1
|
Hudson KM, Shiver E, Yu J, Mehta S, Jima DD, Kane MA, Patisaul HB, Cowley M. Transcriptomic, proteomic, and metabolomic analyses identify candidate pathways linking maternal cadmium exposure to altered neurodevelopment and behavior. Sci Rep 2021; 11:16302. [PMID: 34381081 PMCID: PMC8357970 DOI: 10.1038/s41598-021-95630-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) is a ubiquitous toxic heavy metal of major public concern. Despite inefficient placental transfer, maternal Cd exposure impairs fetal growth and development. Increasing evidence from animal models and humans suggests maternal Cd exposure negatively impacts neurodevelopment; however, the underlying molecular mechanisms are unclear. To address this, we utilized multiple -omics approaches in a mouse model of maternal Cd exposure to identify pathways altered in the developing brain. Offspring maternally exposed to Cd presented with enlarged brains proportional to body weights at birth and altered behavior at adulthood. RNA-seq in newborn brains identified exposure-associated increases in Hox gene and myelin marker expression and suggested perturbed retinoic acid (RA) signaling. Proteomic analysis showed altered levels of proteins involved in cellular energy pathways, hypoxic response, and RA signaling. Consistent with transcriptomic and proteomic analyses, we identified increased levels of retinoids in maternally-exposed newborn brains. Metabolomic analyses identified metabolites with significantly altered abundance, supportive of changes to cellular energy pathways and hypoxia. Finally, maternal Cd exposure reduced mitochondrial DNA levels in newborn brains. The identification of multiple pathways perturbed in the developing brain provides a basis for future studies determining the mechanistic links between maternal Cd exposure and altered neurodevelopment and behavior.
Collapse
Affiliation(s)
- Kathleen M Hudson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily Shiver
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jianshi Yu
- School of Pharmacy Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, 21201, USA
| | - Sanya Mehta
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Maureen A Kane
- School of Pharmacy Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, 21201, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael Cowley
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
2
|
Zhang T, Guan P, Liu W, Zhao G, Fang Y, Fu H, Gui JF, Li G, Liu JX. Copper stress induces zebrafish central neural system myelin defects via WNT/NOTCH-hoxb5b signaling and pou3f1/fam168a/fam168b DNA methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194612. [PMID: 32745624 DOI: 10.1016/j.bbagrm.2020.194612] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Unbalanced copper (Cu) homeostasis is associated with neurological development defects and diseases. However, the molecular mechanisms remain elusive. Here, central neural system (CNS) myelin defects and the down-regulated expression of WNT/NOTCH signaling and its down-stream mediator hoxb5b were observed in Cu2+ stressed zebrafish larvae. The loss/knockdown-of-function of hoxb5b phenocopied the myelin and axon defects observed in Cu2+ stressed embryos. Meanwhile, the activation of WNT/NOTCH signaling and ectopic expression of hoxb5b could rescue Cu induced myelin defects. Additionally, fam168b, similar to pou3f1/2, exhibited significant promoter hypermethylation and reduced expression in Cu2+ stressed embryos. The hypermethylated locus in fam168b promoter acted pivotally in its transcription, and the loss/knockdown of fam168b/pou3f1 also induced myelin defects. This study also demonstrated that fam168b/pou3f1 and hoxb5b axis acted in a seesaw manner during fish embryogenesis: Cu induced the down-regulated expression of the WNT&NOTCH-hoxb5b axis through the function of copper transporter cox17, coupled with the promoter methylation of genes fam168b/pou3f1, and its subsequent down-regulated expression through the function of another transporter atp7b, making joint contributions to myelin defects in embryos.
Collapse
Affiliation(s)
- Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - PengPeng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - YaPing Fang
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Fu
- Department of Anatomy, School of Basic Medical Science, Wuhan University, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Morgan RK, Anderson GR, Araç D, Aust G, Balenga N, Boucard A, Bridges JP, Engel FB, Formstone CJ, Glitsch MD, Gray RS, Hall RA, Hsiao CC, Kim HY, Knierim AB, Kusuluri DK, Leon K, Liebscher I, Piao X, Prömel S, Scholz N, Srivastava S, Thor D, Tolias KF, Ushkaryov YA, Vallon M, Van Meir EG, Vanhollebeke B, Wolfrum U, Wright KM, Monk KR, Mogha A. The expanding functional roles and signaling mechanisms of adhesion G protein-coupled receptors. Ann N Y Acad Sci 2019; 1456:5-25. [PMID: 31168816 PMCID: PMC7891679 DOI: 10.1111/nyas.14094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.
Collapse
Affiliation(s)
- Rory K. Morgan
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Garret R. Anderson
- Department of Molecular, Cell and Systems Biology, University of California – Riverside, Riverside, California
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Gabriela Aust
- Research Laboratories, Department of Surgery, Leipzig University, Leipzig, Germany
| | - Nariman Balenga
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Program in Molecular and Structural Biology, Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, Maryland
| | - Antony Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
| | - James P. Bridges
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Caroline J. Formstone
- Centre for Developmental Neurobiology, Guys Campus, Kings College London, London, UK
- Department of Biological and Environmental Sciences, College Lane Campus, University of Hertfordshire, Hatfield, UK
| | - Maike D. Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ryan S. Gray
- Department of Pediatrics, University of Texas at Austin, Dell Medical School, Austin, Texas
| | - Randy A. Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Alexander B. Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Xianhua Piao
- Newborn Brain Research Institute, Department of Pediatrics, University of California – San Francisco, San Francisco, California
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Swati Srivastava
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | | | - Mario Vallon
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California
| | - Erwin G. Van Meir
- Laboratory of Molecular Neuro-Oncology, Departments of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kevin M. Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Kelly R. Monk
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Amit Mogha
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
4
|
Preston MA, Finseth LT, Bourne JN, Macklin WB. A novel myelin protein zero transgenic zebrafish designed for rapid readout of in vivo myelination. Glia 2019; 67:650-667. [PMID: 30623975 PMCID: PMC6555554 DOI: 10.1002/glia.23559] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
Demyelination occurs following many neurological insults, most notably in multiple sclerosis (MS). Therapeutics that promote remyelination could slow the neurological decline associated with chronic demyelination; however, in vivo testing of candidate small molecule drugs and signaling cascades known to impact myelination is expensive and labor intensive. Here, we describe the development of a novel zebrafish line which uses the putative promoter of Myelin Protein Zero (mpz), a major structural protein in myelin, to drive expression of Enhanced Green Fluorescent Protein (mEGFP) specifically in the processes and nascent internodes of myelinating glia. We observe that changes in fluorescence intensity in Tg(mpz:mEGFP) larvae are a reliable surrogate for changes in myelin membrane production per se in live larvae following bath application of drugs. These changes in fluorescence are strongly predictive of changes in myelin-specific mRNAs [mpz, 36K and myelin basic protein (mbp)] and protein production (Mbp). Finally, we observe that certain drugs alter nascent internode number and length, impacting the overall amount of myelin membrane synthesized and a number of axons myelinated without significantly changing the number of myelinating oligodendrocytes. These studies demonstrate that the Tg(mpz:mEGFP) reporter line responds effectively to positive and negative small molecule regulators of myelination, and could be useful for identifying candidate drugs that specifically target myelin membrane production in vivo. Combined with high throughput cell-based screening of large chemical libraries and automated imaging systems, this transgenic line is useful for rapid large scale whole animal screening to identify novel myelinating small molecule compounds in vivo.
Collapse
Affiliation(s)
- Marnie A Preston
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Lisbet T Finseth
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
5
|
Cunningham RL, Herbert AL, Harty BL, Ackerman SD, Monk KR. Mutations in dock1 disrupt early Schwann cell development. Neural Dev 2018; 13:17. [PMID: 30089513 PMCID: PMC6083577 DOI: 10.1186/s13064-018-0114-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/20/2018] [Indexed: 01/29/2023] Open
Abstract
Background In the peripheral nervous system (PNS), specialized glial cells called Schwann cells produce myelin, a lipid-rich insulating sheath that surrounds axons and promotes rapid action potential propagation. During development, Schwann cells must undergo extensive cytoskeletal rearrangements in order to become mature, myelinating Schwann cells. The intracellular mechanisms that drive Schwann cell development, myelination, and accompanying cell shape changes are poorly understood. Methods Through a forward genetic screen in zebrafish, we identified a mutation in the atypical guanine nucleotide exchange factor, dock1, that results in decreased myelination of peripheral axons. Rescue experiments and complementation tests with newly engineered alleles confirmed that mutations in dock1 cause defects in myelination of the PNS. Whole mount in situ hybridization, transmission electron microscopy, and live imaging were used to fully define mutant phenotypes. Results We show that Schwann cells in dock1 mutants can appropriately migrate and are not decreased in number, but exhibit delayed radial sorting and decreased myelination during early stages of development. Conclusions Together, our results demonstrate that mutations in dock1 result in defects in Schwann cell development and myelination. Specifically, loss of dock1 delays radial sorting and myelination of peripheral axons in zebrafish. Electronic supplementary material The online version of this article (10.1186/s13064-018-0114-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy L Herbert
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Breanne L Harty
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Abstract
The optical transparency of zebrafish larvae enables live imaging. Here we describe the methodology for live imaging and detail how to mount larvae for live imaging of Schwann cell development.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA. .,Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Abstract
Myelin is a lipid-rich sheath formed by the spiral wrapping of specialized glial cells around axon segments. Myelinating glia allow for rapid transmission of nerve impulses and metabolic support of axons, and the absence of or disruption to myelin results in debilitating motor, cognitive, and emotional deficits in humans. Because myelin is a jawed vertebrate innovation, zebrafish are one of the simplest vertebrate model systems to study the genetics and development of myelinating glia. The morphogenetic cellular movements and genetic program that drive myelination are conserved between zebrafish and mammals, and myelin develops rapidly in zebrafish larvae, within 3-5days postfertilization. Myelin ultrastructure can be visualized in the zebrafish from larval to adult stages via transmission electron microscopy, and the dynamic development of myelinating glial cells may be observed in vivo via transgenic reporter lines in zebrafish larvae. Zebrafish are amenable to genetic and pharmacological screens, and screens for myelinating glial phenotypes have revealed both genes and drugs that promote myelin development, many of which are conserved in mammalian glia. Recently, zebrafish have been employed as a model to understand the complex dynamics of myelinating glia during development and regeneration. In this chapter, we describe these key methodologies and recent insights into mechanisms that regulate myelination using the zebrafish model.
Collapse
Affiliation(s)
- M D'Rozario
- Washington University School of Medicine, St. Louis, MO, United States
| | - K R Monk
- Washington University School of Medicine, St. Louis, MO, United States; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
8
|
Baraban M, Mensch S, Lyons DA. Adaptive myelination from fish to man. Brain Res 2016; 1641:149-161. [PMID: 26498877 PMCID: PMC4907128 DOI: 10.1016/j.brainres.2015.10.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/06/2023]
Abstract
Myelinated axons with nodes of Ranvier are an evolutionary elaboration common to essentially all jawed vertebrates. Myelin made by Schwann cells in our peripheral nervous system and oligodendrocytes in our central nervous system has been long known to facilitate rapid energy efficient nerve impulse propagation. However, it is now also clear, particularly in the central nervous system, that myelin is not a simple static insulator but that it is dynamically regulated throughout development and life. New myelin sheaths can be made by newly differentiating oligodendrocytes, and mature myelin sheaths can be stimulated to grow again in the adult. Furthermore, numerous studies in models from fish to man indicate that neuronal activity can affect distinct stages of oligodendrocyte development and the process of myelination itself. This begs questions as to how these effects of activity are mediated at a cellular and molecular level and whether activity-driven adaptive myelination is a feature common to all myelinated axons, or indeed all oligodendrocytes, or is specific to cells or circuits with particular functions. Here we review the recent literature on this topic, elaborate on the key outstanding questions in the field, and look forward to future studies that incorporate investigations in systems from fish to man that will provide further insight into this fundamental aspect of nervous system plasticity. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Marion Baraban
- Centre for Neuroregeneration, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Sigrid Mensch
- Centre for Neuroregeneration, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - David A Lyons
- Centre for Neuroregeneration, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| |
Collapse
|
9
|
Abstract
In the nervous system, axons transmit information in the form of electrical impulses over long distances. The speed of impulse conduction is enhanced by myelin, a lipid-rich membrane that wraps around axons. Myelin also is required for the long-term health of axons by providing metabolic support. Accordingly, myelin deficiencies are implicated in a wide range of neurodevelopmental and neuropsychiatric disorders, intellectual disabilities, and neurodegenerative conditions. Central nervous system myelin is formed by glial cells called oligodendrocytes. During development, oligodendrocyte precursor cells migrate from their origins to their target axons, extend long membrane processes that wrap axons, and produce the proteins and lipids that provide myelin membrane with its unique characteristics. Myelination is a dynamic process that involves intricate interactions between multiple cell types. Therefore, an in vivo myelination model, such as the zebrafish, which allows for live observation of cell dynamics and cell-to-cell interactions, is well suited for investigating oligodendrocyte development. Zebrafish offer several advantages to investigating myelination, including the use of transgenic reporter lines, live imaging, forward genetic screens, chemical screens, and reverse genetic approaches. This chapter will describe how these tools and approaches have provided new insights into the regulatory mechanisms that guide myelination.
Collapse
Affiliation(s)
- E S Mathews
- University of Colorado School of Medicine, Aurora, CO, United States
| | - B Appel
- University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
10
|
Czopka T. Insights into mechanisms of central nervous system myelination using zebrafish. Glia 2015; 64:333-49. [PMID: 26250418 DOI: 10.1002/glia.22897] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
Myelin is the multi-layered membrane that surrounds most axons and is produced by oligodendrocytes in the central nervous system (CNS). In addition to its important role in enabling rapid nerve conduction, it has become clear in recent years that myelin plays additional vital roles in CNS function. Myelinating oligodendrocytes provide metabolic support to axons and active myelination is even involved in regulating forms of learning and memory formation. However, there are still large gaps in our understanding of how myelination by oligodendrocytes is regulated. The small tropical zebrafish has become an increasingly popular model organism to investigate many aspects of nervous system formation, function, and regeneration. This is mainly due to two approaches for which the zebrafish is an ideally suited vertebrate model--(1) in vivo live cell imaging using vital dyes and genetically encoded reporters, and (2) gene and target discovery using unbiased screens. This review summarizes how the use of zebrafish has helped understand mechanisms of oligodendrocyte behavior and myelination in vivo and discusses the potential use of zebrafish to shed light on important future questions relating to myelination in the context of CNS development, function and repair.
Collapse
Affiliation(s)
- Tim Czopka
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| |
Collapse
|
11
|
Ceci ML, Mardones-Krsulovic C, Sánchez M, Valdivia LE, Allende ML. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae. Neural Dev 2014; 9:22. [PMID: 25326036 PMCID: PMC4214607 DOI: 10.1186/1749-8104-9-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/29/2014] [Indexed: 01/13/2023] Open
Abstract
Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral line (pLL) nerve of zebrafish and follow the fate of both neurons and Schwann cells. Results Using pLL single axon labeling by transient transgene expression, as well as transplantation of glial precursor cells in zebrafish larvae, we individualize different components in this system and characterize their cellular behaviors during the regenerative process. Neurectomy is followed by loss of Schwann cell differentiation markers that is reverted after nerve regrowth. We show that reinnervation of lateral line hair cells in neuromasts during pLL nerve regeneration is a highly dynamic process with promiscuous yet non-random target recognition. Furthermore, Schwann cells are required for directional extension and fasciculation of the regenerating nerve. We provide evidence that these cells and regrowing axons are mutually dependant during early stages of nerve regeneration in the pLL. The role of ErbB signaling in this context is also explored. Conclusion The accessibility of the pLL nerve and the availability of transgenic lines that label this structure and their synaptic targets provides an outstanding in vivo model to study the different events associated with axonal extension, target reinnervation, and the complex cellular interactions between glial cells and injured axons during nerve regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
12
|
Preston MA, Macklin WB. Zebrafish as a model to investigate CNS myelination. Glia 2014; 63:177-93. [PMID: 25263121 DOI: 10.1002/glia.22755] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems.
Collapse
Affiliation(s)
- Marnie A Preston
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
13
|
Maximino JR, de Oliveira GP, Alves CJ, Chadi G. Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) Amyotrophic Lateral Sclerosis mouse model. Front Cell Neurosci 2014; 8:148. [PMID: 24904291 PMCID: PMC4033281 DOI: 10.3389/fncel.2014.00148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
Early molecular events related to cytoskeleton are poorly described in Amyotrophic Lateral Sclerosis (ALS), especially in the Schwann cell (SC), which offers strong trophic support to motor neurons. Database for Annotation, Visualization and Integrated Discovery (DAVID) tool identified cytoskeleton-related genes by employing the Cellular Component Ontology (CCO) in a large gene profiling of lumbar spinal cord and sciatic nerve of presymptomatic SOD1(G93A) mice. One and five CCO terms related to cytoskeleton were described from the spinal cord deregulated genes of 40 days (actin cytoskeleton) and 80 days (microtubule cytoskeleton, cytoskeleton part, actin cytoskeleton, neurofilament cytoskeleton, and cytoskeleton) old transgene mice, respectively. Also, four terms were depicted from the deregulated genes of sciatic nerve of 60 days old transgenes (actin cytoskeleton, cytoskeleton part, microtubule cytoskeleton and cytoskeleton). Kif1b was the unique deregulated gene in more than one studied region or presymptomatic age. The expression of Kif1b [quantitative polymerase chain reaction (qPCR)] elevated in the lumbar spinal cord (40 days old) and decreased in the sciatic nerve (60 days old) of presymptomatic ALS mice, results that were in line to microarray findings. Upregulation (24.8 fold) of Kif1b was seen in laser microdissected enriched immunolabeled motor neurons from the spinal cord of 40 days old presymptomatic SOD1(G93A) mice. Furthermore, Kif1b was dowregulated in the sciatic nerve Schwann cells of presymptomatic ALS mice (60 days old) that were enriched by means of cell microdissection (6.35 fold), cell sorting (3.53 fold), and primary culture (2.70 fold) technologies. The gene regulation of cytoskeleton molecules is an important occurrence in motor neurons and Schwann cells in presymptomatic stages of ALS and may be relevant in the dying back mechanisms of neuronal death. Furthermore, a differential regulation of Kif1b in the spinal cord and sciatic nerve cells emerged as key event in ALS.
Collapse
Affiliation(s)
- Jessica R Maximino
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Chrystian J Alves
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
14
|
Bouchoucha YX, Reingruber J, Labalette C, Wassef MA, Thierion E, Desmarquet-Trin Dinh C, Holcman D, Gilardi-Hebenstreit P, Charnay P. Dissection of a Krox20 positive feedback loop driving cell fate choices in hindbrain patterning. Mol Syst Biol 2014; 9:690. [PMID: 24061538 PMCID: PMC3792346 DOI: 10.1038/msb.2013.46] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/21/2013] [Indexed: 12/24/2022] Open
Abstract
A positive autoregulatory loop required for the expression of the transcription factor Krox20 was dissected using in vivo quantitative data and biophysical modelling to demonstrate how Krox20 controls cell fate decision and rhombomere size in the hindbrain. ![]()
Positive autoregulation of Krox20 underpins a bistable switch that turns a transient input signal into cell fate commitment, as demonstrated in single cell analyses. The duration and strength of the input signal control the size of the hindbrain segments by modulating the distribution between two cell fates. The progressive extinction of Krox20 expression involves a destabilization of the loop by repressor molecules.
Although feedback loops are essential in development, their molecular implementation and precise functions remain elusive. Using enhancer knockout in mice, we demonstrate that a direct, positive autoregulatory loop amplifies and maintains the expression of Krox20, a transcription factor governing vertebrate hindbrain segmentation. By combining quantitative data collected in the zebrafish with biophysical modelling that accounts for the intrinsic stochastic molecular dynamics, we dissect the loop at the molecular level. We find that it underpins a bistable switch that turns a transient input signal into cell fate commitment, as we observe in single cell analyses. The stochasticity of the activation process leads to a graded input–output response until saturation is reached. Consequently, the duration and strength of the input signal controls the size of the hindbrain segments by modulating the distribution between the two cell fates. Moreover, segment formation is buffered from severe variations in input level. Finally, the progressive extinction of Krox20 expression involves a destabilization of the loop by repressor molecules. These mechanisms are of general significance for cell type specification and tissue patterning.
Collapse
Affiliation(s)
- Yassine X Bouchoucha
- 1] Ecole Normale Supérieure, IBENS, Paris, France [2] INSERM, U1024, Paris, France [3] CNRS, UMR 8197, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao S, Cui WY, Cao J, Luo C, Fan L, Li MD. Impact of Maternal Nicotine Exposure on Expression of Myelin-Related Genes in Zebrafish Larvae. Zebrafish 2014; 11:10-6. [DOI: 10.1089/zeb.2013.0889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shufang Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen-Yan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Junran Cao
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Chen Luo
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Longjiang Fan
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
16
|
Dual cleavage of neuregulin 1 type III by BACE1 and ADAM17 liberates its EGF-like domain and allows paracrine signaling. J Neurosci 2013; 33:7856-69. [PMID: 23637177 DOI: 10.1523/jneurosci.3372-12.2013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proteolytic shedding of cell surface proteins generates paracrine signals involved in numerous signaling pathways. Neuregulin 1 (NRG1) type III is involved in myelination of the peripheral nervous system, for which it requires proteolytic activation by proteases of the ADAM family and BACE1. These proteases are major therapeutic targets for the prevention of Alzheimer's disease because they are also involved in the proteolytic generation of the neurotoxic amyloid β-peptide. Identification and functional investigation of their physiological substrates is therefore of greatest importance in preventing unwanted side effects. Here we investigated proteolytic processing of NRG1 type III and demonstrate that the ectodomain can be cleaved by three different sheddases, namely ADAM10, ADAM17, and BACE1. Surprisingly, we not only found cleavage by ADAM10, ADAM17, and BACE1 C-terminal to the epidermal growth factor (EGF)-like domain, which is believed to play a pivotal role in signaling, but also additional cleavage sites for ADAM17 and BACE1 N-terminal to that domain. Proteolytic processing at N- and C-terminal sites of the EGF-like domain results in the secretion of this domain from NRG1 type III. The soluble EGF-like domain is functionally active and stimulates ErbB3 signaling in tissue culture assays. Moreover, the soluble EGF-like domain is capable of rescuing hypomyelination in a zebrafish mutant lacking BACE1. Our data suggest that NRG1 type III-dependent myelination is not only controlled by membrane-retained NRG1 type III, but also in a paracrine manner via proteolytic liberation of the EGF-like domain.
Collapse
|
17
|
Moore AC, Mark TE, Hogan AK, Topczewski J, LeClair EE. Peripheral axons of the adult zebrafish maxillary barbel extensively remyelinate during sensory appendage regeneration. J Comp Neurol 2013; 520:4184-203. [PMID: 22592645 DOI: 10.1002/cne.23147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ∼180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ∼85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate.
Collapse
Affiliation(s)
- Alex C Moore
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
18
|
Kudryavtseva EA, Rozhdestvenskii AS, Kakulya AV, Khanokh EV, Delov RA, Malkova NA, Korobko DS, Platonov FA, Aref Eva EG, Zagorskaya NN, Aliferova VM, Titova MA, Babenko SA, Smagina IV, El Chaninova SA, Zolovkina AG, Lifshits GI, Puzyrev VP, Filipenko ML. Polymorphic locus rs10492972 of the KIF1B gene association with multiple sclerosis in Russia: case control study. Mol Genet Metab 2011; 104:390-4. [PMID: 21680216 DOI: 10.1016/j.ymgme.2011.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 11/28/2022]
Abstract
Axonal degeneration is responsible for the progression of the irreversible destruction caused by multiple sclerosis (MS) resulting ultimately in permanent disability. The KIF1B protein, a member of the kinesin family, is necessary for axon growth and myelination in vertebrates. In the recent paper, Aulchenko et al. suggested that the rs10492972[C] variant of KIF1B increases susceptibility to MS, but three following replication study didn't confirm this association. We studied the association of the polymorphic locus rs10492972 present in the KIF1B gene with genetic predisposition and its occurrence in clinical presentations of MS patients resident in western Siberia and the Sakha Republic (Yakutia), Russia. rs10492972 has been genotype in 833 samples of MS patient and 689 healthy controls. Distribution of rs10492972 genotypes corresponded with a Hardy-Weinberg distribution in both the MS patient and control groups, with the frequency of the C allele being the same in both groups (33%). Frequencies of occurrence of the genotypes were not shown to be associated with different disease courses or other characteristics of the disease, such as age at onset or duration. A complete meta-analysis of all analogous studies published to date showed that the protective effect of the rs10492972[C] allele is statistically significant (OR=0.95, C.I.95% [0.90-0.99], p=0.02).
Collapse
Affiliation(s)
- Ekaterina A Kudryavtseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Prosp. Lavrent'eva, 8, 630090 Novosibirsk, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wnt/beta-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. J Neurosci 2011; 31:3729-42. [PMID: 21389228 DOI: 10.1523/jneurosci.4270-10.2011] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Wnt/β-catenin signaling plays a major role in the development of the nervous system and contributes to neuronal plasticity. However, its role in myelination remains unclear. Here, we identify the Wnt/β-catenin pathway as an essential driver of myelin gene expression. The selective inhibition of Wnt components by small interfering RNA or dominant-negative forms blocks the expression of myelin protein zero (MPZ) and peripheral myelin protein 22 (PMP22) in mouse Schwann cells and proteolipid protein in mouse oligodendrocytes. Moreover, the activation of Wnt signaling by recombinant Wnt1 ligand increases by threefold the transcription of myelin genes and enhances the binding of β-catenin to T-cell factor/lymphoid-enhancer factor transcription factors present in the vicinity of the MPZ and PMP22 promoters. Most important, loss-of-function analyses in zebrafish embryos show, in vivo, a key role for Wnt/β-catenin signaling in the expression of myelin genes and in myelin sheath compaction, both in the peripheral and central nervous systems. Inhibition of Wnt/β-catenin signaling resulted in hypomyelination, without affecting Schwann cell and oligodendrocyte generation or axonal integrity. The present findings attribute to Wnt/β-catenin pathway components an essential role in myelin gene expression and myelinogenesis.
Collapse
|
20
|
Rodrigues F, Schmidt I, Klämbt C. Comparing peripheral glial cell differentiation in Drosophila and vertebrates. Cell Mol Life Sci 2011; 68:55-69. [PMID: 20820850 PMCID: PMC11114915 DOI: 10.1007/s00018-010-0512-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 01/08/2023]
Abstract
In all complex organisms, the peripheral nerves ensure the portage of information from the periphery to central computing and back again. Axons are in part amazingly long and are accompanied by several different glial cell types. These peripheral glial cells ensure electrical conductance, most likely nature the long axon, and establish and maintain a barrier towards extracellular body fluids. Recent work has revealed a surprisingly similar organization of peripheral nerves of vertebrates and Drosophila. Thus, the genetic dissection of glial differentiation in Drosophila may also advance our understanding of basic principles underlying the development of peripheral nerves in vertebrates.
Collapse
Affiliation(s)
| | - Imke Schmidt
- Institut für Neurobiologie, Badestr. 9, 48149 Münster, Germany
| | | |
Collapse
|
21
|
Raphael AR, Perlin JR, Talbot WS. Schwann cells reposition a peripheral nerve to isolate it from postembryonic remodeling of its targets. Development 2010; 137:3643-9. [PMID: 20876648 DOI: 10.1242/dev.057521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although much is known about the initial construction of the peripheral nervous system (PNS), less well understood are the processes that maintain the position and connections of nerves during postembryonic growth. Here, we show that the posterior lateral line nerve in zebrafish initially grows in the epidermis and then rapidly transitions across the epidermal basement membrane into the subepidermal space. Our experiments indicate that Schwann cells, which myelinate axons in the PNS, are required to reposition the nerve. In mutants lacking Schwann cells, the nerve is mislocalized and the axons remain in the epidermis. Transplanting wild-type Schwann cells into these mutants rescues the position of the nerve. Analysis of chimeric embryos suggests that the process of nerve relocalization involves two discrete steps - the degradation and recreation of the epidermal basement membrane. Although the outgrowth of axons is normal in mutants lacking Schwann cells, the nerve becomes severely disorganized at later stages. In wild-type embryos, exclusion of the nerve from the epidermis isolates axons from migration of their targets (sensory neuromasts) within the epidermis. Without Schwann cells, axons remain within the epidermis and are dragged along with the migrating neuromasts. Our analysis of the posterior lateral line system defines a new process in which Schwann cells relocate a nerve beneath the epidermal basement membrane to insulate axons from the postembryonic remodeling of their targets.
Collapse
Affiliation(s)
- Alya R Raphael
- Department of Developmental Biology, 279 Campus Drive, Beckman Center B300, Stanford University, Stanford, CA 94305-5329, USA
| | | | | |
Collapse
|
22
|
Larson TA, Gordon TN, Lau HE, Parichy DM. Defective adult oligodendrocyte and Schwann cell development, pigment pattern, and craniofacial morphology in puma mutant zebrafish having an alpha tubulin mutation. Dev Biol 2010; 346:296-309. [PMID: 20692250 DOI: 10.1016/j.ydbio.2010.07.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/26/2010] [Accepted: 07/30/2010] [Indexed: 11/18/2022]
Abstract
The processes of myelination remain incompletely understood but are of profound biomedical importance owing to the several dysmyelinating and demyelinating disorders known in humans. Here, we analyze the zebrafish puma mutant, isolated originally for pigment pattern defects limited to the adult stage. We show that puma mutants also have late-arising defects in Schwann cells of the peripheral nervous system, locomotor abnormalities, and sex-biased defects in adult craniofacial morphology. Using methods of positional cloning, we identify a critical genetic interval harboring two alpha tubulin loci, and we identify a chemically induced missense mutation in one of these, tubulin alpha 8-like 3a (tuba8l3a). We demonstrate tuba8l3a expression in the central nervous system (CNS), leading us to search for defects in the development of oligodendrocytes, the myelinating cells of the CNS. We find gross reductions in CNS myelin and oligodendrocyte numbers in adult puma mutants, and these deficits are apparent already during the larval-to-adult transformation. By contrast, analyses of embryos and early larvae reveal a normal complement of oligodendrocytes that nevertheless fail to localize normal amounts of myelin basic protein (mbp) mRNA in cellular processes, and fail to organize these processes as in the wild-type. This study identifies the puma mutant as a valuable model for studying microtubule-dependent events of myelination, as well as strategies for remyelination in the adult.
Collapse
Affiliation(s)
- Tracy A Larson
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | | | | | | |
Collapse
|