1
|
Akella S, Ledochowitsch P, Siegle JH, Belski H, Denman DD, Buice MA, Durand S, Koch C, Olsen SR, Jia X. Deciphering neuronal variability across states reveals dynamic sensory encoding. Nat Commun 2025; 16:1768. [PMID: 39971911 PMCID: PMC11839951 DOI: 10.1038/s41467-025-56733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025] Open
Abstract
Influenced by non-stationary factors such as brain states and behavior, neurons exhibit substantial response variability even to identical stimuli. However, it remains unclear how their relative impact on neuronal variability evolves over time. To address this question, we designed an encoding model conditioned on latent states to partition variability in the mouse visual cortex across internal brain dynamics, behavior, and external visual stimulus. Applying a hidden Markov model to local field potentials, we consistently identified three distinct oscillation states, each with a unique variability profile. Regression models within each state revealed a dynamic composition of factors influencing spiking variability, with the dominant factor switching within seconds. The state-conditioned regression model uncovered extensive diversity in source contributions across units, varying in accordance with anatomical hierarchy and internal state. This heterogeneity in encoding underscores the importance of partitioning variability over time, particularly when considering the influence of non-stationary factors on sensory processing.
Collapse
Affiliation(s)
| | | | | | | | - Daniel D Denman
- Allen Institute, Seattle, WA, USA
- Anschutz Medical Campus School of Medicine, University of Colorado, Aurora, CO, USA
| | | | | | | | | | - Xiaoxuan Jia
- School of Life Science, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Sani OG, Pesaran B, Shanechi MM. Dissociative and prioritized modeling of behaviorally relevant neural dynamics using recurrent neural networks. Nat Neurosci 2024; 27:2033-2045. [PMID: 39242944 PMCID: PMC11452342 DOI: 10.1038/s41593-024-01731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Understanding the dynamical transformation of neural activity to behavior requires new capabilities to nonlinearly model, dissociate and prioritize behaviorally relevant neural dynamics and test hypotheses about the origin of nonlinearity. We present dissociative prioritized analysis of dynamics (DPAD), a nonlinear dynamical modeling approach that enables these capabilities with a multisection neural network architecture and training approach. Analyzing cortical spiking and local field potential activity across four movement tasks, we demonstrate five use-cases. DPAD enabled more accurate neural-behavioral prediction. It identified nonlinear dynamical transformations of local field potentials that were more behavior predictive than traditional power features. Further, DPAD achieved behavior-predictive nonlinear neural dimensionality reduction. It enabled hypothesis testing regarding nonlinearities in neural-behavioral transformation, revealing that, in our datasets, nonlinearities could largely be isolated to the mapping from latent cortical dynamics to behavior. Finally, DPAD extended across continuous, intermittently sampled and categorical behaviors. DPAD provides a powerful tool for nonlinear dynamical modeling and investigation of neural-behavioral data.
Collapse
Affiliation(s)
- Omid G Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Bijan Pesaran
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Manley J, Lu S, Barber K, Demas J, Kim H, Meyer D, Traub FM, Vaziri A. Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number. Neuron 2024; 112:1694-1709.e5. [PMID: 38452763 PMCID: PMC11098699 DOI: 10.1016/j.neuron.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/18/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The brain's remarkable properties arise from the collective activity of millions of neurons. Widespread application of dimensionality reduction to multi-neuron recordings implies that neural dynamics can be approximated by low-dimensional "latent" signals reflecting neural computations. However, can such low-dimensional representations truly explain the vast range of brain activity, and if not, what is the appropriate resolution and scale of recording to capture them? Imaging neural activity at cellular resolution and near-simultaneously across the mouse cortex, we demonstrate an unbounded scaling of dimensionality with neuron number in populations up to 1 million neurons. Although half of the neural variance is contained within sixteen dimensions correlated with behavior, our discovered scaling of dimensionality corresponds to an ever-increasing number of neuronal ensembles without immediate behavioral or sensory correlates. The activity patterns underlying these higher dimensions are fine grained and cortex wide, highlighting that large-scale, cellular-resolution recording is required to uncover the full substrates of neuronal computations.
Collapse
Affiliation(s)
- Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Sihao Lu
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Kevin Barber
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - David Meyer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Francisca Martínez Traub
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
4
|
Fontenele AJ, Sooter JS, Norman VK, Gautam SH, Shew WL. Low-dimensional criticality embedded in high-dimensional awake brain dynamics. SCIENCE ADVANCES 2024; 10:eadj9303. [PMID: 38669340 PMCID: PMC11051676 DOI: 10.1126/sciadv.adj9303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. We offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality-a dynamical regime with moderate correlations and multi-scale information capacity and transmission. Orthogonal to this critical subspace, we find a high-dimensional subspace containing a desynchronized dynamical regime, which may optimize input discrimination. The critical subspace is apparent only at long timescales, which explains discrepancies among some previous studies. Using a computational model, we show that the emergence of a low-dimensional critical subspace at large timescales agrees with established theory of critical dynamics. Our results suggest that the cortex leverages its high dimensionality to multiplex dynamical regimes across different subspaces.
Collapse
|
5
|
Trepka E, Spitmaan M, Qi XL, Constantinidis C, Soltani A. Training-Dependent Gradients of Timescales of Neural Dynamics in the Primate Prefrontal Cortex and Their Contributions to Working Memory. J Neurosci 2024; 44:e2442212023. [PMID: 37973375 PMCID: PMC10866190 DOI: 10.1523/jneurosci.2442-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Cortical neurons exhibit multiple timescales related to dynamics of spontaneous fluctuations (intrinsic timescales) and response to task events (seasonal timescales) in addition to selectivity to task-relevant signals. These timescales increase systematically across the cortical hierarchy, for example, from parietal to prefrontal and cingulate cortex, pointing to their role in cortical computations. It is currently unknown whether these timescales are inherent properties of neurons and/or depend on training in a specific task and if the latter, how their modulations contribute to task performance. To address these questions, we analyzed single-cell recordings within five subregions of the prefrontal cortex (PFC) of male macaques before and after training on a working-memory task. We found fine-grained but opposite gradients of intrinsic and seasonal timescales that mainly appeared after training. Intrinsic timescales decreased whereas seasonal timescales increased from posterior to anterior subregions within both dorsal and ventral PFC. Moreover, training was accompanied by increases in proportions of neurons that exhibited intrinsic and seasonal timescales. These effects were comparable to the emergence of response selectivity due to training. Finally, task selectivity accompanied opposite neural dynamics such that neurons with task-relevant selectivity exhibited longer intrinsic and shorter seasonal timescales. Notably, neurons with longer intrinsic and shorter seasonal timescales exhibited superior population-level coding, but these advantages extended to the delay period mainly after training. Together, our results provide evidence for plastic, fine-grained gradients of timescales within PFC that can influence both single-cell and population coding, pointing to the importance of these timescales in understanding cognition.
Collapse
Affiliation(s)
- Ethan Trepka
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire
- Neurosciences Program, Stanford University, Stanford 94305, California
| | - Mehran Spitmaan
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem 27157, North Carolina
| | | | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire
| |
Collapse
|
6
|
Roland PE. How far neuroscience is from understanding brains. Front Syst Neurosci 2023; 17:1147896. [PMID: 37867627 PMCID: PMC10585277 DOI: 10.3389/fnsys.2023.1147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 10/24/2023] Open
Abstract
The cellular biology of brains is relatively well-understood, but neuroscientists have not yet generated a theory explaining how brains work. Explanations of how neurons collectively operate to produce what brains can do are tentative and incomplete. Without prior assumptions about the brain mechanisms, I attempt here to identify major obstacles to progress in neuroscientific understanding of brains and central nervous systems. Most of the obstacles to our understanding are conceptual. Neuroscience lacks concepts and models rooted in experimental results explaining how neurons interact at all scales. The cerebral cortex is thought to control awake activities, which contrasts with recent experimental results. There is ambiguity distinguishing task-related brain activities from spontaneous activities and organized intrinsic activities. Brains are regarded as driven by external and internal stimuli in contrast to their considerable autonomy. Experimental results are explained by sensory inputs, behavior, and psychological concepts. Time and space are regarded as mutually independent variables for spiking, post-synaptic events, and other measured variables, in contrast to experimental results. Dynamical systems theory and models describing evolution of variables with time as the independent variable are insufficient to account for central nervous system activities. Spatial dynamics may be a practical solution. The general hypothesis that measurements of changes in fundamental brain variables, action potentials, transmitter releases, post-synaptic transmembrane currents, etc., propagating in central nervous systems reveal how they work, carries no additional assumptions. Combinations of current techniques could reveal many aspects of spatial dynamics of spiking, post-synaptic processing, and plasticity in insects and rodents to start with. But problems defining baseline and reference conditions hinder interpretations of the results. Furthermore, the facts that pooling and averaging of data destroy their underlying dynamics imply that single-trial designs and statistics are necessary.
Collapse
Affiliation(s)
- Per E. Roland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Trepka E, Spitmaan M, Qi XL, Constantinidis C, Soltani A. Training-dependent gradients of timescales of neural dynamics in the primate prefrontal cortex and their contributions to working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555857. [PMID: 37693584 PMCID: PMC10491183 DOI: 10.1101/2023.09.01.555857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cortical neurons exhibit multiple timescales related to dynamics of spontaneous fluctuations (intrinsic timescales) and response to task events (seasonal timescales) in addition to selectivity to task-relevant signals. These timescales increase systematically across the cortical hierarchy, e.g., from parietal to prefrontal and cingulate cortex, pointing to their role in cortical computations. It is currently unknown whether these timescales depend on training in a specific task and/or are an inherent property of neurons, and whether more fine-grained hierarchies of timescales exist within specific cortical regions. To address these questions, we analyzed single-cell recordings within five subregions of the prefrontal cortex (PFC) of male macaques before and after training on a working-memory task. We found fine-grained but opposite gradients of intrinsic and seasonal timescales that mainly appeared after training. Intrinsic timescales decreased whereas seasonal timescales increased from posterior to anterior subregions within both dorsal and ventral PFC. Moreover, training was accompanied by increases in proportions of neurons that exhibited intrinsic and seasonal timescales. These effects were comparable to the emergence of response selectivity due to training. Finally, task selectivity accompanied opposite neural dynamics such that neurons with task-relevant selectivity exhibited longer intrinsic and shorter seasonal timescales. Notably, neurons with longer intrinsic and shorter seasonal timescales exhibited superior population-level coding, but these advantages extended to the delay period mainly after training. Together, our results provide evidence for plastic, fine-grained gradients of timescales within PFC that can influence both single-cell and population coding, pointing to the importance of these timescales in understanding cognition. Significance statement Recent studies have demonstrated that neural responses exhibit dynamics with different timescales that follow a certain order or hierarchy across cortical areas. While the hierarchy of timescales is consistent across different tasks, it is unknown if these timescales emerge only after training or if they represent inherent properties of neurons. To answer this question, we estimated multiple timescales in neural response across five subregions of the monkeys' lateral prefrontal cortex before and after training on a working-memory task. Our results provide evidence for fine-grained gradients related to certain neural dynamics. Moreover, we show that these timescales depend on and can be modulated by training in a cognitive task, and contribute to encoding of task-relevant information at single-cell and population levels.
Collapse
|
8
|
Greene AS, Horien C, Barson D, Scheinost D, Constable RT. Why is everyone talking about brain state? Trends Neurosci 2023; 46:508-524. [PMID: 37164869 PMCID: PMC10330476 DOI: 10.1016/j.tins.2023.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
The rapid and coordinated propagation of neural activity across the brain provides the foundation for complex behavior and cognition. Technical advances across neuroscience subfields have advanced understanding of these dynamics, but points of convergence are often obscured by semantic differences, creating silos of subfield-specific findings. In this review we describe how a parsimonious conceptualization of brain state as the fundamental building block of whole-brain activity offers a common framework to relate findings across scales and species. We present examples of the diverse techniques commonly used to study brain states associated with physiology and higher-order cognitive processes, and discuss how integration across them will enable a more comprehensive and mechanistic characterization of the neural dynamics that are crucial to survival but are disrupted in disease.
Collapse
Affiliation(s)
- Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Daniel Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Dong Y, Liu D. Awakening from anesthesia switches cortical wave modes. Trends Neurosci 2023:S0166-2236(23)00106-6. [PMID: 37173150 DOI: 10.1016/j.tins.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Spontaneous cortical activity exhibits diverse spatiotemporal dynamics across brain states, but the organizational principles during state transitions remain unclear. In a recent study combining cortex-wide voltage imaging and neural modeling, Liang and colleagues revealed that global-local competition and long-range connections underlie the emergence of complex cortical wave patterns during awakening from anesthesia.
Collapse
Affiliation(s)
- Yufan Dong
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danqian Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China.
| |
Collapse
|
10
|
Pines A, Keller AS, Larsen B, Bertolero M, Ashourvan A, Bassett DS, Cieslak M, Covitz S, Fan Y, Feczko E, Houghton A, Rueter AR, Saggar M, Shafiei G, Tapera TM, Vogel J, Weinstein SM, Shinohara RT, Williams LM, Fair DA, Satterthwaite TD. Development of top-down cortical propagations in youth. Neuron 2023; 111:1316-1330.e5. [PMID: 36803653 PMCID: PMC10121821 DOI: 10.1016/j.neuron.2023.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/08/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023]
Abstract
Hierarchical processing requires activity propagating between higher- and lower-order cortical areas. However, functional neuroimaging studies have chiefly quantified fluctuations within regions over time rather than propagations occurring over space. Here, we leverage advances in neuroimaging and computer vision to track cortical activity propagations in a large sample of youth (n = 388). We delineate cortical propagations that systematically ascend and descend a cortical hierarchy in all individuals in our developmental cohort, as well as in an independent dataset of densely sampled adults. Further, we demonstrate that top-down, descending hierarchical propagations become more prevalent with greater demands for cognitive control as well as with development in youth. These findings emphasize that hierarchical processing is reflected in the directionality of propagating cortical activity and suggest top-down propagations as a potential mechanism of neurocognitive maturation in youth.
Collapse
Affiliation(s)
- Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA; The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart Larsen
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Maxwell Bertolero
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Arian Ashourvan
- Department of Psychology, The University of Kansas, Lawrence, KS 66045, USA
| | - Dani S Bassett
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, The University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87051, USA
| | - Matthew Cieslak
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Covitz
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Fan
- Department of Radiology, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Amanda R Rueter
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Golia Shafiei
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Tinashe M Tapera
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Vogel
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M Weinstein
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
| | - Theodore D Satterthwaite
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Boucher-Routhier M, Thivierge JP. A deep generative adversarial network capturing complex spiral waves in disinhibited circuits of the cerebral cortex. BMC Neurosci 2023; 24:22. [PMID: 36964493 PMCID: PMC10039524 DOI: 10.1186/s12868-023-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND In the cerebral cortex, disinhibited activity is characterized by propagating waves that spread across neural tissue. In this pathological state, a widely reported form of activity are spiral waves that travel in a circular pattern around a fixed spatial locus termed the center of mass. Spiral waves exhibit stereotypical activity and involve broad patterns of co-fluctuations, suggesting that they may be of lower complexity than healthy activity. RESULTS To evaluate this hypothesis, we performed dense multi-electrode recordings of cortical networks where disinhibition was induced by perfusing a pro-epileptiform solution containing 4-Aminopyridine as well as increased potassium and decreased magnesium. Spiral waves were identified based on a spatially delimited center of mass and a broad distribution of instantaneous phases across electrodes. Individual waves were decomposed into "snapshots" that captured instantaneous neural activation across the entire network. The complexity of these snapshots was examined using a measure termed the participation ratio. Contrary to our expectations, an eigenspectrum analysis of these snapshots revealed a broad distribution of eigenvalues and an increase in complexity compared to baseline networks. A deep generative adversarial network was trained to generate novel exemplars of snapshots that closely captured cortical spiral waves. These synthetic waves replicated key features of experimental data including a tight center of mass, a broad eigenvalue distribution, spatially-dependent correlations, and a high complexity. By adjusting the input to the model, new samples were generated that deviated in systematic ways from the experimental data, thus allowing the exploration of a broad range of states from healthy to pathologically disinhibited neural networks. CONCLUSIONS Together, results show that the complexity of population activity serves as a marker along a continuum from healthy to disinhibited brain states. The proposed generative adversarial network opens avenues for replicating the dynamics of cortical seizures and accelerating the design of optimal neurostimulation aimed at suppressing pathological brain activity.
Collapse
Affiliation(s)
- Megan Boucher-Routhier
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
12
|
Complexity of cortical wave patterns of the wake mouse cortex. Nat Commun 2023; 14:1434. [PMID: 36918572 PMCID: PMC10015011 DOI: 10.1038/s41467-023-37088-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Rich spatiotemporal dynamics of cortical activity, including complex and diverse wave patterns, have been identified during unconscious and conscious brain states. Yet, how these activity patterns emerge across different levels of wakefulness remain unclear. Here we study the evolution of wave patterns utilizing data from high spatiotemporal resolution optical voltage imaging of mice transitioning from barbiturate-induced anesthesia to wakefulness (N = 5) and awake mice (N = 4). We find that, as the brain transitions into wakefulness, there is a reduction in hemisphere-scale voltage waves, and an increase in local wave events and complexity. A neural mass model recapitulates the essential cellular-level features and shows how the dynamical competition between global and local spatiotemporal patterns and long-range connections can explain the experimental observations. These mechanisms possibly endow the awake cortex with enhanced integrative processing capabilities.
Collapse
|
13
|
Koren V, Bondanelli G, Panzeri S. Computational methods to study information processing in neural circuits. Comput Struct Biotechnol J 2023; 21:910-922. [PMID: 36698970 PMCID: PMC9851868 DOI: 10.1016/j.csbj.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The brain is an information processing machine and thus naturally lends itself to be studied using computational tools based on the principles of information theory. For this reason, computational methods based on or inspired by information theory have been a cornerstone of practical and conceptual progress in neuroscience. In this Review, we address how concepts and computational tools related to information theory are spurring the development of principled theories of information processing in neural circuits and the development of influential mathematical methods for the analyses of neural population recordings. We review how these computational approaches reveal mechanisms of essential functions performed by neural circuits. These functions include efficiently encoding sensory information and facilitating the transmission of information to downstream brain areas to inform and guide behavior. Finally, we discuss how further progress and insights can be achieved, in particular by studying how competing requirements of neural encoding and readout may be optimally traded off to optimize neural information processing.
Collapse
Affiliation(s)
- Veronika Koren
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, Hamburg 20251, Germany
| | | | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, Hamburg 20251, Germany
- Istituto Italiano di Tecnologia, Via Melen 83, Genova 16152, Italy
| |
Collapse
|
14
|
Christensen AJ, Ott T, Kepecs A. Cognition and the single neuron: How cell types construct the dynamic computations of frontal cortex. Curr Opin Neurobiol 2022; 77:102630. [PMID: 36209695 PMCID: PMC10375540 DOI: 10.1016/j.conb.2022.102630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/10/2023]
Abstract
Frontal cortex is thought to underlie many advanced cognitive capacities, from self-control to long term planning. Reflecting these diverse demands, frontal neural activity is notoriously idiosyncratic, with tuning properties that are correlated with endless numbers of behavioral and task features. This menagerie of tuning has made it difficult to extract organizing principles that govern frontal neural activity. Here, we contrast two successful yet seemingly incompatible approaches that have begun to address this challenge. Inspired by the indecipherability of single-neuron tuning, the first approach casts frontal computations as dynamical trajectories traversed by arbitrary mixtures of neurons. The second approach, by contrast, attempts to explain the functional diversity of frontal activity with the biological diversity of cortical cell-types. Motivated by the recent discovery of functional clusters in frontal neurons, we propose a consilience between these population and cell-type-specific approaches to neural computations, advancing the conjecture that evolutionarily inherited cell-type constraints create the scaffold within which frontal population dynamics must operate.
Collapse
Affiliation(s)
- Amelia J Christensen
- Department of Neuroscience and Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Torben Ott
- Department of Neuroscience and Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA; Bernstein Center for Computational Neuroscience Berlin, Humboldt University of Berlin, Berlin, Germany.
| | - Adam Kepecs
- Department of Neuroscience and Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Machado TA, Kauvar IV, Deisseroth K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 2022; 23:683-704. [PMID: 36192596 PMCID: PMC10327445 DOI: 10.1038/s41583-022-00634-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries - in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.
Collapse
Affiliation(s)
- Timothy A Machado
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Ioanas HI, Schlegel F, Skachokova Z, Schroeter A, Husak T, Rudin M. Hybrid fiber optic-fMRI for multimodal cell-specific recording and manipulation of neural activity in rodents. NEUROPHOTONICS 2022; 9:032206. [PMID: 35355657 PMCID: PMC8936941 DOI: 10.1117/1.nph.9.3.032206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/19/2022] [Indexed: 05/08/2023]
Abstract
Significance: Multiscale imaging holds particular relevance to neuroscience, where it helps integrate the cellular and molecular biological scale, which is most accessible to interventions, with holistic organ-level evaluations, most relevant with respect to function. Being inextricably interdisciplinary, multiscale imaging benefits substantially from incremental technology adoption, and a detailed overview of the state-of-the-art is vital to an informed application of imaging methods. Aim: In this article, we lay out the background and methodological aspects of multimodal approaches combining functional magnetic resonance imaging (fMRI) with simultaneous optical measurement or stimulation. Approach: We focus on optical techniques as these allow, in conjunction with genetically encoded proteins (e.g. calcium indicators or optical signal transducers), unprecedented read-out and control specificity for individual cell-types during fMRI experiments, while leveraging non-interfering modalities. Results: A variety of different solutions for optical/fMRI methods has been reported ranging from bulk fluorescence recordings via fiber photometry to high resolution microscopy. In particular, the plethora of optogenetic tools has enabled the transformation of stimulus-evoked fMRI into a cell biological interrogation method. We discuss the capabilities and limitations of these genetically encoded molecular tools in the study of brain phenomena of great methodological and neuropsychiatric interest-such as neurovascular coupling (NVC) and neuronal network mapping. We provide a methodological description of this interdisciplinary field of study, and focus in particular on the limitations of the widely used blood oxygen level dependent (BOLD) signal and how multimodal readouts can shed light on the contributions arising from neurons, astrocytes, or the vasculature. Conclusion: We conclude that information from multiple signaling pathways must be incorporated in future forward models of the BOLD response to prevent erroneous conclusions when using fMRI as a surrogate measure for neural activity. Further, we highlight the potential of direct neuronal stimulation via genetically defined brain networks towards advancing neurophysiological understanding and better estimating effective connectivity.
Collapse
Affiliation(s)
- Horea-Ioan Ioanas
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, United States
- Dartmouth College, Center for Open Neuroscience, Hanover, New Hampshire, United States
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| | - Felix Schlegel
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Zhiva Skachokova
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Aileen Schroeter
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- University of Zurich, USZ Innovation Hub, Zurich, Switzerland
| | - Tetiana Husak
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, United States
| | - Markus Rudin
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- The LOOP Zurich, Zurich, Switzerland
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| |
Collapse
|
18
|
Pines AR, Larsen B, Cui Z, Sydnor VJ, Bertolero MA, Adebimpe A, Alexander-Bloch AF, Davatzikos C, Fair DA, Gur RC, Gur RE, Li H, Milham MP, Moore TM, Murtha K, Parkes L, Thompson-Schill SL, Shanmugan S, Shinohara RT, Weinstein SM, Bassett DS, Fan Y, Satterthwaite TD. Dissociable multi-scale patterns of development in personalized brain networks. Nat Commun 2022; 13:2647. [PMID: 35551181 PMCID: PMC9098559 DOI: 10.1038/s41467-022-30244-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
The brain is organized into networks at multiple resolutions, or scales, yet studies of functional network development typically focus on a single scale. Here, we derive personalized functional networks across 29 scales in a large sample of youths (n = 693, ages 8-23 years) to identify multi-scale patterns of network re-organization related to neurocognitive development. We found that developmental shifts in inter-network coupling reflect and strengthen a functional hierarchy of cortical organization. Furthermore, we observed that scale-dependent effects were present in lower-order, unimodal networks, but not higher-order, transmodal networks. Finally, we found that network maturation had clear behavioral relevance: the development of coupling in unimodal and transmodal networks are dissociably related to the emergence of executive function. These results suggest that the development of functional brain networks align with and refine a hierarchy linked to cognition.
Collapse
Affiliation(s)
- Adam R Pines
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bart Larsen
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zaixu Cui
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Chinese Institute for Brain Research, 102206, Beijing, China
| | - Valerie J Sydnor
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maxwell A Bertolero
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Azeez Adebimpe
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christos Davatzikos
- Department of Radiology, the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Department of Pediatrics, College of Education and Human Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ruben C Gur
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, the University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongming Li
- Department of Radiology, the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Milham
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Center for the Developing Brain, Child Mind Institute, New York City, NY, USA
| | - Tyler M Moore
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kristin Murtha
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Linden Parkes
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Sheila Shanmugan
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah M Weinstein
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle S Bassett
- Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Santa Fe Institute, Santa Fe, NM, 87051, USA
| | - Yong Fan
- Department of Radiology, the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Psychiatry, Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Peng Y, Schöneberg N, Esposito MS, Geiger JRP, Sharott A, Tovote P. Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Exp Neurol 2022; 351:114008. [PMID: 35149118 PMCID: PMC7612860 DOI: 10.1016/j.expneurol.2022.114008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom.
| | - Nina Schöneberg
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany
| | - Maria Soledad Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Rio Negro, Argentina
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany.
| |
Collapse
|
20
|
Liang J, Zhou C. Criticality enhances the multilevel reliability of stimulus responses in cortical neural networks. PLoS Comput Biol 2022; 18:e1009848. [PMID: 35100254 PMCID: PMC8830719 DOI: 10.1371/journal.pcbi.1009848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/10/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features–from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus–evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus–response dynamics of biologically plausible excitation–inhibition (E–I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E–I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes. The complexity and variability of brain dynamical activity range from neuronal spiking and neural avalanches to oscillatory local field potentials of local neural circuits in both spontaneous and stimulus-evoked states. Such multilevel variable brain dynamics are functionally and behaviorally relevant and are principal components of the underlying circuit organization. To more comprehensively clarify their neural mechanisms, we use a bottom-up approach to study the stimulus–response dynamics of neural circuits. Our model assumes the following key biologically plausible components: excitation–inhibition (E–I) neuronal interaction and chemical synaptic coupling. We show that the circuits with E–I balance have a special dynamic sub-region, the critical region. Circuits around this region could account for the emergence of multilevel brain response patterns, both ongoing and stimulus-induced, observed in different experiments, including the reduction of trial-to-trial variability, effective modulation of gamma frequency, and preservation of criticality in the presence of a stimulus. We further analyze the corresponding nonlinear dynamical principles using a novel and highly generalizable semi-analytical mean-field theory. Our computational and theoretical studies explain the cross-level brain dynamical organization of spontaneous and evoked states in a more integrative manner.
Collapse
Affiliation(s)
- Junhao Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department for Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Department of Physics, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
21
|
Shi YL, Steinmetz NA, Moore T, Boahen K, Engel TA. Cortical state dynamics and selective attention define the spatial pattern of correlated variability in neocortex. Nat Commun 2022; 13:44. [PMID: 35013259 PMCID: PMC8748999 DOI: 10.1038/s41467-021-27724-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/03/2021] [Indexed: 01/20/2023] Open
Abstract
Correlated activity fluctuations in the neocortex influence sensory responses and behavior. Neural correlations reflect anatomical connectivity but also change dynamically with cognitive states such as attention. Yet, the network mechanisms defining the population structure of correlations remain unknown. We measured correlations within columns in the visual cortex. We show that the magnitude of correlations, their attentional modulation, and dependence on lateral distance are explained by columnar On-Off dynamics, which are synchronous activity fluctuations reflecting cortical state. We developed a network model in which the On-Off dynamics propagate across nearby columns generating spatial correlations with the extent controlled by attentional inputs. This mechanism, unlike previous proposals, predicts spatially non-uniform changes in correlations during attention. We confirm this prediction in our columnar recordings by showing that in superficial layers the largest changes in correlations occur at intermediate lateral distances. Our results reveal how spatially structured patterns of correlated variability emerge through interactions of cortical state dynamics, anatomical connectivity, and attention.
Collapse
Affiliation(s)
- Yan-Liang Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Tirin Moore
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kwabena Boahen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
22
|
Henke J, Bunk D, von Werder D, Häusler S, Flanagin VL, Thurley K. Distributed coding of duration in rodent prefrontal cortex during time reproduction. eLife 2021; 10:71612. [PMID: 34939922 PMCID: PMC8786316 DOI: 10.7554/elife.71612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
As we interact with the external world, we judge magnitudes from sensory information. The estimation of magnitudes has been characterized in primates, yet it is largely unexplored in nonprimate species. Here, we use time interval reproduction to study rodent behavior and its neural correlates in the context of magnitude estimation. We show that gerbils display primate-like magnitude estimation characteristics in time reproduction. Most prominently their behavioral responses show a systematic overestimation of small stimuli and an underestimation of large stimuli, often referred to as regression effect. We investigated the underlying neural mechanisms by recording from medial prefrontal cortex and show that the majority of neurons respond either during the measurement or the reproduction of a time interval. Cells that are active during both phases display distinct response patterns. We categorize the neural responses into multiple types and demonstrate that only populations with mixed responses can encode the bias of the regression effect. These results help unveil the organizing neural principles of time reproduction and perhaps magnitude estimation in general.
Collapse
Affiliation(s)
- Josephine Henke
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| | - David Bunk
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| | - Dina von Werder
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| | - Stefan Häusler
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| | - Virginia L Flanagin
- German Center for Vertigo and Balance Disorders,, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Kay Thurley
- Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
| |
Collapse
|
23
|
Deitch D, Rubin A, Ziv Y. Representational drift in the mouse visual cortex. Curr Biol 2021; 31:4327-4339.e6. [PMID: 34433077 DOI: 10.1016/j.cub.2021.07.062] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Recent studies have shown that neuronal representations gradually change over time despite no changes in the stimulus, environment, or behavior. However, such representational drift has been assumed to be a property of high-level brain structures, whereas earlier circuits, such as sensory cortices, have been assumed to stably encode information over time. Here, we analyzed large-scale optical and electrophysiological recordings from six visual cortical areas in behaving mice that were repeatedly presented with the same natural movies. Contrary to the prevailing notion, we found representational drift over timescales spanning minutes to days across multiple visual areas, cortical layers, and cell types. Notably, neural-code stability did not reflect the hierarchy of information flow across areas. Although individual neurons showed time-dependent changes in their coding properties, the structure of the relationships between population activity patterns remained stable and stereotypic. Such population-level organization may underlie stable visual perception despite continuous changes in neuronal responses.
Collapse
Affiliation(s)
- Daniel Deitch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alon Rubin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
24
|
Ebitz RB, Hayden BY. The population doctrine in cognitive neuroscience. Neuron 2021; 109:3055-3068. [PMID: 34416170 PMCID: PMC8725976 DOI: 10.1016/j.neuron.2021.07.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023]
Abstract
A major shift is happening within neurophysiology: a population doctrine is drawing level with the single-neuron doctrine that has long dominated the field. Population-level ideas have so far had their greatest impact in motor neuroscience, but they hold great promise for resolving open questions in cognition as well. Here, we codify the population doctrine and survey recent work that leverages this view to specifically probe cognition. Our discussion is organized around five core concepts that provide a foundation for population-level thinking: (1) state spaces, (2) manifolds, (3) coding dimensions, (4) subspaces, and (5) dynamics. The work we review illustrates the progress and promise that population-level thinking holds for cognitive neuroscience-for delivering new insight into attention, working memory, decision-making, executive function, learning, and reward processing.
Collapse
Affiliation(s)
- R Becket Ebitz
- Department of Neurosciences, Faculté de médecine, Université de Montréal, Montréal, QC, Canada.
| | - Benjamin Y Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Niell CM, Scanziani M. How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex as a Model. Annu Rev Neurosci 2021; 44:517-546. [PMID: 33914591 PMCID: PMC9925090 DOI: 10.1146/annurev-neuro-102320-085825] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.
Collapse
Affiliation(s)
- Cristopher M. Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - Massimo Scanziani
- Department of Physiology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, USA;
| |
Collapse
|
26
|
Findlay G, Tononi G, Cirelli C. The evolving view of replay and its functions in wake and sleep. ACTA ACUST UNITED AC 2021; 1:zpab002. [PMID: 33644760 PMCID: PMC7898724 DOI: 10.1093/sleepadvances/zpab002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Indexed: 12/28/2022]
Abstract
The term hippocampal replay originally referred to the temporally compressed reinstantiation, during rest, of sequential neural activity observed during prior active wake. Since its description in the 1990s, hippocampal replay has often been viewed as the key mechanism by which a memory trace is repeatedly rehearsed at high speeds during sleep and gradually transferred to neocortical circuits. However, the methods used to measure the occurrence of replay remain debated, and it is now clear that the underlying neural events are considerably more complicated than the traditional narratives had suggested. “Replay-like” activity happens during wake, can play out in reverse order, may represent trajectories never taken by the animal, and may have additional functions beyond memory consolidation, from learning values and solving the problem of credit assignment to decision-making and planning. Still, we know little about the role of replay in cognition, and to what extent it differs between wake and sleep. This may soon change, however, because decades-long efforts to explain replay in terms of reinforcement learning (RL) have started to yield testable predictions and possible explanations for a diverse set of observations. Here, we (1) survey the diverse features of replay, focusing especially on the latest findings; (2) discuss recent attempts at unifying disparate experimental results and putatively different cognitive functions under the banner of RL; (3) discuss methodological issues and theoretical biases that impede progress or may warrant a partial revaluation of the current literature, and finally; (4) highlight areas of considerable uncertainty and promising avenues of inquiry.
Collapse
Affiliation(s)
- Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Kafashan M, Jaffe AW, Chettih SN, Nogueira R, Arandia-Romero I, Harvey CD, Moreno-Bote R, Drugowitsch J. Scaling of sensory information in large neural populations shows signatures of information-limiting correlations. Nat Commun 2021; 12:473. [PMID: 33473113 PMCID: PMC7817840 DOI: 10.1038/s41467-020-20722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
How is information distributed across large neuronal populations within a given brain area? Information may be distributed roughly evenly across neuronal populations, so that total information scales linearly with the number of recorded neurons. Alternatively, the neural code might be highly redundant, meaning that total information saturates. Here we investigate how sensory information about the direction of a moving visual stimulus is distributed across hundreds of simultaneously recorded neurons in mouse primary visual cortex. We show that information scales sublinearly due to correlated noise in these populations. We compartmentalized noise correlations into information-limiting and nonlimiting components, then extrapolate to predict how information grows with even larger neural populations. We predict that tens of thousands of neurons encode 95% of the information about visual stimulus direction, much less than the number of neurons in primary visual cortex. These findings suggest that the brain uses a widely distributed, but nonetheless redundant code that supports recovering most sensory information from smaller subpopulations.
Collapse
Affiliation(s)
| | - Anna W Jaffe
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Selmaan N Chettih
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ramon Nogueira
- Center for Theoretical Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Iñigo Arandia-Romero
- ISAAC Lab, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
- IAS-Research Center for Life, Mind, and Society, Department of Logic and Philosophy of Science, University of the Basque Country, UPV-EHU, Donostia-San Sebastián, Spain
| | | | - Rubén Moreno-Bote
- Center for Brain and Cognition and Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Serra Húnter Fellow Programme and ICREA Academia, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Perich MG, Rajan K. Rethinking brain-wide interactions through multi-region 'network of networks' models. Curr Opin Neurobiol 2020; 65:146-151. [PMID: 33254073 DOI: 10.1016/j.conb.2020.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/17/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022]
Abstract
The neural control of behavior is distributed across many functionally and anatomically distinct brain regions even in small nervous systems. While classical neuroscience models treated these regions as a set of hierarchically isolated nodes, the brain comprises a recurrently interconnected network in which each region is intimately modulated by many others. Uncovering these interactions is now possible through experimental techniques that access large neural populations from many brain regions simultaneously. Harnessing these large-scale datasets, however, requires new theoretical approaches. Here, we review recent work to understand brain-wide interactions using multi-region 'network of networks' models and discuss how they can guide future experiments. We also emphasize the importance of multi-region recordings, and posit that studying individual components in isolation will be insufficient to understand the neural basis of behavior.
Collapse
Affiliation(s)
- Matthew G Perich
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kanaka Rajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
Davis ZW, Muller L, Martinez-Trujillo J, Sejnowski T, Reynolds JH. Spontaneous travelling cortical waves gate perception in behaving primates. Nature 2020; 587:432-436. [PMID: 33029013 PMCID: PMC7677221 DOI: 10.1038/s41586-020-2802-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/10/2020] [Indexed: 01/20/2023]
Abstract
Perceptual sensitivity varies from moment to moment. One potential source of variability is spontaneous fluctuations in cortical activity that can travel as a wave1. Spontaneous traveling waves have been reported during anesthesia2–7, but it is not known whether spontaneous traveling waves play a role during waking perception. Using newly developed analytic techniques to characterize the moment-to-moment dynamics of noisy multielectrode data, we find spontaneous waves of activity in extrastriate visual cortex of awake, behaving marmosets (Callithrix jacchus). In monkeys trained to detect faint visual targets, the timing and position of spontaneous traveling waves, prior to target onset, predict the magnitude of target-evoked activity and the likelihood of target detection. In contrast, spatially disorganized fluctuations of neural activity are much less predictive. These results reveal an important role for spontaneous traveling waves in sensory processing through modulating neural and perceptual sensitivity.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Lyle Muller
- The Salk Institute for Biological Studies, La Jolla, CA, USA.,Department of Applied Mathematics, Western University, London, Ontario, Canada.,Robarts Research and Brain and Mind Institute, Western University, London, Ontario, Canada.,Institut de Neurosciences de la Timone (INT), UMR7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Julio Martinez-Trujillo
- Robarts Research and Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - John H Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
30
|
Abstract
Abstract
Hierarchical structure and compositionality imbue human language with unparalleled expressive power and set it apart from other perception–action systems. However, neither formal nor neurobiological models account for how these defining computational properties might arise in a physiological system. I attempt to reconcile hierarchy and compositionality with principles from cell assembly computation in neuroscience; the result is an emerging theory of how the brain could convert distributed perceptual representations into hierarchical structures across multiple timescales while representing interpretable incremental stages of (de)compositional meaning. The model's architecture—a multidimensional coordinate system based on neurophysiological models of sensory processing—proposes that a manifold of neural trajectories encodes sensory, motor, and abstract linguistic states. Gain modulation, including inhibition, tunes the path in the manifold in accordance with behavior and is how latent structure is inferred. As a consequence, predictive information about upcoming sensory input during production and comprehension is available without a separate operation. The proposed processing mechanism is synthesized from current models of neural entrainment to speech, concepts from systems neuroscience and category theory, and a symbolic-connectionist computational model that uses time and rhythm to structure information. I build on evidence from cognitive neuroscience and computational modeling that suggests a formal and mechanistic alignment between structure building and neural oscillations, and moves toward unifying basic insights from linguistics and psycholinguistics with the currency of neural computation.
Collapse
Affiliation(s)
- Andrea E. Martin
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|