1
|
Wu Y, Wang H, Hu Z, Pan M, Wu Y, Guo X, Ge J, Wang Z, Yang M. The pyrexia channel remodels egg-laying of Liriomyza huidobrensis in response to temperature change. PEST MANAGEMENT SCIENCE 2024; 80:4306-4313. [PMID: 38629874 DOI: 10.1002/ps.8135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND The pea leafminer, Liriomyza huidobrensis, is one of the most important insect pests on vegetables and ornamentals. The survival and egg-laying behavior of leafminers are markedly affected by the environment temperature. However, the mechanisms underlying the relationship between egg-laying and temperature are still largely unknown. RESULTS Here, we find that leafminers have evolved an adaptive strategy to overcome the stress from high or low temperature by regulating oviposition-punching plasticity. We further show that this oviposition-punching plasticity is mediated by the expression of pyx in the ovipositor when subjected to disadvantageous temperature. Specifically, down-regulation of pyx expression in leafminers under low temperature stress led to a significant decrease in the swing numbers of ovipositor and puncture area of the egg spot, and consequently the lower amount of egg-laying compared to leafminers at ambient temperature. Conversely, activation of pyx expression under high temperature stress increased the swing numbers and puncture area, still resulting in a reduction of egg-laying amount. CONCLUSION Thereby, leafminers are able to coordinate pyx channel expression level and accordingly depress the oviposition. Our study uncovers a molecular mechanism underlying the adaptive strategy in insects that can avoid disadvantageous temperature for reproducing offspring. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaxi Wu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Huimin Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhihao Hu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Mengchen Pan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yanan Wu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaojiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhengjun Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Meiling Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
2
|
Pedersen MB, Egenhardt M, Beedholm K, Skalshøi MR, Uebel AS, Hubancheva A, Koseva K, Moss CF, Luo J, Stidsholt L, Madsen PT. Superfast Lombard response in free-flying, echolocating bats. Curr Biol 2024; 34:2509-2516.e3. [PMID: 38744283 DOI: 10.1016/j.cub.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Acoustic cues are crucial to communication, navigation, and foraging in many animals, which hence face the problem of detecting and discriminating these cues in fluctuating noise levels from natural or anthropogenic sources. Such auditory dynamics are perhaps most extreme for echolocating bats that navigate and hunt prey on the wing in darkness by listening for weak echo returns from their powerful calls in complex, self-generated umwelts.1,2 Due to high absorption of ultrasound in air and fast flight speeds, bats operate with short prey detection ranges and dynamic sensory volumes,3 leading us to hypothesize that bats employ superfast vocal-motor adjustments to rapidly changing sensory scenes. To test this hypothesis, we investigated the onset and offset times and magnitude of the Lombard response in free-flying echolocating greater mouse-eared bats exposed to onsets of intense constant or duty-cycled masking noise during a landing task. We found that the bats invoked a bandwidth-dependent Lombard response of 0.1-0.2 dB per dB increase in noise, with very short delay and relapse times of 20 ms in response to onsets and termination of duty-cycled noise. In concert with the absence call time-locking to noise-free periods, these results show that free-flying bats exhibit a superfast, but hard-wired, vocal-motor response to increased noise levels. We posit that this reflex is mediated by simple closed-loop audio-motor feedback circuits that operate independently of wingbeat and respiration cycles to allow for rapid adjustments to the highly dynamic auditory scenes encountered by these small predators.
Collapse
Affiliation(s)
| | - Martin Egenhardt
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Kristian Beedholm
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Astrid Særmark Uebel
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Antoniya Hubancheva
- Acoustic and Functional Ecology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany; National Museum of Natural History, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Kaloyana Koseva
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Departments of Neuroscience and Mechanical Engineering, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jinhong Luo
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Laura Stidsholt
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark; Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Peter Teglberg Madsen
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
Gong L, Wu H, Wang Z, Wu H, Feng J, Jiang T. Do nocturnal birds use acoustic and visual cues to avoid predation by bats? Integr Zool 2024; 19:524-537. [PMID: 37427486 DOI: 10.1111/1749-4877.12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Anti-predation strategies are critical to animal survival and are fundamental to deciphering predator-prey interactions. As an important defense strategy, sensory predator detection (such as through acoustic and visual cues) enables animals to assess predation risk and execute predator-avoidance behavior; however, there are limited studies on the anti-predation behavior of nocturnal animals. The prey of bats provides an excellent representative system for examining the anti-predation behavior of nocturnal animals. Here, we broadcasted different types of echolocation calls of the bird-eating bat Ia io to two wild passerine birds, namely, Zosterops japonicus and Sinosuthora webbiana, that are preyed upon by I. io, and presented the birds with individual bats under different light intensities. The results showed that both bird species were able to perceive the low-frequency audible portion of the bats' echolocation calls; however, they did not exhibit escape responses to the acoustic stimuli. In the dark and under moonlit conditions, both bird species were unable to respond to active bats at close range and the birds only exhibited evasive flight behavior when bats approached or touched them. These results suggest that nocturnal passerine birds may not be able to use acoustic or visual cues to detect bats and adopt evasive maneuvers to avoid predation. This work suggests that bat predation pressure may not elicit primary predator-avoidance responses in nocturnal passerine birds. The results provide new insights into the anti-predation behavior of nocturnal animals.
Collapse
Affiliation(s)
- Lixin Gong
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Huan Wu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Zhiqiang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Hui Wu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
4
|
Sarria-S FA, Montealegre-Z F, Gonzalez-Rodriguez J. The chemistry of an insect ear: ionic composition of a liquid-filled ear and haemolymphs of Neotropical katydids. J R Soc Interface 2023; 20:20230154. [PMID: 37464801 PMCID: PMC10354488 DOI: 10.1098/rsif.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
The purpose of this study is to examine and to compare the ionic composition of the haemolymph and the ear fluid of seven species of katydids (Orthoptera: Tettigoniidae) with the aim of providing from a biochemical perspective a preliminary assessment for an insect liquid contained in the auditory organ of katydids with a hearing mechanism reminiscent of that found in vertebrates. A multi-element trace analysis by inductively coupled plasma optical-emission spectrometry was run for 16 elements for the ear liquid of seven species and the haemolymph of six of them. Based on the obtained results, it can be recognized that the ionic composition is variable among the studied insects, but sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+) are the most prominent of the dissolved inorganic cations. However, the ion concentrations between the two fluids are considerably different and the absence or low concentration of Ca2+ is a noticeable feature in the inner ear liquid. A potential relationship between the male courtship song peak frequency and the total ion (Na+, K+, Mg2+ and Ca2+) concentration of the inner ear liquid is also reported.
Collapse
Affiliation(s)
- Fabio A. Sarria-S
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK
| | - Fernando Montealegre-Z
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK
| | | |
Collapse
|
5
|
Mikel-Stites MR, Salcedo MK, Socha JJ, Marek PE, Staples AE. Reconsidering tympanal-acoustic interactions leads to an improved model of auditory acuity in a parasitoid fly. BIOINSPIRATION & BIOMIMETICS 2023; 18:035007. [PMID: 36854192 DOI: 10.1088/1748-3190/acbffa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Although most binaural organisms locate sound sources using neurological structures to amplify the sounds they hear, some animals use mechanically coupled hearing organs instead. One of these animals, the parasitoid flyOrmia ochracea(O. ochracea), has astoundingly accurate sound localization abilities. It can locate objects in the azimuthal plane with a precision of 2°, equal to that of humans, despite an intertympanal distance of only 0.5 mm, which is less than1/100th of the wavelength of the sound emitted by the crickets that it parasitizes.O. ochraceaaccomplishes this feat via mechanically coupled tympana that interact with incoming acoustic pressure waves to amplify differences in the signals received at the two ears. In 1995, Mileset aldeveloped a model of hearing mechanics inO. ochraceathat represents the tympana as flat, front-facing prosternal membranes, though they lie on a convex surface at an angle from the flies' frontal and transverse planes. The model works well for incoming sound angles less than±30∘but suffers from reduced accuracy (up to 60% error) at higher angles compared to response data acquired fromO. ochraceaspecimens. Despite this limitation, it has been the basis for bio-inspired microphone designs for decades. Here, we present critical improvements to this classic hearing model based on information from three-dimensional reconstructions ofO. ochracea's tympanal organ. We identified the orientation of the tympana with respect to a frontal plane and the azimuthal angle segment between the tympana as morphological features essential to the flies' auditory acuity, and hypothesized a differentiated mechanical response to incoming sound on the ipsi- and contralateral sides that depend on these features. We incorporated spatially-varying model coefficients representing this asymmetric response, making a new quasi-two-dimensional (q2D) model. The q2D model has high accuracy (average errors of under 10%) for all incoming sound angles. This improved biomechanical model may inform the design of new microscale directional microphones and other small-scale acoustic sensor systems.
Collapse
Affiliation(s)
- Max R Mikel-Stites
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
- Engineering Mechanics program, Virginia Tech, Blacksburg, VA 24061, United States of America
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Mary K Salcedo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Paul E Marek
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Anne E Staples
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, United States of America
- Engineering Mechanics program, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
6
|
Sustainable pest control inspired by prey-predator ultrasound interactions. Proc Natl Acad Sci U S A 2022; 119:e2211007119. [PMID: 36215520 PMCID: PMC9618128 DOI: 10.1073/pnas.2211007119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nocturnal moths evolved ultrasound-triggered escape maneuvers for avoiding predatory bats emitting ultrasonic echolocation calls. Using ultrasound for pest control is not a novel concept, but the technique has not been systemized because of the moths' habituation to sounds and the narrow directionality of conventional ultrasound speakers. Here, we report the use of pulsed ultrasonic white noise, which contributes to achieving ecologically concordant plant protection. An ultrasonic pulse, which is temporal mimicry of the search-phase pulse in the echolocation calls of a sympatric bat, was identified using neuroethological screening of eared moth-repelling ultrasounds; these pulses elicit flight-stopping reactions in moths but have no or little auditory adaptation. Such repellent ultrasounds broadcast from the cylindrical omni-azimuth ultrasound emitters suppressed the intrusion of gravid females of pest moths into cultivation fields. Thus, egg numbers and plant damage by hatched larvae were drastically reduced, enabling farmers to substantially skip applications of chemical insecticides for controlling moth pests.
Collapse
|
7
|
Search performance and octopamine neuronal signaling mediate parasitoid induced changes in Drosophila oviposition behavior. Nat Commun 2022; 13:4476. [PMID: 35918358 PMCID: PMC9345866 DOI: 10.1038/s41467-022-32203-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Making the appropriate responses to predation risk is essential for the survival of an organism; however, the underlying mechanisms are still largely unknown. Here, we find that Drosophila has evolved an adaptive strategy to manage the threat from its parasitoid wasp by manipulating the oviposition behavior. Through perception of the differences in host search performance of wasps, Drosophila is able to recognize younger wasps as a higher level of threat and consequently depress the oviposition. We further show that this antiparasitoid behavior is mediated by the regulation of the expression of Tdc2 and Tβh in the ventral nerve cord via LC4 visual projection neurons, which in turn leads to the dramatic reduction in octopamine and the resulting dysfunction of mature follicle trimming and rupture. Our study uncovers a detailed mechanism underlying the defensive behavior in insects that may advance our understanding of predator avoidance in animals.
Collapse
|
8
|
Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:303-319. [PMID: 33835199 PMCID: PMC8079291 DOI: 10.1007/s00359-021-01482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 10/27/2022]
Abstract
To perform adaptive behaviours, animals have to establish a representation of the physical "outside" world. How these representations are created by sensory systems is a central issue in sensory physiology. This review addresses the history of experimental approaches toward ideas about sensory coding, using the relatively simple auditory system of acoustic insects. I will discuss the empirical evidence in support of Barlow's "efficient coding hypothesis", which argues that the coding properties of neurons undergo specific adaptations that allow insects to detect biologically important acoustic stimuli. This hypothesis opposes the view that the sensory systems of receivers are biased as a result of their phylogeny, which finally determine whether a sound stimulus elicits a behavioural response. Acoustic signals are often transmitted over considerable distances in complex physical environments with high noise levels, resulting in degradation of the temporal pattern of stimuli, unpredictable attenuation, reduced signal-to-noise levels, and degradation of cues used for sound localisation. Thus, a more naturalistic view of sensory coding must be taken, since the signals as broadcast by signallers are rarely equivalent to the effective stimuli encoded by the sensory system of receivers. The consequences of the environmental conditions for sensory coding are discussed.
Collapse
|
9
|
Leroy L, Mille C, Fogliani B. The Common Fruit-Piercing Moth in the Pacific Region: A Survey of the Current State of a Significant Worldwide Economic Pest, Eudocima phalonia (Lepidoptera: Erebidae), with a Focus on New Caledonia. INSECTS 2021; 12:insects12020117. [PMID: 33572720 PMCID: PMC7912060 DOI: 10.3390/insects12020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Fruit-piercing moths have long been cited as important pests in tropical and subtropical countries but genus as Eudocima, has recently gained in significance, and more specifically Eudocima phalonia (Linneaus). An overview of the current pest control proposed in the literature pointed the lack of sustainable integrated pest management. A synthesis of available data opens the research per-spectives that need to be encouraged in the ecological transition of our agricultural models. Abstract When referring to fruit-piercing moths, the genus Eudocima, and more specifically Eudocima phalonia (Linneaus), is cited as a worldwide crop pest. Damages associated with this pest are substantial on more than 100 fruit species, wherever it is encountered. In New Caledonia, the once occasional pest has become a serious threat to the current fruit arboriculture. Particularly devastating during outbreak periods, it has become an urgent need to find a suitable solution able to support farmers in the ecological transition of our agricultural models. This review proposes a synthesis of the existing data and publications on E. phalonia, worldwide and especially in New Caledonia, with recent observations. The assessment of this knowledge and the dynamics of the species in the territory of New Caledonia provide key information for a better prospect of adapted solutions.
Collapse
Affiliation(s)
- Lise Leroy
- Équipe ARBOREAL: “AgricultuRe BiOdiveRsité Et vALorisation”, Laboratoire d’Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, IAC, Institut Agronomique néo-Calédonien, P.O. Box 32, 98880 La Foa, New Caledonia;
- Correspondence: (L.L.); (C.M.)
| | - Christian Mille
- Équipe ARBOREAL: “AgricultuRe BiOdiveRsité Et vALorisation”, Laboratoire d’Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, IAC, Institut Agronomique néo-Calédonien, P.O. Box 32, 98880 La Foa, New Caledonia;
- Correspondence: (L.L.); (C.M.)
| | - Bruno Fogliani
- Équipe ARBOREAL: “AgricultuRe BiOdiveRsité Et vALorisation”, Laboratoire d’Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, IAC, Institut Agronomique néo-Calédonien, P.O. Box 32, 98880 La Foa, New Caledonia;
- ISEA: Institut des Sciences Exactes et Appliquées, Universiteé de la Nouvelle-Calédonie, BP R4, 98851 Nouméa CEDEX, New Caledonia
| |
Collapse
|
10
|
Bagheri ZM, Donohue CG, Hemmi JM. Evidence of predictive selective attention in fiddler crabs during escape in the natural environment. ACTA ACUST UNITED AC 2020; 223:223/21/jeb234963. [PMID: 33168543 DOI: 10.1242/jeb.234963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
Selective attention is of fundamental relevance to animals for performing a diversity of tasks such as mating, feeding, predation and avoiding predators. Within natural environments, prey animals are often exposed to multiple, simultaneous threats, which significantly complicates the decision-making process. However, selective attention is rarely studied in complex, natural environments or in the context of escape responses. We therefore asked how relatively simple animals integrate the information from multiple, concurrent threatening events. Do they identify and respond only to what they perceive as the most dangerous threat, or do they respond to multiple stimuli at the same time? Do simultaneous threats evoke an earlier or stronger response than single threats? We investigated these questions by conducting field experiments and compared escape responses of the fiddler crab Gelasimus dampieri when faced with either a single or two simultaneously approaching dummy predators. We used the dummies' approach trajectories to manipulate the threat level; a directly approaching dummy indicated higher risk while a tangentially approaching dummy that passed the crabs at a distance represented a lower risk. The crabs responded later, but on average more often, when approached more directly. However, when confronted with the two dummies simultaneously, the crabs responded as if approached only by the directly approaching dummy. This suggests that the crabs are able to predict how close the dummy's trajectory is to a collision course and selectively suppress their normally earlier response to the less dangerous dummy. We thus provide evidence of predictive selective attention within a natural environment.
Collapse
Affiliation(s)
- Zahra M Bagheri
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Callum G Donohue
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
11
|
Yack JE, Raven BH, Leveillee MB, Naranjo M. What Does an Insect Hear? Reassessing the Role of Hearing in Predator Avoidance with Insights from Vertebrate Prey. Integr Comp Biol 2020; 60:1036-1057. [PMID: 32717080 DOI: 10.1093/icb/icaa097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insects have a diversity of hearing organs known to function in a variety of contexts, including reproduction, locating food, and defense. While the role of hearing in predator avoidance has been extensively researched over the past several decades, this research has focused on the detection of one type of predator-echolocating bats. Here we reassess the role of hearing in antipredator defense by considering how insects use their ears to detect and avoid the wide range of predators that consume them. To identify the types of sounds that could be relevant to insect prey, we first review the topic of hearing-mediated predator avoidance in vertebrates. Sounds used by vertebrate prey to assess predation risk include incidental sound cues (e.g., flight sounds, rustling vegetation, and splashing) produced by an approaching predator or another escaping prey, as well as communication signals produced by a predator (e.g., echolocation calls, songs) or nonpredator (e.g., alarm calls). We then review what is known, and what is not known, about such sounds made by the main predators and parasitoids of insects (i.e., birds, bats, terrestrial vertebrates, and invertebrates) and how insects respond to them. Three key insights emerged from our review. First, there is a lack of information on how both vertebrate and insect prey use passive sound cues produced by predators to avoid being captured. Second, while there are numerous examples of vertebrate prey eavesdropping on the calls and songs of predators and nonpredators to assess risk, there are currently no such examples for eared insect prey. Third, the hearing sensitivity of many insects, including those with ears considered to be dedicated to detecting bats or mates, overlaps with both sound cues and signals generated by nonbat predators. Sounds of particular relevance to insect prey include the flight sounds and calls of insectivorous birds, the flight sounds of insect predators and parasitoids, and rustling vegetation sounds of birds and terrestrial predators. We conclude that research on the role of insect hearing in predator avoidance has been disproportionally focused on bat-detection, and that acoustically-mediated responses to other predators may have been overlooked because the responses of prey may be subtle (e.g., ceasing activity, increasing vigilance). We recommend that researchers expand their testing of hearing-mediated risk assessment in insects by considering the wide range of sounds generated by predators, and the varied responses exhibited by prey to these sounds.
Collapse
Affiliation(s)
- Jayne E Yack
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Brianna H Raven
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Michelle B Leveillee
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Mairelys Naranjo
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
12
|
Dowdy NJ, Conner WE. Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated With Unpalatability. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Symes LB, Martinson SJ, Hoeger LO, Page RA, ter Hofstede HM. From Understory to Canopy: In situ Behavior of Neotropical Forest Katydids in Response to Bat Echolocation Calls. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Early erratic flight response of the lucerne moth to the quiet echolocation calls of distant bats. PLoS One 2018; 13:e0202679. [PMID: 30125318 PMCID: PMC6101402 DOI: 10.1371/journal.pone.0202679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Nocturnal insects have evolved ultrasound-sensitive hearing in response to predation pressures from echolocating insectivorous bats. Flying tympanate moths take various evasive actions when they detect bat cries, including turning away, performing a steering/zigzagging flight and ceasing flight. In general, infrequent ultrasonic pulses with low sound intensities that are emitted by distant bats evoke slight turns, whereas frequent and loud ultrasonic pulses of nearby bats evoke erratic or rapid unpredictable changes in the flight path of a moth. Flight cessation, which is a freezing response that causes the moth to passively dive (drop) to the ground, is considered the ultimate last-ditch evasive behaviour against approaching bats where there is a high predation threat. Here, we found that the crambid moth Nomophila nearctica never performed passive dives in response to frequent and loud ultrasonic pulses of >60 dB sound pressure level (SPL) that simulated the attacking echolocation call sequence of the predominant sympatric insectivorous bat Eptesicus fuscus, but rather turned away or flew erratically, regardless of the temporal structure of the stimulus. Consequently, N. nearctica is likely to survive predation by bats by taking early evasive action even when it detects the echolocation calls of sympatric bats hunting other insects at a distance. Since aerially hawking bats can track and catch erratically flying moths after targeting their prey, this early escape strategy may be common among night-flying tympanate insects.
Collapse
|
15
|
Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 2018; 9:1049. [PMID: 30123137 PMCID: PMC6085516 DOI: 10.3389/fphys.2018.01049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Important insights into the selection pressures and core molecular modules contributing to the evolution of pain-related processes have come from studies of nociceptive systems in several molluscan and arthropod species. These phyla, and the chordates that include humans, last shared a common ancestor approximately 550 million years ago. Since then, animals in these phyla have continued to be subject to traumatic injury, often from predators, which has led to similar adaptive behaviors (e.g., withdrawal, escape, recuperative behavior) and physiological responses to injury in each group. Comparisons across these taxa provide clues about the contributions of convergent evolution and of conservation of ancient adaptive mechanisms to general nociceptive and pain-related functions. Primary nociceptors have been investigated extensively in a few molluscan and arthropod species, with studies of long-lasting nociceptive sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent, and axotomy-induced plasticity mechanisms have been defined in synapses, cell bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in Drosophila larvae have revealed numerous molecular contributors in primary nociceptors and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia and Drosophila are largely different, but both sets overlap extensively with those in mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila, nociceptive sensitization examined in moth larvae (Manduca) disclosed central hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid (Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity to tactile and especially visual stimuli, and as hypersensitivity and spontaneous activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury subsequently increased mortality when injured squid were exposed to fish predators, providing the first demonstration in any animal of the adaptiveness of nociceptive sensitization. Immediate responses to noxious stimulation and nociceptive sensitization have also been examined behaviorally and physiologically in a snail (Helix), octopus (Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus). Molluscs and arthropods have systems that suppress nociceptive responses, but whether opioid systems play antinociceptive roles in these phyla is uncertain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
16
|
Gordon SD, Ter Hofstede HM. The influence of bat echolocation call duration and timing on auditory encoding of predator distance in noctuoid moths. ACTA ACUST UNITED AC 2018; 221:221/6/jeb171561. [PMID: 29567831 DOI: 10.1242/jeb.171561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/24/2018] [Indexed: 11/20/2022]
Abstract
Animals co-occur with multiple predators, making sensory systems that can encode information about diverse predators advantageous. Moths in the families Noctuidae and Erebidae have ears with two auditory receptor cells (A1 and A2) used to detect the echolocation calls of predatory bats. Bat communities contain species that vary in echolocation call duration, and the dynamic range of A1 is limited by the duration of sound, suggesting that A1 provides less information about bats with shorter echolocation calls. To test this hypothesis, we obtained intensity-response functions for both receptor cells across many moth species for sound pulse durations representing the range of echolocation call durations produced by bat species in northeastern North America. We found that the threshold and dynamic range of both cells varied with sound pulse duration. The number of A1 action potentials per sound pulse increases linearly with increasing amplitude for long-duration pulses, saturating near the A2 threshold. For short sound pulses, however, A1 saturates with only a few action potentials per pulse at amplitudes far lower than the A2 threshold for both single sound pulses and pulse sequences typical of searching or approaching bats. Neural adaptation was only evident in response to approaching bat sequences at high amplitudes, not search-phase sequences. These results show that, for short echolocation calls, a large range of sound levels cannot be coded by moth auditory receptor activity, resulting in no information about the distance of a bat, although differences in activity between ears might provide information about direction.
Collapse
Affiliation(s)
- Shira D Gordon
- Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA
| | - Hannah M Ter Hofstede
- Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA
| |
Collapse
|
17
|
Liu Z, Kariya MJ, Chute CD, Pribadi AK, Leinwand SG, Tong A, Curran KP, Bose N, Schroeder FC, Srinivasan J, Chalasani SH. Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat Commun 2018; 9:1128. [PMID: 29555902 PMCID: PMC5859177 DOI: 10.1038/s41467-018-03333-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/02/2018] [Indexed: 01/03/2023] Open
Abstract
Animals respond to predators by altering their behavior and physiological states, but the underlying signaling mechanisms are poorly understood. Using the interactions between Caenorhabditis elegans and its predator, Pristionchus pacificus, we show that neuronal perception by C. elegans of a predator-specific molecular signature induces instantaneous escape behavior and a prolonged reduction in oviposition. Chemical analysis revealed this predator-specific signature to consist of a class of sulfolipids, produced by a biochemical pathway required for developing predacious behavior and specifically induced by starvation. These sulfolipids are detected by four pairs of C. elegans amphid sensory neurons that act redundantly and recruit cyclic nucleotide-gated (CNG) or transient receptor potential (TRP) channels to drive both escape and reduced oviposition. Functional homology of the delineated signaling pathways and abolishment of predator-evoked C. elegans responses by the anti-anxiety drug sertraline suggests a likely conserved or convergent strategy for managing predator threats.
Collapse
Affiliation(s)
- Zheng Liu
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Maro J Kariya
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher D Chute
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Amy K Pribadi
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sarah G Leinwand
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ada Tong
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Kevin P Curran
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Neelanjan Bose
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
Ntelezos A, Guarato F, Windmill JFC. The anti-bat strategy of ultrasound absorption: the wings of nocturnal moths (Bombycoidea: Saturniidae) absorb more ultrasound than the wings of diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae). Biol Open 2017; 6:109-117. [PMID: 27913454 PMCID: PMC5278430 DOI: 10.1242/bio.021782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The selection pressure from echolocating bats has driven the development of a diverse range of anti-bat strategies in insects. For instance, several studies have proposed that the wings of some moths absorb a large portion of the sound energy contained in a bat's ultrasonic cry; as a result, the bat receives a dampened echo, and the moth becomes invisible to the bat. To test the hypothesis that greater exposure to bat predation drives the development of higher ultrasound absorbance, we used a small reverberation chamber to measure the ultrasound absorbance of the wings of nocturnal (Bombycoidea: Saturniidae) and diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae). The absorption factor of the nocturnal saturniids peaks significantly higher than the absorption factor of the diurnal chalcosiines. However, the wings of the chalcosiines absorb more ultrasound than the wings of some diurnal butterflies. Following a phylogenetic analysis on the character state of diurnality/ nocturnality in the Zygaenidae, we propose that diurnality in the Chalcosiinae is plesiomorphic (retained); hence, the absorbance of their wings is probably not a vestigial trait from an ancestral, nocturnal form but an adaptation to bat activity that overlaps their own. On a within-species level, females of the saturniids Argema mittrei and Samia cynthia ricini have significantly higher absorption factors than the males. In the female S. c. ricini, the higher absorption factor corresponds to a detection distance by bats that is at best 20-30% shorter than that of the male. Summary: Moth wings partly absorb the ultrasonic calls of bats to reduce predation. Different moths fly at night or day, and this work compares their absorption of ultrasound.
Collapse
Affiliation(s)
- Athanasios Ntelezos
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW, UK
| | - Francesco Guarato
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW, UK
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW, UK
| |
Collapse
|
19
|
Gordon SD, Klenschi E, Windmill JFC. Hearing on the fly: the effects of wing position on noctuid moth hearing. J Exp Biol 2017; 220:1952-1955. [DOI: 10.1242/jeb.156588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/21/2017] [Indexed: 11/20/2022]
Abstract
The ear of the noctuid moth has only two auditory neurons, A1 and A2, which function in detecting predatory bats. However, the noctuid's ears are located on the thorax behind the wings. Therefore, since these moths need to hear during flight, it was hypothesized that wing position may affect their hearing. The wing was fixed in three different positions: up, flat, and down. An additional subset of animals was measured with freely moving wings. In order to negate any possible acoustic shadowing or diffractive effects, all wings were snipped, leaving the proximal most portion and the wing hinge intact. Results revealed that wing position plays a factor in threshold sensitivity of the less sensitive auditory neuron A2, but not in the more sensitive neuron A1. Furthermore, when the wing was set in the down position, fewer A1 action potentials were generated prior to the initiation of A2 activity. Analyzing the motion of the tympanal membrane did not reveal differences in movement due to wing position. Therefore, these neural differences due to wing position are proposed to be due to other factors within the animal such as different muscle tensions.
Collapse
Affiliation(s)
| | - Elizabeth Klenschi
- Centre for Ultrasonic Engineering, Dept. of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - James F. C. Windmill
- Centre for Ultrasonic Engineering, Dept. of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
20
|
|
21
|
|
22
|
Rau F, Clemens J, Naumov V, Hennig RM, Schreiber S. Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1075-90. [PMID: 26293318 DOI: 10.1007/s00359-015-1036-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
Abstract
In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.
Collapse
Affiliation(s)
- Florian Rau
- Behavioral Physiology, Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115, Berlin, Germany.
| | - Jan Clemens
- Behavioral Physiology, Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Victor Naumov
- Behavioral Physiology, Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115, Berlin, Germany
| | - R Matthias Hennig
- Behavioral Physiology, Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115, Berlin, Germany
| | - Susanne Schreiber
- Bernstein Center for Computational Neuroscience Berlin, Unter den Linden 6, 10099, Berlin, Germany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 4, 10115, Berlin, Germany
| |
Collapse
|
23
|
Roberts D. Rapid habituation by mosquito larvae to predator kairomones. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2014; 39:355-360. [PMID: 25424265 DOI: 10.1111/jvec.12111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 06/04/2023]
Abstract
Larvae of some species of mosquitoes have been shown to respond to water-borne kairomones from predators by reducing bottom-feeding and replacing it with surface filter-feeding, which uses less movement and is thus less likely to attract a predator. However, if no predator attack takes place, then it would be more efficient to use a risk allocation strategy of habituating their response depending on the predator and the overall risk. The larvae of Culiseta longiareolata Macquart live in temporary rain-filled pools, where they are exposed to a high level of predation. Within one hour, they responded to kairomones from dragonfly or damselfly nymphs, or to the fish Aphanius, by significantly reducing bottom-feeding activity. Continued exposure to the predator kairomones resulted in habituation of their response to damselflies, a slower habituation to fish, but no habituation to dragonflies even after 30 h. In contrast, the larvae of Culex quinquefasciatus Say normally live in highly polluted and thus anaerobic water, where the predation risk will be much lower. They also showed a significant reduction in bottom-feeding after 1 h of exposure to predator kairomones but had completely habituated this response within 6 h of continuous exposure. Some species of mosquito larvae can thus show a very rapid habituation to predator kairomones, while others only habituate slowly depending on the predator and overall predation risk.
Collapse
Affiliation(s)
- Derek Roberts
- Biology Department, Sultan Qaboos University, PO Box 36, Al-Khod 123, Oman.
| |
Collapse
|
24
|
Selective forces on origin, adaptation and reduction of tympanal ears in insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:155-69. [DOI: 10.1007/s00359-014-0962-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
25
|
Neurobiology of acoustically mediated predator detection. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:99-109. [DOI: 10.1007/s00359-014-0948-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 12/23/2022]
|
26
|
Convergent evolution of anti-bat sounds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:811-21. [DOI: 10.1007/s00359-014-0924-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
27
|
Nakano R, Takanashi T, Surlykke A, Skals N, Ishikawa Y. Evolution of deceptive and true courtship songs in moths. Sci Rep 2014; 3:2003. [PMID: 23788180 PMCID: PMC3687589 DOI: 10.1038/srep02003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/29/2013] [Indexed: 11/28/2022] Open
Abstract
Ultrasonic mating signals in moths are argued to have evolved via exploitation of the receivers' sensory bias towards bat echolocation calls. We have demonstrated that female moths of the Asian corn borer are unable to distinguish between the male courtship song and bat calls. Females react to both the male song and bat calls by “freezing”, which males take advantage of in mating (deceptive courtship song). In contrast, females of the Japanese lichen moth are able to distinguish between the male song and bat calls by the structure of the sounds; females emit warning clicks against bats, but accept males (true courtship song). Here, we propose a hypothesis that deceptive and true signals evolved independently from slightly different precursory sounds; deceptive/true courtship songs in moths evolved from the sounds males incidentally emitted in a sexual context, which females could not/could distinguish, respectively, from bat calls.
Collapse
Affiliation(s)
- Ryo Nakano
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
28
|
Zhemchuzhnikov MK, Pfuhl G, Berg BG. Tracing and 3-dimensional representation of the primary afferents from the moth ear. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:231-241. [PMID: 24732046 DOI: 10.1016/j.asd.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/19/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
Heliothine moths perceive acoustic information via two auditory sensory neurons only. Previous cobalt staining experiments have described the projection pattern of the two auditory neurons, called the A1 and the A2 cell, plus one additional neuron, the so-called B cell, up to the prothorax. We have obtained new and improved data about the projection pattern of the three sensory afferents by means of fluorescent staining experiments combined with scanning confocal microscopy. The present data show the fine structure of each sensory axon that arises from the moth ear and its ascending pathway relative to that of the others. In accordance with the previous data, the A2 auditory cell was found to extend projections in the pterothorax only. A novel finding is that terminal branches of the A2 cell cross the midline. The staining pattern of the two remaining neurons, the A1 and B cell, which project tightly together in the thoracic ganglia, differ somewhat from that previously described. As demonstrated here, one of these two neurons, the A1 cell, terminates in the prothoracic ganglion whereas the other, the B cell, projects further on via the cervical connectives to the subesophageal ganglion. The current data, therefore, indicate that none of the auditory afferents in the heliothine moth projects to the brain.
Collapse
Affiliation(s)
- Mikhail K Zhemchuzhnikov
- Norwegian University of Science and Technology, Department of Psychology, Neuroscience Unit, 7491 Trondheim, Norway; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Pr. Torez 44, 194223 Saint-Petersburg, Russia.
| | - Gerit Pfuhl
- Norwegian University of Science and Technology, Department of Psychology, Neuroscience Unit, 7491 Trondheim, Norway.
| | - Bente G Berg
- Norwegian University of Science and Technology, Department of Psychology, Neuroscience Unit, 7491 Trondheim, Norway.
| |
Collapse
|
29
|
Lakes-Harlan R, deVries T, Stölting H, Stumpner A. Useless hearing in male Emblemasoma auditrix (Diptera, Sarcophagidae)--a case of intralocus sexual conflict during evolution of a complex sense organ? PLoS One 2014; 9:e87211. [PMID: 24489872 PMCID: PMC3904991 DOI: 10.1371/journal.pone.0087211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/25/2013] [Indexed: 12/01/2022] Open
Abstract
Sensory modalities typically are important for both sexes, although sex-specific functional adaptations may occur frequently. This is true for hearing as well. Consequently, distinct behavioural functions were identified for the different insect hearing systems. Here we describe a first case, where a trait of an evolutionary novelty and a highly specialized hearing organ is adaptive in only one sex. The main function of hearing of the parasitoid fly Emblemasoma auditrix is to locate the host, males of the cicada species Okanagana rimosa, by their calling song. This task is performed by female flies, which deposit larvae into the host. We show that male E. auditrix possess a hearing sense as well. The morphology of the tympanal organ of male E. auditrix is rather similar to the female ear, which is 8% broader than the male ear. In both sexes the physiological hearing threshold is tuned to 5 kHz. Behavioural tests show that males are able to orient towards the host calling song, although phonotaxis often is incomplete. However, despite extensive observations in the field and substantial knowledge of the biology of E. auditrix, no potentially adaptive function of the male auditory sense has been identified. This unique hearing system might represent an intralocus sexual conflict, as the complex sense organ and the behavioural relevant neuronal network is adaptive for only one sex. The correlated evolution of the sense organ in both sexes might impose substantial constraints on the sensory properties of the ear. Similar constraints, although hidden, might also apply to other sensory systems in which behavioural functions differ between sexes.
Collapse
Affiliation(s)
- Reinhard Lakes-Harlan
- Justus-Liebig-Universität Gießen, Institute for Animal Physiology, AG Integrative Sensory Physiology, Gießen, Germany
| | - Thomas deVries
- Justus-Liebig-Universität Gießen, Institute for Animal Physiology, AG Integrative Sensory Physiology, Gießen, Germany
| | - Heiko Stölting
- Georg-August University Göttingen, Cellular Neurobiology, Schwann-Schleiden-Forschungszentrum, Göttingen, Germany
| | - Andreas Stumpner
- Georg-August University Göttingen, Cellular Neurobiology, Schwann-Schleiden-Forschungszentrum, Göttingen, Germany
| |
Collapse
|
30
|
Alem S, Streiff R, Courtois B, Zenboudji S, Limousin D, Greenfield MD. Genetic architecture of sensory exploitation: QTL mapping of female and male receiver traits in an acoustic moth. J Evol Biol 2013; 26:2581-96. [DOI: 10.1111/jeb.12252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 02/01/2023]
Affiliation(s)
- S. Alem
- Centre National de la Recherche Scientifique (CNRS); UMR 7261 (IRBI); Université François Rabelais de Tours; Tours France
| | - R. Streiff
- Institut National de la Recherche Agronomique (INRA); UMR CBGP (INRA-IRD-CIRAD-Montpellier SupAgro); Montferrier sur Lez France
| | - B. Courtois
- Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD); UMR AGAP; Montpellier France
| | - S. Zenboudji
- Centre National de la Recherche Scientifique (CNRS); UMR 5175 (CEFE); Montpellier France
| | - D. Limousin
- Institut National de la Recherche Agronomique (INRA); UMR 1272; Physiologie de l'Insecte Signalisation et Communication; Versailles France
| | - M. D. Greenfield
- Centre National de la Recherche Scientifique (CNRS); UMR 7261 (IRBI); Université François Rabelais de Tours; Tours France
| |
Collapse
|
31
|
Corcoran AJ, Conner WE. Sonar jamming in the field: effectiveness and behavior of a unique prey defense. J Exp Biol 2012; 215:4278-87. [DOI: 10.1242/jeb.076943] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Bats and insects provide a model system for integrating our understanding of predator–prey ecology, animal behavior and neurophysiology. Previous field studies of bat–insect interactions have been limited by the technological challenges involved with studying nocturnal, volant animals that use ultrasound and engage in battles that frequently last a fraction of a second. We overcame these challenges using a robust field methodology that included multiple infrared cameras calibrated for three-dimensional reconstruction of bat and moth flight trajectories and four ultrasonic microphones that provided a spatial component to audio recordings. Our objectives were to document bat–moth interactions in a natural setting and to test the effectiveness of a unique prey defense – sonar jamming. We tested the effect of sonar jamming by comparing the results of interactions between bats and Grote’s tiger moth, Bertholdia trigona, with their sound-producing organs either intact or ablated. Jamming was highly effective, with bats capturing more than 10 times as many silenced moths as clicking moths. Moths frequently combined their acoustic defense with two separate evasive maneuvers: flying away from the bat and diving. Diving decreased bat capture success for both clicking and silenced moths, while flying away did not. The diving showed a strong directional component, a first for insect defensive maneuvers. We discuss the timing of B. trigona defensive maneuvers – which differs from that of other moths – in the context of moth auditory neuroethology. Studying bat–insect interactions in their natural environment provides valuable information that complements work conducted in more controlled settings.
Collapse
Affiliation(s)
- Aaron J. Corcoran
- Wake Forest University, Department of Biology, Winston-Salem, NC 27106, USA
| | - William E. Conner
- Wake Forest University, Department of Biology, Winston-Salem, NC 27106, USA
| |
Collapse
|