1
|
Chen Y, Liu Z, Yuan W, Lu S, Bai W, Lin Q, Mu J, Wang J, Wang H, Liang Y. Transgenerational and parental impacts of acrylamide exposure on Caenorhabditis elegans: Physiological, behavioral, and genetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124868. [PMID: 39216669 DOI: 10.1016/j.envpol.2024.124868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Acrylamide is pervasive, and its exposure poses numerous health risks. This study examines both the direct and transgenerational effects of acrylamide toxicity in Caenorhabditis elegans, focusing on physiological and behavioral parameters. Parental exposure to acrylamide compromised several aspects of nematode health, including lifespan, reproductive capacity, body dimensions, and motor and sensory functions. Notably, while exposure to low concentrations of acrylamide did not alter the physiological traits of the offspring-except for their learning and memory-these findings suggest a possible adaptive response to low-level exposure that could be inherited by subsequent generations. Furthermore, continued acrylamide exposure in the offspring intensified both physiological and perceptual toxicity. Detailed analysis revealed dose-dependent alterations in acrylamide's detoxification and metabolic pathways. In particular, it inhibits the gene gst-4, which encodes a crucial enzyme in detoxification, mitigates DNA damage induced by acrylamide, and highlights a potential therapeutic target to reduce its deleterious effects.
Collapse
Affiliation(s)
- Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Zihan Liu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Weijia Yuan
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Shan Lu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Weidong Bai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Haifang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
2
|
Li R, Xu Y, Wen X, Chen YH, Wang PZ, Zhao JL, Wu PP, Wu JJ, Liu H, Huang JH, Li SJ, Wu ZX. GCY-20 signaling controls suppression of Caenorhabditis elegans egg laying by moderate cold. Cell Rep 2024; 43:113708. [PMID: 38294902 DOI: 10.1016/j.celrep.2024.113708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/19/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Organisms sensing environmental cues and internal states and integrating the sensory information to control fecundity are essential for survival and proliferation. The present study finds that a moderate cold temperature of 11°C reduces egg laying in Caenorhabditis elegans. ASEL and AWC neurons sense the cold via GCY-20 signaling and act antagonistically on egg laying through the ASEL and AWC/AIA/HSN circuits. Upon cold stimulation, ASEL and AWC release glutamate to activate and inhibit AIA interneurons by acting on highly and lowly sensitive ionotropic GLR-2 and GLC-3 receptors, respectively. AIA inhibits HSN motor neuron activity via acetylcholinergic ACR-14 receptor signaling and suppresses egg laying. Thus, ASEL and AWC initiate and reduce the cold suppression of egg laying. ASEL's action on AIA and egg laying dominates AWC's action. The biased opposite actions of these neurons on egg laying provide animals with a precise adaptation of reproductive behavior to environmental temperatures.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wen
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuan-Hua Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hao Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Kuhara A, Takagaki N, Okahata M, Ohta A. Cold Tolerance in the Nematode Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:33-46. [PMID: 39289272 DOI: 10.1007/978-981-97-4584-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Organisms receive environmental information and respond accordingly in order to survive and proliferate. Temperature is the environmental factor of most immediate importance, as exceeding its life-supporting range renders essential biochemical reactions impossible. In this chapter, we introduce the mechanisms underlying cold tolerance and temperature acclimation in a model organism-the nematode Caenorhabditis elegans, at molecular and physiological levels. Recent investigations utilizing molecular genetics and neural calcium imaging have unveiled a novel perspective on cold tolerance within the nematode worm. Notably, the ASJ neuron, previously known to possess photosensitive properties, has been found to sense temperature and regulate the sperm and gut cell-mediated pathway underlying cold tolerance. We will also explore C. elegans' cold tolerance and cold acclimation at the molecular and tissue levels.
Collapse
Affiliation(s)
- Atsushi Kuhara
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Natsune Takagaki
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Misaki Okahata
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Akane Ohta
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
4
|
Monteil A, Guérineau NC, Gil-Nagel A, Parra-Diaz P, Lory P, Senatore A. New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN. Physiol Rev 2024; 104:399-472. [PMID: 37615954 DOI: 10.1152/physrev.00014.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.
Collapse
Affiliation(s)
- Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Antonio Gil-Nagel
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Paloma Parra-Diaz
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
5
|
Thapliyal S, Beets I, Glauser DA. Multisite regulation integrates multimodal context in sensory circuits to control persistent behavioral states in C. elegans. Nat Commun 2023; 14:3052. [PMID: 37236963 DOI: 10.1038/s41467-023-38685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Maintaining or shifting between behavioral states according to context is essential for animals to implement fitness-promoting strategies. How the integration of internal state, past experience and sensory inputs orchestrates persistent multidimensional behavioral changes remains poorly understood. Here, we show that C. elegans integrates environmental temperature and food availability over different timescales to engage in persistent dwelling, scanning, global or glocal search strategies matching thermoregulatory and feeding needs. Transition between states, in each case, involves regulating multiple processes including AFD or FLP tonic sensory neurons activity, neuropeptide expression and downstream circuit responsiveness. State-specific FLP-6 or FLP-5 neuropeptide signaling acts on a distributed set of inhibitory GPCR(s) to promote scanning or glocal search, respectively, bypassing dopamine and glutamate-dependent behavioral state control. Integration of multimodal context via multisite regulation in sensory circuits might represent a conserved regulatory logic for a flexible prioritization on the valence of multiple inputs when operating persistent behavioral state transitions.
Collapse
Affiliation(s)
- Saurabh Thapliyal
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|
6
|
Lenuzzi M, Witte H, Riebesell M, Rödelsperger C, Hong RL, Sommer RJ. Influence of environmental temperature on mouth-form plasticity in Pristionchus pacificus acts through daf-11-dependent cGMP signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:214-224. [PMID: 34379868 DOI: 10.1002/jez.b.23094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mouth-form plasticity in the nematode Pristionchus pacificus has become a powerful system to identify the genetic and molecular mechanisms associated with developmental (phenotypic) plasticity. In particular, the identification of developmental switch genes that can sense environmental stimuli and reprogram developmental processes has confirmed long-standing evolutionary theory. However, how these genes are involved in the direct sensing of the environment, or if the switch genes act downstream of another, primary environmental sensing mechanism, remains currently unknown. Here, we study the influence of environmental temperature on mouth-form plasticity. We find that environmental temperature does influence mouth-form plasticity in most of the 10 wild isolates of P. pacificus tested in this study. We used one of these strains, P. pacificus RSA635, for detailed molecular analysis. Using forward and reverse genetic technology including CRISPR/Cas9, we show that mutations in the guanylyl cyclase Ppa-daf-11, the Ppa-daf-25/AnkMy2, and the cyclic nucleotide-gated channel Ppa-tax-2 eliminate the response to elevated temperatures. Together, our study indicates that DAF-11, DAF-25, and TAX-2 have been co-opted for environmental sensing during mouth-form plasticity regulation in P. pacificus.
Collapse
Affiliation(s)
- Maša Lenuzzi
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ray L Hong
- Department of Biology, California State University, Northridge, California, USA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
7
|
Antinociceptive Activity of Vanilloids in Caenorhabditis elegans is Mediated by the Desensitization of the TRPV Channel OCR-2 and Specific Signal Transduction Pathways. Neurochem Res 2023; 48:1900-1911. [PMID: 36737562 DOI: 10.1007/s11064-023-03876-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Vanilloids, including capsaicin and eugenol, are ligands of transient receptor potential channel vanilloid subfamily member 1 (TRPV1). Prolonged treatment with vanilloids triggered the desensitization of TRPV1, leading to analgesic or antinociceptive effects. Caenorhabditis elegans (C. elegans) is a model organism expressing vanilloid receptor orthologs (e.g., OSM-9 and OCR-2) that are associated with behavioral and physiological processes, including sensory transduction. We have shown that capsaicin and eugenol hamper the nocifensive response to noxious heat in C. elegans. The objective of this study was to perform proteomics to identify proteins and pathways responsible for the induced phenotype and to identify capsaicin and eugenol targets using a thermal proteome profiling (TPP) strategy. The results indicated hierarchical differences following Reactome Pathway enrichment analyses between capsaicin- and eugenol-treated nematodes. However, both treated groups were associated mainly with signal transduction pathways, energy generation, biosynthesis and structural processes. Wnt signaling, a specific signal transduction pathway, is involved following treatment with both molecules. Wnt signaling pathway is noticeably associated with pain. The TPP results show that capsaicin and eugenol target OCR-2 but not OSM-9. Further protein-protein interaction (PPI) analyses showed other targets associated with enzymatic catalysis and calcium ion binding activity. The resulting data help to better understand the broad-spectrum pharmacological activity of vanilloids.
Collapse
|
8
|
Mobille Z, Follmann R, Vidal-Gadea A, Rosa E. Quantitative description of neuronal calcium dynamics in C. elegans' thermoreception. Biosystems 2023; 223:104814. [PMID: 36435352 DOI: 10.1016/j.biosystems.2022.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The dynamical mechanisms underlying thermoreception in the nematode C. elegans are studied with a mathematical model for the amphid finger-like ciliated (AFD) neurons. The equations, equipped with Arrhenius temperature factors, account for the worm's thermotaxis when seeking environments at its cultivation temperature, and for the AFD's calcium dynamics when exposed to both linearly ramping and oscillatory temperature stimuli. Calculations of the peak time for calcium responses during simulations of pulse-like temperature inputs are consistent with known behavioral time scales of C. elegans.
Collapse
Affiliation(s)
- Zachary Mobille
- Department of Physics, Illinois State University, Normal, 61790, IL, USA; Department of Mathematics, Illinois State University, Normal, 61790, IL, USA.
| | - Rosangela Follmann
- School of Information Technology, Illinois State University, Normal, 61790, IL, USA.
| | - Andrés Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, 61790, IL, USA.
| | - Epaminondas Rosa
- Department of Physics, Illinois State University, Normal, 61790, IL, USA; School of Biological Sciences, Illinois State University, Normal, 61790, IL, USA.
| |
Collapse
|
9
|
The Thermal Stress Coping Network of the Nematode Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms232314907. [PMID: 36499234 PMCID: PMC9737000 DOI: 10.3390/ijms232314907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Response to hyperthermia, highly conserved from bacteria to humans, involves transcriptional upregulation of genes involved in battling the cytotoxicity caused by misfolded and denatured proteins, with the aim of proteostasis restoration. C. elegans senses and responds to changes in growth temperature or noxious thermal stress by well-defined signaling pathways. Under adverse conditions, regulation of the heat shock response (HSR) in C. elegans is controlled by a single transcription factor, heat-shock factor 1 (HSF-1). HSR and HSF-1 in particular are proven to be central to survival under proteotoxic stress, with additional roles in normal physiological processes. For years, it was a common belief that upregulation of heat shock proteins (HSPs) by HSF-1 was the main and most important step toward thermotolerance. However, an ever-growing number of studies have shown that targets of HSF-1 involved in cytoskeletal and exoskeletal integrity preservation as well as other HSF-1 dependent and independent pathways are equally important. In this review, we follow the thermal stimulus from reception by the nematode nerve endings till the activation of cellular response programs. We analyze the different HSF-1 functions in HSR as well as all the recently discovered mechanisms that add to the knowledge of the heat stress coping network of C. elegans.
Collapse
|
10
|
Segref A, Vakkayil KL, Padvitski T, Li Q, Kroef V, Lormann J, Körner L, Finger F, Hoppe T. Thermosensation in Caenorhabditis elegans is linked to ubiquitin-dependent protein turnover via insulin and calcineurin signalling. Nat Commun 2022; 13:5874. [PMID: 36198694 PMCID: PMC9534930 DOI: 10.1038/s41467-022-33467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Organismal physiology and survival are influenced by environmental conditions and linked to protein quality control. Proteome integrity is achieved by maintaining an intricate balance between protein folding and degradation. In Caenorhabditis elegans, acute heat stress determines cell non-autonomous regulation of chaperone levels. However, how the perception of environmental changes, including physiological temperature, affects protein degradation remains largely unexplored. Here, we show that loss-of-function of dyf-1 in Caenorhabditis elegans associated with dysfunctional sensory neurons leads to defects in both temperature perception and thermal adaptation of the ubiquitin/proteasome system centered on thermosensory AFD neurons. Impaired perception of moderate temperature changes worsens ubiquitin-dependent proteolysis in intestinal cells. Brain-gut communication regulating protein turnover is mediated by upregulation of the insulin-like peptide INS-5 and inhibition of the calcineurin-regulated forkhead-box transcription factor DAF-16/FOXO. Our data indicate that perception of ambient temperature and its neuronal integration is important for the control of proteome integrity in complex organisms.
Collapse
Affiliation(s)
- Alexandra Segref
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Kavya L Vakkayil
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Tsimafei Padvitski
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Qiaochu Li
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Virginia Kroef
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Jakob Lormann
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Lioba Körner
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Fabian Finger
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
11
|
Wheeler NJ, Hallem EA, Zamanian M. Making sense of sensory behaviors in vector-borne helminths. Trends Parasitol 2022; 38:841-853. [PMID: 35931639 PMCID: PMC9481669 DOI: 10.1016/j.pt.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 10/16/2022]
Abstract
Migrations performed by helminths are impressive and diverse, and accumulating evidence shows that many are controlled by sophisticated sensory programs. The migrations of vector-borne helminths are particularly complex, requiring precise, stage-specific regulation. We review the contrasting states of knowledge on snail-borne schistosomes and mosquito-borne filarial nematodes. Rich observational data exist for the chemosensory behaviors of schistosomes, while the molecular sensory pathways in nematodes are well described. Recent investigations on the molecular mechanisms of sensation in schistosomes and filarial nematodes have revealed some features conserved within their respective phyla, but adaptations correlated with parasitism are pronounced. Technological developments are likely to extend these advances, and we forecast how these technologies may be applied.
Collapse
Affiliation(s)
- Nicolas J Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Raiders S, Klein M, Singhvi A. Multiplexing Thermotaxis Behavior Measurement in Caenorhabditis elegans. Bio Protoc 2022; 12:e4370. [PMID: 35530512 PMCID: PMC9018438 DOI: 10.21769/bioprotoc.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Thermotaxis behaviors in C. elegans exhibit experience-dependent plasticity of thermal preference memory. This behavior can be assayed either at population level, on linear temperature gradients, or at the individual animal level, by radial isothermal or microfluidic tracking of orientation. These behaviors are low-throughput as well as variable, due to the inherent sensitivity to environmental perturbations. To facilitate reproducible studies, we describe an updated apparatus design that enables simultaneous runs of three thermal preference assays, instead of single-run assays described previously. By enabling parallel runs of control and experimental conditions, this set-up enables more throughput and rigorous assessment of behavioral variability.
Collapse
Affiliation(s)
- Stephan Raiders
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, USA
| | - Mason Klein
- Department of Physics and Department of Biology, University of Miami, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, USA
- Department of Biological Structure, University of Washington School of Medicine, USA
| |
Collapse
|
13
|
Abstract
With a nervous system that has only a few hundred neurons, Caenorhabditis elegans was initially not regarded as a model for studies on learning. However, the collective effort of the C. elegans field in the past several decades has shown that the worm displays plasticity in its behavioral response to a wide range of sensory cues in the environment. As a bacteria-feeding worm, C. elegans is highly adaptive to the bacteria enriched in its habitat, especially those that are pathogenic and pose a threat to survival. It uses several common forms of behavioral plasticity that last for different amounts of time, including imprinting and adult-stage associative learning, to modulate its interactions with pathogenic bacteria. Probing the molecular, cellular and circuit mechanisms underlying these forms of experience-dependent plasticity has identified signaling pathways and regulatory insights that are conserved in more complex animals.
Collapse
Affiliation(s)
- He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Aburaya S, Yamauchi Y, Hashimoto T, Minakuchi H, Aoki W, Ueda M. Neuronal subclass-selective proteomic analysis in Caenorhabditis elegans. Sci Rep 2020; 10:13840. [PMID: 32792517 PMCID: PMC7426821 DOI: 10.1038/s41598-020-70692-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Neurons are categorised into many subclasses, and each subclass displays different morphology, expression patterns, connectivity and function. Changes in protein synthesis are critical for neuronal function. Therefore, analysing protein expression patterns in individual neuronal subclass will elucidate molecular mechanisms for memory and other functions. In this study, we used neuronal subclass-selective proteomic analysis with cell-selective bio-orthogonal non-canonical amino acid tagging. We selected Caenorhabditis elegans as a model organism because it shows diverse neuronal functions and simple neural circuitry. We performed proteomic analysis of all neurons or AFD subclass neurons that regulate thermotaxis in C. elegans. Mutant phenylalanyl tRNA synthetase (MuPheRS) was selectively expressed in all neurons or AFD subclass neurons, and azido-phenylalanine was incorporated into proteins in cells of interest. Azide-labelled proteins were enriched and proteomic analysis was performed. We identified 4,412 and 1,834 proteins from strains producing MuPheRS in all neurons and AFD subclass neurons, respectively. F23B2.10 (RING-type domain-containing protein) was identified only in neuronal cell-enriched proteomic analysis. We expressed GFP under the control of the 5' regulatory region of F23B2.10 and found GFP expression in neurons. We expect that more single-neuron specific proteomic data will clarify how protein composition and abundance affect characteristics of neuronal subclasses.
Collapse
Affiliation(s)
- Shunsuke Aburaya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuji Yamauchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Hashimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
- JST, Precursory Research for Embryonic Science and Technology (PREST), 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- JST, Core Research for Evolutionary Science and Technology (CREST), 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Kyoto Integrated Science and Technology Bio-Analysis Center, 134 Chudoji Minamimachi, Simogyo-ku, Kyoto, 600-8813, Japan.
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- JST, Core Research for Evolutionary Science and Technology (CREST), 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Kyoto Integrated Science and Technology Bio-Analysis Center, 134 Chudoji Minamimachi, Simogyo-ku, Kyoto, 600-8813, Japan
| |
Collapse
|
15
|
Byrne Rodgers J, Ryu WS. Targeted thermal stimulation and high-content phenotyping reveal that the C. elegans escape response integrates current behavioral state and past experience. PLoS One 2020; 15:e0229399. [PMID: 32218560 PMCID: PMC7100941 DOI: 10.1371/journal.pone.0229399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/05/2020] [Indexed: 12/03/2022] Open
Abstract
The ability to avoid harmful or potentially harmful stimuli can help an organism escape predators and injury, and certain avoidance mechanisms are conserved across the animal kingdom. However, how the need to avoid an imminent threat is balanced with current behavior and modified by past experience is not well understood. In this work we focused on rapidly increasing temperature, a signal that triggers an escape response in a variety of animals, including the nematode Caenorhabditis elegans. We have developed a noxious thermal response assay using an infrared laser that can be automatically controlled and targeted in order to investigate how C. elegans responds to noxious heat over long timescales and to repeated stimuli in various behavioral and sensory contexts. High-content phenotyping of behavior in individual animals revealed that the C. elegans escape response is multidimensional, with some features that extend for several minutes, and can be modulated by (i) stimulus amplitude; (ii) other sensory inputs, such as food context; (iii) long and short-term thermal experience; and (iv) the animal's current behavioral state.
Collapse
Affiliation(s)
- Jarlath Byrne Rodgers
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - William S. Ryu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Saro G, Lia AS, Thapliyal S, Marques F, Busch KE, Glauser DA. Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor. Cell Rep 2020; 30:397-408.e4. [DOI: 10.1016/j.celrep.2019.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/17/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
|
17
|
How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019; 212:25-51. [PMID: 31053616 PMCID: PMC6499529 DOI: 10.1534/genetics.118.300241] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
Caenorhabditis elegans lives in a complex habitat in which they routinely experience large fluctuations in temperature, and encounter physical obstacles that vary in size and composition. Their habitat is shared by other nematodes, by beneficial and harmful bacteria, and nematode-trapping fungi. Not surprisingly, these nematodes can detect and discriminate among diverse environmental cues, and exhibit sensory-evoked behaviors that are readily quantifiable in the laboratory at high resolution. Their ability to perform these behaviors depends on <100 sensory neurons, and this compact sensory nervous system together with powerful molecular genetic tools has allowed individual neuron types to be linked to specific sensory responses. Here, we describe the sensory neurons and molecules that enable C. elegans to sense and respond to physical stimuli. We focus primarily on the pathways that allow sensation of mechanical and thermal stimuli, and briefly consider this animal’s ability to sense magnetic and electrical fields, light, and relative humidity. As the study of sensory transduction is critically dependent upon the techniques for stimulus delivery, we also include a section on appropriate laboratory methods for such studies. This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies. We also describe the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues. These studies have shown that the protein partners that form mechanotransduction channels are drawn from multiple superfamilies of ion channel proteins, and that signal transduction pathways responsible for temperature sensing in C. elegans share many features with those responsible for phototransduction in vertebrates.
Collapse
|
18
|
Stegeman GW, Medina D, Cutter AD, Ryu WS. Neuro-genetic plasticity of Caenorhabditis elegans behavioral thermal tolerance. BMC Neurosci 2019; 20:26. [PMID: 31182018 PMCID: PMC6558720 DOI: 10.1186/s12868-019-0510-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Animal responses to thermal stimuli involve intricate contributions of genetics, neurobiology and physiology, with temperature variation providing a pervasive environmental factor for natural selection. Thermal behavior thus exemplifies a dynamic trait that requires non-trivial phenotypic summaries to appropriately capture the trait in response to a changing environment. To characterize the deterministic and plastic components of thermal responses, we developed a novel micro-droplet assay of nematode behavior that permits information-dense summaries of dynamic behavioral phenotypes as reaction norms in response to increasing temperature (thermal tolerance curves, TTC). RESULTS We found that C. elegans TTCs shift predictably with rearing conditions and developmental stage, with significant differences between distinct wildtype genetic backgrounds. Moreover, after screening TTCs for 58 C. elegans genetic mutant strains, we determined that genes affecting thermosensation, including cmk-1 and tax-4, potentially play important roles in the behavioral control of locomotion at high temperature, implicating neural decision-making in TTC shape rather than just generalized physiological limits. However, expression of the transient receptor potential ion channel TRPA-1 in the nervous system is not sufficient to rescue rearing-dependent plasticity in TTCs conferred by normal expression of this gene, indicating instead a role for intestinal signaling involving TRPA-1 in the adaptive plasticity of thermal performance. CONCLUSIONS These results implicate nervous system and non-nervous system contributions to behavior, in addition to basic cellular physiology, as key mediators of evolutionary responses to selection from temperature variation in nature.
Collapse
Affiliation(s)
- Gregory W Stegeman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Denise Medina
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Department of Physics, University of Toronto, Toronto, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.
| | - William S Ryu
- Department of Physics, University of Toronto, Toronto, Canada.
- Donnelly Centre, University of Toronto, Toronto, ON, M5S3E1, Canada.
| |
Collapse
|
19
|
Ao Y, Zeng K, Yu B, Miao Y, Hung W, Yu Z, Xue Y, Tan TTY, Xu T, Zhen M, Yang X, Zhang Y, Gao S. An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit. ACS NANO 2019; 13:3373-3386. [PMID: 30681836 DOI: 10.1021/acsnano.8b09270] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Near-infrared (NIR) light penetrates tissue deeply, but its application to motor behavior stimulation has been limited by the lack of known genetic NIR light-responsive sensors. We designed and synthesized a Yb3+/Er3+/Ca2+-based lanthanide-doped upconversion nanoparticle (UCNP) that effectively converts 808 nm NIR light to green light emission. This UCNP is compatible with Chrimson, a cation channel activated by green light; as such, it can be used in the optogenetic manipulation of the motor behaviors of Caenorhabditis elegans. We show that this UCNP effectively activates Chrimson-expressing, inhibitory GABAergic motor neurons, leading to reduced action potential firing in the body wall muscle and resulting in locomotion inhibition. The UCNP also activates the excitatory glutamatergic DVC interneuron, leading to potentiated muscle action potential bursts and active reversal locomotion. Moreover, this UCNP exhibits negligible toxicity in neural development, growth, and reproduction, and the NIR energy required to elicit these behavioral and physiological responses does not activate the animal's temperature response. This study shows that UCNP provides a useful integrated optogenetic toolset, which may have wide applications in other experimental systems.
Collapse
Affiliation(s)
- Yanxiao Ao
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- National Engineering Research Center for Nanomedicine , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Kanghua Zeng
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Bin Yu
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yu Miao
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- National Engineering Research Center for Nanomedicine , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital , Toronto , Ontario M5G 1X5 , Canada
| | - Zhongzheng Yu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637459 Singapore
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Timothy Thatt Yang Tan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637459 Singapore
| | - Tao Xu
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital , Toronto , Ontario M5G 1X5 , Canada
| | - Xiangliang Yang
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- National Engineering Research Center for Nanomedicine , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yan Zhang
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- National Engineering Research Center for Nanomedicine , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Shangbang Gao
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, International Research Center for Sensory Biology and Technology of the Ministry of Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|
20
|
Bryant AS, Hallem EA. Terror in the dirt: Sensory determinants of host seeking in soil-transmitted mammalian-parasitic nematodes. Int J Parasitol Drugs Drug Resist 2018; 8:496-510. [PMID: 30396862 PMCID: PMC6287541 DOI: 10.1016/j.ijpddr.2018.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Infection with gastrointestinal parasitic nematodes is a major cause of chronic morbidity and economic burden around the world, particularly in low-resource settings. Some parasitic nematode species, including the human-parasitic threadworm Strongyloides stercoralis and human-parasitic hookworms in the genera Ancylostoma and Necator, feature a soil-dwelling infective larval stage that seeks out hosts for infection using a variety of host-emitted sensory cues. Here, we review our current understanding of the behavioral responses of soil-dwelling infective larvae to host-emitted sensory cues, and the molecular and cellular mechanisms that mediate these responses. We also discuss the development of methods for transgenesis and CRISPR/Cas9-mediated targeted mutagenesis in Strongyloides stercoralis and the closely related rat parasite Strongyloides ratti. These methods have established S. stercoralis and S. ratti as genetic model systems for gastrointestinal parasitic nematodes and are enabling more detailed investigations into the neural mechanisms that underlie the sensory-driven behaviors of this medically and economically important class of parasites.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Bryant AS, Ruiz F, Gang SS, Castelletto ML, Lopez JB, Hallem EA. A Critical Role for Thermosensation in Host Seeking by Skin-Penetrating Nematodes. Curr Biol 2018; 28:2338-2347.e6. [PMID: 30017486 PMCID: PMC6091634 DOI: 10.1016/j.cub.2018.05.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are a major source of neglected tropical disease [1-6]. Their life cycle includes an infective third-larval (iL3) stage that searches for hosts to infect in a poorly understood process that involves both thermal and olfactory cues. Here, we investigate the temperature-driven behaviors of skin-penetrating iL3s, including the human-parasitic threadworm Strongyloides stercoralis and the human-parasitic hookworm Ancylostoma ceylanicum. We show that human-parasitic iL3s respond robustly to thermal gradients. Like the free-living nematode Caenorhabditis elegans, human-parasitic iL3s show both positive and negative thermotaxis, and the switch between them is regulated by recent cultivation temperature [7]. When engaging in positive thermotaxis, iL3s migrate toward temperatures approximating mammalian body temperature. Exposing iL3s to a new cultivation temperature alters the thermal switch point between positive and negative thermotaxis within hours, similar to the timescale of thermal plasticity in C. elegans [7]. Thermal plasticity in iL3s may enable them to optimize host finding on a diurnal temperature cycle. We show that temperature-driven responses can be dominant in multisensory contexts such that, when thermal drive is strong, iL3s preferentially engage in temperature-driven behaviors despite the presence of an attractive host odorant. Finally, targeted mutagenesis of the S. stercoralis tax-4 homolog abolishes heat seeking, providing the first evidence that parasitic host-seeking behaviors are generated through an adaptation of sensory cascades that drive environmental navigation in C. elegans [7-10]. Together, our results provide insight into the behavioral strategies and molecular mechanisms that allow skin-penetrating nematodes to target humans.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacqueline B Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Yuan S, Sharma AK, Richart A, Lee J, Kim BE. CHCA-1 is a copper-regulated CTR1 homolog required for normal development, copper accumulation, and copper-sensing behavior in Caenorhabditis elegans. J Biol Chem 2018; 293:10911-10925. [PMID: 29784876 DOI: 10.1074/jbc.ra118.003503] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 01/11/2023] Open
Abstract
Copper plays key roles in catalytic and regulatory biochemical reactions essential for normal growth, development, and health. Dietary copper deficiencies or mutations in copper homeostasis genes can lead to abnormal musculoskeletal development, cognitive disorders, and poor growth. In yeast and mammals, copper is acquired through the activities of the CTR1 family of high-affinity copper transporters. However, the mechanisms of systemic responses to dietary or tissue-specific copper deficiency remain unclear. Here, taking advantage of the animal model Caenorhabditis elegans for studying whole-body copper homeostasis, we investigated the role of a C. elegans CTR1 homolog, CHCA-1, in copper acquisition and in worm growth, development, and behavior. Using sequence homology searches, we identified 10 potential orthologs to mammalian CTR1 Among these genes, we found that chca-1, which is transcriptionally up-regulated in the intestine and hypodermis of C. elegans during copper deficiency, is required for normal growth, reproduction, and maintenance of systemic copper balance under copper deprivation. The intestinal copper transporter CUA-1 normally traffics to endosomes to sequester excess copper, and we found here that loss of chca-1 caused CUA-1 to mislocalize to the basolateral membrane under copper overload conditions. Moreover, animals lacking chca-1 exhibited significantly reduced copper avoidance behavior in response to toxic copper conditions compared with WT worms. These results establish that CHCA-1-mediated copper acquisition in C. elegans is crucial for normal growth, development, and copper-sensing behavior.
Collapse
Affiliation(s)
- Sai Yuan
- From the Department of Animal and Avian Sciences and
| | | | | | - Jaekwon Lee
- the Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Byung-Eun Kim
- From the Department of Animal and Avian Sciences and .,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland 20742 and
| |
Collapse
|
23
|
Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Arch 2018; 470:745-759. [PMID: 29484488 PMCID: PMC5945325 DOI: 10.1007/s00424-018-2120-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/03/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
Abstract
The ability to sense temperature is crucial for the survival of an organism. Temperature influences all biological operations, from rates of metabolic reactions to protein folding, and broad behavioral functions, from feeding to breeding, and other seasonal activities. The evolution of specialized thermosensory adaptations has enabled animals to inhabit extreme temperature niches and to perform specific temperature-dependent behaviors. The function of sensory neurons depends on the participation of various types of ion channels. Each of the channels involved in neuronal excitability, whether through the generation of receptor potential, action potential, or the maintenance of the resting potential have temperature-dependent properties that can tune the neuron's response to temperature stimuli. Since the function of all proteins is affected by temperature, animals need adaptations not only for detecting different temperatures, but also for maintaining sensory ability at different temperatures. A full understanding of the molecular mechanism of thermosensation requires an investigation of all channel types at each step of thermosensory transduction. A fruitful avenue of investigation into how different molecules can contribute to the fine-tuning of temperature sensitivity is to study the specialized adaptations of various species. Given the diversity of molecular participants at each stage of sensory transduction, animals have a toolkit of channels at their disposal to adapt their thermosensitivity to their particular habitats or behavioral circumstances.
Collapse
Affiliation(s)
- Lydia J Hoffstaetter
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
| |
Collapse
|
24
|
Hawk JD, Calvo AC, Liu P, Almoril-Porras A, Aljobeh A, Torruella-Suárez ML, Ren I, Cook N, Greenwood J, Luo L, Wang ZW, Samuel ADT, Colón-Ramos DA. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory. Neuron 2018; 97:356-367.e4. [PMID: 29307713 PMCID: PMC5806692 DOI: 10.1016/j.neuron.2017.12.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/24/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Josh D Hawk
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Ana C Calvo
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Agustin Almoril-Porras
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Ahmad Aljobeh
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - María Luisa Torruella-Suárez
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Ivy Ren
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Nathan Cook
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA
| | - Joel Greenwood
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Linjiao Luo
- Key Laboratory of Modern Acoustics, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, PO Box 9812, New Haven, CT 06536-0812, USA; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Blvd del Valle, San Juan, Puerto Rico.
| |
Collapse
|
25
|
A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), Caenorhabditis elegans PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells. Mol Cell Biol 2017; 37:MCB.00192-17. [PMID: 28716951 DOI: 10.1128/mcb.00192-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Ca2+- and diacylglycerol (DAG)-activated protein kinase C (cPKC) promotes learning and behavioral plasticity. However, knowledge of in vivo regulation and exact functions of cPKCs that affect behavior is limited. We show that PKC-2, a Caenorhabditis elegans cPKC, is essential for a complex behavior, thermotaxis. C. elegans memorizes a nutrient-associated cultivation temperature (Tc ) and migrates along the Tc within a 17 to 25°C gradient. pkc-2 gene disruption abrogated thermotaxis; a PKC-2 transgene, driven by endogenous pkc-2 promoters, restored thermotaxis behavior in pkc-2-/- animals. Cell-specific manipulation of PKC-2 activity revealed that thermotaxis is controlled by cooperative PKC-2-mediated signaling in both AFD sensory neurons and intestinal cells. Cold-directed migration (cryophilic drive) precedes Tc tracking during thermotaxis. Analysis of temperature-directed behaviors elicited by persistent PKC-2 activation or inhibition in AFD (or intestine) disclosed that PKC-2 regulates initiation and duration of cryophilic drive. In AFD neurons, PKC-2 is a Ca2+ sensor and signal amplifier that operates downstream from cyclic GMP-gated cation channels and distal guanylate cyclases. UNC-18, which regulates neurotransmitter and neuropeptide release from synaptic vesicles, is a critical PKC-2 effector in AFD. UNC-18 variants, created by mutating Ser311 or Ser322, disrupt thermotaxis and suppress PKC-2-dependent cryophilic migration.
Collapse
|
26
|
Memory of recent oxygen experience switches pheromone valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:4195-4200. [PMID: 28373553 DOI: 10.1073/pnas.1618934114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals adjust their behavioral priorities according to momentary needs and prior experience. We show that Caenorhabditis elegans changes how it processes sensory information according to the oxygen environment it experienced recently. C. elegans acclimated to 7% O2 are aroused by CO2 and repelled by pheromones that attract animals acclimated to 21% O2 This behavioral plasticity arises from prolonged activity differences in a circuit that continuously signals O2 levels. A sustained change in the activity of O2-sensing neurons reprograms the properties of their postsynaptic partners, the RMG hub interneurons. RMG is gap-junctionally coupled to the ASK and ADL pheromone sensors that respectively drive pheromone attraction and repulsion. Prior O2 experience has opposite effects on the pheromone responsiveness of these neurons. These circuit changes provide a physiological correlate of altered pheromone valence. Our results suggest C. elegans stores a memory of recent O2 experience in the RMG circuit and illustrate how a circuit is flexibly sculpted to guide behavioral decisions in a context-dependent manner.
Collapse
|
27
|
Kanazawa M, Nanri T, Saigusa M. Anhydrobiosis Affects Thermal Habituation in the Bdelloid Rotifer, Adineta sp. Zoolog Sci 2017; 34:81-85. [DOI: 10.2108/zs160057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mai Kanazawa
- Department of Biology, Faculty of Science, Okayama University, Tsushima 3-1-1, Okayama-Kitaku 700-8530, Japan
| | - Takahiro Nanri
- Section of Research and Education, The Biosphere Project (Non-Profit Organization), Tsushima-Fukui 1-8-71, Okayama-Kitaku 700-0080, Japan
| | - Masayuki Saigusa
- Section of Research and Education, The Biosphere Project (Non-Profit Organization), Tsushima-Fukui 1-8-71, Okayama-Kitaku 700-0080, Japan
| |
Collapse
|
28
|
Li K, Gong Z. Feeling Hot and Cold: Thermal Sensation in Drosophila. Neurosci Bull 2016; 33:317-322. [PMID: 27995563 DOI: 10.1007/s12264-016-0087-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022] Open
Abstract
Sensing environmental temperature is crucial for animal life. The model animal, Drosophila melanogaster, can be investigated with a large number of genetic tools, which have greatly facilitated studies of the cellular and molecular mechanisms of thermal sensing. At the molecular level, a group of proteins, including Transient Receptor Potential channels and ionotropic receptors, have been characterized as potential thermal sensors in both larval and adult Drosophila. At the cellular and circuit levels, peripheral and central thermosensory neurons have been identified. More interestingly, thermal information has been found to be specifically encoded by specific central neurons. In this short review, we mainly survey the progress in understanding the molecular mechanisms of thermosensation and the neuronal mechanisms of thermal information processing in the brain of Drosophila. Other recent temperature-related findings such as its impact on neurosecretion and thermotactic behavior in Drosophila are also introduced.
Collapse
Affiliation(s)
- Kun Li
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Ujisawa T, Ohta A, Uda-Yagi M, Kuhara A. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans. PLoS One 2016; 11:e0165518. [PMID: 27788246 PMCID: PMC5082853 DOI: 10.1371/journal.pone.0165518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Temperature sensation by the nervous system is essential for life and proliferation of animals. The molecular-physiological mechanisms underlying temperature signaling have not been fully elucidated. We show here that diverse regulatory machinery underlies temperature sensation through trimeric G-protein signaling in the nematode Caenorhabditis elegans. Molecular-genetic studies demonstrated that cold tolerance is regulated by additive functions of three Gα proteins in a temperature-sensing neuron, ASJ, which is also known to be a light-sensing neuron. Optical recording of calcium concentration in ASJ upon temperature-changes demonstrated that three Gα proteins act in different aspects of temperature signaling. Calcium concentration changes in ASJ upon temperature change were unexpectedly decreased in a mutant defective in phosphodiesterase, which is well known as a negative regulator of calcium increase. Together, these data demonstrate commonalities and differences in the molecular components concerned with light and temperature signaling in a single sensory neuron.
Collapse
Affiliation(s)
- Tomoyo Ujisawa
- Laboratory of Molecular and Cellular Regulation, Graduate school of Natural Sciencey, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
| | - Akane Ohta
- Laboratory of Molecular and Cellular Regulation, Graduate school of Natural Sciencey, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Laboratory of Molecular and Cellular Regulation, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- * E-mail: ; (AK); (AO)
| | - Misato Uda-Yagi
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
| | - Atsushi Kuhara
- Laboratory of Molecular and Cellular Regulation, Graduate school of Natural Sciencey, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Laboratory of Molecular and Cellular Regulation, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
- * E-mail: ; (AK); (AO)
| |
Collapse
|
30
|
Sperm Affects Head Sensory Neuron in Temperature Tolerance of Caenorhabditis elegans. Cell Rep 2016; 16:56-65. [PMID: 27320929 DOI: 10.1016/j.celrep.2016.05.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
Tolerance to environmental temperature change is essential for the survival and proliferation of animals. The process is controlled by various body tissues, but the orchestration of activity within the tissue network has not been elucidated in detail. Here, we show that sperm affects the activity of temperature-sensing neurons (ASJ) that control cold tolerance in Caenorhabditis elegans. Genetic impairment of sperm caused abnormal cold tolerance, which was unexpectedly restored by impairment of temperature signaling in ASJ neurons. Calcium imaging revealed that ASJ neuronal activity in response to temperature was decreased in sperm mutant gsp-4 with impaired protein phosphatase 1 and rescued by expressing gsp-4 in sperm. Genetic analysis revealed a feedback network in which ASJ neuronal activity regulates the intestine through insulin and a steroid hormone, which then affects sperm and, in turn, controls ASJ neuronal activity. Thus, we propose that feedback between sperm and a sensory neuron mediating temperature tolerance.
Collapse
|
31
|
Gang SS, Hallem EA. Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol 2016; 208:23-32. [PMID: 27211240 DOI: 10.1016/j.molbiopara.2016.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
Abstract
The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors.
Collapse
Affiliation(s)
- Spencer S Gang
- Department of Microbiology, Immunology, and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
32
|
Thies J, Neutzler V, O'Leary F, Liu H. Differential Effects of TRPA and TRPV Channels on Behaviors of Caenorhabditis elegans. J Exp Neurosci 2016; 10:71-5. [PMID: 27168724 PMCID: PMC4857791 DOI: 10.4137/jen.s32837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 11/27/2022] Open
Abstract
TRPA and TRPV ion channels are members of the transient receptor potential (TRP) cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans, the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation.
Collapse
Affiliation(s)
- Jennifer Thies
- Department of Biology, Morosky College of Health Professions and Sciences, Gannon University, Erie, PA, USA
| | - Vanessa Neutzler
- Department of Biological Sciences, St. Edward's University, Austin, TX, USA
| | - Fidelma O'Leary
- Department of Biological Sciences, St. Edward's University, Austin, TX, USA
| | - He Liu
- Department of Biology, Morosky College of Health Professions and Sciences, Gannon University, Erie, PA, USA
| |
Collapse
|
33
|
cGMP Signalling Mediates Water Sensation (Hydrosensation) and Hydrotaxis in Caenorhabditis elegans. Sci Rep 2016; 6:19779. [PMID: 26891989 PMCID: PMC4759535 DOI: 10.1038/srep19779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022] Open
Abstract
Animals have developed the ability to sense the water content in their habitats, including hygrosensation (sensing humidity in the air) and hydrosensation (sensing the water content in other microenvironments), and they display preferences for specific water contents that influence their mating, reproduction and geographic distribution. We developed and employed four quantitative behavioural test paradigms to investigate the molecular and cellular mechanisms underlying sensing the water content in an agar substrate (hydrosensation) and hydrotaxis in Caenorhabditis elegans. By combining a reverse genetic screen with genetic manipulation, optogenetic neuronal manipulation and in vivo Ca2+ imaging, we demonstrate that adult worms avoid the wetter areas of agar plates and hypo-osmotic water droplets. We found that the cGMP signalling pathway in ciliated sensory neurons is involved in hydrosensation and hydrotaxis in Caenorhabditis elegans.
Collapse
|