1
|
Seo KJ, Hill M, Ryu J, Chiang CH, Rachinskiy I, Qiang Y, Jang D, Trumpis M, Wang C, Viventi J, Fang H. A Soft, High-Density Neuroelectronic Array. NPJ FLEXIBLE ELECTRONICS 2023; 7:40. [PMID: 37692908 PMCID: PMC10487278 DOI: 10.1038/s41528-023-00271-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/23/2023] [Indexed: 09/12/2023]
Abstract
Techniques to study brain activities have evolved dramatically, yet tremendous challenges remain in acquiring high-throughput electrophysiological recordings minimally invasively. Here, we develop an integrated neuroelectronic array that is filamentary, high-density and flexible. Specifically, with a design of single-transistor multiplexing and current sensing, the total 256 neuroelectrodes achieve only a 2.3 × 0.3 mm2 area, unprecedentedly on a flexible substrate. A novel single-transistor multiplexing acquisition circuit further reduces noise from the electrodes, decreased the footprint of each pixel, and potentially increased the device lifetime. The filamentary neuroelectronic array also integrates with a rollable contact pad design, allowing the device to be injected through a syringe, enabling potential minimally invasive array delivery. Successful acute auditory experiments in rats validate the ability of the array to record neural signals with high tone decoding accuracy. Together, these results establish soft, high-density neuroelectronic arrays as promising devices for neuroscience research and clinical applications.
Collapse
Affiliation(s)
- Kyung Jin Seo
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Mackenna Hill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Jaehyeon Ryu
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 USA
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Iakov Rachinskiy
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Dongyeol Jang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Michael Trumpis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Charles Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 USA
| |
Collapse
|
2
|
Shen K, Chen O, Edmunds JL, Piech DK, Maharbiz MM. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat Biomed Eng 2023; 7:424-442. [PMID: 37081142 DOI: 10.1038/s41551-023-01021-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/15/2023] [Indexed: 04/22/2023]
Abstract
Invasive brain-machine interfaces can restore motor, sensory and cognitive functions. However, their clinical adoption has been hindered by the surgical risk of implantation and by suboptimal long-term reliability. In this Review, we highlight the opportunities and challenges of invasive technology for clinically relevant electrophysiology. Specifically, we discuss the characteristics of neural probes that are most likely to facilitate the clinical translation of invasive neural interfaces, describe the neural signals that can be acquired or produced by intracranial electrodes, the abiotic and biotic factors that contribute to their failure, and emerging neural-interface architectures.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Oliver Chen
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - Jordan L Edmunds
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - David K Piech
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
3
|
Xu S, Liu Y, Yang Y, Zhang K, Liang W, Xu Z, Wu Y, Luo J, Zhuang C, Cai X. Recent Progress and Perspectives on Neural Chip Platforms Integrating PDMS-Based Microfluidic Devices and Microelectrode Arrays. MICROMACHINES 2023; 14:709. [PMID: 37420942 PMCID: PMC10145465 DOI: 10.3390/mi14040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 07/09/2023]
Abstract
Recent years have witnessed a spurt of progress in the application of the encoding and decoding of neural activities to drug screening, diseases diagnosis, and brain-computer interactions. To overcome the constraints of the complexity of the brain and the ethical considerations of in vivo research, neural chip platforms integrating microfluidic devices and microelectrode arrays have been raised, which can not only customize growth paths for neurons in vitro but also monitor and modulate the specialized neural networks grown on chips. Therefore, this article reviews the developmental history of chip platforms integrating microfluidic devices and microelectrode arrays. First, we review the design and application of advanced microelectrode arrays and microfluidic devices. After, we introduce the fabrication process of neural chip platforms. Finally, we highlight the recent progress on this type of chip platform as a research tool in the field of brain science and neuroscience, focusing on neuropharmacology, neurological diseases, and simplified brain models. This is a detailed and comprehensive review of neural chip platforms. This work aims to fulfill the following three goals: (1) summarize the latest design patterns and fabrication schemes of such platforms, providing a reference for the development of other new platforms; (2) generalize several important applications of chip platforms in the field of neurology, which will attract the attention of scientists in the field; and (3) propose the developmental direction of neural chip platforms integrating microfluidic devices and microelectrode arrays.
Collapse
Affiliation(s)
- Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Zhuang
- Department of Orthopaedics, Rujing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang AY, Sheng Y, Li W, Jung D, Junek GV, Liu H, Park J, Lee D, Wang M, Maharjan S, Kumashi S, Hao J, Zhang YS, Eggan K, Wang H. A Multimodal and Multifunctional CMOS Cellular Interfacing Array for Digital Physiology and Pathology Featuring an Ultra Dense Pixel Array and Reconfigurable Sampling Rate. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1057-1074. [PMID: 36417722 DOI: 10.1109/tbcas.2022.3224064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The article presents a fully integrated multimodal and multifunctional CMOS biosensing/actuating array chip and system for multi-dimensional cellular/tissue characterization. The CMOS chip supports up to 1,568 simultaneous parallel readout channels across 21,952 individually addressable multimodal pixels with 13 μm × 13 μm 2-D pixel pitch along with 1,568 Pt reference electrodes. These features allow the CMOS array chip to perform multimodal physiological measurements on living cell/tissue samples with both high throughput and single-cell resolution. Each pixel supports three sensing and one actuating modalities, each reconfigurable for different functionalities, in the form of full array (FA) or fast scan (FS) voltage recording schemes, bright/dim optical detection, 2-/4-point impedance sensing (ZS), and biphasic current stimulation (BCS) with adjustable stimulation area for single-cell or tissue-level stimulation. Each multi-modal pixel contains an 8.84 μm × 11 μm Pt electrode, 4.16 μm × 7.2 μm photodiode (PD), and in-pixel circuits for PD measurements and pixel selection. The chip is fabricated in a standard 130nm BiCMOS process as a proof of concept. The on-chip electrodes are constructed by unique design and in-house post-CMOS fabrication processes, including a critical Al shorting of all pixels during fabrication and Al etching after fabrication that ensures a high-yield planar electrode array on CMOS with high biocompatibility and long-term measurement reliability. For demonstration, extensive biological testing is performed with human and mouse progenitor cells, in which multidimensional biophysiological data are acquired for comprehensive cellular characterization.
Collapse
|
5
|
Vėbraitė I, Hanein Y. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675744. [PMID: 35047928 PMCID: PMC8757739 DOI: 10.3389/fmedt.2021.675744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Horváth C, Tóth LF, Ulbert I, Fiáth R. Dataset of cortical activity recorded with high spatial resolution from anesthetized rats. Sci Data 2021; 8:180. [PMID: 34267214 PMCID: PMC8282648 DOI: 10.1038/s41597-021-00970-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
Publicly available neural recordings obtained with high spatial resolution are scarce. Here, we present an electrophysiological dataset recorded from the neocortex of twenty rats anesthetized with ketamine/xylazine. The wideband, spontaneous recordings were acquired with a single-shank silicon-based probe having 128 densely-packed recording sites arranged in a 32 × 4 array. The dataset contains the activity of a total of 7126 sorted single units extracted from all layers of the cortex. Here, we share raw neural recordings, as well as spike times, extracellular spike waveforms and several properties of units packaged in a standardized electrophysiological data format. For technical validation of our dataset, we provide the distributions of derived single unit properties along with various spike sorting quality metrics. This large collection of in vivo data enables the investigation of the high-resolution electrical footprint of cortical neurons which in turn may aid their electrophysiology-based classification. Furthermore, the dataset might be used to study the laminar-specific neuronal activity during slow oscillation, a brain rhythm strongly involved in neural mechanisms underlying memory consolidation and sleep.
Collapse
Affiliation(s)
- Csaba Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Lili Fanni Tóth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary.
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
7
|
Hybrid Multisite Silicon Neural Probe with Integrated Flexible Connector for Interchangeable Packaging. SENSORS 2021; 21:s21082605. [PMID: 33917654 PMCID: PMC8068078 DOI: 10.3390/s21082605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022]
Abstract
Multisite neural probes are a fundamental tool to study brain function. Hybrid silicon/polymer neural probes combine rigid silicon and flexible polymer parts into one single device and allow, for example, the precise integration of complex probe geometries, such as multishank designs, with flexible biocompatible cabling. Despite these advantages and benefiting from highly reproducible fabrication methods on both silicon and polymer substrates, they have not been widely available. This paper presents the development, fabrication, characterization, and in vivo electrophysiological assessment of a hybrid multisite multishank silicon probe with a monolithically integrated polyimide flexible interconnect cable. The fabrication process was optimized at wafer level, and several neural probes with 64 gold electrode sites equally distributed along 8 shanks with an integrated 8 µm thick highly flexible polyimide interconnect cable were produced. The monolithic integration of the polyimide cable in the same fabrication process removed the necessity of the postfabrication bonding of the cable to the probe. This is the highest electrode site density and thinnest flexible cable ever reported for a hybrid silicon/polymer probe. Additionally, to avoid the time-consuming bonding of the probe to definitive packaging, the flexible cable was designed to terminate in a connector pad that can mate with commercial zero-insertion force (ZIF) connectors for electronics interfacing. This allows great experimental flexibility because interchangeable packaging can be used according to experimental demands. High-density distributed in vivo electrophysiological recordings were obtained from the hybrid neural probes with low intrinsic noise and high signal-to-noise ratio (SNR).
Collapse
|
8
|
Sahasrabuddhe K, Khan AA, Singh AP, Stern TM, Ng Y, Tadić A, Orel P, LaReau C, Pouzzner D, Nishimura K, Boergens KM, Shivakumar S, Hopper MS, Kerr B, Hanna MES, Edgington RJ, McNamara I, Fell D, Gao P, Babaie-Fishani A, Veijalainen S, Klekachev AV, Stuckey AM, Luyssaert B, Kozai TDY, Xie C, Gilja V, Dierickx B, Kong Y, Straka M, Sohal HS, Angle MR. The Argo: a high channel count recording system for neural recording in vivo. J Neural Eng 2021; 18:015002. [PMID: 33624614 PMCID: PMC8607496 DOI: 10.1088/1741-2552/abd0ce] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Decoding neural activity has been limited by the lack of tools available to record from large numbers of neurons across multiple cortical regions simultaneously with high temporal fidelity. To this end, we developed the Argo system to record cortical neural activity at high data rates. APPROACH Here we demonstrate a massively parallel neural recording system based on platinum-iridium microwire electrode arrays bonded to a CMOS voltage amplifier array. The Argo system is the highest channel count in vivo neural recording system, supporting simultaneous recording from 65 536 channels, sampled at 32 kHz and 12-bit resolution. This system was designed for cortical recordings, compatible with both penetrating and surface microelectrodes. MAIN RESULTS We validated this system through initial bench testing to determine specific gain and noise characteristics of bonded microwires, followed by in-vivo experiments in both rat and sheep cortex. We recorded spiking activity from 791 neurons in rats and surface local field potential activity from over 30 000 channels in sheep. SIGNIFICANCE These are the largest channel count microwire-based recordings in both rat and sheep. While currently adapted for head-fixed recording, the microwire-CMOS architecture is well suited for clinical translation. Thus, this demonstration helps pave the way for a future high data rate intracortical implant.
Collapse
Affiliation(s)
| | - Aamir A Khan
- Paradromics, Inc, Austin, TX, United States of America
| | | | - Tyler M Stern
- Paradromics, Inc, Austin, TX, United States of America
| | - Yeena Ng
- Paradromics, Inc, Austin, TX, United States of America
| | | | - Peter Orel
- Paradromics, Inc, Austin, TX, United States of America
| | - Chris LaReau
- Paradromics, Inc, Austin, TX, United States of America
| | | | | | | | | | | | - Bryan Kerr
- Paradromics, Inc, Austin, TX, United States of America
| | | | | | | | - Devin Fell
- Paradromics, Inc, Austin, TX, United States of America
| | - Peng Gao
- Caeleste CVBA, Mechelen, Belgium
| | | | | | | | | | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States of America
- Department of Bioengineering, Rice University, Houston, TX, United States of America
- NeuroEngineering Initiative, Rice University, Houston, TX, United States of America
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, United States of America
| | | | - Yifan Kong
- Paradromics, Inc, Austin, TX, United States of America
| | | | | | | |
Collapse
|
9
|
Fiáth R, Meszéna D, Somogyvári Z, Boda M, Barthó P, Ruther P, Ulbert I. Recording site placement on planar silicon-based probes affects signal quality in acute neuronal recordings. Sci Rep 2021; 11:2028. [PMID: 33479289 PMCID: PMC7819990 DOI: 10.1038/s41598-021-81127-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Multisite, silicon-based probes are widely used tools to record the electrical activity of neuronal populations. Several physical features of these devices are designed to improve their recording performance. Here, our goal was to investigate whether the position of recording sites on the silicon shank might affect the quality of the recorded neural signal in acute experiments. Neural recordings obtained with five different types of high-density, single-shank, planar silicon probes from anesthetized rats were analyzed. Wideband data were filtered to extract spiking activity, then the amplitude distribution of samples and quantitative properties of the recorded brain activity (single unit yield, spike amplitude and isolation distance) were compared between sites located at different positions of the silicon shank, focusing particularly on edge and center sites. Edge sites outperformed center sites: for all five probe types there was a significant difference in the signal power computed from the amplitude distributions, and edge sites recorded significantly more large amplitude samples both in the positive and negative range. Although the single unit yield was similar between site positions, the difference in spike amplitudes was noticeable in the range corresponding to high-amplitude spikes. Furthermore, the advantage of edge sites slightly decreased with decreasing shank width. Our results might aid the design of novel neural implants in enhancing their recording performance by identifying more efficient recording site placements.
Collapse
Affiliation(s)
- Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary. .,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Domokos Meszéna
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Somogyvári
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Mihály Boda
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Cluster of Excellence, BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
10
|
Fiáth R, Meszéna D, Somogyvári Z, Boda M, Barthó P, Ruther P, Ulbert I. Recording site placement on planar silicon-based probes affects signal quality in acute neuronal recordings. Sci Rep 2021; 11:2028. [PMID: 33479289 DOI: 10.1101/2020.06.01.127308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/28/2020] [Indexed: 05/27/2023] Open
Abstract
Multisite, silicon-based probes are widely used tools to record the electrical activity of neuronal populations. Several physical features of these devices are designed to improve their recording performance. Here, our goal was to investigate whether the position of recording sites on the silicon shank might affect the quality of the recorded neural signal in acute experiments. Neural recordings obtained with five different types of high-density, single-shank, planar silicon probes from anesthetized rats were analyzed. Wideband data were filtered to extract spiking activity, then the amplitude distribution of samples and quantitative properties of the recorded brain activity (single unit yield, spike amplitude and isolation distance) were compared between sites located at different positions of the silicon shank, focusing particularly on edge and center sites. Edge sites outperformed center sites: for all five probe types there was a significant difference in the signal power computed from the amplitude distributions, and edge sites recorded significantly more large amplitude samples both in the positive and negative range. Although the single unit yield was similar between site positions, the difference in spike amplitudes was noticeable in the range corresponding to high-amplitude spikes. Furthermore, the advantage of edge sites slightly decreased with decreasing shank width. Our results might aid the design of novel neural implants in enhancing their recording performance by identifying more efficient recording site placements.
Collapse
Affiliation(s)
- Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Domokos Meszéna
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Somogyvári
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Mihály Boda
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- Cluster of Excellence, BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
11
|
Shaik FA, Ihida S, Ikeuchi Y, Tixier-Mita A, Toshiyoshi H. TFT sensor array for real-time cellular characterization, stimulation, impedance measurement and optical imaging of in-vitro neural cells. Biosens Bioelectron 2020; 169:112546. [PMID: 32911315 DOI: 10.1016/j.bios.2020.112546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022]
Abstract
Real-time in-vitro multi-modality characterization of neuronal cell ensemble involves highly complex interdependent phenomena and processes. Although a variety of microelectrode arrays (MEAs) have been reported, diagnosis techniques are limited in term of sensing area, optical transparency, resolution and number of modalities. This paper presents an optically transparent thin-film-transistor (TFT) array biosensor chip for neuronal ensemble investigation, in which TFT electrodes are used for six modalities including extracellular voltage recording of both action potential (AP) and local field potential (LFP), current or voltage stimulation, chemical stimulation, electrical impedance measurement, and optical imaging. The sensor incorporates a large sensing area (15.6 mm × 15.6 mm) with a 200 × 150 array of indium-tin-oxide (ITO) electrodes placed at a 50 μm or 100 μm pixel pitch and with 10 ms temporal resolution; these performances are comparable to the state-of-the-art MEA devices. The TFT electrode array is designed based on the switch matrix architecture. The reliability and stability of TFTs are examined by measuring their electrical characteristics. Impedance spectroscopy function is verified by mapping the neuron position and the status (cells alive or dead, contamination) on the electrodes, which facilitates the biochemical studies in electrical domain that adds quantitative views to visual observation of cells through the optical microscopy. An in-vitro neuron culture is studied using electrophysiological, electrochemical, and optical characterization. Detailed signal analysis is demonstrated to prove the capability of bioassay.
Collapse
Affiliation(s)
- Faruk Azam Shaik
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan; UMR 8161, Faculty of Medicine, University of Lille, France.
| | - Satoshi Ihida
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan; Sharp Corporation, 1-2-3 Shibaura, Minato, Tokyo, 105-0023, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| | - Agnès Tixier-Mita
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| | - Hiroshi Toshiyoshi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| |
Collapse
|
12
|
Qazi R, Yeon Kim C, Kang I, Binazarov D, McCall JG, Jeong J. Implantable Optofluidic Systems for Wireless In Vivo Photopharmacology. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Raza Qazi
- School of Electrical Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea
- Department of Electrical, Computer and Energy Engineering University of Colorado Boulder CO USA
| | - Choong Yeon Kim
- School of Electrical Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea
| | - Inho Kang
- School of Electrical Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea
| | - Dauren Binazarov
- School of Electrical Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea
| | - Jordan G. McCall
- Department of Anesthesiology Washington University in St. Louis St. Louis MO USA
| | - Jae‐Woong Jeong
- School of Electrical Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea
| |
Collapse
|
13
|
Kollo M, Racz R, Hanna ME, Obaid A, Angle MR, Wray W, Kong Y, Müller J, Hierlemann A, Melosh NA, Schaefer AT. CHIME: CMOS-Hosted in vivo Microelectrodes for Massively Scalable Neuronal Recordings. Front Neurosci 2020; 14:834. [PMID: 32848584 PMCID: PMC7432274 DOI: 10.3389/fnins.2020.00834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/16/2020] [Indexed: 01/20/2023] Open
Abstract
Mammalian brains consist of 10s of millions to 100s of billions of neurons operating at millisecond time scales, of which current recording techniques only capture a tiny fraction. Recording techniques capable of sampling neural activity at high spatiotemporal resolution have been difficult to scale. The most intensively studied mammalian neuronal networks, such as the neocortex, show a layered architecture, where the optimal recording technology samples densely over large areas. However, the need for application-specific designs as well as the mismatch between the three-dimensional architecture of the brain and largely two-dimensional microfabrication techniques profoundly limits both neurophysiological research and neural prosthetics. Here, we discuss a novel strategy for scalable neuronal recording by combining bundles of glass-ensheathed microwires with large-scale amplifier arrays derived from high-density CMOS in vitro MEA systems or high-speed infrared cameras. High signal-to-noise ratio (<25 μV RMS noise floor, SNR up to 25) is achieved due to the high conductivity of core metals in glass-ensheathed microwires allowing for ultrathin metal cores (down to <1 μm) and negligible stray capacitance. Multi-step electrochemical modification of the tip enables ultra-low access impedance with minimal geometric area, which is largely independent of the core diameter. We show that the microwire size can be reduced to virtually eliminate damage to the blood-brain-barrier upon insertion and we demonstrate that microwire arrays can stably record single-unit activity. Combining microwire bundles and CMOS arrays allows for a highly scalable neuronal recording approach, linking the progress in electrical neuronal recordings to the rapid progress in silicon microfabrication. The modular design of the system allows for custom arrangement of recording sites. Our approach of employing bundles of minimally invasive, highly insulated and functionalized microwires to extend a two-dimensional CMOS architecture into the 3rd dimension can be translated to other CMOS arrays, such as electrical stimulation devices.
Collapse
Affiliation(s)
- Mihaly Kollo
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Romeo Racz
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, United Kingdom
| | - Mina-Elraheb Hanna
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States
- Paradromics, Inc., Austin, TX, United States
| | - Abdulmalik Obaid
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States
| | | | - William Wray
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, United Kingdom
| | - Yifan Kong
- Paradromics, Inc., Austin, TX, United States
| | - Jan Müller
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
- MaxWell Biosystems AG, Zurich, Switzerland
| | - Andreas Hierlemann
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Nicholas A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States
| | - Andreas T. Schaefer
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
14
|
Yang L, Lee K, Villagracia J, Masmanidis SC. Open source silicon microprobes for high throughput neural recording. J Neural Eng 2020; 17:016036. [PMID: 31731284 DOI: 10.1088/1741-2552/ab581a] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Microfabricated multielectrode arrays are widely used for high throughput recording of extracellular neural activity, which is transforming our understanding of brain function in health and disease. Currently there is a plethora of electrode-based tools being developed at higher education and research institutions. However, taking such tools from the initial research and development phase to widespread adoption by the neuroscience community is often hindered by several obstacles. The objective of this work is to describe the development, application, and open dissemination of silicon microprobes for recording neural activity in vivo. APPROACH We propose an open source dissemination platform as an alternative to commercialization. This framework promotes recording tools that are openly and inexpensively available to the community. The silicon microprobes are designed in house, but the fabrication and assembly processes are carried out by third party companies. This enables mass production, a key requirement for large-scale dissemination. MAIN RESULTS We demonstrate the operation of silicon microprobes containing up to 256 electrodes in conjunction with optical fibers for optogenetic manipulations or fiber photometry. These data provide new insights about the relationship between calcium activity and neural spiking activity. We also describe the current state of dissemination of these tools. A file repository of resources related to designing, using, and sharing these tools is maintained online. SIGNIFICANCE This paper is likely to be a valuable resource for both current and prospective users, as well as developers of silicon microprobes. Based on their extensive usage by a number of labs including ours, these tools present a promising alternative to other types of electrode-based technologies aimed at high throughput recording in head-fixed animals. This work also demonstrates the importance of validating fiber photometry measurements with simultaneous electrophysiological recordings.
Collapse
|
15
|
Tam WK, Wu T, Zhao Q, Keefer E, Yang Z. Human motor decoding from neural signals: a review. BMC Biomed Eng 2019; 1:22. [PMID: 32903354 PMCID: PMC7422484 DOI: 10.1186/s42490-019-0022-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/21/2019] [Indexed: 01/24/2023] Open
Abstract
Many people suffer from movement disability due to amputation or neurological diseases. Fortunately, with modern neurotechnology now it is possible to intercept motor control signals at various points along the neural transduction pathway and use that to drive external devices for communication or control. Here we will review the latest developments in human motor decoding. We reviewed the various strategies to decode motor intention from human and their respective advantages and challenges. Neural control signals can be intercepted at various points in the neural signal transduction pathway, including the brain (electroencephalography, electrocorticography, intracortical recordings), the nerves (peripheral nerve recordings) and the muscles (electromyography). We systematically discussed the sites of signal acquisition, available neural features, signal processing techniques and decoding algorithms in each of these potential interception points. Examples of applications and the current state-of-the-art performance were also reviewed. Although great strides have been made in human motor decoding, we are still far away from achieving naturalistic and dexterous control like our native limbs. Concerted efforts from material scientists, electrical engineers, and healthcare professionals are needed to further advance the field and make the technology widely available in clinical use.
Collapse
Affiliation(s)
- Wing-kin Tam
- Department of Biomedical Engineering, University of Minnesota Twin Cities, 7-105 Hasselmo Hall, 312 Church St. SE, Minnesota, 55455 USA
| | - Tong Wu
- Department of Biomedical Engineering, University of Minnesota Twin Cities, 7-105 Hasselmo Hall, 312 Church St. SE, Minnesota, 55455 USA
| | - Qi Zhao
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, 4-192 Keller Hall, 200 Union Street SE, Minnesota, 55455 USA
| | - Edward Keefer
- Nerves Incorporated, Dallas, TX P. O. Box 141295 USA
| | - Zhi Yang
- Department of Biomedical Engineering, University of Minnesota Twin Cities, 7-105 Hasselmo Hall, 312 Church St. SE, Minnesota, 55455 USA
| |
Collapse
|
16
|
Barz F, Trouillet V, Paul O, Ruther P. CMOS-Compatible, Flexible, Intracortical Neural Probes. IEEE Trans Biomed Eng 2019; 67:1366-1376. [PMID: 31442966 DOI: 10.1109/tbme.2019.2936740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Flexible intracortical neural probes elicit a lower foreign body response when compared to rigid implants. However, by incorporating complementary metal-oxide-semiconductor (CMOS) circuitry, silicon-based neural probes can offer an improved scalability and more functionalities than any other currently available technology. OBJECTIVE Our goal is the development of a novel neural probe that combines flexibility with the functionalities of active CMOS-based probes. METHODS We interface CMOS-based probe tips of only a few millimeters in length with flexible polyimide cables, which enable the complete implantation of the tips into brain tissue. The multilayer platinum metallization of the cables is patterned using a novel combination of ion beam and plasma etching. Implantation of the flexible probes is verified in brain models using stiff insertion shuttles. RESULT We assembled neural probes from passive and active tips as short as 1.5 mm and less than 180 μm in width. Active probes feature electrode arrays with 72 recording sites and multiplexing to 16 parallel output lines. We reliably patterned cables with signal lines of 2 μm in width and 3 μm in spacing. Ion beam etching deteriorated the composition of the polyimide substrate and its resistance to around 1 kΩ. An additional plasma treatment re-established high insulation resistances and recovered the chemical composition. Probes were successfully implanted to a depth of 7 mm using insertion shuttles and withstood forces of 63 mN. CONCLUSIONS This study presents the methods required for the fabrication and application of a new generation of neural probes. SIGNIFICANCE The synergetic approach surpasses the limitation of each individual probe technology and should be considered in future developments.
Collapse
|
17
|
Jia X, Siegle JH, Bennett C, Gale SD, Denman DJ, Koch C, Olsen SR. High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification. J Neurophysiol 2019; 121:1831-1847. [PMID: 30840526 DOI: 10.1152/jn.00680.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Different neuron types serve distinct roles in neural processing. Extracellular electrical recordings are extensively used to study brain function but are typically blind to cell identity. Morphoelectrical properties of neurons measured on spatially dense electrode arrays have the potential to distinguish neuron types. We used high-density silicon probes to record from cortical and subcortical regions of the mouse brain. Extracellular waveforms of each neuron were detected across many channels and showed distinct spatiotemporal profiles among brain regions. Classification of neurons by brain region was improved with multichannel compared with single-channel waveforms. In visual cortex, unsupervised clustering identified the canonical regular-spiking (RS) and fast-spiking (FS) classes but also indicated a subclass of RS units with unidirectional backpropagating action potentials (BAPs). Moreover, BAPs were observed in many hippocampal RS cells. Overall, waveform analysis of spikes from high-density probes aids neuron identification and can reveal dendritic backpropagation. NEW & NOTEWORTHY It is challenging to identify neuron types with extracellular electrophysiology in vivo. We show that spatiotemporal action potentials measured on high-density electrode arrays can capture cell type-specific morphoelectrical properties, allowing classification of neurons across brain structures and within the cortex. Moreover, backpropagating action potentials are reliably detected in vivo from subpopulations of cortical and hippocampal neurons. Together, these results enhance the utility of dense extracellular electrophysiology for cell-type interrogation of brain network function.
Collapse
Affiliation(s)
- Xiaoxuan Jia
- Allen Institute for Brain Science , Seattle, Washington
| | | | | | - Samuel D Gale
- Allen Institute for Brain Science , Seattle, Washington
| | | | - Christof Koch
- Allen Institute for Brain Science , Seattle, Washington
| | - Shawn R Olsen
- Allen Institute for Brain Science , Seattle, Washington
| |
Collapse
|
18
|
Kim GH, Kim K, Lee E, An T, Choi W, Lim G, Shin JH. Recent Progress on Microelectrodes in Neural Interfaces. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1995. [PMID: 30332782 PMCID: PMC6213370 DOI: 10.3390/ma11101995] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
Brain‒machine interface (BMI) is a promising technology that looks set to contribute to the development of artificial limbs and new input devices by integrating various recent technological advances, including neural electrodes, wireless communication, signal analysis, and robot control. Neural electrodes are a key technological component of BMI, as they can record the rapid and numerous signals emitted by neurons. To receive stable, consistent, and accurate signals, electrodes are designed in accordance with various templates using diverse materials. With the development of microelectromechanical systems (MEMS) technology, electrodes have become more integrated, and their performance has gradually evolved through surface modification and advances in biotechnology. In this paper, we review the development of the extracellular/intracellular type of in vitro microelectrode array (MEA) to investigate neural interface technology and the penetrating/surface (non-penetrating) type of in vivo electrodes. We briefly examine the history and study the recently developed shapes and various uses of the electrode. Also, electrode materials and surface modification techniques are reviewed to measure high-quality neural signals that can be used in BMI.
Collapse
Affiliation(s)
- Geon Hwee Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Kanghyun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Eunji Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Taechang An
- Department of Mechanical Design Engineering, Andong National University, Kyungbuk 760-749, Korea.
| | - WooSeok Choi
- Department of Mechanical Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea.
| | - Jung Hwal Shin
- School of Mechanical Engineering, Kyungnam University, Changwon 51767, Korea.
| |
Collapse
|
19
|
Szostak KM, Constandinou TG. Hermetic packaging for implantable microsystems: Effectiveness of sequentially electroplated AuSn alloy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:3849-3853. [PMID: 30441204 DOI: 10.1109/embc.2018.8513272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With modern microtechnology, there is an aggressive miniaturization of smart devices, despite an increasing level of integration and overall complexity. It is therefore becoming increasingly important to be achieve reliable, compact packaging. For implantable medical devices (IMDs), the package must additionally provide a high quality hermetic environment to protect the device from the human body. For chip-scale devices, AuSn eutectic bonding offers the possibility of forming compact seals that achieve ultra-low permeability. A key feature is this can be achieved at process temperatures of below 350315°C, therefore allowing for the integration of sensors and microsystems with CMOS electronics within a single package. Issues however such as solder wetting, void formation and controlling composition make formation of high-quality repeatable seals highly challenging. Towards this aim, this paper presents our experimental work characterizing the eutectic stack deposition. We detail our designmethods and process flow, share our experiences in controlling electrochemical deposition of AuSn alloy and finally discuss usability of sequential electroplating process for the formation of hermetic eutectic bonds.
Collapse
|
20
|
Dimitriadis G, Neto JP, Kampff AR. t-SNE Visualization of Large-Scale Neural Recordings. Neural Comput 2018; 30:1750-1774. [PMID: 29894653 DOI: 10.1162/neco_a_01097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Electrophysiology is entering the era of big data. Multiple probes, each with hundreds to thousands of individual electrodes, are now capable of simultaneously recording from many brain regions. The major challenge confronting these new technologies is transforming the raw data into physiologically meaningful signals, that is, single unit spikes. Sorting the spike events of individual neurons from a spatiotemporally dense sampling of the extracellular electric field is a problem that has attracted much attention (Rey, Pedreira, & Quian Quiroga, 2015 ; Rossant et al., 2016 ) but is still far from solved. Current methods still rely on human input and thus become unfeasible as the size of the data sets grows exponentially. Here we introduce the [Formula: see text]-student stochastic neighbor embedding (t-SNE) dimensionality reduction method (Van der Maaten & Hinton, 2008 ) as a visualization tool in the spike sorting process. t-SNE embeds the [Formula: see text]-dimensional extracellular spikes ([Formula: see text] = number of features by which each spike is decomposed) into a low- (usually two-) dimensional space. We show that such embeddings, even starting from different feature spaces, form obvious clusters of spikes that can be easily visualized and manually delineated with a high degree of precision. We propose that these clusters represent single units and test this assertion by applying our algorithm on labeled data sets from both hybrid (Rossant et al., 2016 ) and paired juxtacellular/extracellular recordings (Neto et al., 2016 ). We have released a graphical user interface (GUI) written in Python as a tool for the manual clustering of the t-SNE embedded spikes and as a tool for an informed overview and fast manual curation of results from different clustering algorithms. Furthermore, the generated visualizations offer evidence in favor of the use of probes with higher density and smaller electrodes. They also graphically demonstrate the diverse nature of the sorting problem when spikes are recorded with different methods and arise from regions with different background spiking statistics.
Collapse
Affiliation(s)
| | - Joana P Neto
- Sainsbury Wellcome Centre, UCL, London W1T 4JG, U.K.
| | - Adam R Kampff
- Sainsbury Wellcome Centre, UCL, London W1T 4JG, U.K.
| |
Collapse
|
21
|
Angotzi GN, Malerba M, Boi F, Miele E, Maccione A, Amin H, Crepaldi M, Berdondini L. A Synchronous Neural Recording Platform for Multiple High-Resolution CMOS Probes and Passive Electrode Arrays. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:532-542. [PMID: 29877817 DOI: 10.1109/tbcas.2018.2792046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrophysiological signals in the brain are distributed over broad spatial and temporal scales. Monitoring these signals at multiple scales is fundamental in order to decipher how brain circuits operate and might dysfunction in disease. A possible strategy to enlarge the experimentally accessible spatial and temporal scales consists in combining the use of multiple probes with different resolutions and sensing areas. Here, we propose a neural recording system capable of simultaneous and synchronous acquisitions from a new generation of high-resolution CMOS probes (512 microelectrodes, 25 kHz/electrode whole-array sampling frequency) as well as from a custom-designed CMOS-based headstage. While CMOS probes can provide recordings from a large number of closely spaced electrodes on single-shaft devices, the CMOS-based headstage can be used to interface the wide range of available intra- or epi-cortical passive electrode array devices. The current platform was designed to simultaneously manage high-resolution recordings from up to four differently located CMOS probes and from a single 36-channels low-resolution passive electrode array device. The design, implementation, and performances for both ICs and for the FPGA-based interface are presented. Experiments on retina and neuronal culture preparations demonstrate the recording of neural spiking activity for both CMOS devices and the functionality of the system.
Collapse
|
22
|
Thukral A, Ershad F, Enan N, Rao Z, Yu C. Soft Ultrathin Silicon Electronics for Soft Neural Interfaces: A Review of Recent Advances of Soft Neural Interfaces Based on Ultrathin Silicon. IEEE NANOTECHNOLOGY MAGAZINE 2018. [DOI: 10.1109/mnano.2017.2781290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anish Thukral
- Mechanical Engineering, University of Houston, Houston, Texas United States
| | - Faheem Ershad
- Biomedical Engineering, University of Houston, Houston, Texas United States
| | - Nada Enan
- Biomedical Engineering, University of Houston, Houston, Texas United States
| | - Zhoulyu Rao
- Materials Science and Engineering, University of Houston, Houston, Texas United States
| | - Cunjiang Yu
- Mechanical Engineering, University of Houston, Houston, Texas United States
| |
Collapse
|
23
|
Fiáth R, Raducanu BC, Musa S, Andrei A, Lopez CM, van Hoof C, Ruther P, Aarts A, Horváth D, Ulbert I. A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings. Biosens Bioelectron 2018; 106:86-92. [PMID: 29414094 DOI: 10.1016/j.bios.2018.01.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/10/2018] [Accepted: 01/26/2018] [Indexed: 12/26/2022]
Abstract
In this study, we developed and validated a single-shank silicon-based neural probe with 128 closely-packed microelectrodes suitable for high-resolution extracellular recordings. The 8-mm-long, 100-µm-wide and 50-µm-thick implantable shank of the probe fabricated using a 0.13-µm complementary metal-oxide-semiconductor (CMOS) metallization technology contains square-shaped (20 × 20 µm2), low-impedance (~ 50 kΩ at 1 kHz) recording sites made of rough and porous titanium nitride which are arranged in a 32 × 4 dense array with an inter-electrode pitch of 22.5 µm. The electrophysiological performance of the probe was tested in in vivo experiments by implanting it acutely into neocortical areas of anesthetized animals (rats, mice and cats). We recorded local field potentials, single- and multi-unit activity with superior quality from all layers of the neocortex of the three animal models, even after reusing the probe in multiple (> 10) experiments. The low-impedance electrodes monitored spiking activity with high signal-to-noise ratio; the peak-to-peak amplitude of extracellularly recorded action potentials of well-separable neurons ranged from 0.1 mV up to 1.1 mV. The high spatial sampling of neuronal activity made it possible to detect action potentials of the same neuron on multiple, adjacent recording sites, allowing a more reliable single unit isolation and the investigation of the spatiotemporal dynamics of extracellular action potential waveforms in greater detail. Moreover, the probe was developed with the specific goal to use it as a tool for the validation of electrophysiological data recorded with high-channel-count, high-density neural probes comprising integrated CMOS circuitry.
Collapse
Affiliation(s)
- Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, H-1083 Budapest, Hungary.
| | - Bogdan Cristian Raducanu
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Heverlee, Belgium; Electrical Engineering Department (ESAT), KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| | - Silke Musa
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Heverlee, Belgium
| | - Alexandru Andrei
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Heverlee, Belgium
| | - Carolina Mora Lopez
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Heverlee, Belgium
| | - Chris van Hoof
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Heverlee, Belgium; Electrical Engineering Department (ESAT), KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, Georges-Koehler-Allee 80, D-79110 Freiburg, Germany
| | - Arno Aarts
- ATLAS Neuroengineering, Kapeldreef 75, B-3000 Leuven, Belgium
| | - Domonkos Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, H-1083 Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, H-1083 Budapest, Hungary
| |
Collapse
|
24
|
Ayub S, Gentet LJ, Fiáth R, Schwaerzle M, Borel M, David F, Barthó P, Ulbert I, Paul O, Ruther P. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies. Biomed Microdevices 2018; 19:49. [PMID: 28560702 DOI: 10.1007/s10544-017-0190-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-μm-wide, 65-μm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-μm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 μW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 μW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.
Collapse
Affiliation(s)
- Suleman Ayub
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.
| | - Luc J Gentet
- Team Waking, Lyon Neuroscience Research Center (CNRL), INSERM-U1028, CNRS-UMR5292, Bron, France.,University Lyon 1, Lyon, France
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest, Hungary
| | - Michael Schwaerzle
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Mélodie Borel
- Team Waking, Lyon Neuroscience Research Center (CNRL), INSERM-U1028, CNRS-UMR5292, Bron, France.,University Lyon 1, Lyon, France
| | - François David
- Team Waking, Lyon Neuroscience Research Center (CNRL), INSERM-U1028, CNRS-UMR5292, Bron, France.,University Lyon 1, Lyon, France
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, Hungary.,MTA TTK NAP B Sleep Oscillations Research Group, Magyar tudósok körútja 2, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest, Hungary
| | - Oliver Paul
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Scholvin J, Kinney JP, Bernstein JG, Moore-Kochlacs C, Kopell NJ, Fonstad CG, Boyden ES. Heterogeneous neural amplifier integration for scalable extracellular microelectrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:2789-2793. [PMID: 28268897 DOI: 10.1109/embc.2016.7591309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We here demonstrate multi-chip heterogeneous integration of microfabricated extracellular recording electrodes with neural amplifiers, highlighting a path to scaling electrode channel counts without the need for more complex monolithic integration. We characterize the noise and impedance performance of the heterogeneously integrated neural recording electrodes, and analyze the design parameters that enable the low-voltage neural input signals to co-exist with the high-frequency and high-voltage digital outputs on the same silicon substrate. This heterogeneous integration approach can enable future scaling efforts for microfabricated neural probes, and provides a design path for modular, fast, and independent scaling innovations in recording electrodes and neural amplifiers.
Collapse
|
26
|
Dick PC, Michel NL, Gray JR. Complex object motion represented by context-dependent correlated activity of visual interneurones. Physiol Rep 2017; 5:e13355. [PMID: 28716820 PMCID: PMC5532489 DOI: 10.14814/phy2.13355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022] Open
Abstract
Accurate and adaptive encoding of complex, dynamic visual information is critical for the survival of many animals. Studies across a range of taxa have investigated behavioral and neuronal responses to objects that represent a threat, such as a looming object approaching along a direct collision course. By investigating neural mechanisms of avoidance behaviors through recording multineuronal activity, it is possible to better understand how complex visual information is represented in circuits that ultimately drive behaviors. We used multichannel electrodes to record from the well-studied locust nervous system to explore how object motion is reflected in activity of correlated neural activity. We presented locusts (Locusta migratoria) with objects that moved along one of 11 unique trajectories and recorded from descending interneurons within the ventral nerve cord. Spike sorting resulted in 405 discriminated units across 20 locusts and we found that 75% of the units responded to some form of object motion. Dimensionality reduction through principal component (PCA) and dynamic factor (DFA) analyses revealed population vector responses within individuals and common firing trends across the pool of discriminated units, respectively. Population vector composition (PCA) varied with the stimulus and common trends (DFA) showed unique tuning related to changes in the visual size and trajectory of the object through time. These findings demonstrate that this well-described collision detection system is more complex than previously envisioned and will drive future experiments to explore fundamental principles of how visual information is processed through context-dependent dynamic ensembles of neurons to initiate and control complex behavior.
Collapse
Affiliation(s)
- Paul C Dick
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - John R Gray
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
27
|
Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. SCIENCE ADVANCES 2017; 3:e1601649. [PMID: 28630894 PMCID: PMC5466371 DOI: 10.1126/sciadv.1601649] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Bidirectional interfacing with the nervous system enables neuroscience research, diagnosis, and therapy. This two-way communication allows us to monitor the state of the brain and its composite networks and cells as well as to influence them to treat disease or repair/restore sensory or motor function. To provide the most stable and effective interface, the tools of the trade must bridge the soft, ion-rich, and evolving nature of neural tissue with the largely rigid, static realm of microelectronics and medical instruments that allow for readout, analysis, and/or control. In this Review, we describe how the understanding of neural signaling and material-tissue interactions has fueled the expansion of the available tool set. New probe architectures and materials, nanoparticles, dyes, and designer genetically encoded proteins push the limits of recording and stimulation lifetime, localization, and specificity, blurring the boundary between living tissue and engineered tools. Understanding these approaches, their modality, and the role of cross-disciplinary development will support new neurotherapies and prostheses and provide neuroscientists and neurologists with unprecedented access to the brain.
Collapse
Affiliation(s)
- Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Palo Alto Research Center, Palo Alto, CA 94304, USA
- Corresponding author.
| | - Huiliang Wang
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Lief Fenno
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - George G. Malliaras
- Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France
| |
Collapse
|
28
|
Hierlemann A. Direct Interfacing of Neurons to Highly Integrated Microsystems. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS 2017; 2017:199-204. [PMID: 28677939 PMCID: PMC5448667 DOI: 10.1109/memsys.2017.7863375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The use of large high-density transducer arrays enables fundamentally new neuroscientific insights through enabling high-throughput monitoring of action potentials of larger neuronal networks (> 1000 neurons) over extended time to see effects of disturbances or developmental effects, and through facilitating detailed investigations of neuronal signaling characteristics at subcellular level, for example, the study of axonal signal propagation that has been largely inaccessible to established methods. Applications include research in neural diseases and pharmacology.
Collapse
Affiliation(s)
- Andreas Hierlemann
- ETH Zurich, Department of Biosystems Science and Engineering, CH-4058, Basel, Switzerland
| |
Collapse
|
29
|
Guo L. The Pursuit of Chronically Reliable Neural Interfaces: A Materials Perspective. Front Neurosci 2016; 10:599. [PMID: 28082862 PMCID: PMC5186773 DOI: 10.3389/fnins.2016.00599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Brain-computer interfaces represent one of the most astonishing technologies in our era. However, the grand challenge of chronic instability and limited throughput of the electrode-tissue interface has significantly hindered the further development and ultimate deployment of such exciting technologies. A multidisciplinary research workforce has been called upon to respond to this engineering need. In this paper, I briefly review this multidisciplinary pursuit of chronically reliable neural interfaces from a materials perspective by analyzing the problem, abstracting the engineering principles, and summarizing the corresponding engineering strategies. I further draw my future perspectives by extending the proposed engineering principles.
Collapse
Affiliation(s)
- Liang Guo
- Department of Electrical and Computer Engineering, The Ohio State UniversityColumbus, OH, USA; Department of Neuroscience, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
30
|
Vassanelli S, Mahmud M. Trends and Challenges in Neuroengineering: Toward "Intelligent" Neuroprostheses through Brain-"Brain Inspired Systems" Communication. Front Neurosci 2016; 10:438. [PMID: 27721741 PMCID: PMC5034009 DOI: 10.3389/fnins.2016.00438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term "neurobiohybrids" indicating all those systems where such interaction is established. We argue that achieving a "high-level" communication and functional synergy between natural and artificial neuronal networks in vivo, will allow the development of a heterogeneous world of neurobiohybrids, which will include "living robots" but will also embrace "intelligent" neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and more specifically, on how deeply it should be allowed that brain processing is affected by implanted "intelligent" artificial systems. Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a "community building" perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes.
Collapse
Affiliation(s)
- Stefano Vassanelli
- NeuroChip Laboratory, Department of Biomedical Sciences, University of PadovaPadova, Italy
| | | |
Collapse
|
31
|
Fiáth R, Beregszászi P, Horváth D, Wittner L, Aarts AAA, Ruther P, Neves HP, Bokor H, Acsády L, Ulbert I. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe. J Neurophysiol 2016; 116:2312-2330. [PMID: 27535370 DOI: 10.1152/jn.00318.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/13/2016] [Indexed: 12/12/2022] Open
Abstract
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.
Collapse
Affiliation(s)
- Richárd Fiáth
- Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary.,School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Patrícia Beregszászi
- Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary
| | - Domonkos Horváth
- Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary.,School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Lucia Wittner
- Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Hercules P Neves
- Unitec Semicondutores, Ribeirão das Neves, Brazil.,Solid State Electronics, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden; and
| | - Hajnalka Bokor
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Ulbert
- Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; .,Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary
| |
Collapse
|
32
|
Scholvin J, Kinney JP, Bernstein JG, Moore-Kochlacs C, Kopell N, Fonstad CG, Boyden ES. Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording. IEEE Trans Biomed Eng 2016; 63:120-130. [PMID: 26699649 DOI: 10.1109/tbme.2015.2406113] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Neural recording electrodes are important tools for understanding neural codes and brain dynamics. Neural electrodes that are closely packed, such as in tetrodes, enable spatial oversampling of neural activity, which facilitates data analysis. Here we present the design and implementation of close-packed silicon microelectrodes to enable spatially oversampled recording of neural activity in a scalable fashion. METHODS Our probes are fabricated in a hybrid lithography process, resulting in a dense array of recording sites connected to submicron dimension wiring. RESULTS We demonstrate an implementation of a probe comprising 1000 electrode pads, each 9 × 9 μm, at a pitch of 11 μm. We introduce design automation and packaging methods that allow us to readily create a large variety of different designs. SIGNIFICANCE We perform neural recordings with such probes in the live mammalian brain that illustrate the spatial oversampling potential of closely packed electrode sites.
Collapse
Affiliation(s)
- Jorg Scholvin
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA
| | - Justin P Kinney
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA
| | - Jacob G Bernstein
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA
| | | | | | | | - Edward S Boyden
- MIT Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
33
|
Neto JP, Lopes G, Frazão J, Nogueira J, Lacerda P, Baião P, Aarts A, Andrei A, Musa S, Fortunato E, Barquinha P, Kampff AR. Validating silicon polytrodes with paired juxtacellular recordings: method and dataset. J Neurophysiol 2016; 116:892-903. [PMID: 27306671 PMCID: PMC5002440 DOI: 10.1152/jn.00103.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Cross-validating new methods for recording neural activity is necessary to accurately interpret and compare the signals they measure. Here we describe a procedure for precisely aligning two probes for in vivo "paired-recordings" such that the spiking activity of a single neuron is monitored with both a dense extracellular silicon polytrode and a juxtacellular micropipette. Our new method allows for efficient, reliable, and automated guidance of both probes to the same neural structure with micrometer resolution. We also describe a new dataset of paired-recordings, which is available online. We propose that our novel targeting system, and ever expanding cross-validation dataset, will be vital to the development of new algorithms for automatically detecting/sorting single-units, characterizing new electrode materials/designs, and resolving nagging questions regarding the origin and nature of extracellular neural signals.
Collapse
Affiliation(s)
- Joana P Neto
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Departamento de Ciência dos Materiais, CENIMAT/I3N and CEMOP/Uninova, Caparica, Portugal; Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Gonçalo Lopes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - João Frazão
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana Nogueira
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Pedro Lacerda
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Baião
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | | | - Elvira Fortunato
- Departamento de Ciência dos Materiais, CENIMAT/I3N and CEMOP/Uninova, Caparica, Portugal
| | - Pedro Barquinha
- Departamento de Ciência dos Materiais, CENIMAT/I3N and CEMOP/Uninova, Caparica, Portugal
| | - Adam R Kampff
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Sainsbury Wellcome Centre, University College London, London, United Kingdom
| |
Collapse
|
34
|
Hierlemann A, Müller J, Bakkum D, Franke F. Highly integrated CMOS microsystems to interface with neurons at subcellular resolution. TECHNICAL DIGEST. INTERNATIONAL ELECTRON DEVICES MEETING 2015; 2015:13.2.1-13.2.4. [PMID: 33897071 DOI: 10.1109/iedm.2015.7409688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CMOS high-density transducer arrays enable fundamentally new neuroscientific insights through, e.g., facilitating investigation of axonal signaling characteristics, with the "axonal" side of neuronal activity being largely inaccessible to established methods. They also enable high-throughput monitoring of potentially all action potentials in a larger neuronal network (> 1000 neurons) over extended time to see developmental effects or effects of disturbances. Applications include research in neural diseases and pharmacology.
Collapse
Affiliation(s)
- Andreas Hierlemann
- ETH Zurich, Department of Biosystems Science and Engineering CH-4058, Basel, Switzerland
| | - Jan Müller
- ETH Zurich, Department of Biosystems Science and Engineering CH-4058, Basel, Switzerland
| | - Douglas Bakkum
- ETH Zurich, Department of Biosystems Science and Engineering CH-4058, Basel, Switzerland
| | - Felix Franke
- ETH Zurich, Department of Biosystems Science and Engineering CH-4058, Basel, Switzerland
| |
Collapse
|