1
|
Keweloh B, Terenzi D, Froehlich E, Coricelli C, Stürmer P, Rohmann N, Wietzke-Braun P, Beckmann A, Laudes M, Park SQ. Weight loss impacts risky decisions in obesity. Clin Nutr 2024; 43:1270-1277. [PMID: 38653010 DOI: 10.1016/j.clnu.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND & AIMS Risky decision making is shaped by individual psychological and metabolic state. Individuals with obesity show not only altered risk behavior, but also metabolic and psychological abnormalities. The aim of the present study was to investigate whether a substantial weight loss in individuals with severe obesity will 1) normalize their metabolic and psychological state and 2) will change their pattern of decision guidance. METHODS We assessed the effect of glycated hemoglobin (HbA1c) and mood on risk behavior in individuals with obesity (n = 62, 41 women; BMI, 46.5 ± 4.8 kg/m2; age, 44.9 ± 14.7 years) before and after 10-weeks weight loss intervention. RESULTS Results showed that this intervention reduced participants' risk behavior, which was significantly predicted by their changes in BMI. Before intervention, mood, but not HbA1c significantly predicted decisions. After the weight loss, mood no longer, but HbA1c significantly predicted decisions. CONCLUSION Our findings shed light on the psychological and metabolic mechanisms underlying altered risky decision making in severe obesity and can inform the development of strategies in the context of weight loss interventions.
Collapse
Affiliation(s)
- Beatrix Keweloh
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research, 85764 München-Neuherberg, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany.
| | - Damiano Terenzi
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research, 85764 München-Neuherberg, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany; Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS UMR 7289, Marseille, France
| | - Eva Froehlich
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany
| | - Carol Coricelli
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research, 85764 München-Neuherberg, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany; Institut Lyfe Research and Innovation Center, 69139 Écully, France
| | - Paula Stürmer
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, 24105 Kiel, Germany; Institute of Epidemiology, University of Kiel, 24105 Kiel, Germany
| | - Nathalie Rohmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, 24105 Kiel, Germany; Institute of Diabetes and Clinical Metabolic Research, University Medical Centre, 24105 Kiel, Germany
| | - Perdita Wietzke-Braun
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, 24105 Kiel, Germany
| | - Alexia Beckmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, 24105 Kiel, Germany
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, 24105 Kiel, Germany; Institute of Diabetes and Clinical Metabolic Research, University Medical Centre, 24105 Kiel, Germany
| | - Soyoung Q Park
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research, 85764 München-Neuherberg, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany
| |
Collapse
|
2
|
Yoshikawa S, Tang P, Simpson JH. Mechanosensory and command contributions to the Drosophila grooming sequence. Curr Biol 2024; 34:2066-2076.e3. [PMID: 38657610 PMCID: PMC11179149 DOI: 10.1016/j.cub.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Flies groom in response to competing mechanosensory cues in an anterior-to-posterior order using specific legs. From behavior screens, we identified a pair of cholinergic command-like neurons, Mago-no-Te (MGT), whose optogenetic activation elicits thoracic grooming by the back legs. Thoracic grooming is typically composed of body sweeps and leg rubs in alternation, but clonal analysis coupled with amputation experiments revealed that MGT activation only commands the body sweeps: initiation of leg rubbing requires contact between the leg and thorax. With new electron microscopy (EM) connectome data for the ventral nerve cord (VNC), we uncovered a circuit-based explanation for why stimulation of posterior thoracic mechanosensory bristles initiates cleaning by the back legs. Our previous work showed that flies weigh mechanosensory inputs across the body to select which part to groom, but we did not know why the thorax was always cleaned last. Here, the connectome for the VNC enabled us to identify a pair of GABAergic inhibitory neurons, UMGT1, that receives diverse sensory inputs and synapses onto both MGT and components of its downstream circuits. Optogenetic activation of UMGT1 suppresses thoracic cleaning, representing a mechanism by which mechanosensory stimuli on other body parts could take precedence in the grooming hierarchy. We also anatomically mapped the pre-motor circuit downstream of MGT, including inhibitory feedback connections that may enable rhythmicity and coordination of limb movement during thoracic grooming. The combination of behavioral screens and connectome analysis allowed us to identify a neural circuit connecting sensory-to-motor neurons that contributes to thoracic grooming.
Collapse
Affiliation(s)
- Shingo Yoshikawa
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Paul Tang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
3
|
Zúñiga Mouret R, Greenbaum JP, Doll HM, Brody EM, Iacobucci EL, Roland NC, Simamora RC, Ruiz I, Seymour R, Ludwick L, Krawitz JA, Groneberg AH, Marques JC, Laborde A, Rajan G, Del Bene F, Orger MB, Jain RA. The adaptor protein 2 (AP2) complex modulates habituation and behavioral selection across multiple pathways and time windows. iScience 2024; 27:109455. [PMID: 38550987 PMCID: PMC10973200 DOI: 10.1016/j.isci.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/28/2024] [Accepted: 03/06/2024] [Indexed: 10/04/2024] Open
Abstract
Animals constantly integrate sensory information with prior experience to select behavioral responses appropriate to the current situation. Genetic factors supporting this behavioral flexibility are often disrupted in neuropsychiatric conditions, such as the autism-linked ap2s1 gene which supports acoustically evoked habituation learning. ap2s1 encodes an AP2 endocytosis adaptor complex subunit, although its behavioral mechanisms and importance have been unclear. Here, we show that multiple AP2 subunits regulate acoustically evoked behavior selection and habituation learning in zebrafish. Furthermore, ap2s1 biases escape behavior choice in sensory modality-specific manners, and broadly regulates action selection across sensory contexts. We demonstrate that the AP2 complex functions acutely in the nervous system to modulate acoustically evoked habituation, suggesting several spatially and/or temporally distinct mechanisms through which AP2 regulates escape behavior selection and performance. Altogether, we show the AP2 complex coordinates action selection across diverse contexts, providing a vertebrate model for ap2s1's role in human conditions including autism spectrum disorder.
Collapse
Affiliation(s)
- Rodrigo Zúñiga Mouret
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jordyn P. Greenbaum
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hannah M. Doll
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison WI 53705, USA
| | - Eliza M. Brody
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104, USA
| | | | | | - Roy C. Simamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Ivan Ruiz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Rory Seymour
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Leanne Ludwick
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Jacob A. Krawitz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Antonia H. Groneberg
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - João C. Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Alexandre Laborde
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Gokul Rajan
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Institut Curie, PSL Research University; INSERM U934, CNRS UMR3215, Paris, France
| | - Filippo Del Bene
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Michael B. Orger
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Roshan A. Jain
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
4
|
Zaupa M, Nagaraj N, Sylenko A, Baier H, Sawamiphak S, Filosa A. The Calmodulin-interacting peptide Pcp4a regulates feeding state-dependent behavioral choice in zebrafish. Neuron 2024; 112:1150-1164.e6. [PMID: 38295792 DOI: 10.1016/j.neuron.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 04/06/2024]
Abstract
Animals constantly need to judge the valence of an object in their environment: is it potential food or a threat? The brain makes fundamental decisions on the appropriate behavioral strategy by integrating external information from sensory organs and internal signals related to physiological needs. For example, a hungry animal may take more risks than a satiated one when deciding to approach or avoid an object. Using a proteomic profiling approach, we identified the Calmodulin-interacting peptide Pcp4a as a key regulator of foraging-related decisions. Food intake reduced abundance of protein and mRNA of pcp4a via dopamine D2-like receptor-mediated repression of adenylate cyclase. Accordingly, deleting the pcp4a gene made zebrafish larvae more risk averse in a binary decision assay. Strikingly, neurons in the tectum became less responsive to prey-like visual stimuli in pcp4a mutants, thus biasing the behavior toward avoidance. This study pinpoints a molecular mechanism modulating behavioral choice according to internal state.
Collapse
Affiliation(s)
- Margherita Zaupa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany; Freie Universität Berlin, Institute for Biology, 14195 Berlin, Germany
| | - Nagarjuna Nagaraj
- Biochemistry Core Facility, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anna Sylenko
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany; Freie Universität Berlin, Institute for Biology, 14195 Berlin, Germany
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany.
| |
Collapse
|
5
|
Pastor A, Bourdin-Kreitz P. Comparing episodic memory outcomes from walking augmented reality and stationary virtual reality encoding experiences. Sci Rep 2024; 14:7580. [PMID: 38555291 PMCID: PMC10981735 DOI: 10.1038/s41598-024-57668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Episodic Memory (EM) is the neurocognitive capacity to consciously recollect personally experienced events in specific spatio-temporal contexts. Although the relevance of spatial and temporal information is widely acknowledged in the EM literature, it remains unclear whether and how EM performance and organisation is modulated by self-motion, and by motor- and visually- salient environmental features (EFs) of the encoding environment. This study examines whether and how EM is modulated by locomotion and the EFs encountered in a controlled lifelike learning route within a large-scale building. Twenty-eight healthy participants took part in a museum-tour encoding task implemented in walking Augmented Reality (AR) and stationary Virtual Reality (VR) conditions. EM performance and organisation were assessed immediately and 48-hours after trials using a Remember/Familiar recognition paradigm. Results showed a significant positive modulation effect of locomotion on distinctive EM aspects. Findings highlighted a significant performance enhancement effect of stairway-adjacent locations compared to dead-end and mid-route stimuli-presentation locations. The results of this study may serve as design criteria to facilitate neurocognitive rehabilitative interventions of EM. The underlying technological framework developed for this study represents a novel and ecologically sound method for evaluating EM processes in lifelike situations, allowing researchers a naturalistic perspective into the complex nature of EM.
Collapse
Affiliation(s)
- Alvaro Pastor
- XR-Lab, Research-HUB, Universitat Oberta de Catalunya, Barcelona, Spain
- Computer Science, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Pierre Bourdin-Kreitz
- XR-Lab, Research-HUB, Universitat Oberta de Catalunya, Barcelona, Spain.
- Computer Science, Multimedia and Telecommunication Department, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
6
|
Yoshikawa S, Tang P, Simpson JH. Mechanosensory and command contributions to the Drosophila grooming sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567707. [PMID: 38045358 PMCID: PMC10690200 DOI: 10.1101/2023.11.19.567707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Flies groom in response to competing mechanosensory cues in an anterior to posterior order using specific legs. From behavior screens, we identified a pair of cholinergic command-like neurons, Mago-no-Te (MGT), whose optogenetic activation elicits thoracic grooming by hind legs. Thoracic grooming is typically composed of body sweeps and leg rubs in alternation, but clonal analysis coupled with amputation experiments revealed that MGT activation only commands the body sweeps: initiation of leg rubbing requires contact between leg and thorax. With new electron microscopy (EM) connectome data for the ventral nerve cord (VNC), we uncovered a circuit-based explanation for why stimulation of posterior thoracic mechanosensory bristles initiates cleaning by the hind legs. Our previous work showed that flies weigh mechanosensory inputs across the body to select which part to groom, but we did not know why the thorax was always cleaned last. Here, the connectome for the VNC enabled us to identify a pair of GABAergic inhibitory neurons, UMGT1, that receive diverse sensory inputs and synapse onto both MGT and components of its downstream pre-motor circuits. Optogenetic activation of UMGT1 suppresses thoracic cleaning, representing a mechanism by which mechanosensory stimuli on other body parts could take precedence in the grooming hierarchy. We also mapped the pre-motor circuit downstream of MGT, including inhibitory feedback connections that may enable rhythmicity and coordination of limb movement during thoracic grooming.
Collapse
Affiliation(s)
- Shingo Yoshikawa
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Paul Tang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H. Simpson
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Fujiwara T, Brotas M, Chiappe ME. Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila. Neuron 2022; 110:2124-2138.e8. [PMID: 35525243 PMCID: PMC9275417 DOI: 10.1016/j.neuron.2022.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022]
Abstract
Flexible mapping between activity in sensory systems and movement parameters is a hallmark of motor control. This flexibility depends on the continuous comparison of short-term postural dynamics and the longer-term goals of an animal, thereby necessitating neural mechanisms that can operate across multiple timescales. To understand how such body-brain interactions emerge across timescales to control movement, we performed whole-cell patch recordings from visual neurons involved in course control in Drosophila. We show that the activity of leg mechanosensory cells, propagating via specific ascending neurons, is critical for stride-by-stride steering adjustments driven by the visual circuit, and, at longer timescales, it provides information about the moving body's state to flexibly recruit the visual circuit for course control. Thus, our findings demonstrate the presence of an elegant stride-based mechanism operating at multiple timescales for context-dependent course control. We propose that this mechanism functions as a general basis for the adaptive control of locomotion.
Collapse
Affiliation(s)
- Terufumi Fujiwara
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Margarida Brotas
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - M Eugenia Chiappe
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.
| |
Collapse
|
8
|
Djebbara Z, Jensen OB, Parada FJ, Gramann K. Neuroscience and architecture: Modulating behavior through sensorimotor responses to the built environment. Neurosci Biobehav Rev 2022; 138:104715. [PMID: 35654280 DOI: 10.1016/j.neubiorev.2022.104715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
As we move through the world, natural and built environments implicitly guide behavior by appealing to certain sensory and motor dynamics. This process can be motivated by automatic attention to environmental features that resonate with specific sensorimotor responses. This review aims at providing a psychobiological framework describing how environmental features can lead to automated sensorimotor responses through defined neurophysiological mechanisms underlying attention. Through the use of automated processes in subsets of cortical structures, the goal of this framework is to describe on a neuronal level the functional link between the designed environment and sensorimotor responses. By distinguishing between environmental features and sensorimotor responses we elaborate on how automatic behavior employs the environment for sensorimotor adaptation. This is realized through a thalamo-cortical network integrating environmental features with motor aspects of behavior. We highlight the underlying transthalamic transmission from an Enactive and predictive perspective and review recent studies that effectively modulated behavior by systematically manipulating environmental features. We end by suggesting a promising combination of neuroimaging and computational analysis for future studies.
Collapse
Affiliation(s)
- Zakaria Djebbara
- Department of Architecture, Design, Media, and Technology, Aalborg University, Aalborg, Denmark; Biopsychology and Neuroergonomics, Technical University Berlin, Berlin, Germany.
| | - Ole B Jensen
- Department of Architecture, Design, Media, and Technology, Aalborg University, Aalborg, Denmark
| | - Francisco J Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Klaus Gramann
- Biopsychology and Neuroergonomics, Technical University Berlin, Berlin, Germany
| |
Collapse
|
9
|
Kanwal JK, Parker J. The neural basis of interspecies interactions in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100891. [PMID: 35218937 DOI: 10.1016/j.cois.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
As insects move through the world, they continuously engage in behavioral interactions with other species. These interactions take on a spectrum of forms, from inconsequential encounters to predation, defense, and specialized symbiotic partnerships. All such interactions rely on sensorimotor pathways that carry out efficient categorization of different organisms and enact behaviors that cross species boundaries. Despite the universality of interspecies interactions, how insect brains perceive and process salient features of other species remains unexplored. Here, we present an overview of major questions concerning the neurobiology and evolution of behavioral interactions between species, providing a framework for future research on this critical role of the insect nervous system.
Collapse
Affiliation(s)
- Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| |
Collapse
|
10
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
11
|
Barajas-Azpeleta R, Tastekin I, Ribeiro C. Neuroscience: How the brain prioritizes behaviors. Curr Biol 2021; 31:R1125-R1127. [PMID: 34637713 DOI: 10.1016/j.cub.2021.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To optimize our choices, we need to prioritize among different goals. A recent study used a new Drosophila behavioral paradigm, bringing together conflicting behavioral choices in the context of different internal states and sensory cues, to provide foundational insights into the circuit mechanisms underlying how the brain prioritizes behavioral decisions.
Collapse
|
12
|
Chatterjee A, Bais D, Brockmann A, Ramesh D. Search Behavior of Individual Foragers Involves Neurotransmitter Systems Characteristic for Social Scouting. FRONTIERS IN INSECT SCIENCE 2021; 1:664978. [PMID: 38468879 PMCID: PMC10926421 DOI: 10.3389/finsc.2021.664978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/10/2021] [Indexed: 03/13/2024]
Abstract
In honey bees search behavior occurs as social and solitary behavior. In the context of foraging, searching for food sources is performed by behavioral specialized foragers, the scouts. When the scouts have found a new food source, they recruit other foragers (recruits). These recruits never search for a new food source on their own. However, when the food source is experimentally removed, they start searching for that food source. Our study provides a detailed description of this solitary search behavior and the variation of this behavior among individual foragers. Furthermore, mass spectrometric measurement showed that the initiation and performance of this solitary search behavior is associated with changes in glutamate, GABA, histamine, aspartate, and the catecholaminergic system in the optic lobes and central brain area. These findings strikingly correspond with the results of an earlier study that showed that scouts and recruits differ in the expression of glutamate and GABA receptors. Together, the results of both studies provide first clear support for the hypothesis that behavioral specialization in honey bees is based on adjusting modulatory systems involved in solitary behavior to increase the probability or frequency of that behavior.
Collapse
Affiliation(s)
- Arumoy Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Deepika Bais
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Divya Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Abstract
Choosing good objects is a fundamental behavior for all animals, to which the basal ganglia (BG) contribute extensively. However, the object choice needs to be changed in different environments. The mechanism of object choice is based on the neuronal circuits originating from output neurons (MSNs) in the striatum. We found that the environment information is provided by fast-spiking interneurons (FSIs) connecting to the MSN circuit. More critically, the experimental reduction of the FSI-input to MSNs disabled the monkey to learn the environment-based object choice. This proved that the object choice controlled by the downstream BG circuit is modulated by the environmental context controlled by the internal circuits in the top of BG circuit. This is important for our flexible decision. Basal ganglia contribute to object-value learning, which is critical for survival. The underlying neuronal mechanism is the association of each object with its rewarding outcome. However, object values may change in different environments and we then need to choose different objects accordingly. The mechanism of this environment-based value learning is unknown. To address this question, we created an environment-based value task in which the value of each object was reversed depending on the two scene-environments (X and Y). After experiencing this task repeatedly, the monkeys became able to switch the choice of object when the scene-environment changed unexpectedly. When we blocked the inhibitory input from fast-spiking interneurons (FSIs) to medium spiny projection neurons (MSNs) in the striatum tail by locally injecting IEM-1460, the monkeys became unable to learn scene-selective object values. We then studied the mechanism of the FSI-MSN connection. Before and during this learning, FSIs responded to the scenes selectively, but were insensitive to object values. In contrast, MSNs became able to discriminate the objects (i.e., stronger response to good objects), but this occurred clearly in one of the two scenes (X or Y). This was caused by the scene-selective inhibition by FSI. As a whole, MSNs were divided into two groups that were sensitive to object values in scene X or in scene Y. These data indicate that the local network of striatum tail controls the learning of object values that are selective to the scene-environment. This mechanism may support our flexible switching behavior in various environments.
Collapse
|
14
|
Kuo DH, De-Miguel FF, Heath-Heckman EAC, Szczupak L, Todd K, Weisblat DA, Winchell CJ. A tale of two leeches: Toward the understanding of the evolution and development of behavioral neural circuits. Evol Dev 2020; 22:471-493. [PMID: 33226195 DOI: 10.1111/ede.12358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
In the animal kingdom, behavioral traits encompass a broad spectrum of biological phenotypes that have critical roles in adaptive evolution, but an EvoDevo approach has not been broadly used to study behavior evolution. Here, we propose that, by integrating two leech model systems, each of which has already attained some success in its respective field, it is possible to take on behavioral traits with an EvoDevo approach. We first identify the developmental changes that may theoretically lead to behavioral evolution and explain why an EvoDevo study of behavior is challenging. Next, we discuss the pros and cons of the two leech model species, Hirudo, a classic model for invertebrate neurobiology, and Helobdella, an emerging model for clitellate developmental biology, as models for behavioral EvoDevo research. Given the limitations of each leech system, neither is particularly strong for behavioral EvoDevo. However, the two leech systems are complementary in their technical accessibilities, and they do exhibit some behavioral similarities and differences. By studying them in parallel and together with additional leech species such as Haementeria, it is possible to explore the different levels of behavioral development and evolution.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, México City, México
| | | | - Lidia Szczupak
- Departamento de Fisiología Biología Molecular y Celular, Universidad de Buenos Aires, and IFIBYNE UBA-CONICET, Buenos Aires, Argentina
| | - Krista Todd
- Department of Neuroscience, Westminster College, Salt Lake City, Utah, USA
| | - David A Weisblat
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Christopher J Winchell
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
15
|
Fendt M, Parsons MH, Apfelbach R, Carthey AJ, Dickman CR, Endres T, Frank AS, Heinz DE, Jones ME, Kiyokawa Y, Kreutzmann JC, Roelofs K, Schneider M, Sulger J, Wotjak CT, Blumstein DT. Context and trade-offs characterize real-world threat detection systems: A review and comprehensive framework to improve research practice and resolve the translational crisis. Neurosci Biobehav Rev 2020; 115:25-33. [DOI: 10.1016/j.neubiorev.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
|
16
|
Jovanic T. Studying neural circuits of decision-making in Drosophila larva. J Neurogenet 2020; 34:162-170. [PMID: 32054384 DOI: 10.1080/01677063.2020.1719407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To study neural circuits underlying decisions, the model organism used for that purpose has to be simple enough to be able to dissect the circuitry neuron by neuron across the nervous system and in the same time complex enough to be able to perform different types of decisions. Here, I lay out the case: (1) that Drosophila larva is an advantageous model system that balances well these two requirements and (2) the insights gained from this model, assuming that circuit principles may be shared across species, can be used to advance our knowledge of neural circuit implementation of decision-making in general, including in more complex brains.
Collapse
Affiliation(s)
- Tihana Jovanic
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France.,Decision and Bayesian Computation, UMR 3571 Neuroscience Department & USR 3756 (C3BI/DBC), Institut Pasteur & CNRS, Paris, France
| |
Collapse
|
17
|
Dyakonova TL, Sultanakhmetov GS, Mezheritskiy MI, Sakharov DA, Dyakonova VE. Storage and erasure of behavioural experiences at the single neuron level. Sci Rep 2019; 9:14733. [PMID: 31611611 PMCID: PMC6791831 DOI: 10.1038/s41598-019-51331-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
Although predictions from the past about the future have been of major interest to current neuroscience, how past and present behavioral experience interacts at the level of a single neuron remains largely unknown. Using the pond snail Lymnaea stagnalis we found that recent experience of terrestrial locomotion (exercise) results in a long-term increase in the firing rate of serotonergic pedal (PeA) neurons. Isolation from the CNS preserved the "memory" about previous motor activity in the neurons even after the animals rested for two hours in deep water after the exercise. In contrast, in the CNS, no difference in the firing rate between the control and "exercise-rested" (ER) neurons was seen. ER snails, when placed again on a surface to exercise, nevertheless showed faster locomotor arousal. The difference in the firing rate between the control and ER isolated neurons disappeared when the neurons were placed in the microenvironment of their home ganglia. It is likely that an increased content of dopamine in the CNS masks an increased excitation of PeA neurons after rest: the dopamine receptor antagonist sulpiride produced sustained excitation in PeA neurons from ER snails but not in the control. Therefore, our data suggest the involvement of two mechanisms in the interplay of past and present experiences at the cellular level: intrinsic neuronal changes in the biophysical properties of the cell membrane and extrinsic modulatory environment of the ganglia.
Collapse
Affiliation(s)
- T L Dyakonova
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia
| | - G S Sultanakhmetov
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia
| | - M I Mezheritskiy
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia
| | - D A Sakharov
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia
| | - V E Dyakonova
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia.
| |
Collapse
|
18
|
Traniello IM, Chen Z, Bagchi VA, Robinson GE. Valence of social information is encoded in different subpopulations of mushroom body Kenyon cells in the honeybee brain. Proc Biol Sci 2019; 286:20190901. [PMID: 31506059 DOI: 10.1098/rspb.2019.0901] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over 600 Myr of evolutionary divergence between vertebrates and invertebrates is associated with considerable neuroanatomical variation both across and within these lineages. By contrast, valence encoding is an important behavioural trait that is evolutionarily conserved across vertebrates and invertebrates, and enables individuals to distinguish between positive (potentially beneficial) and negative (potentially harmful) situations. We tested the hypothesis that social interactions of positive and negative valence are modularly encoded in the honeybee brain (i.e. encoded in different cellular subpopulations) as in vertebrate brains. In vertebrates, neural activation patterns are distributed across distinct parts of the brain, suggesting that discrete circuits encode positive or negative stimuli. Evidence for this hypothesis would suggest a deep homology of neural organization between insects and vertebrates for valence encoding, despite vastly different brain sizes. Alternatively, overlapping localization of valenced social information in the brain would imply a 're-use' of circuitry in response to positive and negative social contexts, potentially to overcome the energetic constraints of a tiny brain. We used immediate early gene expression to map positively and negatively valenced social interactions in the brain of the western honeybee Apis mellifera. We found that the valence of a social signal is represented by distinct anatomical subregions of the mushroom bodies, an invertebrate sensory neuropil associated with social behaviour, multimodal sensory integration, learning and memory. Our results suggest that the modularization of valenced social information in the brain is a fundamental property of neuroanatomical organization.
Collapse
Affiliation(s)
- Ian M Traniello
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhenqing Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Vikram A Bagchi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
19
|
Totani Y, Aonuma H, Oike A, Watanabe T, Hatakeyama D, Sakakibara M, Lukowiak K, Ito E. Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails. Front Behav Neurosci 2019; 13:65. [PMID: 31001093 PMCID: PMC6454038 DOI: 10.3389/fnbeh.2019.00065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Molluscan gastropods have long been used for studying the cellular and molecular mechanisms underlying learning and memory. One such gastropod, the pond snail Lymnaea stagnalis, exhibits long-term memory (LTM) following both classical and operant conditioning. Using Lymnaea, we have successfully elucidated cellular mechanisms of learning and memory utilizing an aversive classical conditioning procedure, conditioned taste aversion (CTA). Here, we present the behavioral changes following CTA training and show that the memory score depends on the duration of food deprivation. Then, we describe the relationship between the memory scores and the monoamine contents of the central nervous system (CNS). A comparison of learning capability in two different strains of Lymnaea, as well as the filial 1 (F1) cross from the two strains, presents how the memory scores are correlated in these populations with monoamine contents. Overall, when the memory scores are better, the monoamine contents of the CNS are lower. We also found that as the insulin content of the CNS decreases so does the monoamine contents which are correlated with higher memory scores. The present review deepens the relationship between monoamine and insulin contents with the memory score.
Collapse
Affiliation(s)
- Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Akira Oike
- Department of Biology, Waseda University, Tokyo, Japan
| | - Takayuki Watanabe
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Gassias E, Durand N, Demondion E, Bourgeois T, Aguilar P, Bozzolan F, Debernard S. A critical role for Dop1-mediated dopaminergic signaling in the plasticity of behavioral and neuronal responses to sex pheromone in a moth. J Exp Biol 2019; 222:jeb.211979. [DOI: 10.1242/jeb.211979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022]
Abstract
Most animal species, including insects, are able to modulate their responses to sexual chemosignals and this flexibility originates from the remodeling of olfactory areas under the influence of dopaminergic system. In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and after a prior exposure to pheromone signal and this change is accompanied by an increase in neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs). To identify the underlying neuromodulatory mechanisms, we examined whether this age- and experience-dependent olfactory plasticity is mediated by dopamine (DA) through the Dop1 receptor, an ortholog of the vertebrate D1-type dopamine receptors, which is positively coupled to adenylyl cyclase. We cloned A. ipsilon Dop1 (AiDop1) which is expressed predominantly in brain and especially in ALs and its knockdown induced decreased AL cAMP amounts and altered sex pheromone-orientated flight. The levels of DA, AiDop1 expression and cAMP in ALs increased from the third day of adult life and at 24h and 48h following pre-exposure to sex pheromone and the dynamic of these changes correlated with the increased responsiveness to sex pheromone. These results demonstrate that Dop1 is required for the display of male sexual behavior and that age- and experience-related neuronal and behavioral changes are sustained by DA-Dop1 signaling that operates within ALs probably through cAMP-dependent mechanisms in A. ipsilon. Thus, this study expands our understanding of the neuromodulatory mechanisms underlying olfactory plasticity, mechanisms that appear to be highly conserved between insects and mammals.
Collapse
Affiliation(s)
- Edmundo Gassias
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
21
|
Shpigler HY, Saul MC, Murdoch EE, Corona F, Cash-Ahmed AC, Seward CH, Chandrasekaran S, Stubbs LJ, Robinson GE. Honey bee neurogenomic responses to affiliative and agonistic social interactions. GENES BRAIN AND BEHAVIOR 2018; 18:e12509. [PMID: 30094933 DOI: 10.1111/gbb.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
Social interactions can be divided into two categories, affiliative and agonistic. How neurogenomic responses reflect these opposing valences is a central question in the biological embedding of experience. To address this question, we exposed honey bees to a queen larva, which evokes nursing, an affiliative alloparenting interaction, and measured the transcriptomic response of the mushroom body brain region at different times after exposure. Hundreds of genes were differentially expressed at distinct time points, revealing a dynamic temporal patterning of the response. Comparing these results to our previously published research on agonistic aggressive interactions, we found both shared and unique transcriptomic responses to each interaction. The commonly responding gene set was enriched for nuclear receptor signaling, the set specific to nursing was enriched for olfaction and neuron differentiation, and the set enriched for aggression was enriched for cytoskeleton, metabolism, and chromosome organization. Whole brain histone profiling after the affiliative interaction revealed few changes in chromatin accessibility, suggesting that the transcriptomic changes derive from already accessible areas of the genome. Although only one stimulus of each type was studied, we suggest that elements of the observed transcriptomic responses reflect molecular encoding of stimulus valence, thus priming individuals for future encounters. This hypothesis is supported by behavioral analyses showing that bees responding to either the affiliative or agonistic stimulus exhibited a higher probability of repeating the same behavior but a lower probability of performing the opposite behavior. These findings add to our understanding of the biological embedding at the molecular level.
Collapse
Affiliation(s)
- Hagai Y Shpigler
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Emma E Murdoch
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Frida Corona
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois.,Department of Cell and Developmental Biology, UIUC, Urbana, Illinois
| | | | - Lisa J Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois.,Department of Cell and Developmental Biology, UIUC, Urbana, Illinois.,Neuroscience Program, UIUC, Urbana, Illinois
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois.,Neuroscience Program, UIUC, Urbana, Illinois.,Department of Entomology, UIUC, Urbana, Illinois
| |
Collapse
|
22
|
Cromwell HC, Tremblay L, Schultz W. Neural encoding of choice during a delayed response task in primate striatum and orbitofrontal cortex. Exp Brain Res 2018; 236:1679-1688. [PMID: 29610950 DOI: 10.1007/s00221-018-5253-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
Reward outcomes are available in many diverse situations and all involve choice. If there are multiple outcomes each rewarding, then decisions regarding relative value lead to choosing one over another. Important factors related to choice context should be encoded and utilized for this form of adaptive choosing. These factors can include the number of alternatives, the pacing of choice behavior and the possibility to reverse one's choice. An essential step in understanding if the context of choice is encoded is to directly compare choice with a context in which choice is absent. Neural activity in orbitofrontal cortex and striatum encodes potential value parameters related to reward quality and quantity as well as relative preference. We examined how neural activations in these brain regions are sensitive to choice situations and potentially involved in a prediction for the upcoming outcome selection. Neural activity was recorded and compared between a two-choice spatial delayed response task and an imperative 'one-option' task. Neural activity was obtained that extended from the instruction cue to the movement similar to previous work utilizing the identical imperative task. Orbitofrontal and striatal neural responses depended upon the decision about the choice of which reward to collect. Moreover, signals to predictive instruction cues that precede choice were selective for the choice situation. These neural responses could reflect chosen value with greater information on relative value of individual options as well as encode choice context itself embedded in the task as a part of the post-decision variable.
Collapse
Affiliation(s)
- Howard C Cromwell
- Department of Psychology, JP Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Leon Tremblay
- Centre de Neuroscience Cognitive, UMR-5229 CNRS, Bron, Cedex, France
- Université Claude-Bernard Lyon 1, 69100, Villeurbanne, France
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
23
|
Jain RA, Wolman MA, Marsden KC, Nelson JC, Shoenhard H, Echeverry FA, Szi C, Bell H, Skinner J, Cobbs EN, Sawada K, Zamora AD, Pereda AE, Granato M. A Forward Genetic Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of Sensorimotor Decision Making. Curr Biol 2018; 28:1357-1369.e5. [PMID: 29681477 DOI: 10.1016/j.cub.2018.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/24/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022]
Abstract
Animals continuously integrate sensory information and select contextually appropriate responses. Here, we show that zebrafish larvae select a behavioral response to acoustic stimuli from a pre-existing choice repertoire in a context-dependent manner. We demonstrate that this sensorimotor choice is modulated by stimulus quality and history, as well as by neuromodulatory systems-all hallmarks of more complex decision making. Moreover, from a genetic screen coupled with whole-genome sequencing, we identified eight mutants with deficits in this sensorimotor choice, including mutants of the vertebrate-specific G-protein-coupled extracellular calcium-sensing receptor (CaSR), whose function in the nervous system is not well understood. We demonstrate that CaSR promotes sensorimotor decision making acutely through Gαi/o and Gαq/11 signaling, modulated by clathrin-mediated endocytosis. Combined, our results identify the first set of genes critical for behavioral choice modulation in a vertebrate and reveal an unexpected critical role for CaSR in sensorimotor decision making.
Collapse
Affiliation(s)
- Roshan A Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, Haverford College, Haverford, PA 19041, USA.
| | - Marc A Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica C Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Christina Szi
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Hannah Bell
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianne Skinner
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emilia N Cobbs
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Keisuke Sawada
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Amy D Zamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
The Puzzle of Behavioral Choice or How Organisms Channel Their Evolution: a Review of Rui Diogo’s Evolution Driven by Organismal Behavior: A Unifying View of Life, Function, Form, Mismatches, and Trends. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2018. [DOI: 10.1007/s40806-017-0113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Lenschow M, Cordel M, Pokorny T, Mair MM, Hofferberth J, Ruther J. The Post-mating Switch in the Pheromone Response of Nasonia Females Is Mediated by Dopamine and Can Be Reversed by Appetitive Learning. Front Behav Neurosci 2018; 12:14. [PMID: 29441003 PMCID: PMC5797616 DOI: 10.3389/fnbeh.2018.00014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/17/2018] [Indexed: 02/03/2023] Open
Abstract
The olfactory sense is of crucial importance for animals, but their response to chemical stimuli is plastic and depends on their physiological state and prior experience. In many insect species, mating status influences the response to sex pheromones, but the underlying neuromodulatory mechanisms are poorly understood. After mating, females of the parasitic wasp Nasonia vitripennis are no longer attracted to the male sex pheromone. Here we show that this post-mating behavioral switch is mediated by dopamine (DA). Females fed a DA-receptor antagonist prior to mating maintained their attraction to the male pheromone after mating while virgin females injected with DA became unresponsive. However, the switch is reversible as mated females regained their pheromone preference after appetitive learning. Feeding mated N. vitripennis females with antagonists of either octopamine- (OA) or DA-receptors prevented relearning of the pheromone preference suggesting that both receptors are involved in appetitive learning. Moreover, DA injection into mated females was sufficient to mimic the oviposition reward during odor conditioning with the male pheromone. Our data indicate that DA plays a key role in the plastic pheromone response of N. vitripennis females and reveal some striking parallels between insects and mammals in the neuromodulatory mechanisms underlying olfactory plasticity.
Collapse
Affiliation(s)
- Maria Lenschow
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Michael Cordel
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Tamara Pokorny
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Magdalena M Mair
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - John Hofferberth
- Department of Chemistry, Kenyon College, Gambier, OH, United States
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Affiliation(s)
- E. Ito
- Department of Biology, Waseda University , Tokyo, Japan
| | - Y. Totani
- Department of Biology, Waseda University , Tokyo, Japan
| | - A. Oike
- Department of Biology, Waseda University , Tokyo, Japan
| |
Collapse
|
27
|
White RS, Spencer RM, Nusbaum MP, Blitz DM. State-dependent sensorimotor gating in a rhythmic motor system. J Neurophysiol 2017; 118:2806-2818. [PMID: 28814634 DOI: 10.1152/jn.00420.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback influences motor circuits and/or their projection neuron inputs to adjust ongoing motor activity, but its efficacy varies. Currently, less is known about regulation of sensory feedback onto projection neurons that control downstream motor circuits than about sensory regulation of the motor circuit neurons themselves. In this study, we tested whether sensory feedback onto projection neurons is sensitive only to activation of a motor system, or also to the modulatory state underlying that activation, using the crab Cancer borealis stomatogastric nervous system. We examined how proprioceptor neurons (gastropyloric receptors, GPRs) influence the gastric mill (chewing) circuit neurons and the projection neurons (MCN1, CPN2) that drive the gastric mill rhythm. During gastric mill rhythms triggered by the mechanosensory ventral cardiac neurons (VCNs), GPR was shown previously to influence gastric mill circuit neurons, but its excitation of MCN1/CPN2 was absent. In this study, we tested whether GPR effects on MCN1/CPN2 are also absent during gastric mill rhythms triggered by the peptidergic postoesophageal commissure (POC) neurons. The VCN and POC pathways both trigger lasting MCN1/CPN2 activation, but their distinct influence on circuit feedback to these neurons produces different gastric mill motor patterns. We show that GPR excites MCN1 and CPN2 during the POC-gastric mill rhythm, altering their firing rates and activity patterns. This action changes both phases of the POC-gastric mill rhythm, whereas GPR only alters one phase of the VCN-gastric mill rhythm. Thus sensory feedback to projection neurons can be gated as a function of the modulatory state of an active motor system, not simply switched on/off with the onset of motor activity.NEW & NOTEWORTHY Sensory feedback influences motor systems (i.e., motor circuits and their projection neuron inputs). However, whether regulation of sensory feedback to these projection neurons is consistent across different versions of the same motor pattern driven by the same motor system was not known. We found that gating of sensory feedback to projection neurons is determined by the modulatory state of the motor system, and not simply by whether the system is active or inactive.
Collapse
Affiliation(s)
- Rachel S White
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dawn M Blitz
- Department of Biology, Miami University, Oxford, Ohio; and
| |
Collapse
|
28
|
Banerjee N, Bhattacharya R, Gorczyca M, Collins KM, Francis MM. Local neuropeptide signaling modulates serotonergic transmission to shape the temporal organization of C. elegans egg-laying behavior. PLoS Genet 2017; 13:e1006697. [PMID: 28384151 PMCID: PMC5398689 DOI: 10.1371/journal.pgen.1006697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 03/15/2017] [Indexed: 11/18/2022] Open
Abstract
Animal behaviors are often composed of distinct alternating behavioral states. Neuromodulatory signals are thought to be critical for establishing stable behavioral states and for orchestrating transitions between them. However, we have only a limited understanding of how neuromodulatory systems act in vivo to alter circuit performance and shape behavior. To address these questions, we have investigated neuromodulatory signaling in the context of Caenorhabditis elegans egg-laying. Egg-laying activity cycles between discrete states-short bursts of egg deposition (active phases) that alternate with prolonged quiescent periods (inactive phases). Here using genetic, pharmacological and optogenetic approaches for cell-specific activation and inhibition, we show that a group of neurosecretory cells (uv1) located in close spatial proximity to the egg-laying neuromusculature direct the temporal organization of egg-laying by prolonging the duration of inactive phases. We demonstrate that the modulatory effects of the uv1 cells are mediated by peptides encoded by the nlp-7 and flp-11 genes that act locally to inhibit circuit activity, primarily by inhibiting vesicular release of serotonin from HSN motor neurons. This peptidergic inhibition is achieved, at least in part, by reducing synaptic vesicle abundance in the HSN motor neurons. By linking the in vivo actions of specific neuropeptide signaling systems with the generation of stable behavioral outcomes, our study reveals how cycles of neuromodulation emanating from non-neuronal cells can fundamentally shape the organization of a behavioral program.
Collapse
Affiliation(s)
- Navonil Banerjee
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Raja Bhattacharya
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Michael Gorczyca
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Kevin M. Collins
- Department of Biology, University of Miami, Coral Gables, FL United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| |
Collapse
|
29
|
Anderson DJ. Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci 2016; 17:692-704. [DOI: 10.1038/nrn.2016.125] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Filosa A, Barker AJ, Dal Maschio M, Baier H. Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum. Neuron 2016; 90:596-608. [PMID: 27146269 DOI: 10.1016/j.neuron.2016.03.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/27/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
Abstract
Animals use the sense of vision to scan their environment, respond to threats, and locate food sources. The neural computations underlying the selection of a particular behavior, such as escape or approach, require flexibility to balance potential costs and benefits for survival. For example, avoiding novel visual objects reduces predation risk but negatively affects foraging success. Zebrafish larvae approach small, moving objects ("prey") and avoid large, looming objects ("predators"). We found that this binary classification of objects by size is strongly influenced by feeding state. Hunger shifts behavioral decisions from avoidance to approach and recruits additional prey-responsive neurons in the tectum, the main visual processing center. Both behavior and tectal function are modulated by signals from the hypothalamic-pituitary-interrenal axis and the serotonergic system. Our study has revealed a neuroendocrine mechanism that modulates the perception of food and the willingness to take risks in foraging decisions.
Collapse
Affiliation(s)
- Alessandro Filosa
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alison J Barker
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marco Dal Maschio
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
31
|
Yu Y, Zhi L, Guan X, Wang D, Wang D. FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 2016; 6:21485. [PMID: 26887501 PMCID: PMC4757837 DOI: 10.1038/srep21485] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/25/2016] [Indexed: 01/19/2023] Open
Abstract
Preference choice on food is an important response strategy for animals living in the environment. Using assay system of preference choice on bacterial foods, OP50 and PA14, we identified the involvement of ADL sensory neurons in the control of preference choice in Caenorhabditis elegans. Both genetically silencing and ChR2-mediated activation of ADL sensory neurons significantly affected preference choice. ADL regulated preference choice by inhibiting function of G protein-coupled receptor (GPCR)/SRH-220. ADL sensory neurons might regulate preference choice through peptidergic signals of FLP-4 and NLP-10, and function of FLP-4 or NLP-10 in regulating preference choice was regulated by SRH-220. FLP-4 released from ADL sensory neurons further regulated preference choice through its receptor of NPR-4 in AIB interneurons. In AIB interneurons, NPR-4 was involved in the control of preference choice by activating the functions of ASH-2 trithorax complex consisting of SET-2, ASH-2, and WDR-5, implying the crucial role of molecular machinery of trimethylation of histone H3K4 in the preference choice control. The identified novel neuronal circuit and the underlying molecular mechanisms will strengthen our understanding neuronal basis of preference choice in animals.
Collapse
Affiliation(s)
- Yonglin Yu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lingtong Zhi
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xiangmin Guan
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Daoyong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
32
|
Hoopfer ED, Jung Y, Inagaki HK, Rubin GM, Anderson DJ. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. eLife 2015; 4. [PMID: 26714106 PMCID: PMC4749567 DOI: 10.7554/elife.11346] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022] Open
Abstract
How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner.
Collapse
Affiliation(s)
- Eric D Hoopfer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yonil Jung
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Hidehiko K Inagaki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
33
|
Kromann SH, Saveer AM, Binyameen M, Bengtsson M, Birgersson G, Hansson BS, Schlyter F, Witzgall P, Ignell R, Becher PG. Concurrent modulation of neuronal and behavioural olfactory responses to sex and host plant cues in a male moth. Proc Biol Sci 2015; 282:20141884. [PMID: 25621329 DOI: 10.1098/rspb.2014.1884] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mating has profound effects on animal physiology and behaviour, not only in females but also in males, which we show here for olfactory responses. In cotton leafworm moths, Spodoptera littoralis, odour-mediated attraction to sex pheromone and plant volatiles are modulated after mating, producing a behavioural response that matches the physiological condition of the male insect. Unmated males are attracted by upwind flight to sex pheromone released by calling females, as well as to volatiles of lilac flowers and green leaves of the host plant cotton, signalling adult food and mating sites, respectively. Mating temporarily abolishes male attraction to females and host plant odour, but does not diminish attraction to flowers. This behavioural modulation is correlated with a response modulation in the olfactory system, as shown by electro-physiological recordings from antennae and by functional imaging of the antennal lobe, using natural odours and synthetic compounds. An effect of mating on the olfactory responses to pheromone and cotton plant volatiles but not to lilac flowers indicates the presence of functionally independent neural circuits within the olfactory system. Our results indicate that these circuits interconnect and weigh perception of social and habitat odour signals to generate appropriate behavioural responses according to mating state.
Collapse
|
34
|
Huang X, Kanwal JS, Jiang T, Long Z, Luo B, Yue X, Gu Y, Feng J. Situational and Age-Dependent Decision Making during Life Threatening Distress in Myotis macrodactylus. PLoS One 2015; 10:e0132817. [PMID: 26181328 PMCID: PMC4504719 DOI: 10.1371/journal.pone.0132817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Echolocation and audiovocal communication have been studied extensively in bats. The manner in which these abilities are incorporated within escape behaviors during life-threatening distress is largely unknown. Here we tested the hypothesis that behavioral response profiles expressed during distress are relatively stereotypic given their evolutionary adaptations to avoid predators. We subjected juvenile and adult big-footed myotis (Myotis macrodactylus) to a sequence of three types of life threatening distress: 1) trapping them in a mist-net (environmental threat), 2) approaching them when trapped (predator threat), and 3) partially restraining their freedom to move (arrest), and recorded their escape behavior in each of the three conditions. Response profiles differed across individuals and with the context in which they were expressed. During environmental and predator threat, bats displayed significantly more biting and wing-flapping behaviors and emitted more echolocation pulses than during arrest. Response profiles also varied with age. During arrest, juveniles were more likely than adults to emit distress calls and vice-versa for biting and wing flapping during environmental and predator threat. Overall, individualized response profiles were classified into ten clusters that were aligned along two divergent response trajectories when viewed within two-dimensional, multifactorial decision space. Juvenile behaviors tended to follow a predominantly "social-dependence" trajectory, whereas adult behaviors were mostly aligned along a "self-reliance" trajectory. We conclude that bats modify their vocal behavior and make age-appropriate and contextually adaptive decisions when distressed. This decision-making ability is consistent with observations in other social species, including humans.
Collapse
Affiliation(s)
- Xiaobin Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - Jagmeet S. Kanwal
- Departments of Neurology, Neuroscience and Psychology, Georgetown University Medical Center, Washington DC, United States of America
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
- * E-mail: (JF); (TLJ)
| | - Zhenyu Long
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - Bo Luo
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - Xinke Yue
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - Yongbo Gu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, China
- * E-mail: (JF); (TLJ)
| |
Collapse
|
35
|
Ito E, Yamagishi M, Hatakeyama D, Watanabe T, Fujito Y, Dyakonova V, Lukowiak K. Memory block: a consequence of conflict resolution. ACTA ACUST UNITED AC 2015; 218:1699-704. [PMID: 25883377 DOI: 10.1242/jeb.120329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022]
Abstract
Food deprivation for 1 day in the pond snail Lymnaea stagnalis before aversive classical conditioning results in optimal conditioned taste aversion (CTA) and long-term memory (LTM) formation, whereas 5-day food deprivation before training does not. We hypothesize that snails do in fact learn and form LTM when trained after prolonged food deprivation, but that severe food deprivation blocks their ability to express memory. We trained 5-day food-deprived snails under various conditions, and found that memory was indeed formed but is overpowered by severe food deprivation. Moreover, CTA-LTM was context dependent and was observed only when the snails were in a context similar to that in which the training occurred.
Collapse
Affiliation(s)
- Etsuro Ito
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Miki Yamagishi
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Dai Hatakeyama
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Takayuki Watanabe
- Laboratory of Neurocybernetics, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Yutaka Fujito
- Department of Systems Neuroscience, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Varvara Dyakonova
- Laboratory of Comparative Physiology, Institute for Developmental Biology, RAS, Moscow 119909, Russia
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
36
|
Marder E, O'Leary T, Shruti S. Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 2015; 37:329-46. [PMID: 25032499 DOI: 10.1146/annurev-neuro-071013-013958] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuromodulation underlies many behavioral states and has been extensively studied in small circuits. This has allowed the systematic exploration of how neuromodulatory substances and the neurons that release them can influence circuit function. The physiological state of a network and its level of activity can have profound effects on how the modulators act, a phenomenon known as state dependence. We provide insights from experiments and computational work that show how state dependence can arise and the consequences it can have for cellular and circuit function. These observations pose a general unsolved question that is relevant to all nervous systems: How is robust modulation achieved in spite of animal-to-animal variability and degenerate, nonlinear mechanisms for the production of neuronal and network activity?
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454; , ,
| | | | | |
Collapse
|
37
|
Sexual Behavior of Drosophila suzukii. INSECTS 2015; 6:183-96. [PMID: 26463074 PMCID: PMC4553537 DOI: 10.3390/insects6010183] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/20/2015] [Accepted: 02/25/2015] [Indexed: 12/12/2022]
Abstract
A high reproductive potential is one reason for the rapid spread of Drosophila suzukii in Europe and in the United States. In order to identify mechanisms that mediate mating and reproduction in D. suzukii we studied the fly’s reproductive behavior, diurnal mating activity and sexual maturation. Furthermore, we studied the change of female cuticular hydrocarbons (CHCs) with age and conducted a preliminary investigation on the role of female-derived chemical signals in male mating behavior. Sexual behavior in D. suzukii is characterized by distinct elements of male courtship leading to female acceptance for mating. Time of day and age modulate D. suzukii mating activity. As with other drosophilids, female sexual maturity is paralleled by a quantitative increase in CHCs. Neither female CHCs nor other olfactory signals were required to induce male courtship, however, presence of those signals significantly increased male sexual behavior. With this pilot study we hope to stimulate research on the reproductive biology of D. suzukii, which is relevant for the development of pest management tools.
Collapse
|
38
|
Dyakonova V, Hernádi L, Ito E, Dyakonova T, Zakharov I, Sakharov D. The activity of isolated snail neurons controlling locomotion is affected by glucose. Biophysics (Nagoya-shi) 2015; 11:55-60. [PMID: 27493515 PMCID: PMC4736796 DOI: 10.2142/biophysics.11.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/18/2014] [Indexed: 12/02/2022] Open
Abstract
The involvement of serotonin in mediating hunger-related changes in behavioral state has been described in many invertebrates. However, the mechanisms by which hunger signals to serotonergic cells remain unknown. We tested the hypothesis that serotonergic neurons can directly sense the concentration of glucose, a metabolic indicator of nutritional state. In the snail Lymnaea stagnalis, we demonstrate that completely isolated pedal serotonergic neurons that control locomotion changed their biophysical characteristics in response to glucose application by lowering membrane potential and decreasing the firing rate. Additionally, the excitatory response of the isolated serotonergic neurons to the neuroactive microenvironment of the pedal ganglia was significantly lowered by glucose application. Because hunger has been reported to increase the activity of select neurons and their responses to the pedal ganglia microenvironment, these responses to glucose are in accordance with the hypothesis that direct glucose signaling is involved in the mediation of the hunger-related behavioral state.
Collapse
Affiliation(s)
- Varvara Dyakonova
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| | - László Hernádi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany,
Hungary
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193,
Japan
| | - Taisia Dyakonova
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| | - Igor Zakharov
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| | - Dmitri Sakharov
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| |
Collapse
|
39
|
Dyakonova VE, Hernádi L, Ito E, Dyakonova TL, Chistopolsky IA, Zakharov IS, Sakharov DA. The activity of isolated neurons and the modulatory state of an isolated nervous system represent a recent behavioural state. ACTA ACUST UNITED AC 2015; 218:1151-8. [PMID: 25714568 DOI: 10.1242/jeb.111930] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022]
Abstract
Behavioural/motivational state is known to influence nearly all aspects of physiology and behaviour. The cellular basis of behavioural state control is only partially understood. Our investigation, performed on the pond snail Lymnaea stagnalis whose nervous system is useful for work on completely isolated neurons, provided several results related to this problem. First, we demonstrated that the behavioural state can produce long-term changes in individual neurons that persist even after neuron isolation from the nervous system. Specifically, we found that pedal serotonergic neurons that control locomotion show higher activity and lower membrane potential after being isolated from the nervous systems of hungry animals. Second, we showed that the modulatory state (the chemical neuroactive microenvironment of the central ganglia) changes in accordance with the nutritional state of an animal and produces predicted changes in single isolated locomotor neurons. Third, we report that observed hunger-induced effects can be explained by the increased synthesis of serotonin in pedal serotonergic neurons, which has an impact on the electrical activity of isolated serotonergic neurons and the intensity of extrasynaptic serotonin release from the pedal ganglia.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Laszlo Hernádi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany H-8237, Hungary
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193, Japan
| | - Taisia L Dyakonova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Ilya A Chistopolsky
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor S Zakharov
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitri A Sakharov
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
40
|
Barrios A. Behavioral plasticity: a nose for every season. Curr Biol 2014; 24:R1057-9. [PMID: 25517374 DOI: 10.1016/j.cub.2014.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A recent study in Caenorhabditis elegans identifies the dynamic expression of a single odorant receptor as a molecular mechanism for context-dependent modulation of olfactory preferences and food prioritization.
Collapse
Affiliation(s)
- Arantza Barrios
- Cell and Developmental Biology Department, University College London, London WC1E 6DE, UK.
| |
Collapse
|
41
|
Ryan DA, Miller RM, Lee K, Neal SJ, Fagan KA, Sengupta P, Portman DS. Sex, age, and hunger regulate behavioral prioritization through dynamic modulation of chemoreceptor expression. Curr Biol 2014; 24:2509-17. [PMID: 25438941 DOI: 10.1016/j.cub.2014.09.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/04/2014] [Accepted: 09/11/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adaptive behavioral prioritization requires flexible outputs from fixed neural circuits. In C. elegans, the prioritization of feeding versus mate searching depends on biological sex (males will abandon food to search for mates, whereas hermaphrodites will not) as well as developmental stage and feeding status. Previously, we found that males are less attracted than hermaphrodites to the food-associated odorant diacetyl, suggesting that sensory modulation may contribute to behavioral prioritization. RESULTS We show that somatic sex acts cell autonomously to reconfigure the olfactory circuit by regulating a key chemoreceptor, odr-10, in the AWA neurons. Moreover, we find that odr-10 has a significant role in food detection, the regulation of which contributes to sex differences in behavioral prioritization. Overexpression of odr-10 increases male food attraction and decreases off-food exploration; conversely, loss of odr-10 impairs food taxis in both sexes. In larvae, both sexes prioritize feeding over exploration; correspondingly, the sexes have equal odr-10 expression and food attraction. Food deprivation, which transiently favors feeding over exploration in adult males, increases male food attraction by activating odr-10 expression. Furthermore, the weak expression of odr-10 in well-fed adult males has important adaptive value, allowing males to efficiently locate mates in a patchy food environment. CONCLUSIONS We find that modulated expression of a single chemoreceptor plays a key role in naturally occurring variation in the prioritization of feeding and exploration. The convergence of three independent regulatory inputs--somatic sex, age, and feeding status--on chemoreceptor expression highlights sensory function as a key source of plasticity in neural circuits.
Collapse
Affiliation(s)
- Deborah A Ryan
- Center for Neural Development and Disease, Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Renee M Miller
- Center for Neural Development and Disease, Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
| | - KyungHwa Lee
- Center for Neural Development and Disease, Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott J Neal
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Kelli A Fagan
- Center for Neural Development and Disease, Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Piali Sengupta
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Douglas S Portman
- Center for Neural Development and Disease, Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
42
|
Palmer CR, Barnett MN, Copado S, Gardezy F, Kristan WB. Multiplexed modulation of behavioral choice. J Exp Biol 2014; 217:2963-73. [PMID: 24902753 PMCID: PMC4132565 DOI: 10.1242/jeb.098749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/01/2014] [Indexed: 11/20/2022]
Abstract
Stimuli in the environment, as well as internal states, influence behavioral choice. Of course, animals are often exposed to multiple external and internal factors simultaneously, which makes the ultimate determinants of behavior quite complex. We observed the behavioral responses of European leeches, Hirudo verbana, as we varied one external factor (surrounding water depth) with either another external factor (location of tactile stimulation along the body) or an internal factor (body distention following feeding). Stimulus location proved to be the primary indicator of behavioral response. In general, anterior stimulation produced shortening behavior, midbody stimulation produced local bending, and posterior stimulation usually produced either swimming or crawling but sometimes a hybrid of the two. By producing a systematically measured map of behavioral responses to body stimulation, we found wide areas of overlap between behaviors. When we varied the surrounding water depth, this map changed significantly, and a new feature - rotation of the body along its long axis prior to swimming - appeared. We found additional interactions between water depth and time since last feeding. A large blood meal initially made the animals crawl more and swim less, an effect that was attenuated as water depth increased. The behavioral map returned to its pre-feeding form after approximately 3 weeks as the leeches digested their blood meal. In summary, we found multiplexed impacts on behavioral choice, with the map of responses to tactile stimulation modified by water depth, which itself modulated the impact that feeding had on the decision to swim or crawl.
Collapse
Affiliation(s)
- Chris R Palmer
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Megan N Barnett
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Saul Copado
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fred Gardezy
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - William B Kristan
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
43
|
Schoofs A, Hückesfeld S, Schlegel P, Miroschnikow A, Peters M, Zeymer M, Spieß R, Chiang AS, Pankratz MJ. Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain. PLoS Biol 2014; 12:e1001893. [PMID: 24960360 PMCID: PMC4068981 DOI: 10.1371/journal.pbio.1001893] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022] Open
Abstract
Central mechanisms by which specific motor programs are selected to achieve meaningful behaviors are not well understood. Using electrophysiological recordings from pharyngeal nerves upon central activation of neurotransmitter-expressing cells, we show that distinct neuronal ensembles can regulate different feeding motor programs. In behavioral and electrophysiological experiments, activation of 20 neurons in the brain expressing the neuropeptide hugin, a homolog of mammalian neuromedin U, simultaneously suppressed the motor program for food intake while inducing the motor program for locomotion. Decreasing hugin neuropeptide levels in the neurons by RNAi prevented this action. Reducing the level of hugin neuronal activity alone did not have any effect on feeding or locomotion motor programs. Furthermore, use of promoter-specific constructs that labeled subsets of hugin neurons demonstrated that initiation of locomotion can be separated from modulation of its motor pattern. These results provide insights into a neural mechanism of how opposing motor programs can be selected in order to coordinate feeding and locomotive behaviors.
Collapse
Affiliation(s)
- Andreas Schoofs
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Sebastian Hückesfeld
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Philipp Schlegel
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Anton Miroschnikow
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Marc Peters
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Malou Zeymer
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
| | - Roland Spieß
- Department of Forensic Entomology, Institute of Legal Medicine, Jena University Hospital, Germany
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Taiwan
| | - Michael J. Pankratz
- Molecular Brain Physiology and Behavior, LIMES-Institute, University of Bonn, Germany
- * E-mail:
| |
Collapse
|
44
|
Capturing the essence of decision making should not be oversimplified. Behav Brain Sci 2014; 37:85. [DOI: 10.1017/s0140525x1300174x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBentley et al. propose a thought-provoking approach to the question of causal factors underlying human choice behavior. Their map model is interesting, but too simplified to capture the essence of decision making. They disregard, among other matters, qualitative differences between various subcategories of social influences, and the role of neurobiological factors engaged in interdependent individual and social decision-making processes.
Collapse
|
45
|
Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination. Proc Natl Acad Sci U S A 2013; 110:14777-82. [PMID: 23959889 DOI: 10.1073/pnas.1310686110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Granule cells (GCs) are the most abundant inhibitory neuronal type in the olfactory bulb and play a critical role in olfactory processing. GCs regulate the activity of principal neurons, the mitral cells, through dendrodendritic synapses, shaping the olfactory bulb output to other brain regions. GC excitability is regulated precisely by intrinsic and extrinsic inputs, and this regulation is fundamental for odor discrimination. Here, we used channelrhodopsin to stimulate GABAergic axons from the basal forebrain selectively and show that this stimulation generates reliable inhibitory responses in GCs. Furthermore, selective in vivo inhibition of GABAergic neurons in the basal forebrain by targeted expression of designer receptors exclusively activated by designer drugs produced a reversible impairment in the discrimination of structurally similar odors, indicating an important role of these inhibitory afferents in olfactory processing.
Collapse
|
46
|
Abstract
Two recent studies describe mechanisms by which sexually dimorphic responses to pheromones in the nematode worm Caenorhabditis elegans are driven by differences in the balance of neural circuits that control attraction and repulsion behaviors.
Collapse
|
47
|
Linz J, Baschwitz A, Strutz A, Dweck HKM, Sachse S, Hansson BS, Stensmyr MC. Host plant-driven sensory specialization in Drosophila erecta. Proc Biol Sci 2013; 280:20130626. [PMID: 23595274 PMCID: PMC3652467 DOI: 10.1098/rspb.2013.0626] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Finding appropriate feeding and breeding sites is crucial for all insects. To fulfil this vital task, many insects rely on their sense of smell. Alterations in the habitat—or in lifestyle—should accordingly also be reflected in the olfactory system. Solid functional evidence for direct adaptations in the olfactory system is however scarce. We have, therefore, examined the sense of smell of Drosophila erecta, a close relative of Drosophila melanogaster and specialist on screw pine fruits (Pandanus spp.). In comparison with three sympatric sibling species, D. erecta shows specific alterations in its olfactory system towards detection and processing of a characteristic Pandanus volatile (3-methyl-2-butenyl acetate, 3M2BA). We show that D. erecta is more sensitive towards this substance, and that the increased sensitivity derives from a numerical increase of one olfactory sensory neuron (OSN) class. We also show that axons from these OSNs form a complex of enlarged glomeruli in the antennal lobe, the first olfactory brain centre, of D. erecta. Finally, we show that 3M2BA induces oviposition in D. erecta, but not in D. melanogaster. The presumed adaptations observed here follow to a remarkable degree those found in Drosophila sechellia, a specialist upon noni fruit, and suggest a general principle for how specialization affects the sense of smell.
Collapse
Affiliation(s)
- Jeanine Linz
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Warzecha AK, Rosner R, Grewe J. Impact and sources of neuronal variability in the fly's motion vision pathway. ACTA ACUST UNITED AC 2012. [PMID: 23178476 DOI: 10.1016/j.jphysparis.2012.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nervous systems encode information about dynamically changing sensory input by changes in neuronal activity. Neuronal activity changes, however, also arise from noise sources within and outside the nervous system or from changes of the animal's behavioral state. The resulting variability of neuronal responses in representing sensory stimuli limits the reliability with which animals can respond to stimuli and may thus even affect the chances for survival in certain situations. Relevant sources of noise arising at different stages along the motion vision pathway have been investigated from the sensory input to the initiation of behavioral reactions. Here, we concentrate on the reliability of processing visual motion information in flies. Flies rely on visual motion information to guide their locomotion. They are among the best established model systems for the processing of visual motion information allowing us to bridge the gap between behavioral performance and underlying neuronal computations. It has been possible to directly assess the consequences of noise at major stages of the fly's visual motion processing system on the reliability of neuronal signals. Responses of motion sensitive neurons and their variability have been related to optomotor movements as indicators for the overall performance of visual motion computation. We address whether and how noise already inherent in the stimulus, e.g. photon noise for the visual system, influences later processing stages and to what extent variability at the output level of the sensory system limits behavioral performance. Recent advances in circuit analysis and the progress in monitoring neuronal activity in behaving animals should now be applied to understand how the animal meets the requirements of fast and reliable manoeuvres in naturalistic situations.
Collapse
Affiliation(s)
| | - Ronny Rosner
- Tierphysiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Jan Grewe
- Dept. Biology II, Ludwig-Maximilians Univ., 82152 Martinsried, Germany
| |
Collapse
|
49
|
Neuronal microcircuits for decision making in C. elegans. Curr Opin Neurobiol 2012; 22:580-91. [PMID: 22699037 DOI: 10.1016/j.conb.2012.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 01/11/2023]
Abstract
The simplicity and genetic tractability of the nervous system of the nematode Caenorhabditis elegans make it an attractive system in which to seek biological mechanisms of decision making. Although work in this area remains at an early stage, four basic types paradigms of behavioral choice, a simple form of decision making, have now been demonstrated in C. elegans. A recent series of pioneering studies, combining genetics and molecular biology with new techniques such as microfluidics and calcium imaging in freely moving animals, has begun to elucidate the neuronal mechanisms underlying behavioral choice. The new research has focussed on choice behaviors in the context of habitat and resource localization, for which the neuronal circuit has been identified. Three main circuit motifs for behavioral choice have been identified. One motif is based mainly on changes in the strength of synaptic connections whereas the other two motifs are based on changes in the basal activity of an interneuron and the sensory neuron to which it is electrically coupled. Peptide signaling seems to play a prominent role in all three motifs, and it may be a general rule that concentrations of various peptides encode the internal states that influence behavioral decisions in C. elegans.
Collapse
|
50
|
Hemmi JM, Tomsic D. The neuroethology of escape in crabs: from sensory ecology to neurons and back. Curr Opin Neurobiol 2012; 22:194-200. [DOI: 10.1016/j.conb.2011.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/17/2011] [Accepted: 11/27/2011] [Indexed: 11/30/2022]
|