1
|
Zhang YD, Shi DD, Wang Z. Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models. Neurosci Bull 2024:10.1007/s12264-024-01252-9. [PMID: 38982026 DOI: 10.1007/s12264-024-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 07/11/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, 200030, China.
| |
Collapse
|
2
|
Hosoya M, Kurihara S, Koyama H, Komune N. Recent advances in Otology: Current landscape and future direction. Auris Nasus Larynx 2024; 51:605-616. [PMID: 38552424 DOI: 10.1016/j.anl.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 05/12/2024]
Abstract
Hearing is an essential sensation, and its deterioration leads to a significant decrease in the quality of life. Thus, great efforts have been made by otologists to preserve and recover hearing. Our knowledge regarding the field of otology has progressed with advances in technology, and otologists have sought to develop novel approaches in the field of otologic surgery to achieve higher hearing recovery or preservation rates. This requires knowledge regarding the anatomy of the temporal bone and the physiology of hearing. Basic research in the field of otology has progressed with advances in molecular biology and genetics. This review summarizes the current views and recent advances in the field of otology and otologic surgery, especially from the viewpoint of young Japanese clinician-scientists, and presents the perspectives and future directions for several topics in the field of otology. This review will aid next-generation researchers in understanding the recent advances and future challenges in the field of otology.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Noritaka Komune
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Sakai Y, Okabe Y, Itai G, Shiozawa S. An efficient evaluation system for factors affecting the genome editing efficiency in mouse. Exp Anim 2023; 72:526-534. [PMID: 37407493 PMCID: PMC10658088 DOI: 10.1538/expanim.23-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Genome editing technology is widely used in the field of laboratory animal science for the production of genetic disease models and the analysis of gene function. One of the major technical problems in genome editing is the low efficiency of precise knock-in by homologous recombination compared to simple knockout via non-homologous end joining. Many studies have focused on this issue, and various solutions have been proposed; however, they have yet to be fully resolved. In this study, we established a system that can easily determine the genotype at the mouse (Mus musculus) Tyr gene locus for genome editing both in vitro and in vivo. In this genome editing system, by designing the Cas9 cleavage site and donor template, wild-type, knockout, and knock-in genotypes can be distinguished by restriction fragment length polymorphisms of PCR products. Moreover, the introduction of the H420R mutation in tyrosinase allows the determination of knock-in mice with specific coat color patterns. Using this system, we evaluated the effects of small-molecule compounds on the efficiency of genome editing in mouse embryos. Consequently, we successfully identified a small-molecule compound that improves knock-in efficiency in genome editing in mouse embryos. Thus, this genome editing system is suitable for screening compounds that can improve knock-in efficiency.
Collapse
Affiliation(s)
- Yusuke Sakai
- Institute for Disease Modeling, Kurume University School of Medicine, 67 Asahimachi, Kurume city, Fukuoka 830-0011, Japan
| | - Yuri Okabe
- Institute for Disease Modeling, Kurume University School of Medicine, 67 Asahimachi, Kurume city, Fukuoka 830-0011, Japan
| | - Gen Itai
- Center for Integrated Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- JAC Inc., 1-2-7 Higashiyama, Meguro-ku, Tokyo 153-0043, Japan
| | - Seiji Shiozawa
- Institute for Disease Modeling, Kurume University School of Medicine, 67 Asahimachi, Kurume city, Fukuoka 830-0011, Japan
- Center for Integrated Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. Curr Top Behav Neurosci 2023; 63:315-362. [PMID: 36607528 DOI: 10.1007/7854_2022_407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.
Collapse
|
6
|
3R measures in facilities for the production of genetically modified rodents. Lab Anim (NY) 2022; 51:162-177. [PMID: 35641635 DOI: 10.1038/s41684-022-00978-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
Sociocultural changes in the human-animal relationship have led to increasing demands for animal welfare in biomedical research. The 3R concept is the basis for bringing this demand into practice: Replace animal experiments with alternatives where possible, Reduce the number of animals used to a scientifically justified minimum and Refine the procedure to minimize animal harm. The generation of gene-modified sentient animals such as mice and rats involves many steps that include various forms of manipulation. So far, no coherent analysis of the application of the 3Rs to gene manipulation has been performed. Here we provide guidelines from the Committee on Genetics and Breeding of Laboratory Animals of the German Society for Laboratory Animal Science to implement the 3Rs in every step during the generation of genetically modified animals. We provide recommendations for applying the 3Rs as well as success/intervention parameters for each step of the process, from experiment planning to choice of technology, harm-benefit analysis, husbandry conditions, management of genetically modified lines and actual procedures. We also discuss future challenges for animal welfare in the context of developing technologies. Taken together, we expect that our comprehensive analysis and our recommendations for the appropriate implementation of the 3Rs to technologies for genetic modifications of rodents will benefit scientists from a wide range of disciplines and will help to improve the welfare of a large number of laboratory animals worldwide.
Collapse
|
7
|
Calapai A, Cabrera-Moreno J, Moser T, Jeschke M. Flexible auditory training, psychophysics, and enrichment of common marmosets with an automated, touchscreen-based system. Nat Commun 2022; 13:1648. [PMID: 35347139 PMCID: PMC8960775 DOI: 10.1038/s41467-022-29185-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Devising new and more efficient protocols to analyze the phenotypes of non-human primates, as well as their complex nervous systems, is rapidly becoming of paramount importance. This is because with genome-editing techniques, recently adopted to non-human primates, new animal models for fundamental and translational research have been established. One aspect in particular, namely cognitive hearing, has been difficult to assess compared to visual cognition. To address this, we devised autonomous, standardized, and unsupervised training and testing of auditory capabilities of common marmosets with a cage-based standalone, wireless system. All marmosets tested voluntarily operated the device on a daily basis and went from naïve to experienced at their own pace and with ease. Through a series of experiments, here we show, that animals autonomously learn to associate sounds with images; to flexibly discriminate sounds, and to detect sounds of varying loudness. The developed platform and training principles combine in-cage training of common marmosets for cognitive and psychoacoustic assessment with an enriched environment that does not rely on dietary restriction or social separation, in compliance with the 3Rs principle.
Collapse
Affiliation(s)
- A Calapai
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus "Primate Cognition", Göttingen, Germany
| | - J Cabrera-Moreno
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075, Göttingen, Germany
| | - T Moser
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, 37075, Göttingen, Germany
- Auditory Neuroscience Group and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - M Jeschke
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany.
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Göttingen, Germany.
- Leibniz ScienceCampus "Primate Cognition", Göttingen, Germany.
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
8
|
Invasive Research on Non-Human Primates-Time to Turn the Page. Animals (Basel) 2021; 11:ani11102999. [PMID: 34680019 PMCID: PMC8532895 DOI: 10.3390/ani11102999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Despite increasing ethical concerns, primates are still often used in invasive research (i.e., laboratory research that causes body manipulations causing them pain or distress and not aimed at directly improving their well-being). Here, we will review previous studies showing that primates have complex behaviour and cognition, and that they suffer long-term consequences after being used in invasive research. We will discuss the ethical problems that invasive research on primates posit, the legal protection that they are, to date, granted in different countries, and summarize the past and current attempts to ban this kind of research on primates. We will conclude why, in our opinion, invasive research on primates should be banned, and non-invasive methods should be considered the only possible approach to the study of primates. Abstract Invasive research on primates (i.e., laboratory research that implies body manipulations causing pain or distress that is not aimed to directly improve the individuals’ well-being) has a long history. Although some invasive studies have allowed answering research questions that we could not have addressed with other methods (or at least not as quickly), the use of primates in invasive research also raises ethical concerns. In this review, we will discuss (i) recent advances in the study of primates that show evidence of complex behaviour and cognition, (ii) welfare issues that might arise when using primates in invasive research, (iii) the main ethical issues that have been raised about invasive research on primates, (iv) the legal protection that primates are granted in several countries, with a special focus on the principle of the 3Rs, and (v) previous and current attempts to ban the use of primates in invasive research. Based on this analysis, we suggest that the importance of a research question cannot justify the costs of invasive research on primates, and that non-invasive methods should be considered the only possible approach in the study of primates.
Collapse
|
9
|
Huang M, Yang J, Li P, Chen Y. Embryo-Engineered Nonhuman Primate Models: Progress and Gap to Translational Medicine. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9898769. [PMID: 34549187 PMCID: PMC8404551 DOI: 10.34133/2021/9898769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/01/2021] [Indexed: 12/17/2022]
Abstract
Animal models of human diseases are vital in better understanding the mechanism of pathogenesis and essential for evaluating and validating potential therapeutic interventions. As close relatives of humans, nonhuman primates (NHPs) play an increasingly indispensable role in advancing translational medicine research. In this review, we summarized the progress of NHP models generated by embryo engineering, analyzed their unique advantages in mimicking clinical patients, and discussed the remaining gap between basic research of NHP models to translational medicine.
Collapse
Affiliation(s)
- Mei Huang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Jiao Yang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Peng Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
10
|
Yu W, Li X, Hu R, Qu J, Liu L. Full-field measurement of complex objects illuminated by an ultrashort pulse laser using delay-line sweeping off-axis interferometry. OPTICS LETTERS 2021; 46:2803-2806. [PMID: 34129544 DOI: 10.1364/ol.421313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Measuring the complex field of ultrashort pulse lasers plays a fundamental role in light wavefront manipulation and nonlinear phenomena investigation; yet, it still constitutes a challenge for both full-field and high-resolution characterization due to the short coherent length. We proposed and implemented an off-axis interference system with a delay-line sweeping technique to overcome the fringe contrast degradation caused by the envelope mismatch between interfering pulses, resulting in an increased effective analysis area. The effectiveness of the proposed method was first demonstrated by measuring a complex field generated by a phase-only spatial light modulator, where a four-pixel binning technique was adopted for both amplitude and phase modulation; then it was used for the measurement of the second harmonic generation signal of a urea crystal sample. The experimental results show that the proposed method is capable of measuring complex fields having fine features within the full field. The proposed technique can be applied for strongly scattering medium refocusing and adaptive optics, where measuring the complex field of ultrashort pulse lasers is essential.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Genetic mutations in animals advance our understanding of disease mechanisms and treatments of neurodevelopmental disorders. Research with mutant mouse models is being extended to nonhuman primates whose brain development is closer to that of humans. This review summaries advances in mouse and nonhuman primate models. RECENT FINDINGS Mutant mouse models recapitulate key symptoms in neurodevelopmental disorders. However, successful phenotypic reversal of symptoms in mouse models has not been replicated in human studies; this failure may be because of differences in the structure and physiology of the brain between rodents and humans. Rett syndrome MECP2 models and Phelan-McDermid syndrome where reduced expression of SH3 and multiple ankyrin repeat domains 3 (SHANK3) models have been introduced in nonhuman primates and are underway in other neurodevelopmental disorders. SUMMARY Mutant mouse models in neurogenetic disorders continued to be pursued along with gene-edited and cell-based models in nonhuman primates. Established ethical guidelines are being followed and infrastructure being established to facilitate dissemination of primate transgenic models as they become available.
Collapse
Affiliation(s)
- James C Harris
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Colman RJ, Capuano S, Bakker J, Keeley J, Nakamura K, Ross C. Marmosets: Welfare, Ethical Use, and IACUC/Regulatory Considerations. ILAR J 2020; 61:167-178. [PMID: 33620069 PMCID: PMC9214643 DOI: 10.1093/ilar/ilab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/13/2020] [Accepted: 12/20/2020] [Indexed: 11/12/2022] Open
Abstract
Use of marmosets in biomedical research has increased dramatically in recent years due, in large part, to their suitability for transgenic applications and utility as models for neuroscience investigations. This increased use includes the establishment of new colonies and involvement of people new to marmoset research. To facilitate the use of the marmoset as a research model, we provide an overview of issues surrounding the ethics and regulations associated with captive marmoset research, including discussion of the history of marmosets in research, current uses of marmosets, ethical considerations related to marmoset use, issues related to importation of animals, and recommendations for regulatory oversight of gene-edited marmosets. To understand the main concerns that oversight bodies have regarding captive biomedical research with marmosets, we developed a brief, 15-question survey that was then sent electronically to academic and biomedical research institutions worldwide that were believed to house colonies of marmosets intended for biomedical research. The survey included general questions regarding the individual respondent's colony, status of research use of the colony and institutional oversight of both the colony itself and the research use of the colony. We received completed surveys from a total of 18 institutions from North America, Europe, and Asia. Overall, there appeared to be no clear difference in regulatory oversight body concerns between countries/regions. One difference that we were able to appreciate was that while biomedical research with marmosets was noted to be either stable or decreasing in Europe, use was clearly increasing elsewhere.
Collapse
Affiliation(s)
- Ricki J Colman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Jo Keeley
- University of Cambridge, Cambridge, United Kingdom
| | | | - Corinna Ross
- Department of Life Sciences, Texas A&M University, San Antonio, Texas, USA; and Population Health, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
13
|
Nemoto A, Kobayashi R, Yoshimatsu S, Sato Y, Kondo T, Yoo AS, Shiozawa S, Okano H. Direct Neuronal Reprogramming of Common Marmoset Fibroblasts by ASCL1, microRNA-9/9*, and microRNA-124 Overexpression. Cells 2020; 10:E6. [PMID: 33375083 PMCID: PMC7822173 DOI: 10.3390/cells10010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
The common marmoset (Callithrix jacchus) has attracted considerable attention, especially in the biomedical science and neuroscience research fields, because of its potential to recapitulate the complex and multidimensional phenotypes of human diseases, and several neurodegenerative transgenic models have been reported. However, there remain several issues as (i) it takes years to generate late-onset disease models, and (ii) the onset age and severity of phenotypes can vary among individuals due to differences in genetic background. In the present study, we established an efficient and rapid direct neuronal induction method (induced neurons; iNs) from embryonic and adult marmoset fibroblasts to investigate cellular-level phenotypes in the marmoset brain in vitro. We overexpressed reprogramming effectors, i.e., microRNA-9/9*, microRNA-124, and Achaete-Scute family bHLH transcription factor 1, in fibroblasts with a small molecule cocktail that facilitates neuronal induction. The resultant iNs from embryonic and adult marmoset fibroblasts showed neuronal characteristics within two weeks, including neuron-specific gene expression and spontaneous neuronal activity. As directly reprogrammed neurons have been shown to model neurodegenerative disorders, the neuronal reprogramming of marmoset fibroblasts may offer new tools for investigating neurological phenotypes associated with disease progression in non-human primate neurological disease models.
Collapse
Affiliation(s)
- Akisa Nemoto
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (A.N.); (R.K.); (S.Y.); (T.K.); (S.S.)
| | - Reona Kobayashi
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (A.N.); (R.K.); (S.Y.); (T.K.); (S.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan;
| | - Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (A.N.); (R.K.); (S.Y.); (T.K.); (S.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan;
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yuta Sato
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan;
- Graduate School of Science and Technology, Keio University, Kanagawa 223-8522, Japan
| | - Takahiro Kondo
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (A.N.); (R.K.); (S.Y.); (T.K.); (S.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan;
| | - Andrew S. Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (A.N.); (R.K.); (S.Y.); (T.K.); (S.S.)
- Institute of Animal Experimentation, School of Medicine, Kurume University, Fukuoka 830-0011, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; (A.N.); (R.K.); (S.Y.); (T.K.); (S.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan;
| |
Collapse
|
14
|
The polymicrogyria-associated GPR56 promoter preferentially drives gene expression in developing GABAergic neurons in common marmosets. Sci Rep 2020; 10:21516. [PMID: 33299078 PMCID: PMC7726139 DOI: 10.1038/s41598-020-78608-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
GPR56, a member of the adhesion G protein-coupled receptor family, is abundantly expressed in cells of the developing cerebral cortex, including neural progenitor cells and developing neurons. The human GPR56 gene has multiple presumptive promoters that drive the expression of the GPR56 protein in distinct patterns. Similar to coding mutations of the human GPR56 gene that may cause GPR56 dysfunction, a 15-bp homozygous deletion in the cis-regulatory element upstream of the noncoding exon 1 of GPR56 (e1m) leads to the cerebral cortex malformation and epilepsy. To clarify the expression profile of the e1m promoter-driven GPR56 in primate brain, we generated a transgenic marmoset line in which EGFP is expressed under the control of the human minimal e1m promoter. In contrast to the endogenous GPR56 protein, which is highly enriched in the ventricular zone of the cerebral cortex, EGFP is mostly expressed in developing neurons in the transgenic fetal brain. Furthermore, EGFP is predominantly expressed in GABAergic neurons, whereas the total GPR56 protein is evenly expressed in both GABAergic and glutamatergic neurons, suggesting the GABAergic neuron-preferential activity of the minimal e1m promoter. These results indicate a possible pathogenic role for GABAergic neuron in the cerebral cortex of patients with GPR56 mutations.
Collapse
|
15
|
Abstract
The common marmoset (Callithrix jacchus), a small New World primate, is receiving substantial attention in the neuroscience and biomedical science fields because its anatomical features, functional and behavioral characteristics, and reproductive features and its amenability to available genetic modification technologies make it an attractive experimental subject. In this review, I outline the progress of marmoset neuroscience research and summarize both the current status (opportunities and limitations) of and the future perspectives on the application of marmosets in neuroscience and disease modeling.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; .,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Common marmoset as a model primate for study of the motor control system. Curr Opin Neurobiol 2020; 64:103-110. [DOI: 10.1016/j.conb.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
|
17
|
Feng G, Jensen FE, Greely HT, Okano H, Treue S, Roberts AC, Fox JG, Caddick S, Poo MM, Newsome WT, Morrison JH. Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research. Proc Natl Acad Sci U S A 2020; 117:24022-24031. [PMID: 32817435 PMCID: PMC7533691 DOI: 10.1073/pnas.2006515117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recently developed new genome-editing technologies, such as the CRISPR/Cas system, have opened the door for generating genetically modified nonhuman primate (NHP) models for basic neuroscience and brain disorders research. The complex circuit formation and experience-dependent refinement of the human brain are very difficult to model in vitro, and thus require use of in vivo whole-animal models. For many neurodevelopmental and psychiatric disorders, abnormal circuit formation and refinement might be at the center of their pathophysiology. Importantly, many of the critical circuits and regional cell populations implicated in higher human cognitive function and in many psychiatric disorders are not present in lower mammalian brains, while these analogous areas are replicated in NHP brains. Indeed, neuropsychiatric disorders represent a tremendous health and economic burden globally. The emerging field of genetically modified NHP models has the potential to transform our study of higher brain function and dramatically facilitate the development of effective treatment for human brain disorders. In this paper, we discuss the importance of developing such models, the infrastructure and training needed to maximize the impact of such models, and ethical standards required for using these models.
Collapse
Affiliation(s)
- Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| | - Henry T Greely
- Center for Law and the Biosciences, Stanford University, Stanford, CA 94305
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjukuku, 160-8592 Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, 351-0106 Saitama, Wakoshi, Japan
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077 Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen, 37073 Goettingen, Germany
| | - Angela C Roberts
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY Cambridge, United Kingdom
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sarah Caddick
- The Gatsby Charitable Foundation, SW1V 1AP London, United Kingdom
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
| | - William T Newsome
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - John H Morrison
- California National Primate Research Center, University of California, Davis, CA 95616;
- Department of Neurology, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
18
|
Arafune-Mishima A, Abe H, Tani T, Mashiko H, Watanabe S, Sakai K, Suzuki W, Mizukami H, Watakabe A, Yamamori T, Ichinohe N. Axonal Projections from Middle Temporal Area to the Pulvinar in the Common Marmoset. Neuroscience 2020; 446:145-156. [PMID: 32866602 DOI: 10.1016/j.neuroscience.2020.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
The pulvinar, the largest thalamic nucleus in the primate brain, has connections with a variety of cortical areas and is involved in many aspects of higher brain functions. Among cortico-pulvino-cortical systems, the connection between the middle temporal area (MT) and the pulvinar has been thought to contribute significantly to complex motion recognition. Recently, the common marmoset (Callithrix jacchus), has become a valuable model for a variety of neuroscience studies, including visual neuroscience and translational research of neurological and psychiatric disorders. However, information on projections from MT to the pulvinar in the marmoset brain is scant. We addressed this deficiency by injecting sensitive anterograde viral tracers into MT to examine the distribution of labeled terminations in the pulvinar. The injection sites were placed retinotopically according to visual field coordinates mapped by optical intrinsic imaging. All injections produced anterograde terminal labeling, which was densest in the medial nucleus of the inferior pulvinar (PIm), sparser in the central nucleus of the inferior pulvinar, and weakest in the lateral pulvinar. Within each subnucleus, terminations formed separate retinotopic fields. Most labeled terminals were small but these comingled with a few large terminals, distributed mainly in the dorsomedial part of the PIm. Our results further delineate the organization of projections from MT to the pulvinar in the marmoset as forming parallel complex networks, which may differentially contribute to motion processing. It is interesting that the densest projections from MT target the PIm, the subnucleus recently reported to preferentially receive direct retinal projections.
Collapse
Affiliation(s)
- Akira Arafune-Mishima
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Hiroshi Abe
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Toshiki Tani
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Hiromi Mashiko
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Satoshi Watanabe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Wataru Suzuki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Ichinohe Group, Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan.
| |
Collapse
|
19
|
Petersson P, Halje P, Cenci MA. Significance and Translational Value of High-Frequency Cortico-Basal Ganglia Oscillations in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:183-196. [PMID: 30594935 PMCID: PMC6484276 DOI: 10.3233/jpd-181480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms and significance of basal ganglia oscillations is a fundamental research question engaging both clinical and basic investigators. In Parkinson’s disease (PD), neural activity in basal ganglia nuclei is characterized by oscillatory patterns that are believed to disrupt the dynamic processing of movement-related information and thus generate motor symptoms. Beta-band oscillations associated with hypokinetic states have been reviewed in several excellent previous articles. Here we focus on faster oscillatory phenomena that have been reported in association with a diverse range of motor states. We review the occurrence of different types of fast oscillations and the evidence supporting their pathophysiological role. We also provide a general discussion on the definition, possible mechanisms, and translational value of synchronized oscillations of different frequencies in cortico-basal ganglia structures. Revealing how oscillatory phenomena are caused and spread in cortico-basal ganglia-thalamocortical networks will offer a key to unlock the neural codes of both motor and non-motor symptoms in PD. In preclinical therapeutic research, recording of oscillatory neural activities holds the promise to unravel mechanisms of action of current and future treatments.
Collapse
Affiliation(s)
- Per Petersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Experimental Medical Science, The Group for Integrative Neurophysiology and Neurotechnology, Lund University, Lund, Sweden
| | - Pär Halje
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Experimental Medical Science, The Group for Integrative Neurophysiology and Neurotechnology, Lund University, Lund, Sweden
| | - M Angela Cenci
- Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Hosoya M, Fujioka M, Murayama AY, Okano H, Ogawa K. The common marmoset as suitable nonhuman alternative for the analysis of primate cochlear development. FEBS J 2020; 288:325-353. [PMID: 32323465 PMCID: PMC7818239 DOI: 10.1111/febs.15341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Cochlear development is a complex process with precise spatiotemporal patterns. A detailed understanding of this process is important for studies of congenital hearing loss and regenerative medicine. However, much of our understanding of cochlear development is based on rodent models. Animal models that bridge the gap between humans and rodents are needed. In this study, we investigated the development of hearing organs in a small New World monkey species, the common marmoset (Callithrix jacchus). We describe the general stages of cochlear development in comparison with those of humans and mice. Moreover, we examined more than 25 proteins involved in cochlear development and found that expression patterns were generally conserved between rodents and primates. However, several proteins involved in supporting cell processes and neuronal development exhibited interspecific expression differences. Human fetal samples for studies of primate‐specific cochlear development are extremely rare, especially for late developmental stages. Our results support the use of the common marmoset as an effective alternative for analyses of primate cochlear development.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ayako Y Murayama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun 2020; 11:1133. [PMID: 32111833 PMCID: PMC7048793 DOI: 10.1038/s41467-020-14858-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/03/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding the principles of neuronal connectivity requires tools for efficient quantification and visualization of large datasets. The primate cortex is particularly challenging due to its complex mosaic of areas, which in many cases lack clear boundaries. Here, we introduce a resource that allows exploration of results of 143 retrograde tracer injections in the marmoset neocortex. Data obtained in different animals are registered to a common stereotaxic space using an algorithm guided by expert delineation of histological borders, allowing accurate assignment of connections to areas despite interindividual variability. The resource incorporates tools for analyses relative to cytoarchitectural areas, including statistical properties such as the fraction of labeled neurons and the percentage of supragranular neurons. It also provides purely spatial (parcellation-free) data, based on the stereotaxic coordinates of 2 million labeled neurons. This resource helps bridge the gap between high-density cellular connectivity studies in rodents and imaging-based analyses of human brains. Understanding principles of neuronal connectivity requires tools for quantification and visualization of large datasets. Here, the authors introduce an online resource encompassing the coordinates of two million neurons labelled by tracer injections in the marmoset cortex, and analysis tools.
Collapse
|
22
|
From Mice to Monkeys? Beyond Orthodox Approaches to the Ethics of Animal Model Choice. Animals (Basel) 2020; 10:ani10010077. [PMID: 31906319 PMCID: PMC7022287 DOI: 10.3390/ani10010077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
Simple Summary New tools, allowing scientists to make precise changes to mammal genomes, have made possible future increased use of larger mammals in biomedical research, such as primates, pigs, and dogs. This paper addresses ethical issues that are raised by using larger mammals instead of smaller ones in this research. Because scientists who use animals in research follow strict guidelines, we first examine what those guidelines suggest for using larger mammals. We then consider what philosophers, who write about the ethics of animal use, consider as the important questions in evaluating which (if any) animals are acceptable to use in research. We find that philosophical perspectives have typically been interested in the question of when or if animal use is justified, while biomedical research guidance has assumed that animal use is justified but defined specific limits to that use. To address directly the ethical questions that arise in the practice of biomedical research in selecting which animals to use, we consider an approach to ethics that is focused on character and living well (or flourishing). This paper is valuable to society in drawing attention to the ethical questions, rather than merely the scientific issues, that are important in selecting which animals to use in biomedical research. Abstract Recent developments in genome editing tools, along with limits in the translational potential of rodent models of human disease, have spurred renewed biomedical research interest in large mammals like nonhuman primates, pigs, and dogs. Such scientific developments raise ethical issues about the use of these animals in comparison with smaller mammals, such as mice and rats. To examine these ethical questions, we first consider standard (or “orthodox”) approaches, including ethics oversight within biomedical research communities, and critical theoretical reflections on animal research, including rights-based and utilitarian approaches. We argue that oversight of biomedical research offers guidance on the profession’s permitted uses of animals within a research setting and orthodox approaches to animal ethics questions when and whether animals should be used in biomedicine; however, neither approach sufficiently investigates the nuances of ethical practices within the research setting. To fill this lacuna, we consider a virtue ethical approach to the use of specific animal models in biomedicine. From this perspective, we argued that limitations on flourishing for large mammals in a research setting, as well as potential human-animal bonds, are two sources of likely ethical tensions in animal care and use in the context of larger mammals.
Collapse
|
23
|
Bolker JA. Selection of Models: Evolution and the Choice of Species for Translational Research. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:82-91. [PMID: 31416088 DOI: 10.1159/000500317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/10/2019] [Indexed: 11/19/2022]
Abstract
Evolutionary thinking can inform the choice and assessment of model species in neuroscience, particularly when such models are intended to generate knowledge that will translate to humans. Avoiding errors that arise from oversimplified notions of phylogeny or genotype-phenotype mapping is one contribution; evolutionary biology also offers positive guidance. The challenge of finding adequate non-human models for translational research is particularly acute in neuroscience: neurobiological and behavioral phenotypes are complex and plastic, and many traits important in humans are absent, radically different, or difficult to assess in other species. Evolutionary perspectives help to articulate and address these challenges. Darwin's description of "descent with modification" points to two aspects of evolution that can help us assess the matching between a prospective model species and its intended target. One is trees that represent the structure of phylogenetic relationships; the other is phenotypic traits, i.e. the unique characteristics of each species' evolved biology and natural history. Mapping traits onto a phylogeny is the first step toward analyzing the source of similarities between a target and a potential model. Whether similar traits arise from shared ancestry or from adaptive convergence has important implications for what kinds of inferences can be justified, and for the likely translatability of findings. Evolution offers both a rich source of possible models, and guidance for choosing the best ones for a given purpose. Considering model choice from an evolutionary angle not only helps to answer the question "What species might be a good model for studying x?" but also suggests additional questions we should be asking to assess the utility of both potential and current models. Recognizing the diverse ways model organisms can function expands our search image as we seek species to study that can both extend general knowledge, and generate translatable insights relevant to human neurobiology and disease.
Collapse
Affiliation(s)
- Jessica A Bolker
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA,
| |
Collapse
|
24
|
Chansel‐Debordeaux L, Bezard E. Local transgene expression and whole-body transgenesis to model brain diseases in nonhuman primate. Animal Model Exp Med 2019; 2:9-17. [PMID: 31016282 PMCID: PMC6431118 DOI: 10.1002/ame2.12055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Animal model is an essential tool in the life sciences research, notably in understanding the pathogenesis of the diseases and for further therapeutic intervention success. Rodents have been the most frequently used animals to model human disease since the establishment of gene manipulation technique. However, they remain inadequate to fully mimic the pathophysiology of human brain disease, partially due to huge differences between rodents and humans in terms of anatomy, brain function, and social behaviors. Nonhuman primates are more suitable in translational perspective. Thus, genetically modified animals have been generated to investigate neurologic and psychiatric disorders. The classical transgenesis technique is not efficient in that model; so, viral vector-mediated transgene delivery and the new genome-editing technologies have been promoted. In this review, we summarize some of the technical progress in the generation of an ad hoc animal model of brain diseases by gene delivery and real transgenic nonhuman primate.
Collapse
Affiliation(s)
- Lucie Chansel‐Debordeaux
- Institut des Maladies NeurodégénérativesUniversity of BordeauxUMR 5293BordeauxFrance
- CNRSInstitut des Maladies NeurodégénérativesUMR 5293BordeauxFrance
- CHU BordeauxService de Biologie de la reproduction‐CECOSBordeauxFrance
| | - Erwan Bezard
- Institut des Maladies NeurodégénérativesUniversity of BordeauxUMR 5293BordeauxFrance
- CNRSInstitut des Maladies NeurodégénérativesUMR 5293BordeauxFrance
| |
Collapse
|
25
|
Haga Y, Hata J, Uematsu A, Seki F, Komaki Y, Mizumura M, Nishio M, Kaneko T, Kishi N, Okano H, Furukawa A. MR Imaging Properties of ex vivo Common Marmoset Brain after Formaldehyde Fixation. Magn Reson Med Sci 2019; 18:253-259. [PMID: 30726800 PMCID: PMC6883083 DOI: 10.2463/mrms.mp.2018-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: Ex vivo brains have different MRI properties than in vivo brains because of chemical changes caused by fixative solutions, which change the signal intensity and/or tissue contrast on MR images. In this study, we investigated and compared the MRI properties of in vivo and ex vivo brains. Methods: Using a Bruker 9.4T experimental scanner unit for animals (Biospin GmbH, Ettlingen, Germany), we performed this study on the common marmoset. We measured the relaxation and diffusion values in the white matter and cortex of common marmosets and compared these values between in vivo brains (n = 20) and ex vivo brains (n = 20). Additionally, we observed the relationship between the tissue fixation duration and MRI properties by imaging a brain that underwent long-term fixation in a preliminary examination (n = 1). Results: The T1 values of ex vivo brains were decreased compared with those of in vivo brains; however, there were no significant difference in the T2 and T2* values of in vivo and ex vivo brains. Axial, radial, and mean diffusivity values of ex vivo brains decreased to approximately 65% and 52% of those of in vivo brains in the cortex and white matter, respectively. Conversely, fractional anisotropy values were not significantly different between in vivo and ex vivo brains. Conclusion: The T1 values and diffusion coefficient values of the ex vivo brains were strikingly different than those of the in vivo brains. Conversely, there were no significant changes in the T2, T2* or fractional anisotropy values. Altogether, the dehydration caused by tissue fixation and the reduction in brain temperature were involved in changing the relaxation and diffusion coefficient values. Here, it was difficult to specify all factors causing these changes. Further detailed study is needed to examine changes in MRI properties.
Collapse
Affiliation(s)
- Yawara Haga
- Department of Radiological Sciences, Human Health Sciences, Tokyo Metropolitan University Graduate School.,Department of Physiology, Keio University School of Medicine.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN.,Live Imaging Center, Central Institute for Experimental Animals
| | - Akiko Uematsu
- Department of Physiology, Keio University School of Medicine.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN.,Live Imaging Center, Central Institute for Experimental Animals
| | - Fumiko Seki
- Department of Physiology, Keio University School of Medicine.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN.,Live Imaging Center, Central Institute for Experimental Animals
| | - Yuji Komaki
- Department of Physiology, Keio University School of Medicine.,Live Imaging Center, Central Institute for Experimental Animals
| | - Mai Mizumura
- Department of Radiological Sciences, Human Health Sciences, Tokyo Metropolitan University Graduate School.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN
| | - Marin Nishio
- Department of Radiological Sciences, Human Health Sciences, Tokyo Metropolitan University Graduate School.,Live Imaging Center, Central Institute for Experimental Animals
| | - Takaaki Kaneko
- Department of Physiology, Keio University School of Medicine.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN
| | - Noriyuki Kishi
- Department of Physiology, Keio University School of Medicine.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine.,Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN
| | - Akira Furukawa
- Department of Radiological Sciences, Human Health Sciences, Tokyo Metropolitan University Graduate School
| |
Collapse
|
26
|
Lin MK, Takahashi YS, Huo BX, Hanada M, Nagashima J, Hata J, Tolpygo AS, Ram K, Lee BC, Miller MI, Rosa MGP, Sasaki E, Iriki A, Okano H, Mitra P. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. eLife 2019; 8:e40042. [PMID: 30720427 PMCID: PMC6384052 DOI: 10.7554/elife.40042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Understanding the connectivity architecture of entire vertebrate brains is a fundamental but difficult task. Here we present an integrated neuro-histological pipeline as well as a grid-based tracer injection strategy for systematic mesoscale connectivity mapping in the common marmoset (Callithrix jacchus). Individual brains are sectioned into ~1700 20 µm sections using the tape transfer technique, permitting high quality 3D reconstruction of a series of histochemical stains (Nissl, myelin) interleaved with tracer labeled sections. Systematic in-vivo MRI of the individual animals facilitates injection placement into reference-atlas defined anatomical compartments. Further, by combining the resulting 3D volumes, containing informative cytoarchitectonic markers, with in-vivo and ex-vivo MRI, and using an integrated computational pipeline, we are able to accurately map individual brains into a common reference atlas despite the significant individual variation. This approach will facilitate the systematic assembly of a mesoscale connectivity matrix together with unprecedented 3D reconstructions of brain-wide projection patterns in a primate brain.
Collapse
Affiliation(s)
- Meng Kuan Lin
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | | | - Bing-Xing Huo
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | - Mitsutoshi Hanada
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | - Jaimi Nagashima
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | - Junichi Hata
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | | | | | - Brian C Lee
- Center for Imaging ScienceJohns Hopkins UniversityMarylandUnited States
| | - Michael I Miller
- Center for Imaging ScienceJohns Hopkins UniversityMarylandUnited States
| | - Marcello GP Rosa
- Department of Physiology and Biomedicine, Discovery InstituteMonash UniversityMelbourneAustralia
- Australian Research Council Centre of Excellence for Integrative Brain FunctionClaytonAustralia
| | - Erika Sasaki
- Central Institute for Experimental AnimalsKawasakiJapan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive DevelopmentRIKEN Center for Brain ScienceWakoJapan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Partha Mitra
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
27
|
Miller CT, Hale ME, Okano H, Okabe S, Mitra P. Comparative Principles for Next-Generation Neuroscience. Front Behav Neurosci 2019; 13:12. [PMID: 30787871 PMCID: PMC6373779 DOI: 10.3389/fnbeh.2019.00012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
Neuroscience is enjoying a renaissance of discovery due in large part to the implementation of next-generation molecular technologies. The advent of genetically encoded tools has complemented existing methods and provided researchers the opportunity to examine the nervous system with unprecedented precision and to reveal facets of neural function at multiple scales. The weight of these discoveries, however, has been technique-driven from a small number of species amenable to the most advanced gene-editing technologies. To deepen interpretation and build on these breakthroughs, an understanding of nervous system evolution and diversity are critical. Evolutionary change integrates advantageous variants of features into lineages, but is also constrained by pre-existing organization and function. Ultimately, each species’ neural architecture comprises both properties that are species-specific and those that are retained and shared. Understanding the evolutionary history of a nervous system provides interpretive power when examining relationships between brain structure and function. The exceptional diversity of nervous systems and their unique or unusual features can also be leveraged to advance research by providing opportunities to ask new questions and interpret findings that are not accessible in individual species. As new genetic and molecular technologies are added to the experimental toolkits utilized in diverse taxa, the field is at a key juncture to revisit the significance of evolutionary and comparative approaches for next-generation neuroscience as a foundational framework for understanding fundamental principles of neural function.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science (CBS), Wako, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
28
|
Llinares-Benadero C, Borrell V. Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat Rev Neurosci 2019; 20:161-176. [DOI: 10.1038/s41583-018-0112-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Park JE, Silva AC. Generation of genetically engineered non-human primate models of brain function and neurological disorders. Am J Primatol 2018; 81:e22931. [PMID: 30585654 DOI: 10.1002/ajp.22931] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022]
Abstract
Research with non-human primates (NHP) has been essential and effective in increasing our ability to find cures for a large number of diseases that cause human suffering and death. Extending the availability and use of genetic engineering techniques to NHP will allow the creation and study of NHP models of human disease, as well as broaden our understanding of neural circuits in the primate brain. With the recent development of efficient genetic engineering techniques that can be used for NHP, there's increased hope that NHP will significantly accelerate our understanding of the etiology of human neurological and neuropsychiatric disorders. In this article, we review the present state of genetic engineering tools used in NHP, from the early efforts to induce exogeneous gene expression in macaques and marmosets, to the latest results in producing germline transmission of different transgenes and the establishment of knockout lines of specific genes. We conclude with future perspectives on the further development and employment of these tools to generate genetically engineered NHP.
Collapse
Affiliation(s)
- Jung Eun Park
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Atapour N, Majka P, Wolkowicz IH, Malamanova D, Worthy KH, Rosa MGP. Neuronal Distribution Across the Cerebral Cortex of the Marmoset Monkey (Callithrix jacchus). Cereb Cortex 2018; 29:3836-3863. [DOI: 10.1093/cercor/bhy263] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023] Open
Abstract
Abstract
Using stereological analysis of NeuN-stained sections, we investigated neuronal density and number of neurons per column throughout the marmoset cortex. Estimates of mean neuronal density encompassed a greater than 3-fold range, from >150 000 neurons/mm3 in the primary visual cortex to ~50 000 neurons/mm3 in the piriform complex. There was a trend for density to decrease from posterior to anterior cortex, but also local gradients, which resulted in a complex pattern; for example, in frontal, auditory, and somatosensory cortex neuronal density tended to increase towards anterior areas. Anterior cingulate, motor, premotor, insular, and ventral temporal areas were characterized by relatively low neuronal densities. Analysis across the depth of the cortex revealed greater laminar variation of neuronal density in occipital, parietal, and inferior temporal areas, in comparison with other regions. Moreover, differences between areas were more pronounced in the supragranular layers than in infragranular layers. Calculations of the number of neurons per unit column revealed a pattern that was distinct from that of neuronal density, including local peaks in the posterior parietal, superior temporal, precuneate, frontopolar, and temporopolar regions. These results suggest that neuronal distribution in adult cortex result from a complex interaction of developmental/ evolutionary determinants and functional requirements.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, 770 Blackburn Road, Clayton, Melbourne, VIC, Australia
| | - Piotr Majka
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, 770 Blackburn Road, Clayton, Melbourne, VIC, Australia
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, Warsaw, Poland
| | - Ianina H Wolkowicz
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
| | - Daria Malamanova
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
| | - Katrina H Worthy
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
| | - Marcello G P Rosa
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, 770 Blackburn Road, Clayton, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Majka P, Rosa MGP, Bai S, Chan JM, Huo BX, Jermakow N, Lin MK, Takahashi YS, Wolkowicz IH, Worthy KH, Rajan R, Reser DH, Wójcik DK, Okano H, Mitra PP. Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey. Brain Struct Funct 2018; 224:111-131. [PMID: 30288557 PMCID: PMC6373361 DOI: 10.1007/s00429-018-1764-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
Abstract
Until the late twentieth century, it was believed that different sensory modalities were processed by largely independent pathways in the primate cortex, with cross-modal integration only occurring in specialized polysensory areas. This model was challenged by the finding that the peripheral representation of the primary visual cortex (V1) receives monosynaptic connections from areas of the auditory cortex in the macaque. However, auditory projections to V1 have not been reported in other primates. We investigated the existence of direct interconnections between V1 and auditory areas in the marmoset, a New World monkey. Labelled neurons in auditory cortex were observed following 4 out of 10 retrograde tracer injections involving V1. These projections to V1 originated in the caudal subdivisions of auditory cortex (primary auditory cortex, caudal belt and parabelt areas), and targeted parts of V1 that represent parafoveal and peripheral vision. Injections near the representation of the vertical meridian of the visual field labelled few or no cells in auditory cortex. We also placed 8 retrograde tracer injections involving core, belt and parabelt auditory areas, none of which revealed direct projections from V1. These results confirm the existence of a direct, nonreciprocal projection from auditory areas to V1 in a different primate species, which has evolved separately from the macaque for over 30 million years. The essential similarity of these observations between marmoset and macaque indicate that early-stage audiovisual integration is a shared characteristic of primate sensory processing.
Collapse
Affiliation(s)
- Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
| | - Marcello G P Rosa
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia.
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Shi Bai
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Jonathan M Chan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Bing-Xing Huo
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Meng K Lin
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Yeonsook S Takahashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Ianina H Wolkowicz
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Ramesh Rajan
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - David H Reser
- School of Rural Health, Monash University, Churchill, VIC, 3842, Australia
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Partha P Mitra
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia.
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
32
|
He M, Huang ZJ. Genetic approaches to access cell types in mammalian nervous systems. Curr Opin Neurobiol 2018; 50:109-118. [PMID: 29471215 PMCID: PMC5984678 DOI: 10.1016/j.conb.2018.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 02/04/2018] [Indexed: 12/11/2022]
Abstract
Understanding brain circuit organization and function requires systematic dissection of its cellular components. With vast cell number and diversity, mammalian nervous systems present a daunting challenge for achieving specific and comprehensive cell type access-prerequisite to circuit analysis. Genetic approaches in the mouse have relied on germline engineering to access marker-defined cell populations. Combinatorial strategies that engage marker intersection, anatomy and projection pattern (e.g. antero-grade and retro-grade viral vectors), and developmental lineage substantially increase the specificity of cell type targeting. While increasing number of mouse cell types are becoming experimentally accessible, comprehensive coverage requires larger coordinated efforts with strategic infrastructural and fiscal planning. CRISPR-based genome editing may enable cell type access in other species, but issues of time, cost and ethics remain, especially for primates. Novel approaches that bypass the germline, such as somatic cell engineering and cell surface-based gene delivery, may reduce the barrier of genetic access to mammalian cell types.
Collapse
Affiliation(s)
- Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|