1
|
Mikhalkin AA, Nikitina NI, Merkulyeva NS. Early postnatal development of the primary visual areas 17 and 18 of the cat cerebral cortex: An SMI-32 study. J Neurosci Res 2024; 102:e25375. [PMID: 39105520 DOI: 10.1002/jnr.25375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/04/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Using anti-neurofilament H non-phosphorylated antibodies (SMI-32) as markers for the neuronal maturation level and Y channel responsible for motion processing, we investigated early postnatal development of the primary visual areas 17 and 18 in cats aged 0, 10, 14, and 34 days and in adults. Two analyzed parameters of SMI-32-immunolabeling were used: the total proportion of SMI-32-labeling and the density of labeled neurons. (i) The developmental time course of the total proportion of SMI-32-labeling shows the general increase in the accumulation of heavy-chain neurofilaments. This parameter showed a different time course for cortical layer development; the maximal increment in the total labeling in layer V occurred between the second and fifth postnatal weeks and in layers II-III and VI after the fifth postnatal week. In addition, the delay in accumulation of SMI-32-labeling was shown in layer V of the area 17 periphery representation during the first two postnatal weeks. (ii) The density of SMI-32-labeled neurons decreased in all layers of area 18, but was increased, decreased, or had a transient peak in layers II-III, V, and VI of area 17, respectively. The transient peak is in good correspondence with some transient neurochemical features previously revealed for different classes of cortical and thalamic neurons and reflects the time course of the early development of the thalamocortical circuitry. Some similarities between the time courses for the development of SMI-32-labeling in areas 17/18 and in A- and C-laminae of the LGNd allow us to propose heterochronous postnatal development of two Y sub-channels.
Collapse
Affiliation(s)
- A A Mikhalkin
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N I Nikitina
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N S Merkulyeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
2
|
Chen Y, Chen X, Baserdem B, Zhan H, Li Y, Davis MB, Kebschull JM, Zador AM, Koulakov AA, Albeanu DF. High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell 2022; 185:4117-4134.e28. [PMID: 36306734 PMCID: PMC9681627 DOI: 10.1016/j.cell.2022.09.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In most sensory modalities, neuronal connectivity reflects behaviorally relevant stimulus features, such as spatial location, orientation, and sound frequency. By contrast, the prevailing view in the olfactory cortex, based on the reconstruction of dozens of neurons, is that connectivity is random. Here, we used high-throughput sequencing-based neuroanatomical techniques to analyze the projections of 5,309 mouse olfactory bulb and 30,433 piriform cortex output neurons at single-cell resolution. Surprisingly, statistical analysis of this much larger dataset revealed that the olfactory cortex connectivity is spatially structured. Single olfactory bulb neurons targeting a particular location along the anterior-posterior axis of piriform cortex also project to matched, functionally distinct, extra-piriform targets. Moreover, single neurons from the targeted piriform locus also project to the same matched extra-piriform targets, forming triadic circuit motifs. Thus, as in other sensory modalities, olfactory information is routed at early stages of processing to functionally diverse targets in a coordinated manner.
Collapse
Affiliation(s)
- Yushu Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoyin Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yan Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Anthony M Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Song M, Jang J, Kim G, Paik SB. Projection of Orthogonal Tiling from the Retina to the Visual Cortex. Cell Rep 2021; 34:108581. [PMID: 33406438 DOI: 10.1016/j.celrep.2020.108581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022] Open
Abstract
In higher mammals, the primary visual cortex (V1) is organized into diverse tuning maps of visual features. The topography of these maps intersects orthogonally, but it remains unclear how such a systematic relationship can develop. Here, we show that the orthogonal organization already exists in retinal ganglion cell (RGC) mosaics, providing a blueprint of the organization in V1. From analysis of the RGC mosaics data in monkeys and cats, we find that the ON-OFF RGC distance and ON-OFF angle of neighboring RGCs are organized into a topographic tiling across mosaics, analogous to the orthogonal intersection of cortical tuning maps. Our model simulation shows that the ON-OFF distance and angle in RGC mosaics correspondingly initiate ocular dominance/spatial frequency tuning and orientation tuning, resulting in the orthogonal intersection of cortical tuning maps. These findings suggest that the regularly structured ON-OFF patterns mirrored from the retina initiate the uniform representation of combinations of map features over the visual space.
Collapse
Affiliation(s)
- Min Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaeson Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Gwangsu Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Popovic D, Ruef A, Dwyer DB, Antonucci LA, Eder J, Sanfelici R, Kambeitz-Ilankovic L, Oztuerk OF, Dong MS, Paul R, Paolini M, Hedderich D, Haidl T, Kambeitz J, Ruhrmann S, Chisholm K, Schultze-Lutter F, Falkai P, Pergola G, Blasi G, Bertolino A, Lencer R, Dannlowski U, Upthegrove R, Salokangas RKR, Pantelis C, Meisenzahl E, Wood SJ, Brambilla P, Borgwardt S, Koutsouleris N. Traces of Trauma: A Multivariate Pattern Analysis of Childhood Trauma, Brain Structure, and Clinical Phenotypes. Biol Psychiatry 2020; 88:829-842. [PMID: 32782139 DOI: 10.1016/j.biopsych.2020.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Childhood trauma (CT) is a major yet elusive psychiatric risk factor, whose multidimensional conceptualization and heterogeneous effects on brain morphology might demand advanced mathematical modeling. Therefore, we present an unsupervised machine learning approach to characterize the clinical and neuroanatomical complexity of CT in a larger, transdiagnostic context. METHODS We used a multicenter European cohort of 1076 female and male individuals (discovery: n = 649; replication: n = 427) comprising young, minimally medicated patients with clinical high-risk states for psychosis; patients with recent-onset depression or psychosis; and healthy volunteers. We employed multivariate sparse partial least squares analysis to detect parsimonious associations between combinations of items from the Childhood Trauma Questionnaire and gray matter volume and tested their generalizability via nested cross-validation as well as via external validation. We investigated the associations of these CT signatures with state (functioning, depressivity, quality of life), trait (personality), and sociodemographic levels. RESULTS We discovered signatures of age-dependent sexual abuse and sex-dependent physical and sexual abuse, as well as emotional trauma, which projected onto gray matter volume patterns in prefronto-cerebellar, limbic, and sensory networks. These signatures were associated with predominantly impaired clinical state- and trait-level phenotypes, while pointing toward an interaction between sexual abuse, age, urbanicity, and education. We validated the clinical profiles for all three CT signatures in the replication sample. CONCLUSIONS Our results suggest distinct multilayered associations between partially age- and sex-dependent patterns of CT, distributed neuroanatomical networks, and clinical profiles. Hence, our study highlights how machine learning approaches can shape future, more fine-grained CT research.
Collapse
Affiliation(s)
- David Popovic
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Society, Munich, Germany
| | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Linda A Antonucci
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Julia Eder
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rachele Sanfelici
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; Max Planck School of Cognition, Max Planck Schools, Leipzig, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Omer Faruk Oztuerk
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Society, Munich, Germany
| | - Mark S Dong
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Riya Paul
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; Max Planck Institute of Psychiatry, Max Planck Schools, Munich, Germany
| | - Marco Paolini
- Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dennis Hedderich
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Theresa Haidl
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katharine Chisholm
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Department of Psychology, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Rachel Upthegrove
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia; Melbourne Health, Carlton South, Victoria, Australia
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephen J Wood
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia; Orygen, the National Centre of Excellence for Youth Mental Health, Melbourne, Victoria, Australia
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefan Borgwardt
- Neuropsychiatry and Brain Imaging Group, Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Society, Munich, Germany.
| | | |
Collapse
|
5
|
Srinath R, Emonds A, Wang Q, Lempel AA, Dunn-Weiss E, Connor CE, Nielsen KJ. Early Emergence of Solid Shape Coding in Natural and Deep Network Vision. Curr Biol 2020; 31:51-65.e5. [PMID: 33096039 DOI: 10.1016/j.cub.2020.09.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Area V4 is the first object-specific processing stage in the ventral visual pathway, just as area MT is the first motion-specific processing stage in the dorsal pathway. For almost 50 years, coding of object shape in V4 has been studied and conceived in terms of flat pattern processing, given its early position in the transformation of 2D visual images. Here, however, in awake monkey recording experiments, we found that roughly half of V4 neurons are more tuned and responsive to solid, 3D shape-in-depth, as conveyed by shading, specularity, reflection, refraction, or disparity cues in images. Using 2-photon functional microscopy, we found that flat- and solid-preferring neurons were segregated into separate modules across the surface of area V4. These findings should impact early shape-processing theories and models, which have focused on 2D pattern processing. In fact, our analyses of early object processing in AlexNet, a standard visual deep network, revealed a similar distribution of sensitivities to flat and solid shape in layer 3. Early processing of solid shape, in parallel with flat shape, could represent a computational advantage discovered by both primate brain evolution and deep-network training.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexandriya Emonds
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qingyang Wang
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Augusto A Lempel
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika Dunn-Weiss
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charles E Connor
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Kristina J Nielsen
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Cai LT, Yuan AE, Backus BT. Binocular global motion perception is improved by dichoptic segregation when stimuli have high contrast and high speed. J Vis 2020; 19:10. [PMID: 31722005 PMCID: PMC6855392 DOI: 10.1167/19.13.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The brain combines information from the two eyes during vision. This combination is obligatory to a remarkable extent: In random-dot kinematograms (RDKs), randomly moving noise dots were similarly effective at preventing observers from seeing the motion of coherently moving signals dots, independent of whether the signal and noise were presented to the same eye or segregated to different eyes. However, motion detectors have varied binocularity: Neurons in visual brain area V1 that encode high contrast, high speed stimuli may be less completely binocular than neurons that encode low contrast, low speed stimuli. Also, neurons in MT often have unbalanced inputs from the two eyes. We predicted that for high contrast, high speed stimuli only, there would be a benefit to segregating the signal and noise of the RDK into different eyes. We found this benefit, both when performance was measured by percent coherence thresholds and when it was measured by luminance contrast ratio (signal-dot-contrast to noise-dot-contrast) thresholds. Thus, for high contrast, high speed stimuli, binocular fusion of local motion is not complete before the extraction of global motion. We also replicated a cross-over interaction: At high speed, global motion extraction was generally more efficient when dot contrast was high, but at low speed it was more efficient when dot contrast was low. We provide a schematic model of binocular global motion perception, to show how the contrast-speed interaction can be predicted from neurophysiology and why it should be exaggerated for segregated viewing. Our data bore out these predictions. We conclude that different neural populations limit performance during binocular global motion perception, depending on stimulus contrast and speed.
Collapse
Affiliation(s)
- Lanya T Cai
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, USA
| | - Alexander E Yuan
- Graduate Center for Vision Research SUNY College of Optometry, New York, NY, USA
| | - Benjamin T Backus
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, USA
| |
Collapse
|
7
|
Ibbotson M, Jung YJ. Origins of Functional Organization in the Visual Cortex. Front Syst Neurosci 2020; 14:10. [PMID: 32194379 PMCID: PMC7063058 DOI: 10.3389/fnsys.2020.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 01/25/2023] Open
Abstract
How are the complex maps for orientation selectivity (OS) created in the primary visual cortex (V1)? Rodents and rabbits have a random distribution of OS preferences across V1 while in cats, ferrets, and all primates cells with similar OS preferences cluster together into relatively wide cortical columns. Given other clear similarities in the organization of the visual pathways, why is it that maps coding OS preferences are so radically different? Prominent models have been created of cortical OS mapping that incorporate Hebbian plasticity, intracortical interactions, and the properties of growing axons. However, these models suggest that the maps arise primarily through intracortical interactions. Here we focus on several other features of the visual system and brain that may influence V1 structure. These are: eye divergence, the total number of cells in V1, the thalamocortical networks, the topography of the retina and phylogeny. We outline the evidence for and against these factors contributing to map formation. One promising theory is that the central-to-peripheral ratio (CP ratio) of retinal cell density can be used to predict whether or not a species has pinwheel maps. Animals with high CP ratios (>7) have orientation columns while those with low CP ratios (<4) have random OS maps. The CP ratio is related to the total number of cells in cortex, which also appears to be a reasonable contributing factor. However, while these factors correlate with map structure to some extent, there is a gray area where certain species do not fit elegantly into the theory. A problem with the existing literature is that OS maps have been investigated in only a small number of mammals, from a small fraction of the mammalian phylogenetic tree. We suggest four species (agouti, fruit bat, sheep, and wallaby) that have a range of interesting characteristics, which sit at intermediate locations between primates and rodents, that make them good targets for filling in the missing gaps in the literature. We make predictions about the map structures of these species based on the organization of their brains and visual systems and, in doing so, set possible paths for future research.
Collapse
Affiliation(s)
- Michael Ibbotson
- Australian College of Optometry, National Vision Research Institute, Carlton, VIC, Australia.,Department of Optometry and Vision Science, The University of Melbourne, Parkville, VIC, Australia
| | - Young Jun Jung
- Australian College of Optometry, National Vision Research Institute, Carlton, VIC, Australia.,Department of Optometry and Vision Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Chossat P. The hyperbolic model for edge and texture detection in the primary visual cortex. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2020; 10:2. [PMID: 32002707 PMCID: PMC6992837 DOI: 10.1186/s13408-020-0079-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The modeling of neural fields in the visual cortex involves geometrical structures which describe in mathematical formalism the functional architecture of this cortical area. The case of contour detection and orientation tuning has been extensively studied and has become a paradigm for the mathematical analysis of image processing by the brain. Ten years ago an attempt was made to extend these models by replacing orientation (an angle) with a second-order tensor built from the gradient of the image intensity, and it was named the structure tensor. This assumption does not follow from biological observations (experimental evidence is still lacking) but from the idea that the effectiveness of texture processing with the structure tensor in computer vision may well be exploited by the brain itself. The drawback is that in this case the geometry is not Euclidean but hyperbolic instead, which complicates the analysis substantially. The purpose of this review is to present the methodology that was developed in a series of papers to investigate this quite unusual problem, specifically from the point of view of tuning and pattern formation. These methods, which rely on bifurcation theory with symmetry in the hyperbolic context, might be of interest for the modeling of other features such as color vision or other brain functions.
Collapse
Affiliation(s)
- Pascal Chossat
- Université Côte d'Azur, Mathneuro, INRIA & CNRS, Valbonne, France.
| |
Collapse
|
9
|
Macknik SL, Alexander RG, Caballero O, Chanovas J, Nielsen KJ, Nishimura N, Schaffer CB, Slovin H, Babayoff A, Barak R, Tang S, Ju N, Yazdan-Shahmorad A, Alonso JM, Malinskiy E, Martinez-Conde S. Advanced Circuit and Cellular Imaging Methods in Nonhuman Primates. J Neurosci 2019; 39:8267-8274. [PMID: 31619496 PMCID: PMC6794937 DOI: 10.1523/jneurosci.1168-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Novel genetically encoded tools and advanced microscopy methods have revolutionized neural circuit analyses in insects and rodents over the last two decades. Whereas numerous technical hurdles originally barred these methodologies from success in nonhuman primates (NHPs), current research has started to overcome those barriers. In some cases, methodological advances developed with NHPs have even surpassed their precursors. One such advance includes new ultra-large imaging windows on NHP cortex, which are larger than the entire rodent brain and allow analysis unprecedented ultra-large-scale circuits. NHP imaging chambers now remain patent for periods longer than a mouse's lifespan, allowing for long-term all-optical interrogation of identified circuits and neurons over timeframes that are relevant to human cognitive development. Here we present some recent imaging advances brought forth by research teams using macaques and marmosets. These include technical developments in optogenetics; voltage-, calcium- and glutamate-sensitive dye imaging; two-photon and wide-field optical imaging; viral delivery; and genetic expression of indicators and light-activated proteins that result in the visualization of tens of thousands of identified cortical neurons in NHPs. We describe a subset of the many recent advances in circuit and cellular imaging tools in NHPs focusing here primarily on the research presented during the corresponding mini-symposium at the 2019 Society for Neuroscience annual meeting.
Collapse
Affiliation(s)
- Stephen L Macknik
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203,
| | - Robert G Alexander
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203
| | - Olivya Caballero
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203
| | - Jordi Chanovas
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203
| | - Kristina J Nielsen
- Zanvyl Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Chris B Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Amit Babayoff
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Ravid Barak
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Shiming Tang
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, and Peking University-International Data Group-McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Niansheng Ju
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, and Peking University-International Data Group-McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195
| | - Jose-Manuel Alonso
- State University of New York, College of Optometry, New York, New York 10036, and
| | | | - Susana Martinez-Conde
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203
| |
Collapse
|
10
|
Abstract
The thalamocortical pathway is the main route of communication between the eye and the cerebral cortex. During embryonic development, thalamocortical afferents travel to L4 and are sorted by receptive field position, eye of origin, and contrast polarity (i.e., preference for light or dark stimuli). In primates and carnivores, this sorting involves numerous afferents, most of which sample a limited region of the binocular field. Devoting abundant thalamocortical resources to process a limited visual field has a clear advantage: It allows many stimulus combinations to be sampled at each spatial location. Moreover, the sampling efficiency can be further enhanced by organizing the afferents in a cortical grid for eye input and contrast polarity. We argue that thalamocortical interactions within this eye-polarity grid can be used to represent multiple stimulus combinations found in nature and to build an accurate cortical map for multidimensional stimulus space.
Collapse
Affiliation(s)
- Jens Kremkow
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, College of Optometry, State University of New York, New York, NY 10036, USA;
| |
Collapse
|
11
|
Nauhaus I, Nielsen KJ, Callaway EM. Efficient Receptive Field Tiling in Primate V1. Neuron 2016; 91:893-904. [PMID: 27499086 DOI: 10.1016/j.neuron.2016.07.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/13/2016] [Accepted: 06/28/2016] [Indexed: 11/19/2022]
Abstract
The primary visual cortex (V1) encodes a diverse set of visual features, including orientation, ocular dominance (OD), and spatial frequency (SF), whose joint organization must be precisely structured to optimize coverage within the retinotopic map. Prior experiments have only identified efficient coverage based on orthogonal maps. Here we used two-photon calcium imaging to reveal an alternative arrangement for OD and SF maps in macaque V1; their gradients run parallel but with unique spatial periods, whereby low-SF regions coincide with monocular regions. Next we mapped receptive fields and found surprisingly precise micro-retinotopy that yields a smaller point-image and requires more efficient inter-map geometry, thus underscoring the significance of map relationships. While smooth retinotopy is constraining, studies suggest that it improves both wiring economy and the V1 population code read downstream. Altogether, these data indicate that connectivity within V1 is finely tuned and precise at the level of individual neurons.
Collapse
Affiliation(s)
- Ian Nauhaus
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Kristina J Nielsen
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Ringach DL, Mineault PJ, Tring E, Olivas ND, Garcia-Junco-Clemente P, Trachtenberg JT. Spatial clustering of tuning in mouse primary visual cortex. Nat Commun 2016; 7:12270. [PMID: 27481398 PMCID: PMC4974656 DOI: 10.1038/ncomms12270] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The primary visual cortex of higher mammals is organized into two-dimensional maps, where the preference of cells for stimulus parameters is arranged regularly on the cortical surface. In contrast, the preference of neurons in the rodent appears to be arranged randomly, in what is termed a salt-and-pepper map. Here we revisited the spatial organization of receptive fields in mouse primary visual cortex by measuring the tuning of pyramidal neurons in the joint orientation and spatial frequency domain. We found that the similarity of tuning decreases as a function of cortical distance, revealing a weak but statistically significant spatial clustering. Clustering was also observed across different cortical depths, consistent with a columnar organization. Thus, the mouse visual cortex is not strictly a salt-and-pepper map. At least on a local scale, it resembles a degraded version of the organization seen in higher mammals, hinting at a possible common origin. The preference of cells in mouse primary visual cortex are thought to be randomly distributed in a salt-and-pepper map, in contrast to the smooth cortical maps observed in higher mammals. Here the authors show that excitatory cells in mouse primary visual cortex are spatially clustered, resembling a degraded version of the organization seen in higher mammals.
Collapse
Affiliation(s)
- Dario L Ringach
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.,Department of Psychology, University of California, Los Angeles, California 90095, USA
| | - Patrick J Mineault
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Elaine Tring
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nicholas D Olivas
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Pablo Garcia-Junco-Clemente
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
13
|
Abstract
In this article, we review functional organization in sensory cortical regions—how the cortex represents the world. We consider four interrelated aspects of cortical organization: (1) the set of receptive fields of individual cortical sensory neurons, (2) how lateral interaction between cortical neurons reflects the similarity of their receptive fields, (3) the spatial distribution of receptive-field properties across the horizontal extent of the cortical tissue, and (4) how the spatial distributions of different receptive-field properties interact with one another. We show how these data are generally well explained by the theory of input-driven self-organization, with a family of computational models of cortical maps offering a parsimonious account for a wide range of map-related phenomena. We then discuss important challenges to this explanation, with respect to the maps present at birth, maps present under activity blockade, the limits of adult plasticity, and the lack of some maps in rodents. Because there is not at present another credible general theory for cortical map development, we conclude by proposing key experiments to help uncover other mechanisms that might also be operating during map development.
Collapse
Affiliation(s)
- James A. Bednar
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Stuart P. Wilson
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Macías S, Mora EC, Hechavarría JC, Kössl M. Echo-level compensation and delay tuning in the auditory cortex of the mustached bat. Eur J Neurosci 2016; 43:1647-60. [DOI: 10.1111/ejn.13244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Silvio Macías
- Institut für Zellbiologie und Neurowissenschaft; J.W. Goethe Universität Frankfurt; Max-von-Laue-Str. 13 60439 Frankfurt am Main Germany
| | - Emanuel C. Mora
- Instituto de Ciencias Biomédicas; Universidad Autónoma de Chile; El Llano Subercaseaux 2801; San Miguel Santiago, Chile
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft; J.W. Goethe Universität Frankfurt; Max-von-Laue-Str. 13 60439 Frankfurt am Main Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft; J.W. Goethe Universität Frankfurt; Max-von-Laue-Str. 13 60439 Frankfurt am Main Germany
| |
Collapse
|
15
|
Principles underlying sensory map topography in primary visual cortex. Nature 2016; 533:52-7. [PMID: 27120164 PMCID: PMC4860131 DOI: 10.1038/nature17936] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/21/2016] [Indexed: 01/20/2023]
Abstract
The primary visual cortex contains a detailed map of the visual scene, which is represented according to multiple stimulus dimensions including spatial location, ocular dominance and orientation. The maps for spatial location and ocular dominance originate from the spatial arrangement of thalamic axons in cortex. However, the origin of the other maps remains unclear. Here we demonstrate that the cortical maps for orientation, direction and retinal disparity are all strongly related to the organization for spatial location of light (ON) and dark (OFF) stimuli, an organization that we show is OFF-dominated, OFF-centric and runs orthogonal to ocular dominance columns. Because this ON/OFF organization originates from the clustering of ON and OFF thalamic afferents in visual cortex, we conclude that all main features of cortical topography, including orientation, direction and retinal disparity, follow a common organizing principle that arranges thalamic axons with similar retinotopy and ON/OFF polarity in neighboring cortical regions.
Collapse
|
16
|
Smith GB, Whitney DE, Fitzpatrick D. Modular Representation of Luminance Polarity in the Superficial Layers of Primary Visual Cortex. Neuron 2016; 88:805-18. [PMID: 26590348 DOI: 10.1016/j.neuron.2015.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/23/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
The spatial arrangement of luminance increments (ON) and decrements (OFF) falling on the retina provides a wealth of information used by central visual pathways to construct coherent representations of visual scenes. But how the polarity of luminance change is represented in the activity of cortical circuits remains unclear. Using wide-field epifluorescence and two-photon imaging we demonstrate a robust modular representation of luminance polarity (ON or OFF) in the superficial layers of ferret primary visual cortex. Polarity-specific domains are found with both uniform changes in luminance and single light/dark edges, and include neurons selective for orientation and direction of motion. The integration of orientation and polarity preference is evident in the selectivity and discrimination capabilities of most layer 2/3 neurons. We conclude that polarity selectivity is an integral feature of layer 2/3 neurons, ensuring that the distinction between light and dark stimuli is available for further processing in downstream extrastriate areas.
Collapse
Affiliation(s)
- Gordon B Smith
- Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - David E Whitney
- Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - David Fitzpatrick
- Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| |
Collapse
|
17
|
Afgoustidis A. Monochromaticity of orientation maps in v1 implies minimum variance for hypercolumn size. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:10. [PMID: 25859421 PMCID: PMC4388110 DOI: 10.1186/s13408-015-0022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
In the primary visual cortex of many mammals, the processing of sensory information involves recognizing stimuli orientations. The repartition of preferred orientations of neurons in some areas is remarkable: a repetitive, non-periodic, layout. This repetitive pattern is understood to be fundamental for basic non-local aspects of vision, like the perception of contours, but important questions remain about its development and function. We focus here on Gaussian Random Fields, which provide a good description of the initial stage of orientation map development and, in spite of shortcomings we will recall, a computable framework for discussing general principles underlying the geometry of mature maps. We discuss the relationship between the notion of column spacing and the structure of correlation spectra; we prove formulas for the mean value and variance of column spacing, and we use numerical analysis of exact analytic formulae to study the variance. Referring to studies by Wolf, Geisel, Kaschube, Schnabel, and coworkers, we also show that spectral thinness is not an essential ingredient to obtain a pinwheel density of π, whereas it appears as a signature of Euclidean symmetry. The minimum variance property associated to thin spectra could be useful for information processing, provide optimal modularity for V1 hypercolumns, and be a first step toward a mathematical definition of hypercolumns. A measurement of this property in real maps is in principle possible, and comparison with the results in our paper could help establish the role of our minimum variance hypothesis in the development process.
Collapse
Affiliation(s)
- Alexandre Afgoustidis
- Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris 7 Denis Diderot, 75013 Paris, France
| |
Collapse
|
18
|
Wilson SP, Bednar JA. What, if anything, are topological maps for? Dev Neurobiol 2015; 75:667-81. [PMID: 25683193 DOI: 10.1002/dneu.22281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/10/2022]
Abstract
What, if anything, is the functional significance of spatial patterning in cortical feature maps? We ask this question of four major theories of cortical map formation: self-organizing maps, wiring optimization, place coding, and reaction-diffusion. We argue that (i) self-organizing maps yield spatial patterning only as a by-product of efficient mechanisms for developing environmentally appropriate distributions of feature preferences, (ii) wiring optimization assumes rather than explains a map-like organization, (iii) place-coding mechanisms can at best explain only a subset of maps in functional terms, and (iv) reaction-diffusion models suggest two factors in the evolution of maps, the first based on efficient development of feature distributions, and the second based on generating feature-specific long-range recurrent cortical circuitry. None of these explanations for the existence of topological maps requires spatial patterning in maps to be useful. Thus despite these useful frameworks for understanding how maps form and how they are wired, the possibility that patterns are merely epiphenomena in the evolution of mammalian neocortex cannot be rejected. The article is intended as a nontechnical introduction to the assumptions and predictions of these four important classes of models, along with other possible functional explanations for maps.
Collapse
Affiliation(s)
- Stuart P Wilson
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, S10 2TP, United Kingdom
| | - James A Bednar
- Institute for Adaptive & Neural Computation, School of Informatics, The University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| |
Collapse
|
19
|
Columnar organization of spatial phase in visual cortex. Nat Neurosci 2014; 18:97-103. [PMID: 25420070 PMCID: PMC4281281 DOI: 10.1038/nn.3878] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Abstract
Images are processed in the primary visual cortex by neurons that encode different stimulus orientations and spatial phases. In primates and carnivores, neighboring cortical neurons share similar orientation preferences but spatial phases were thought to be randomly distributed. Here we reveal a columnar organization for spatial phase in cats that shares resemblances with the columnar organization for orientation. For both orientation and phase, the mean difference across vertically aligned neurons was less than 1/4 of a cycle. Cortical neurons showed three times more diversity in phase than orientation preference, however, the average phase of local neuronal populations was similar through the depth of layer 4. We conclude that columnar organization for visual space is not only defined by the spatial location of the stimulus but also by absolute phase. Taken together with previous studies, our results suggest that this phase-visuotopy is responsible for the emergence of orientation maps.
Collapse
|