contribute to the regulation of axon caliber. Despite this knowledge, the fine-tune mechanisms controlling diameter and circumferential tension throughout the lifetime of an axon, remain largely elusive. Recent data supports the role of the actin-spectrin-based membrane periodic skeleton and of non-muscle myosin II in the control of axon diameter. However, the cytoskeletal arrangement that underlies circumferential axonal contraction and expansion is still to be discovered. Here, we discuss in a critical viewpoint the existing knowledge on the regulation of axon diameter, with a specific focus on the possible role played by the axonal actin cytoskeleton.
Collapse
Affiliation(s)
- Ana Rita Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Rita Pinto-Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Sara Castro Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
22
|
Nascimento AI, Mar FM, Sousa MM. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog Neurobiol 2018; 168:86-103. [PMID: 29729299 DOI: 10.1016/j.pneurobio.2018.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
Abstract
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type.
Collapse
Affiliation(s)
- Ana Isabel Nascimento
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Milhazes Mar
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
23
|
Molinarolo S, Lee S, Leisle L, Lueck JD, Granata D, Carnevale V, Ahern CA. Cross-kingdom auxiliary subunit modulation of a voltage-gated sodium channel. J Biol Chem 2018; 293:4981-4992. [PMID: 29371400 PMCID: PMC5892571 DOI: 10.1074/jbc.ra117.000852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Indexed: 02/04/2023] Open
Abstract
Voltage-gated, sodium ion-selective channels (NaV) generate electrical signals contributing to the upstroke of the action potential in animals. NaVs are also found in bacteria and are members of a larger family of tetrameric voltage-gated channels that includes CaVs, KVs, and NaVs. Prokaryotic NaVs likely emerged from a homotetrameric Ca2+-selective voltage-gated progenerator, and later developed Na+ selectivity independently. The NaV signaling complex in eukaryotes contains auxiliary proteins, termed beta (β) subunits, which are potent modulators of the expression profiles and voltage-gated properties of the NaV pore, but it is unknown whether they can functionally interact with prokaryotic NaV channels. Herein, we report that the eukaryotic NaVβ1-subunit isoform interacts with and enhances the surface expression as well as the voltage-dependent gating properties of the bacterial NaV, NaChBac in Xenopus oocytes. A phylogenetic analysis of the β-subunit gene family proteins confirms that these proteins appeared roughly 420 million years ago and that they have no clear homologues in bacterial phyla. However, a comparison between eukaryotic and bacterial NaV structures highlighted the presence of a conserved fold, which could support interactions with the β-subunit. Our electrophysiological, biochemical, structural, and bioinformatics results suggests that the prerequisites for β-subunit regulation are an evolutionarily stable and intrinsic property of some voltage-gated channels.
Collapse
Affiliation(s)
- Steven Molinarolo
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Sora Lee
- the Weill Cornell Medical College, Cornell University, New York, New York 10065, and
| | - Lilia Leisle
- the Weill Cornell Medical College, Cornell University, New York, New York 10065, and
| | - John D Lueck
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Daniele Granata
- the Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122
| | - Vincenzo Carnevale
- the Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122
| | - Christopher A Ahern
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242,
| |
Collapse
|
24
|
Yue ZW, Wang YL, Xiao B, Feng L. Axon Initial Segment Structural Plasticity is Involved in Seizure Susceptibility in a Rat Model of Cortical Dysplasia. Neurochem Res 2018; 43:878-885. [PMID: 29468458 DOI: 10.1007/s11064-018-2493-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 11/28/2022]
Abstract
Cortical dysplasia is the most common etiology of intractable epilepsy. Both excitability changes in cortical neurons and neural network reconstitution play a role in cortical dysplasia epileptogenesis. Recent research shows that the axon initial segment, a subcompartment of the neuron important to the shaping of action potentials, adjusts its position in response to changes in input, which contributes to neuronal excitability and local circuit balance. It is unknown whether axon initial segment plasticity occurs in neurons involved in seizure susceptibility in cortical dysplasia. Here, we developed a "Carmustine"- "pilocarpine" rat model of cortical dysplasia and show that it exhibits a lower seizure threshold, as indicated by behavior studies and electroencephalogram monitoring. Using immunofluorescence, we measured the axon initial segment positions of deep L5 somatosensory neurons and show that it is positioned closer to the soma after acute seizure, and that this displacement is sustained in the chronic phase. We then show that Nifedipine has a dose-dependent protective effect against axon initial segment displacement and increased seizure susceptibility. These findings further our understanding of the pathophysiology of seizures in cortical dysplasia and suggests Nifedipine as a potential therapeutic agent.
Collapse
Affiliation(s)
- Zong-Wei Yue
- 1Neurology Department, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China
| | - Ye-Lan Wang
- 1Neurology Department, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China
| | - Bo Xiao
- 1Neurology Department, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China.
| | - Li Feng
- 1Neurology Department, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China.
| |
Collapse
|
25
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
26
|
Berman JM, Mironova E, Stockand JD. Physiological regulation of the epithelial Na + channel by casein kinase II. Am J Physiol Renal Physiol 2017; 314:F367-F372. [PMID: 29021227 DOI: 10.1152/ajprenal.00469.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
epithelial Na+ channel, ENaC, is the final arbiter of sodium excretion in the kidneys. As such, discretionary control of ENaC by hormones is critical to the fine-tuning of electrolyte and water excretion and, consequently, blood pressure. Casein kinase 2 (CK2) phosphorylates ENaC. Phosphorylation by CK2 is necessary for normal ENaC activity. We tested the physiological importance of CK2 regulation of ENaC as the degree to which ENaC activity is dependent on CK2 phosphorylation in the living organism is unknown. This was addressed using patch-clamp analysis of ENaC in completely split-open collecting ducts and whole animal physiological studies of sodium excretion in mice. We also used ENaC-harboring CK2 phosphorylation site mutations to elaborate the mechanism. We found that ENaC activity in ex vivo preparations of murine collecting duct had a significant decrease in activity in response to selective antagonism of CK2. In whole animal experiments selective antagonism of CK2 caused a natriuresis similar to benzamil, but not additive to benzamil, suggesting an ENaC-dependent mechanism. Regulation of ENaC by CK2 was abolished by mutation of the canonical CK2 phosphorylation sites in beta and gamma ENaC. Together, these results demonstrate that the appropriate regulation of ENaC by CK2 is necessary for the normal physiological role played by this key renal ion channel in the fine-tuning of sodium excretion.
Collapse
Affiliation(s)
- Jonathan M Berman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
27
|
Dong J, Song H, Wang Y, Li M, Yu Y, Wang Y, Chen J. Maternal Different Degrees of Iodine Deficiency during Pregnant and Lactation Impair the Development of Cerebellar Pinceau in Offspring. Front Neurosci 2017; 11:298. [PMID: 28611576 PMCID: PMC5446996 DOI: 10.3389/fnins.2017.00298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/12/2017] [Indexed: 11/13/2022] Open
Abstract
Aims: Iodine is critical for synthesis of thyroid hormones (TH). And iodine deficiency (ID) is one of the most significant reasons of intellectual disability and motor memory impairment, although the potential mechanisms are still under investigation. Presently, mild ID and marginal ID are largely ignored problems for women of child bearing age. Mild ID is a subtle form of TH deficiency, which shows low levels of free thyroxine (FT4) and relatively normal free triiodothyronine (FT3) or thyroid stimulation hormone (TSH). And marginal ID is a milder form of ID with decreased total T4 (TT4) but relatively normal FT3, FT4, and TSH. Therefore, we investigated the effects of maternal different degrees of ID on the development of pinceau in cerebellar purkinje cells (PCs) and studied the expression of pinceau related protein, which is crucial for the development and maturation of pinceau. Methods and Results: Three developmental iodine deficient rat models were created by feeding dam rats with an iodine-deficient diet and deionized water supplemented with potassiumiodide. Our study showed that different degrees of ID inhibited cerebellar pinceau synapse development and maturation on postnatal day (PN) 14 and PN21. What's more, mild and severe ID reduced the expression of AnkG, β4-spectrin, neurofascin186 and NrCAM on PN7, PN14, and PN21. However, marginal ID rarely altered expression of these proteins in the offspring. Conclusion: These results suggested that maternal mild and severe ID impaired the development and maturation of cerebellar pinceau, which may be attributed to the decrease of AnkG, β4-spectrin, neurofascin 186, and NrCAM. And the alteration of development and maturation in cerebellar pinceau in the offspring were also observed following maternal marginal ID, which is slighter than that of mild ID.
Collapse
Affiliation(s)
- Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Heling Song
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Min Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Ye Yu
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical UniversityShenyang, China
| |
Collapse
|
28
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
29
|
Di Re J, Wadsworth PA, Laezza F. Intracellular Fibroblast Growth Factor 14: Emerging Risk Factor for Brain Disorders. Front Cell Neurosci 2017; 11:103. [PMID: 28469558 PMCID: PMC5396478 DOI: 10.3389/fncel.2017.00103] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/28/2017] [Indexed: 01/31/2023] Open
Abstract
The finely tuned regulation of neuronal firing relies on the integrity of ion channel macromolecular complexes. Minimal disturbances of these tightly regulated networks can lead to persistent maladaptive plasticity of brain circuitry. The intracellular fibroblast growth factor 14 (FGF14) belongs to the nexus of proteins interacting with voltage-gated Na+ (Nav) channels at the axonal initial segment. Through isoform-specific interactions with the intracellular C-terminal tail of neuronal Nav channels (Nav1.1, Nav1.2, Nav1.6), FGF14 controls channel gating, axonal targeting and phosphorylation in neurons effecting excitability. FGF14 has been also involved in synaptic transmission, plasticity and neurogenesis in the cortico-mesolimbic circuit with cognitive and affective behavioral outcomes. In translational studies, interest in FGF14 continues to rise with a growing list of associative links to diseases of the cognitive and affective domains such as neurodegeneration, depression, anxiety, addictive behaviors and recently schizophrenia, suggesting its role as a converging node in the etiology of complex brain disorders. Yet, a full understanding of FGF14 function in neurons is far from being complete and likely to involve other functions unrelated to the direct regulation of Nav channels. The goal of this Mini Review article is to provide a summary of studies on the emerging role of FGF14 in complex brain disorders.
Collapse
Affiliation(s)
- Jessica Di Re
- Neuroscience Graduate Program, University of Texas Medical BranchGalveston, TX, USA.,Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA
| | - Paul A Wadsworth
- Biochemistry and Molecular Biology Graduate Program, The University of Texas Medical BranchGalveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA.,Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical BranchGalveston, TX, USA.,Center for Addiction Research, The University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
30
|
Jegla T, Nguyen MM, Feng C, Goetschius DJ, Luna E, van Rossum DB, Kamel B, Pisupati A, Milner ES, Rolls MM. Bilaterian Giant Ankyrins Have a Common Evolutionary Origin and Play a Conserved Role in Patterning the Axon Initial Segment. PLoS Genet 2016; 12:e1006457. [PMID: 27911898 PMCID: PMC5135030 DOI: 10.1371/journal.pgen.1006457] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/03/2016] [Indexed: 12/03/2022] Open
Abstract
In vertebrate neurons, the axon initial segment (AIS) is specialized for action potential initiation. It is organized by a giant 480 Kd variant of ankyrin G (AnkG) that serves as an anchor for ion channels and is required for a plasma membrane diffusion barrier that excludes somatodendritic proteins from the axon. An unusually long exon required to encode this 480Kd variant is thought to have been inserted only recently during vertebrate evolution, so the giant ankyrin-based AIS scaffold has been viewed as a vertebrate adaptation for fast, precise signaling. We re-examined AIS evolution through phylogenomic analysis of ankyrins and by testing the role of ankyrins in proximal axon organization in a model multipolar Drosophila neuron (ddaE). We find giant isoforms of ankyrin in all major bilaterian phyla, and present evidence in favor of a single common origin for giant ankyrins and the corresponding long exon in a bilaterian ancestor. This finding raises the question of whether giant ankyrin isoforms play a conserved role in AIS organization throughout the Bilateria. We examined this possibility by looking for conserved ankyrin-dependent AIS features in Drosophila ddaE neurons via live imaging. We found that ddaE neurons have an axonal diffusion barrier proximal to the cell body that requires a giant isoform of the neuronal ankyrin Ank2. Furthermore, the potassium channel shal concentrates in the proximal axon in an Ank2-dependent manner. Our results indicate that the giant ankyrin-based cytoskeleton of the AIS may have evolved prior to the radiation of extant bilaterian lineages, much earlier than previously thought. The axon initial segment (AIS) is currently thought to be a distinguishing feature of vertebrate neurons that adapts them for rapid, precise signaling. It serves as a hub for the regulation of neuronal excitability as the site of action potential initiation and also acts as the boundary between the highly-specialized axon and the rest of the cell. Here we show that the giant ankyrins that structurally organize the AIS, and were thought to be vertebrate-specific, instead have an ancient origin in a bilaterian ancestor. We further show the presence of a giant ankyrin-dependent AIS-like plasma membrane boundary between the axon and soma in a Drosophila sensory neuron. These results suggest that the cytoskeletal backbone for the AIS is not unique to vertebrates, but instead may be an evolutionarily conserved feature of bilaterian neurons.
Collapse
Affiliation(s)
- Timothy Jegla
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (MMR); (TJ)
| | - Michelle M. Nguyen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chengye Feng
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel J. Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Esteban Luna
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Damian B. van Rossum
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bishoy Kamel
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aditya Pisupati
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Elliott S. Milner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Melissa M. Rolls
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (MMR); (TJ)
| |
Collapse
|
31
|
Yamada R, Kuba H. Structural and Functional Plasticity at the Axon Initial Segment. Front Cell Neurosci 2016; 10:250. [PMID: 27826229 PMCID: PMC5078684 DOI: 10.3389/fncel.2016.00250] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/12/2016] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS) is positioned between the axonal and somato-dendritic compartments and plays a pivotal role in triggering action potentials (APs) and determining neuronal output. It is now widely accepted that structural properties of the AIS, such as length and/or location relative to the soma, change in an activity-dependent manner. This structural plasticity of the AIS is known to be crucial for homeostatic control of neuronal excitability. However, it is obvious that the impact of the AIS on neuronal excitability is critically dependent on the biophysical properties of the AIS, which are primarily determined by the composition and characteristics of ion channels in this domain. Moreover, these properties can be altered via phosphorylation and/or redistribution of the channels. Recently, studies in auditory neurons showed that alterations in the composition of voltage-gated K+ (Kv) channels at the AIS coincide with elongation of the AIS, thereby enhancing the neuronal excitability, suggesting that the interaction between structural and functional plasticities of the AIS is important in the control of neuronal excitability. In this review, we will summarize the current knowledge regarding structural and functional alterations of the AIS and discuss how they interact and contribute to regulating the neuronal output.
Collapse
Affiliation(s)
- Rei Yamada
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Hiroshi Kuba
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University Nagoya, Japan
| |
Collapse
|
32
|
Heine M, Ciuraszkiewicz A, Voigt A, Heck J, Bikbaev A. Surface dynamics of voltage-gated ion channels. Channels (Austin) 2016; 10:267-81. [PMID: 26891382 DOI: 10.1080/19336950.2016.1153210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks.
Collapse
Affiliation(s)
- Martin Heine
- a RG Molecular Physiology, Leibniz Institute for Neurobiology, Center for Behavioral Brain Science, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Anna Ciuraszkiewicz
- a RG Molecular Physiology, Leibniz Institute for Neurobiology, Center for Behavioral Brain Science, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Andreas Voigt
- b Lehrstuhl Systemverfahrenstechnik, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Jennifer Heck
- a RG Molecular Physiology, Leibniz Institute for Neurobiology, Center for Behavioral Brain Science, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Arthur Bikbaev
- a RG Molecular Physiology, Leibniz Institute for Neurobiology, Center for Behavioral Brain Science, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| |
Collapse
|
33
|
Alshammari MA, Alshammari TK, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci 2016; 10:5. [PMID: 26909021 PMCID: PMC4754416 DOI: 10.3389/fncel.2016.00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
The axonal initial segment (AIS) is the subcellular compartment required for initiation of the action potential in neurons. Scaffolding and regulatory proteins at the AIS cluster with ion channels ensuring the integrity of electrical signaling. Interference with the configuration of this protein network can lead to profound effects on neuronal polarity, excitability, cell-to-cell connectivity and brain circuit plasticity. As such, the ability to visualize AIS components with precision provides an invaluable opportunity for parsing out key molecular determinants of neuronal function. Fluorescence-based immunolabeling is a sensitive method for morphological and molecular characterization of fine structures in neurons. Yet, even when combined with confocal microscopy, detection of AIS elements with immunofluorescence has been limited by the loss of antigenicity caused by fixative materials. This technical barrier has posed significant limitations in detecting AIS components alone or in combination with other markers. Here, we designed improved protocols targeted to confocal immunofluorescence detection of the AIS marker fibroblast growth factor 14 (FGF14) in combination with the cytoskeletal-associated protein Ankyrin-G, the scaffolding protein βIV-spectrin, voltage-gated Na+ (Nav) channels (especially the Nav1.6 isoform) and critical cell type-specific neuronal markers such as parvalbumin, calbindin, and NeuN in the mouse brain. Notably, we demonstrate that intracardiac perfusion of animals with a commercially available solution containing 1% formaldehyde and 0.5% methanol, followed by brief fixation with cold acetone is an optimal and sensitive protocol for FGF14 and other AIS marker detection that guarantees excellent tissue integrity. With variations in the procedure, we also significantly improved the detection of Nav1.6, a Nav isoform known for its fixative-sensitivity. Overall, this study provides an ensemble of immunohistochemical recipes that permit excellent staining of otherwise invisible molecules within well-preserved tissue architecture. While improving the specific investigation of AIS physiology and cell biology, our thorough study can also serve as a roadmap for optimizing immunodetection of other fixative-sensitive proteins expanding the repertoire of enabling methods for brain studies.
Collapse
Affiliation(s)
- Musaad A Alshammari
- Graduate Studies Abroad Program, King Saud UniversityRiyadh, Saudi Arabia; Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA
| | - Tahani K Alshammari
- Graduate Studies Abroad Program, King Saud UniversityRiyadh, Saudi Arabia; Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical BranchGalveston, TX, USA; Center for Addiction Research, University of Texas Medical BranchGalveston, TX, USA; Center for Biomedical Engineering, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
34
|
Carrascal L, Nieto-González J, Pardillo-Díaz R, Pásaro R, Barrionuevo G, Torres B, Cameron WE, Núñez-Abades P. Time windows for postnatal changes in morphology and membrane excitability of genioglossal and oculomotor motoneurons. World J Neurol 2015; 5:113-131. [DOI: 10.5316/wjn.v5.i4.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/07/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Time windows for postnatal changes in morphology and membrane excitability of genioglossal (GG) and oculomotor (OCM) motoneurons (MNs) are yet to be fully described. Analysis of data on brain slices in vitro of the 2 populations of MNs point to a well-defined developmental program that progresses with common age-related changes characterized by: (1) increase of dendritic surface along with length and reshaping of dendritic tree complexity; (2) disappearance of gap junctions early in development; (3) decrease of membrane passive properties, such as input resistance and time constant, together with an increase in the number of cells displaying sag, and modifications in rheobase; (4) action potential shortening and afterhyperpolarization; and (5) an increase in gain and maximum firing frequency. These modifications take place at different time windows for each motoneuronal population. In GG MNs, active membrane properties change mainly during the first postnatal week, passive membrane properties in the second week, and dendritic increasing length and size in the third week of development. In OCM MNs, changes in passive membrane properties and growth of dendritic size take place during the first postnatal week, while active membrane properties and rheobase change during the second and third weeks of development. The sequential order of changes is inverted between active and passive membrane properties, and growth in size does not temporally coincide for both motoneuron populations. These findings are discussed on the basis of environmental cues related to maturation of the respiratory and OCM systems.
Collapse
|
35
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
36
|
Kevenaar JT, Hoogenraad CC. The axonal cytoskeleton: from organization to function. Front Mol Neurosci 2015; 8:44. [PMID: 26321907 PMCID: PMC4536388 DOI: 10.3389/fnmol.2015.00044] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/31/2015] [Indexed: 01/20/2023] Open
Abstract
The axon is the single long fiber that extends from the neuron and transmits electrical signals away from the cell body. The neuronal cytoskeleton, composed of microtubules (MTs), actin filaments and neurofilaments, is not only required for axon formation and axonal transport but also provides the structural basis for several specialized axonal structures, such as the axon initial segment (AIS) and presynaptic boutons. Emerging evidence suggest that the unique cytoskeleton organization in the axon is essential for its structure and integrity. In addition, the increasing number of neurodevelopmental and neurodegenerative diseases linked to defect in actin- and microtubule-dependent processes emphasizes the importance of a properly regulated cytoskeleton for normal axonal functioning. Here, we provide an overview of the current understanding of actin and microtubule organization within the axon and discuss models for the functional role of the cytoskeleton at specialized axonal structures.
Collapse
Affiliation(s)
- Josta T. Kevenaar
- Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | | |
Collapse
|
37
|
Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J Neurosci 2015; 35:7272-86. [PMID: 25948275 DOI: 10.1523/jneurosci.4747-14.2015] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Myelination and voltage-gated ion channel clustering at the nodes of Ranvier are essential for the rapid saltatory conduction of action potentials. Whether myelination influences the structural organization of the axon initial segment (AIS) and action potential initiation is poorly understood. Using the cuprizone mouse model, we combined electrophysiological recordings with immunofluorescence of the voltage-gated Nav1.6 and Kv7.3 subunits and anchoring proteins to analyze the functional and structural properties of single demyelinated neocortical L5 axons. Whole-cell recordings demonstrated that neurons with demyelinated axons were intrinsically more excitable, characterized by increased spontaneous suprathreshold depolarizations as well as antidromically propagating action potentials ectopically generated in distal parts of the axon. Immunofluorescence examination of demyelinated axons showed that βIV-spectrin, Nav1.6, and the Kv7.3 channels in nodes of Ranvier either dissolved or extended into the paranodal domains. In contrast, while the AIS in demyelinated axons started more closely to the soma, ankyrin G, βIV-spectrin, and the ion channel expression were maintained. Structure-function analysis and computational modeling, constrained by the AIS location and realistic dendritic and axonal morphologies, confirmed that a more proximal onset of the AIS slightly reduced the efficacy of action potential generation, suggesting a compensatory role. These results suggest that oligodendroglial myelination is not only important for maximizing conduction velocity, but also for limiting hyperexcitability of pyramidal neurons.
Collapse
|
38
|
Abad-Rodríguez J, Díez-Revuelta N. Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem Sci 2015; 40:385-96. [PMID: 25936977 DOI: 10.1016/j.tibs.2015.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Nervous system function relies on the capacity of neurons to organize specialized domains for impulse reception or transmission. Such a polarized architecture relies on highly discriminatory and efficient mechanisms for the transport and targeting of required molecules to their functional positions. Glycans play a central role in polarized traffic based on their extraordinary capacity to encrypt bio-information. Glycan-based interactions exquisitely regulate cargo selection, trafficking, and targeting to the axon membrane. This generates segregated functional domains, where basal nerve processes such as axon growth, synaptic activity, or myelination take place. Deciphering the details of the glycan structures and carbohydrate-binding molecules that underlie these mechanisms improves our knowledge of nerve physiology and defines novel specific approaches for neurological treatments.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
39
|
Akin EJ, Solé L, Dib-Hajj SD, Waxman SG, Tamkun MM. Preferential targeting of Nav1.6 voltage-gated Na+ Channels to the axon initial segment during development. PLoS One 2015; 10:e0124397. [PMID: 25874799 PMCID: PMC4398423 DOI: 10.1371/journal.pone.0124397] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/13/2015] [Indexed: 12/19/2022] Open
Abstract
During axonal maturation, voltage-gated sodium (Nav) channels accumulate at the axon initial segment (AIS) at high concentrations. This localization is necessary for the efficient initiation of action potentials. The mechanisms underlying channel trafficking to the AIS during axonal development have remained elusive due to a lack of Nav reagents suitable for high resolution imaging of channels located specifically on the cell surface. Using an optical pulse-chase approach in combination with a novel Nav1.6 construct containing an extracellular biotinylation domain we demonstrate that Nav1.6 channels are preferentially inserted into the AIS membrane during neuronal development via direct vesicular trafficking. Single-molecule tracking illustrates that axonal channels are immediately immobilized following delivery, while channels delivered to the soma are often mobile. Neither a Nav1.6 channel lacking the ankyrin-binding motif nor a chimeric Kv2.1 channel containing the Nav ankyrinG-binding domain show preferential AIS insertion. Together these data support a model where ankyrinG-binding is required for preferential Nav1.6 insertion into the AIS plasma membrane. In contrast, ankyrinG-binding alone does not confer the preferential delivery of proteins to the AIS.
Collapse
Affiliation(s)
- Elizabeth J Akin
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America; Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laura Solé
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sulayman D Dib-Hajj
- Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut, United States of America; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Stephen G Waxman
- Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut, United States of America; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America; Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
40
|
Abstract
The axon initial segment (AIS) is a specialized axonal compartment that is involved in conversion of synaptic potentials into action potentials. Recent studies revealed that structural properties of the AIS, such as length and position relative to the soma, are differentiated in a cell-specific manner and shape signal processing of individual neurons. Moreover, these structural properties are not fixed but vary in response to prolonged changes of neuronal activity, which readjusts action potential threshold and compensates for the changes of activity, indicating that this structural plasticity of the AIS works as a homeostatic mechanism and contributes to maintain neuronal activity. Neuronal activity plays a crucial role in formation, maintenance, and refinement of neural circuits as well as in pathogenesis and/or pathophysiology of diseases. Thus, this plasticity should be a key to understand physiology and pathology of the brain.
Collapse
Affiliation(s)
- Ryota Adachi
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Rei Yamada
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Kuba
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- PRESTO, JST, Saitama, Japan
| |
Collapse
|
41
|
Yoshimura T, Rasband MN. Axon initial segments: diverse and dynamic neuronal compartments. Curr Opin Neurobiol 2014; 27:96-102. [PMID: 24705243 DOI: 10.1016/j.conb.2014.03.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/25/2014] [Accepted: 03/09/2014] [Indexed: 01/29/2023]
Abstract
The axon initial segment (AIS) is a structurally and molecularly unique neuronal compartment of the proximal axon that functions as both a physiological and physical bridge between the somatodendritic and axonal domains. The AIS has two main functions: to initiate action potentials and to maintain neuronal polarity. The cytoskeletal scaffold ankyrinG is responsible for these functions and clusters ion channels at the AIS. Recent studies reveal how the AIS forms and remarkable diversity in its structure, function, and composition that may be modulated by neuronal activity and posttranslational modifications of AIS proteins. Furthermore, AIS proteins have been implicated in a variety of human diseases. Here, we discuss these findings and what they teach us about the dynamic AIS.
Collapse
Affiliation(s)
- Takeshi Yoshimura
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Tai Y, Janas JA, Wang CL, Van Aelst L. Regulation of chandelier cell cartridge and bouton development via DOCK7-mediated ErbB4 activation. Cell Rep 2014; 6:254-63. [PMID: 24440718 DOI: 10.1016/j.celrep.2013.12.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/20/2013] [Indexed: 01/04/2023] Open
Abstract
Chandelier cells (ChCs), typified by their unique axonal morphology, are the most distinct interneurons present in cortical circuits. Via their distinctive axonal terminals, called cartridges, these cells selectively target the axon initial segment of pyramidal cells and control action potential initiation; however, the mechanisms that govern the characteristic ChC axonal structure have remained elusive. Here, by employing an in utero electroporation-based method that enables genetic labeling and manipulation of ChCs in vivo, we identify DOCK7, a member of the DOCK180 family, as a molecule essential for ChC cartridge and bouton development. Furthermore, we present evidence that DOCK7 functions as a cytoplasmic activator of the schizophrenia-associated ErbB4 receptor tyrosine kinase and that DOCK7 modulates ErbB4 activity to control ChC cartridge and bouton development. Thus, our findings define DOCK7 and ErbB4 as key components of a pathway that controls the morphological differentiation of ChCs, with implications for the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Yilin Tai
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justyna A Janas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Chia-Lin Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
43
|
Integrative biological analysis for neuropsychopharmacology. Neuropsychopharmacology 2014; 39:5-23. [PMID: 23800968 PMCID: PMC3857644 DOI: 10.1038/npp.2013.156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 01/24/2023]
Abstract
Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach brain studies by understanding functional networks that interact with the genome are being developed. The integrated biological approaches--proteomics, transcriptomics, metabolomics, and glycomics--have a strong record in several areas of biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge derived from cells, animal models, and clinical materials. Future studies that yield insights based on integrated analyses promise to deliver new therapeutic targets and biomarkers for personalized medicine.
Collapse
|
44
|
Seidl AH. Regulation of conduction time along axons. Neuroscience 2013; 276:126-34. [PMID: 23820043 DOI: 10.1016/j.neuroscience.2013.06.047] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Timely delivery of information is essential for proper functioning of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies on the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the speed of signal propagation, i.e. the speed at which an action potential travels. Conduction time refers to the time it takes for a specific signal to travel from its origin to its target, i.e. neuronal cell body to axonal terminal.
Collapse
Affiliation(s)
- A H Seidl
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA; Department of Otolaryngology - Head & Neck Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
45
|
Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau. Acta Neuropathol 2013; 125:879-89. [PMID: 23543187 DOI: 10.1007/s00401-013-1108-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/19/2013] [Accepted: 03/17/2013] [Indexed: 01/08/2023]
Abstract
The Lingo-1 sequence variant has been associated with essential tremor (ET) in several genome-wide association studies. However, the role that Lingo-1 might play in pathogenesis of ET is not understood. Since Lingo-1 protein is a negative regulator of axonal regeneration and neurite outgrowth, it could contribute to Purkinje cell (PC) or basket cell axonal pathology observed in postmortem studies of ET brains. In this study, we used Western blotting and immunohistochemistry to examine Lingo-1 protein in ET vs. control brains. In Western blots, Lingo-1 protein expression level was significantly increased in cerebellar cortex (1.56 ± 0.46 in ET cases vs. 0.99 ± 0.20 in controls, p = 0.002), but was similar in the occipital cortex (p = 1.00) of ET cases vs. controls. Lingo-1 immunohistochemistry in cerebellum revealed that Lingo-1 was enriched in the distal axonal processes of basket cells, which formed a "pinceau" structure around the PC axon initial segment (AIS). We found that some Lingo-1-positive pinceau had abnormally elongated processes, targeting PC axon segments distal to the AIS. In ET cases, the percentage of Lingo-1-positive pinceau that were ≥30 or ≥40 μm in length was increased 2.4- to 4.1-fold, respectively, vs. pinceau seen in control brains (p < 0.0001). Elongated Lingo-1-positive pinceau strongly correlated with number of PC axonal torpedoes and a rating of basket cell axonal pathology. The increased cerebellar Lingo-1 expression and elongated Lingo-1-positive pinceau processes could contribute to the abnormal PC and basket cell axonal pathology and cerebellar dysfunction observed in ET.
Collapse
|
46
|
Maddala R, Nagendran T, de Ridder GG, Schey KL, Rao PV. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins. PLoS One 2013; 8:e64676. [PMID: 23734214 PMCID: PMC3667166 DOI: 10.1371/journal.pone.0064676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/17/2013] [Indexed: 01/18/2023] Open
Abstract
Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial role for LTCCs in regulation of expression, activity and stability of aquaporin-0, connexins, cytoskeletal proteins, and the mechanical properties of lens, all of which have a vital role in maintaining lens function and cytoarchitecture.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tharkika Nagendran
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gustaaf G. de Ridder
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
47
|
Sánchez-Ponce D, DeFelipe J, Garrido JJ, Muñoz A. Developmental expression of Kv potassium channels at the axon initial segment of cultured hippocampal neurons. PLoS One 2012; 7:e48557. [PMID: 23119056 PMCID: PMC3485302 DOI: 10.1371/journal.pone.0048557] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022] Open
Abstract
Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation.
Collapse
Affiliation(s)
- Diana Sánchez-Ponce
- Department of Functional and Systems Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
| | - Javier DeFelipe
- Department of Functional and Systems Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan José Garrido
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (AM); (JJG)
| | - Alberto Muñoz
- Department of Functional and Systems Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- * E-mail: (AM); (JJG)
| |
Collapse
|
48
|
Kuba H. Structural tuning and plasticity of the axon initial segment in auditory neurons. J Physiol 2012; 590:5571-9. [PMID: 23027822 DOI: 10.1113/jphysiol.2012.237305] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The axon initial segment (AIS) that separates axonal and somato-dendritic compartments is a highly specialised neuronal structure enriched with voltage-gated Na(+) channels and functions as the site of spike initiation in neurons. The AIS was once thought to be uniform and static in structure, but has been found to be organised in a manner specific to the function of individual neurons and to exhibit plasticity with changes in synaptic inputs. Such structural specialisations are found in the avian auditory system. In the nucleus magnocellularis (NM), which is involved in a precise relay of timing information, the length of the AIS differs depending on sound frequency and increases with decreasing frequencies to accommodate frequency-specific variations in synaptic inputs. In the nucleus laminaris, which integrates the timing information from both NMs for sound localisation, the length and the location of the AIS vary depending on sound frequency: AISs are shorter and more remote for higher frequency. Furthermore, the AISs of NM neurons elongate to increase their excitability when synaptic inputs are removed by cochlea ablation, suggesting their contribution to the homeostatic control of neural activity. These structural tunings and plasticities of the AIS are thus indispensable for the function of the auditory circuits in both normal and pathological conditions.
Collapse
Affiliation(s)
- Hiroshi Kuba
- Nagoya University Faculty of Medicine, Physiology, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
49
|
Lack of molecular-anatomical evidence for GABAergic influence on axon initial segment of cerebellar Purkinje cells by the pinceau formation. J Neurosci 2012; 32:9438-48. [PMID: 22764252 DOI: 10.1523/jneurosci.1651-12.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The axon initial segment (AIS) of cerebellar Purkinje cells (PCs) is embraced by ramified axons of GABAergic basket cells (BCs) called the pinceau formation. This unique structure has been assumed to be a device for the modulation of PC outputs through electrical and/or GABAergic inhibition. Electrical inhibition is supported by enriched potassium channels, absence of sodium channels, and developed septate-like junctions between BC axons. The neurochemical basis for GABAergic inhibition, however, has not been well investigated. Here we addressed this issue using C56BL/6 mice. First, we confirmed previous observations that typical synaptic contacts were rare and confined to proximal axonal portions, with the remaining portions being mostly covered by astrocytic processes. Then we examined the expression of molecules involved in GABAergic signaling, including GABA synthetic enzyme glutamic acid decarboxylase (GAD), vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT), cytomatrix active zone protein bassoon, GABA receptor GABA(A)Rα1, and cell adhesion molecule neuroligin-2. These molecules were recruited to form a functional assembly at perisomatic BC-PC synapses and along the AIS of hippocampal and neocortical pyramidal cells. GAD and VIAAT immunogold labeling was five times lower in the pinceau formation compared with perisomatic BC terminals and showed no accumulation toward the AIS. Moreover, bassoon, neuroligin-2, and GABA(A)Rα1 formed no detectable clusters along the ankyrin-G-positive AIS proper. These findings indicate that GABAergic signaling machinery is organized loosely and even incompletely in the pinceau formation. Together, BCs do not appear to exert GABAergic synaptic inhibition on the AIS, although the mode of action of the pinceau formation remains to be explored.
Collapse
|
50
|
Khan SI, Giesebrecht S, Gandevia SC, Taylor JL. Activity-dependent depression of the recurrent discharge of human motoneurones after maximal voluntary contractions. J Physiol 2012; 590:4957-69. [PMID: 22907051 DOI: 10.1113/jphysiol.2012.235697] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite maximal voluntary effort, the output of human motoneurone pools diminishes during fatigue. To assess motoneurone behaviour, we measured recurrent discharges evoked antidromically by supramaximal nerve stimulation after isometric maximal voluntary contractions (MVCs).They were measured as F-waves in the electromyographic activity (EMG). Supramaximal stimuli to the common peroneal and ulnar nerves evoked F-waves at rest before and after MVCs in tibialis anterior (TA) and abductor digit minimi (ADM), respectively. F-waves were depressed immediately after a sustained MVC. For TA, the size and time course of depression of the F-wave area (26 ± 13%; mean ± SD; P =0.007) and persistence (∼20%) were similar after a 10-s or 1-min MVC. For ADM, the decline in F-wave area (39.8 ± 19.6%; P <0.01) was similar after the two contractions but the decline in persistence (probability of occurrence) of the F-wave differed (14.6 ± 10.5% and 32.5 ± 17.1% after 10-s and 1-min MVCs respectively). Comparison of a very long (2-min) with a very short (2-s)MVC in ADM showed that the depression of F-wave area, as well as persistence, was greater after the longer contraction. This suggests, at least for ADM, that the depression is related to the duration of voluntary activity and that the decrease in F-waves could contribute to central fatigue. To examine whether changes in motor axon excitability caused the depression, we measured compound muscle action potentials (M-waves) to submaximal stimulation of the ulnar nerve after a 2-s and 2-min MVC. Submaximal M-waves were not depressed after a 2-s MVC. They were depressed by a 2-min MVC, but the time course of depression of the F- and M-waves differed. Thus, depression of F-waves does not simply reflect reduced excitability of peripheral motor axons.Hence, we propose that activity-dependent changes at the soma or the initial segment depress the recurrent discharge of human motoneurones and that this may contribute to central fatigue.
Collapse
Affiliation(s)
- Serajul I Khan
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, 2031, Australia
| | | | | | | |
Collapse
|