1
|
Li J, Pang S, Tu Q, Li Y, Chen S, Lin S, Zhong J. Endophyte-assisted non-host plant Tillandsia brachycaulos enhance indoor formaldehyde removal. J Biotechnol 2024; 393:149-160. [PMID: 39128504 DOI: 10.1016/j.jbiotec.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
This study investigated the use of endophyte-assisted Tillandsia brachycaulos to enhance formaldehyde removal in indoor environments. A formaldehyde-degrading endophyte from the root of Epipremnum aureum, Pseudomonas plecoglossicida, was identified and used for inoculation. Among the inoculation methods, spraying proved to be the most effective, resulting in a significant 35 % increase in formaldehyde removal after 36 hours. The results of the light exposure experiment (3000 Lux) demonstrate that an increase in light intensity reduces the efficiency of the Tillandsia brachycaulos-microbial system in degrading formaldehyde. In a 15-day formaldehyde fumigation experiment at 2 ppm in a normal indoor environment, the inoculated Tillandsia brachycaulos exhibited removal efficiency ranging from 42.53 % to 66.13 %, while the uninoculated declined from 31.62 % to 3.17 %. The Pseudomonas plecoglossicida (referred to as PP-1) became the predominant bacteria within the Tillandsia brachycaulos after fumigation. Moreover, the endophytic inoculation effectively increased the resistance and tolerance of Tillandsia brachycaulos to formaldehyde, as evidenced by lower levels of hydroxyl radical, malondialdehyde (MDA), free protein, and peroxidase activity (POD), as well as higher chlorophyll content compared to uninoculated Tillandsia brachycaulos. These findings indicate that the combination of endophytic bacteria and Tillandsia brachycaulos has significant potential for improving indoor air quality.
Collapse
Affiliation(s)
- Jian Li
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Shifan Pang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Qianying Tu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yan Li
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Silan Chen
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Shujie Lin
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Jiaochan Zhong
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| |
Collapse
|
2
|
Li M, Yang J, Li H, Wang Y, Cheng X, Han G, Bisseling T, Zhao J. Endophytic Bacillus velezensis XS142 is an efficient antagonist for Verticillium wilt of potato. Front Microbiol 2024; 15:1396044. [PMID: 39257618 PMCID: PMC11385860 DOI: 10.3389/fmicb.2024.1396044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
Potato Verticillium wilt (PVW) caused by Verticillium dahliae is a vascular disease, that seriously affects potato (Solanum tuberosum L.) yield and quality worldwide. V. dahliae occupies the vascular bundle and therefore it cannot efficiently be treated with fungicides. Further, the application of these pesticides causes serious environmental problems. Therefore, it is of great importance to find environmentally friendly biological control methods. In this study, bacterial strains were isolated from agricultural lands on which potato had been cultured for 5 years. Five strains with a broad-spectrum antagonistic activity were selected. Among these five strains, Bacillus velezensis XS142 showed the highest antagonistic activity. To study the mechanism of XS142, by which this strain might confer tolerance to V. dahliae in potato, the genome of strain XS142 was sequenced. This showed that its genome has a high level of sequence identity with the model strain B. velezensis FZB42 as the OrthoANI (Average Nucleotide Identity by Orthology) value is 98%. The fungal suppressing mechanisms of this model strain are well studied. Based on the genome comparison it can be predicted that XS142 has the potential to suppress the growth of V. dahliae by production of bacillomycin D, fengycin, and chitinase. Further, the transcriptomes of potatoes treated with XS142 were analyzed and this showed that XS142 does not induce ISR, but the expression of genes encoding peptides with antifungal activity. Here we showed that XS142 is an endophyte. Further, it is isolated from a field where potato had been cultured for several years. These properties give it a high potential to be used, in the future, as a biocontrol agent of PVW in agriculture.
Collapse
Affiliation(s)
- Min Li
- Laboratory of Molecular Phytopathology, Horticultural and Plant Protection Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianfeng Yang
- Laboratory of Molecular Phytopathology, Horticultural and Plant Protection Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Haoyu Li
- The Modern Agricultural and Animal Husbandry Development Center of Bayannur, Bayannur, China
| | - Yating Wang
- Laboratory of Molecular Phytopathology, Horticultural and Plant Protection Department, Inner Mongolia Agricultural University, Hohhot, China
| | - Xu Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guodong Han
- Key Lab of Grassland Resources of the Ministry of Education of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ton Bisseling
- Key Lab of Grassland Resources of the Ministry of Education of China, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jun Zhao
- Laboratory of Molecular Phytopathology, Horticultural and Plant Protection Department, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
3
|
An Q, Zheng N, Pan J, Ji Y, Wang S, Li X, Chen C, Peng L, Wang B. Association between plant microbiota and cadmium uptake under the influence of microplastics with different particle sizes. ENVIRONMENT INTERNATIONAL 2024; 190:108938. [PMID: 39111171 DOI: 10.1016/j.envint.2024.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
Plant microbiota are an important factor impacting plant cadmium (Cd) uptake. However, little is known about how plant microbiota affects the Cd uptake by plants under the influence of microplastics (MPs) with different particle sizes. In this study, bacterial structure and assembly in the rhizosphere and endosphere in pakchoi were analyzed by amplicon sequencing of 16S rRNA genes under the influence of different particle sizes of polystyrene microplastics (PS-MPs) combined with Cd treatments. Results showed that there were no significant differences observed in the shoot endophytes among different treatments. However, compared to Cd treatment, larger-sized PS-MPs (2 and 20 μm) significantly increased community diversity and altered the structural composition of rhizosphere bacteria and root endophytes, while smaller-sized PS-MPs (0.2 μm) did not. Under the treatment of larger-sized PS-MPs, the niche breadth of rhizosphere bacteria and root endophytes were significantly increased. And larger-sized PS-MPs also maintained stability and complexity of bacterial co-occurrence networks, while smaller-sized PS-MPs reduced them. Furthermore, compared to Cd treatment, the addition of larger particle size PS-MPs decreased the proportion of homogeneous section, while increased the proportion of drift in root endophytic bacterial community assembly. The role of larger-sized MPs in the community assembly of rhizosphere bacteria was opposite. Using random forest and structural equation models, the study found that larger-sized PS-MPs can promote the colonization of specific bacterial taxa, such as Brevundimonas, AKAU4049, SWB02, Ellin6055, Porphyrobacter, Sphingorhabdus, Rhodobacter, Erythrobacter, Devosia and some other bacteria belonging to Alphaproteobacteria, in the rhizosphere and root endosphere. The colonization of these taxa can may induce the formation of biofilms in the roots, immobilize heavy metals through oxidation processes, and promote plant growth, thereby reducing Cd uptake by pakchoi. The findings of this study provide important insights into the microbial mechanisms underlying the influence of MPs with different particle sizes on plant Cd uptake.
Collapse
Affiliation(s)
- Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China.
| | - Jiamin Pan
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Bo Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| |
Collapse
|
4
|
Bing H, Qi C, Gu J, Zhao T, Yu X, Cai Y, Zhang Y, Li A, Wang X, Zhao J, Xiang W. Isolation and identification of NEAU-CP5: A seed-endophytic strain of B. velezensis that controls tomato bacterial wilt. Microb Pathog 2024; 192:106707. [PMID: 38777241 DOI: 10.1016/j.micpath.2024.106707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Bacterial wilt of tomato caused by Ralstonia solanacearum is a critical soilborne disease that drastically reduces yield. In the current study, an endophytic strain NEAU-CP5 with strong antagonistic activity against R. solanacearum was isolated from tomato seeds and characterized. The strain was identified as Bacillus velezensis based on 16S rRNA gene and whole genome sequence analysis. NEAU-CP5 can secrete amylase, protease, and cellulase, and also produce known antibacterial metabolites, including cyclo (leucylprolyl), cyclo (phenylalanyl-prolyl), cyclo (Pro-Gly), 3-benzyl-2,5-piperazinedione, pentadecanoic acid, eicosane, 2-methyoic acid, isovaleric acid, dibuty phthalate, and esters of fatty acids (HFDU), which may be responsible for its strong antibacterial activity. Fourteen gene clusters associated with antibacterial properties were also identified in the whole genome sequence of NEAU-CP5. Pot experiment demonstrated that the application of 108 CFU/mL NEAU-CP5 on tomato plants significantly reduced the incidence of tomato bacterial wilt by 68.36 ± 1.67 %. NEAU-CP5 also increased the activity of defense-related enzymes (CAT, POD, PPO, SOD, and PAL) in tomato plants. This is the first report of an effective control of bacterial wilt on tomato plants by B. velezensis and highlights the potential of NEAU-CP5 as a potential biocontrol agent for the management of tomato bacterial wilt.
Collapse
Affiliation(s)
- Hui Bing
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Cuiping Qi
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Jinzhao Gu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Tianxin Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Xiaoyan Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Yang Cai
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Yance Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Ailin Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| |
Collapse
|
5
|
Mohan I, Joshi B, Pathania D, Dhar S, Bhau BS. Phytobial remediation advances and application of omics and artificial intelligence: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37988-38021. [PMID: 38780844 DOI: 10.1007/s11356-024-33690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Industrialization and urbanization increased the use of chemicals in agriculture, vehicular emissions, etc., and spoiled all environmental sectors. It causes various problems among living beings at multiple levels and concentrations. Phytoremediation and microbial association are emerging as a potential method for removing heavy metals and other contaminants from soil. The treatment uses plant physiology and metabolism to remove or clean up various soil contaminants efficiently. In recent years, omics and artificial intelligence have been seen as powerful techniques for phytobial remediation. Recently, AI and modeling are used to analyze large data generated by omics technologies. Machine learning algorithms can be used to develop predictive models that can help guide the selection of the most appropriate plant and plant growth-promoting rhizobacteria combination that is most effective at remediation. In this review, emphasis is given to the phytoremediation techniques being explored worldwide in soil contamination.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., 226001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
6
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y. Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 2024; 10:e26023. [PMID: 38390045 PMCID: PMC10881343 DOI: 10.1016/j.heliyon.2024.e26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation. The recognition of Se volatilization as a potential strategy for mitigating Se pollution in contaminated environments is underscored in this review. This study delves into the volatilization mechanisms in various organisms, including plants, microalgae, and microorganisms. By assessing the efficacy of Se removal and identifying the rate-limiting steps associated with volatilization, this paper provides insightful recommendations for Se mitigation. Constructed wetlands are a cost-effective and environmentally friendly alternative in the treatment of Se volatilization. The fate, behavior, bioavailability, and toxicity of Se within complex environmental systems are comprehensively reviewed. This knowledge forms the basis for developing management plans that aimed at mitigating Se contamination in wetlands and protecting the associated ecosystems.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
7
|
Kumawat KC, Sharma P, Sirari A, Sharma B, Kumawat G, Nair RM, H B, Kunal. Co-existence of halo-tolerant Pseudomonas fluorescens and Enterococcus hirae with multifunctional growth promoting traits to ameliorate salinity stress in Vigna radiata. CHEMOSPHERE 2024; 349:140953. [PMID: 38128739 DOI: 10.1016/j.chemosphere.2023.140953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Soil salinization has become a prominent obstacle in diverse arid and semi-arid region damaging agricultural productivity globally. From this perspective, present investigation was aimed to compare the potential compatible consortium of bio-inoculants for improving Plant Growth Promoting (PGP) attributes, anti-oxidative enzymes, grain yield and profitability of Vigna radiata in saline soil conditions. A total of 101 rhizobacterium isolated from salt affected regions of Punjab, India were screened for their ability to induce salt tolerance, multifunctional PGP traits and antagonistic activities. The 16S rRNA sequencing identified the strains LSMR-29 and LSMRS-7 as Pseudomonas flourescens and Enterococcus hirae, respectively. In-vitro compatible halo-tolerant dual inoculant (LSMR-29 + LSMRS-7) as bio-inoculants mitigated salt stress in Vigna radiata (spring mungbean) seedling with improved seed germination, biomass and salt tolerance index together with the presence of nifH, acds, pqq and ipdc gene under salinity stress as compared to single inoculants. Further, the potential of single and dual bio-inoculants were also exploited for PGP attributes in pot and field experiments. Results indicated that a significant improvement in chlorophyll content (2.03 fold), nodulation (1.24 fold), nodule biomass (1.23 fold) and leghemoglobin content (1.13 fold) with dual inoculant of LSMR-29 + LSMRS-7 over the LSMR-29 alone. The concentrations of macro & micronutrients, proline, soil enzyme activities i.e. soil dehydrogenase, acid & alkaline phosphatases and antioxidant enzymes such as superoxide dismutase, catalase and peroxidase also found to be high for LSMR-29 + LSMRS-7 as compared to un-inoculated control. The high grain yield thereby leading to Benefit: Cost (B: C) ratio at field scale was indicative of the commercial use bio-inoculants under salt affected Vigna radiata (spring mungbean) to improvement of productivity and soil health. The current finding reveals a co-inoculation of halo-tolerating Pseudomonas fluorescens and Enterococcus hirae containing ACC deaminase could prove to be novel approach for inducing salt tolerance and improving productivity of Vigna radiata (spring mungbean).
Collapse
Affiliation(s)
- Kailash Chand Kumawat
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141001, Punjab, India; Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bio-engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India.
| | - Poonam Sharma
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Asmita Sirari
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Barkha Sharma
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, 263153, India
| | - Gayatri Kumawat
- Livestock Feed Resource Management and Technology Centre, Rajasthan University of Veterinary and Animal Sciences, Bikaner, 334001, India
| | - R M Nair
- World Vegetable Center, South Asia, ICRISAT Campus, Greater Hyderabad, Telangana, India
| | - Bindumadhava H
- World Vegetable Center, South Asia, ICRISAT Campus, Greater Hyderabad, Telangana, India
| | - Kunal
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Budhera, Gurugram, 122505, Haryana, India
| |
Collapse
|
8
|
Qin X, Xu J, An X, Yang J, Wang Y, Dou M, Wang M, Huang J, Fu Y. Insight of endophytic fungi promoting the growth and development of woody plants. Crit Rev Biotechnol 2024; 44:78-99. [PMID: 36592988 DOI: 10.1080/07388551.2022.2129579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
Microorganisms play an important role in plant growth and development. In particular, endophytic fungi is one of the important kinds of microorganisms and has a mutually beneficial symbiotic relationship with host plants. Endophytic fungi have many substantial benefits to host plants, especially for woody plants, such as accelerating plant growth, enhancing stress resistance, promoting nutrient absorption, resisting pathogens and etc. However, the effects of endophytic fungi on the growth and development of woody plants have not been systematically summarized. In this review, the functions of endophytic fungi for the growth and development of woody plants have been mainly reviewed, including regulating plant growth (e.g., flowering, root elongation, etc.) by producing nutrients and plant hormones, and improving plant disease, insect resistance and heavy metal resistance by producing secondary metabolites. In addition, the diversity of endophytic fungi could improve the ability of woody plants to adapt to adverse environment. The components produced by endophytic fungi have excellent potential for the growth and development of woody plants. This review has systematically discussed the potential regulation mechanism of endophytic fungi regulating the growth and development of woody plants, it would be of great significance for the development and utilization of endophytic fungi resource from woody plants for the protection of forest resources.
Collapse
Affiliation(s)
- Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoli An
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jie Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Meijia Dou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Minggang Wang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Jin Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
9
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
10
|
Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, Shukla AK, Sunita K, Kumar A, Bontempi E, Ma Y, Kolton M, Singh AK. Current Scenario and Future Prospects of Endophytic Microbes: Promising Candidates for Abiotic and Biotic Stress Management for Agricultural and Environmental Sustainability. MICROBIAL ECOLOGY 2023; 86:1455-1486. [PMID: 36917283 PMCID: PMC10497456 DOI: 10.1007/s00248-023-02190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel.
| | - Tarun Pal
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Niraj Yadav
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Krishna Kumar Choudhary
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7505101, Rishon, Lezion, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College (A constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur, 812007, Bihar, India.
| |
Collapse
|
11
|
Liu J, Xu H, Wang Z, Liu J, Gong X. Core Endophytic Bacteria and Their Roles in the Coralloid Roots of Cultivated Cycas revoluta (Cycadaceae). Microorganisms 2023; 11:2364. [PMID: 37764208 PMCID: PMC10537169 DOI: 10.3390/microorganisms11092364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
As a gymnosperm group, cycads are known for their ancient origin and specialized coralloid root, which can be used as an ideal system to explore the interaction between host and associated microorganisms. Previous studies have revealed that some nitrogen-fixing cyanobacteria contribute greatly to the composition of the endophytic microorganisms in cycad coralloid roots. However, the roles of host and environment in shaping the composition of endophytic bacteria during the recruitment process remain unclear. Here, we determined the diversity, composition, and function prediction of endophytic bacteria from the coralloid roots of a widely cultivated cycad, Cycas revoluta Thunb. Using next-generation sequencing techniques, we comprehensively investigated the diversity and community structure of the bacteria in coralloid roots and bulk soils sampled from 11 sites in China, aiming to explore the variations in core endophytic bacteria and to predict their potential functions. We found a higher microbe diversity in bulk soils than in coralloid roots. Meanwhile, there was no significant difference in the diversity and composition of endophytic bacteria across different localities, and the same result was found after removing cyanobacteria. Desmonostoc was the most dominant in coralloid roots, followed by Nostoc, yet these two cyanobacteria were not shared by all samples. Rhodococcus, Edaphobacter, Niastella, Nordella, SH-PL14, and Virgisporangium were defined as the core microorganisms in coralloid roots. A function prediction analysis revealed that endophytic bacteria majorly participated in the plant uptake of phosphorus and metal ions and in disease resistance. These results indicate that the community composition of the bacteria in coralloid roots is affected by both the host and environment, in which the host is more decisive. Despite the very small proportion of core microbes, their interactions are significant and likely contribute to functions related to host survival. Our study contributes to an understanding of microbial diversity and composition in cycads, and it expands the knowledge on the association between hosts and symbiotic microbes.
Collapse
Affiliation(s)
- Jiating Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.L.); (H.X.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Xu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.L.); (H.X.); (Z.W.)
| | - Zhaochun Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.L.); (H.X.); (Z.W.)
| | - Jian Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.L.); (H.X.); (Z.W.)
| | - Xun Gong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (J.L.); (H.X.); (Z.W.)
| |
Collapse
|
12
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J. Oil-Contaminated Soil Remediation with Biodegradation by Autochthonous Microorganisms and Phytoremediation by Maize ( Zea mays). Molecules 2023; 28:6104. [PMID: 37630356 PMCID: PMC10459520 DOI: 10.3390/molecules28166104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biological methods are currently the most commonly used methods for removing hazardous substances from land. This research work focuses on the remediation of oil-contaminated land. The biodegradation of aliphatic hydrocarbons and PAHs as a result of inoculation with biopreparations B1 and B2 was investigated. Biopreparation B1 was developed on the basis of autochthonous bacteria, consisting of strains Dietzia sp. IN118, Gordonia sp. IN101, Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus globerulus IN113 and Raoultella sp. IN109, whereas biopreparation B2 was enriched with fungi, such as Aspergillus sydowii, Aspergillus versicolor, Candida sp., Cladosporium halotolerans, Penicillium chrysogenum. As a result of biodegradation tests conducted under ex situ conditions for soil inoculated with biopreparation B1, the concentrations of TPH and PAH were reduced by 31.85% and 27.41%, respectively. Soil inoculation with biopreparation B2 turned out to be more effective, as a result of which the concentration of TPH was reduced by 41.67% and PAH by 34.73%. Another issue was the phytoremediation of the pre-treated G6-3B2 soil with the use of Zea mays. The tests were carried out in three systems (system 1-soil G6-3B2 + Zea mays; system 2-soil G6-3B2 + biopreparation B2 + Zea mays; system 3-soil G6-3B2 + biopreparation B2 with γ-PGA + Zea mays) for 6 months. The highest degree of TPH and PAH reduction was obtained in system 3, amounting to 65.35% and 60.80%, respectively. The lowest phytoremediation efficiency was recorded in the non-inoculated system 1, where the concentration of TPH was reduced by 22.80% and PAH by 18.48%. Toxicological tests carried out using PhytotoxkitTM, OstracodtoxkitTM and Microtox® Solid Phase tests confirmed the effectiveness of remediation procedures and showed a correlation between the concentration of petroleum hydrocarbons in the soil and its toxicity. The results obtained during the research indicate the great potential of bioremediation practices with the use of microbial biopreparations and Zea mays in the treatment of soils contaminated with petroleum hydrocarbons.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | | | | | | |
Collapse
|
13
|
Yadav S, Kumar S, Haritash AK. A comprehensive review of chlorophenols: Fate, toxicology and its treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118254. [PMID: 37295147 DOI: 10.1016/j.jenvman.2023.118254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| | - Sunil Kumar
- Solaris Chemtech Industries, Bhuj, Gujarat, India
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
14
|
Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Kumar R, Verma V, Thakur M, Singh G, Bhargava B. A systematic review on mitigation of common indoor air pollutants using plant-based methods: a phytoremediation approach. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1-27. [PMID: 37359395 PMCID: PMC10005924 DOI: 10.1007/s11869-023-01326-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 02/10/2023] [Indexed: 06/28/2023]
Abstract
Environmental pollution, especially indoor air pollution, has become a global issue and affects nearly all domains of life. Being both natural and anthropogenic substances, indoor air pollutants lead to the deterioration of the ecosystem and have a negative impact on human health. Cost-effective plant-based approaches can help to improve indoor air quality (IAQ), regulate temperature, and protect humans from potential health risks. Thus, in this review, we have highlighted the common indoor air pollutants and their mitigation through plant-based approaches. Potted plants, green walls, and their combination with bio-filtration are such emerging approaches that can efficiently purify the indoor air. Moreover, we have discussed the pathways or mechanisms of phytoremediation, which involve the aerial parts of the plants (phyllosphere), growth media, and roots along with their associated microorganisms (rhizosphere). In conclusion, plants and their associated microbial communities can be key solutions for reducing indoor air pollution. However, there is a dire need to explore advanced omics technologies to get in-depth knowledge of the molecular mechanisms associated with plant-based reduction of indoor air pollutants.
Collapse
Affiliation(s)
- Raghawendra Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Gurpreet Singh
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
16
|
Tshikhudo PP, Ntushelo K, Mudau FN. Sustainable Applications of Endophytic Bacteria and Their Physiological/Biochemical Roles on Medicinal and Herbal Plants: Review. Microorganisms 2023; 11:microorganisms11020453. [PMID: 36838418 PMCID: PMC9967847 DOI: 10.3390/microorganisms11020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Bacterial endophytes reside within the tissues of living plant species without causing any harm or disease to their hosts. These endophytes can be isolated, identified, characterized, and used as biofertilizers. Moreover, bacterial endophytes increase the plants' resistance against diseases, pests, and parasites, and are a promising source of pharmaceutically important bioactives. For instance, the production of antibiotics, auxins, biosurfactants, cytokinin's, ethylene, enzymes, gibberellins, nitric oxide organic acids, osmolytes, and siderophores is accredited to the existence of various bacterial strains. Thus, this manuscript intends to review the sustainable applications of endophytic bacteria to promote the growth, development, and chemical integrity of medicinal and herbal plants, as well as their role in plant physiology. The study of the importance of bacterial endophytes in the suppression of diseases in medicinal and herbal plants is crucial and a promising area of future investigation.
Collapse
Affiliation(s)
- Phumudzo Patrick Tshikhudo
- Department of Agriculture, Land Reform and Rural Development, Directorate Plant Health, Division Pest Risk Analysis, Arcadia, Pretoria 0001, South Africa
- Correspondence:
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Fhatuwani Nixwell Mudau
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
17
|
Wang X, Wang W, Wang L, Wang G, You Y, Ma F. Process analysis of asymmetric interaction between copper and atrazine in a system of macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159652. [PMID: 36280074 DOI: 10.1016/j.scitotenv.2022.159652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
To clarify the mutual influence and inner processes between heavy-metal and pesticide pollutants, single copper and atrazine as well as binary mixtures were spiked in a system of aquatic Acorus tatarinowi Schott. The results show that: the total copper amount in roots was 23.31 and 41.46 times as much as those in leaves in single and co-contaminated copper pollution. In the solution, the copper removal reached equilibrium in 3 days. Atrazine raised plant-mediated copper removal by 20.69 % by calculating mass balance, and the increase in pH value and organic matter and the decrease of nitrate in solutions were key factors driving it. Correlation analysis demonstrated that the pH increase was mainly caused by the decline of nitrate and increases in organic matter in the solution. Hydroxyl units on the surface of organic matter in solutions provided binding sites for Cu2+, which was demonstrated by CO and OH peak position alterations in Fourier Transform Infrared Spectrometer. In turn, the root contained 2.56 and 2.04 times as much as atrazine in leaves in single and co-contaminated atrazine treatments. In the solution, atrazine removal became stable after 7 days. Cu2+ inhibited the total accumulation of atrazine in plants by 12.5 %. Copper-induced biological phenol-like components in solution decreased the total atrazine accumulation in A. tatatinowii.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | | | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Gen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Yongqiang You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
18
|
Geetha N, Sunilkumar CR, Bhavya G, Nandini B, Abhijith P, Satapute P, Shetty HS, Govarthanan M, Jogaiah S. Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. ENVIRONMENTAL RESEARCH 2023; 216:114498. [PMID: 36209791 DOI: 10.1016/j.envres.2022.114498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The fungal symbiosis with the plant root system is importantly recognized as a plant growth promoting fungi (PGPFs), as well as elicitor of plant defence against different biotic and abiotic stress conditions. Thus PGPFs are playing as a key trouper in enhancing agricultural quality and increased crop production and paving a way towards a sustainable agriculture. Due to increased demand of food production, the over and unscientific usage of chemical fertilizers has led to the contamination of soil by organic and inorganic wastes impacting on soil quality, crops quality effecting on export business of agricultural products. The application of microbial based consortium like plant growth promoting fungi is gaining worldwide importance due to their multidimensional activity. These activities are through plant growth promotion, induction of systemic resistance, disease combating and detoxification of organic and inorganic toxic chemicals, a heavy metal tolerance ability. The master key behind these properties exhibited by PGPFs are attributed towards various secretory biomolecules (secondary metabolites or enzymes or metabolites) secreted by the fungi during interaction mechanism. The present review is focused on the multidimensional role PGPFs as elicitors of Induced systemic resistance against phytopathogens as well as heavy metal detoxifier through seed biopriming and biofortification methods. The in-sights on PGPFs and their probable mechanistic nature contributing towards plants to withstand heavy metal stress and stress alleviation by activating of various stress regulatory pathways leading to secretion of low molecular weight compounds like organic compounds, glomalin, hydrophobins, etc,. Thus projecting the importance of PGPFs and further requirement of research in developing PGPFs based molecules and combining with trending Nano technological approaches for enhanced heavy metal stress alleviations in plant and soil as well as establishing a sustainable agriculture.
Collapse
Affiliation(s)
- Nagaraja Geetha
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | | | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Boregowda Nandini
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Padukana Abhijith
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, Karnataka, India
| | - Hunthrike Shekar Shetty
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, Karnataka, India; Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO) - 671316, Kasaragod (DT), Kerala, India.
| |
Collapse
|
19
|
Verma KK, Song XP, Li DM, Singh M, Wu JM, Singh RK, Sharma A, Zhang BQ, Li YR. Silicon and soil microorganisms improve rhizospheric soil health with bacterial community, plant growth, performance and yield. PLANT SIGNALING & BEHAVIOR 2022; 17:2104004. [PMID: 35943127 PMCID: PMC9364706 DOI: 10.1080/15592324.2022.2104004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The interaction of silicon and soil microorganisms stimulates crop enhancement to ensure sustainable agriculture. Silicon may potentially increase nutrient availability in rhizosphere with improved plants' growth, development as it does not produce phytotoxicity. The rhizospheric microbiome accommodates a variety of microbial species that live in a small area of soil directly associated with the hidden half plants' system. Plant growth-promoting rhizobacteria (PGPR) play a major role in plant development in response to adverse climatic conditions. PGPRs may enhance the growth, quality, productivity in variety of crops, and mitigate abiotic stresses by reprogramming stress-induced physiological variations in plants via different mechanisms, such as synthesis of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, exopolysaccharides, volatile organic compounds, atmospheric nitrogen fixation, and phosphate solubilization. Our article eye upon interactions of silicon and plant microbes which seems to be an opportunity for sustainable agriculture for series of crops and cropping systems in years to come, essential to safeguard the food security for masses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Dong-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Jian-Ming Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
20
|
Kandasamy GD, Kathirvel P. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiol Res 2022; 266:127256. [DOI: 10.1016/j.micres.2022.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
21
|
González-Morales M, Fernández-Pozo L, Rodríguez-González MÁ. Threats of metal mining on ecosystem services. Conservation proposals. ENVIRONMENTAL RESEARCH 2022; 214:114036. [PMID: 35995221 DOI: 10.1016/j.envres.2022.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We have studied, in a protected area with intense hunting activity, the consequences of the abandonment of facilities and tailings of a metal mine. The area studied has the peculiarity of having a steep slope and containing a water reservoir for irrigation and human consumption. Soil, sludge, vegetation, and water samples were analyzed, in which many metal(loid)s exceeded the generic reference levels (NGR) established for the health of the ecosystem. The concentration of Tl in the soils ranged between 300 and 700 mg kg-1, because of continuous diffuse pollution, produced both by the alteration of sphalerite and the combustion products of a coal-fired power plant near the study area. Soil concentrations of Pb (250-1500 mg kg-1) and Zn (350-700 mg kg-1) from the tailings indicate extreme contamination in the areas adjacent to them and in the reservoir. The contamination affects the water quality of the stream running through the study area, with 64 μg L-1 of Tl and 9.1 μg L-1 of Zn having been detected in the reservoir water. To ensure protection of human and ecosystem health, the following is proposed: (i) soil stabilization for erosion control and reduction of diffuse pollution, (ii) monitoring of soils for agricultural use and water quality, and (iii) study the impact of contamination on wildlife, both hunting and non-game species. Given their capacity to accumulate heavy metals it is proposed to use Cistus ladanifer, Lavandula stoechas and Retama sphaerocarpa as phytoremedial species. The novelty of this research lies in two considerations. First, a proposal for the analysis of environmental compartments as an interconnected and interdependent network in terms of impacts and their repercussions on the ES. Secondly, the application of the model DPSIR, which assumes that anthropogenic activities have an impact on the environment.
Collapse
Affiliation(s)
- María González-Morales
- Environmental Resources Analysis (ARAM) Research Group, University of Extremadura, Avda. de Elvas s/n, Badajoz, Spain
| | - Luis Fernández-Pozo
- Environmental Resources Analysis (ARAM) Research Group, University of Extremadura, Avda. de Elvas s/n, Badajoz, Spain.
| | - Mª Ángeles Rodríguez-González
- Environmental Resources Analysis (ARAM) Research Group, University of Extremadura, Avda. de Elvas s/n, Badajoz, Spain
| |
Collapse
|
22
|
Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3743-3764. [PMID: 35022877 DOI: 10.1007/s10653-021-01179-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plant physiology and development. This review discusses Cd effects on auxin biosynthesis and homeostasis, and the strategies for restoring plant growth based on exogenous auxin application. First, the two well-characterized auxin biosynthesis pathways in plants are described, as well as the effect of exogenous auxin application on plant growth. Then, review describes the impacts of Cd on the content, biosynthesis, conjugation, and oxidation of endogenous auxins, which are related to a decrease in root development, photosynthesis, and biomass production. Finally, compelling evidence of the beneficial effects of auxin-producing rhizobacteria in plants exposed to Cd is showed, focusing on photosynthesis, oxidative stress, and production of antioxidant compounds and osmolytes that counteract Cd toxicity, favoring plant growth and improve phytoremediation efficiency. Expanding our understanding of the positive effects of exogenous auxins application and the interactions between bacteria and plants growing in Cd-polluted environments will allow us to propose phytoremediation strategies for restoring environments contaminated with this metal.
Collapse
Affiliation(s)
- Gisela Adelina Rolón-Cárdenas
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Ruth Elena Soria-Guerra
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
| | | | | | - Alejandro Hernández-Morales
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México.
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México.
| |
Collapse
|
23
|
Chao W, Rao S, Chen Q, Zhang W, Liao Y, Ye J, Cheng S, Yang X, Xu F. Advances in Research on the Involvement of Selenium in Regulating Plant Ecosystems. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202712. [PMID: 36297736 PMCID: PMC9607533 DOI: 10.3390/plants11202712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 05/15/2023]
Abstract
Selenium is an essential trace element which plays an important role in human immune regulation and disease prevention. Plants absorb inorganic selenium (selenite or selenate) from the soil and convert it into various organic selenides (such as seleno amino acids, selenoproteins, and volatile selenides) via the sulfur metabolic pathway. These organic selenides are important sources of dietary selenium supplementation for humans. Organoselenides can promote plant growth, improve nutritional quality, and play an important regulatory function in plant ecosystems. The release of selenium-containing compounds into the soil by Se hyperaccumulators can promote the growth of Se accumulators but inhibit the growth and distribution of non-Se accumulators. Volatile selenides with specific odors have a deterrent effect on herbivores, reducing their feeding on plants. Soil microorganisms can effectively promote the uptake and transformation of selenium in plants, and organic selenides in plants can improve the tolerance of plants to pathogenic bacteria. Although selenium is not an essential trace element for plants, the right amount of selenium has important physiological and ecological benefits for them. This review summarizes recent research related to the functions of selenium in plant ecosystems to provide a deeper understanding of the significance of this element in plant physiology and ecosystems and to serve as a theoretical basis and technical support for the full exploitation and rational application of the ecological functions of selenium-accumulating plants.
Collapse
Affiliation(s)
- Wei Chao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou 434025, China
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyan Yang
- Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan 512005, China
- Correspondence: (X.Y.); or (F.X.)
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Correspondence: (X.Y.); or (F.X.)
| |
Collapse
|
24
|
Tripathi A, Pandey P, Tripathi SN, Kalra A. Perspectives and potential applications of endophytic microorganisms in cultivation of medicinal and aromatic plants. FRONTIERS IN PLANT SCIENCE 2022; 13:985429. [PMID: 36247631 PMCID: PMC9560770 DOI: 10.3389/fpls.2022.985429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Ensuring food and nutritional security, it is crucial to use chemicals in agriculture to boost yields and protect the crops against biotic and abiotic perturbations. Conversely, excessive use of chemicals has led to many deleterious effects on the environment like pollution of soil, water, and air; loss of soil fertility; and development of pest resistance, and is now posing serious threats to biodiversity. Therefore, farming systems need to be upgraded towards the use of biological agents to retain agricultural and environmental sustainability. Plants exhibit a huge and varied niche for endophytic microorganisms inside the planta, resulting in a closer association between them. Endophytic microorganisms play pivotal roles in plant physiological and morphological characteristics, including growth promotion, survival, and fitness. Their mechanism of action includes both direct and indirect, such as mineral phosphate solubilization, fixating nitrogen, synthesis of auxins, production of siderophore, and various phytohormones. Medicinal and aromatic plants (MAPs) hold a crucial position worldwide for their valued essential oils and several phytopharmaceutically important bioactive compounds since ancient times; conversely, owing to the high demand for natural products, commercial cultivation of MAPs is on the upswing. Furthermore, the vulnerability to various pests and diseases enforces noteworthy production restraints that affect both crop yield and quality. Efforts have been made towards enhancing yields of plant crude drugs by improving crop varieties, cell cultures, transgenic plants, etc., but these are highly cost-demanding and time-consuming measures. Thus, it is essential to evolve efficient, eco-friendly, cost-effective simpler approaches for improvement in the yield and health of the plants. Harnessing endophytic microorganisms as biostimulants can be an effective and alternative step. This review summarizes the concept of endophytes, their multidimensional interaction inside the host plant, and the salient benefits associated with endophytic microorganisms in MAPs.
Collapse
Affiliation(s)
- Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shakti Nath Tripathi
- Department of Botany, Nehru Gram Bharati Deemed to be University, Prayagraj, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
25
|
Nalvothula R, Challa S, Peddireddy V, Merugu R, Rudra MPP, Alataway A, Dewidar AZ, Elansary HO. Isolation, Molecular Identification and Amino Acid Profiling of Single-Cell-Protein-Producing Phototrophic Bacteria Isolated from Oil-Contaminated Soil Samples. Molecules 2022; 27:molecules27196265. [PMID: 36234802 PMCID: PMC9572994 DOI: 10.3390/molecules27196265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In the current study, soil samples were gathered from different places where petrol and diesel filling stations were located for isolation of photosynthetic bacteria under anaerobic conditions using the paraffin wax-overlay pour plate method with Biebl and Pfennig’s medium. The three isolated strains were named Rhodopseudomonas palustris SMR 001 (Mallapur), Rhodopseudomonas palustris NR MPPR (Nacahram) and Rhodopseudomonas faecalis N Raju MPPR (Karolbagh). The morphologies of the bacteria were examined with a scanning electron microscope (SEM). The phylogenetic relationship between R. palustris strains was examined by means of 16S rRNA gene sequence analysis using NCBI-BLAST search and a phylogenetic tree. The sequenced data for R. palustris were deposited with the National Centre for Biotechnology Research (NCBI). The total amino acids produced by the isolated bacteria were determined by HPLC. A total of 14 amino acids and their derivatives were produced by the R. palustris SMR 001 strain. Among these, carnosine was found in the highest concentration (8553.2 ng/mL), followed by isoleucine (1818.044 ng/mL) and anserine (109.5 ng/mL), while R. palustris NR MPPR was found to produce 12 amino acids. Thirteen amino acids and their derivatives were found to be produced from R. faecalis N Raju MPPR, for which the concentration of carnosine (21601.056 ng/mL) was found to be the highest, followed by isoleucine (2032.6 ng/mL) and anserine (227.4 ng/mL). These microbes can be explored for the scaling up of the process, along with biohydrogen and single cell protein production.
Collapse
Affiliation(s)
- Raju Nalvothula
- Department of Biochemistry, Osmania University, Hyderabad 500007, India
| | - Surekha Challa
- Department of Biochemistry and Bioinformatics, GSS, GITAM, A P., Gandhinagar 530045, India
| | - Vidyullatha Peddireddy
- Department of Nutrition Biology, School of Interdisciplinary & Applied Sciences, Central University of Haryana, Jant-Pali, Mahendergarh 123031, India
| | - Ramchander Merugu
- Department of Biochemistry, Mahatma Gandhi University, Nalgonda 508254, India
- Correspondence: (R.M.); (M.P.P.R.)
| | - M. P. Pratap Rudra
- Department of Biochemistry, Osmania University, Hyderabad 500007, India
- Correspondence: (R.M.); (M.P.P.R.)
| | - Abed Alataway
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z. Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam O. Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Geography, Environmental Management, and Energy Studies, University of Johannesburg, APK Campus, Johannesburg 2006, South Africa
| |
Collapse
|
26
|
Liu C, Li B, Dong Y, Lin H. Endophyte colonization enhanced cadmium phytoremediation by improving endosphere and rhizosphere microecology characteristics. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128829. [PMID: 35429753 DOI: 10.1016/j.jhazmat.2022.128829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the phytoremediation efficiency of Cd-contaminated soils by hyperaccumulator P. acinosa and its endophyte B. cereus, and evaluated the variation of rhizosphere/endosphere microecology characteristics. The result showed that endophyte PE31, which could successfully colonize on P. acinosa root, increased plant Cd uptake by 42.90% and 28.85% in low and high Cd contaminated soils by promotion of plant biomass and Cd concentration in plant tissues. The improved phytoremediation may attribute to the endophyte inoculation, which significantly improved the bioavailable heavy metal (HM) percentage, nutrient cycling related enzyme activities and nutrient contents including available potassium, phosphorus and organic matter. Additionally, the relative abundance beneficial bacteria Bacillus (significantly increased by 81.23% and 34.03% in the endosphere, and by 4.86% and 8.54% in rhizosphere in low and high Cd contaminated soils) and Lysobacter, showed positive and close correlation with plant growth and HM accumulation. These results indicated that endophyte inoculation could reshape rhizosphere and endosphere microecology characteristics, which enhanced the potential for phytoremediation of Cd contaminated soils.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
27
|
Omer AM, Osman MS, Badawy AA. Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. BOTANICAL STUDIES 2022; 63:15. [PMID: 35587317 PMCID: PMC9120335 DOI: 10.1186/s40529-022-00345-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/02/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Salinized soils negatively affect plant growth, so it has become necessary to use safe and eco-friendly methods to mitigate this stress. In a completely randomized design, a pot experiment was carried out to estimate the influence of the inoculation with endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata and their co-inoculation on growth and metabolic aspects of flax (Linum usitatissimum) plants that already grown in salinized soil. RESULTS The results observed that inoculation of salinity-stressed flax plants with the endophytes A. brasilense and P. geniculata (individually or in co-inoculation) increases almost growth characteristics (shoot and root lengths, fresh and dry weights as well as number of leaves). Moreover, contents of chlorophylls and carotenoids pigments, soluble sugars, proteins, free proline, total phenols, ascorbic acid, and potassium (K+) in flax plants grown in salinized soil were augmented because of the inoculation with A. brasilense and P. geniculata. Oppositely, there are significant decreases in free proline, malondialdehyde (MDA), hydrogen peroxide (H2O2), and sodium (Na+) contents. Regarding antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), the inoculation with the tested endophytes led to significant enhancements in the activities of antioxidant enzymes in stressed flax plants. CONCLUSIONS The results of this work showed that the use of the endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata (individually or in co-inoculation) could be regarded as an uncommon new model to alleviate salinity stress, especially in salinized soils.
Collapse
Affiliation(s)
- Amal M Omer
- Soil Fertility and Microbiology Department, Desert Research Center, El-Matareya 11753, Cairo, Egypt
| | - Mahmoud S Osman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ali A Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
28
|
Sharma P, Chaturvedi P, Chandra R, Kumar S. Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. CHEMOSPHERE 2022; 295:133823. [PMID: 35114263 DOI: 10.1016/j.chemosphere.2022.133823] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals phytoremediation from pulp and paper industry (PPI) sludge was conducted by employing root-associated Brevundimonas sp (PS-4 MN238722.1) in rhizospheric zone of Saccharum munja L. for its detoxification. The study was aimed to investigate the efficiency of Saccharum munja L. for the removal of heavy metals along with physico-chemical parameters through bacterial interactions. Physico-chemical examination of PPI sludge showed biochemical oxygen demand (8357 ± 94 mg kg-1), electrical conductivity (2264 ± 49 μmhoscm-1), total phenol (521 ± 24 mg kg-1), total dissolve solid (1547 ± 23 mg kg-1), total nitrogen (264 ± 2.13 mg kg-1), pH (8.2 ± 0.11), chemical oxygen demand (34756 ± 214 mg kg-1), color (2434 ± 45 Co-Pt), total suspended solid (76 ± 0.67 mg kg-1), sulphate (2462 ± 13 mg kg-1), chlorolignin (597 ± 13.01 mg kg-1), K+ (21.04 ± 0.26 mg kg-1), total solid (1740 ± 54 mg kg-1), phosphorous, Cl-, and Na+. Heavy metals, such as Fe followed by Zn, Mn, Cd, Cu, Ni, Pb, As, Cr and Hg were above the permissible limit. Root and shoot of Saccharum munja L. revealed highest concentrations of Cd followed by Mn, Ni, Fe, Zn, Cu, As, Cr, Hg, and Pb. Tested metals (Fe, Mn, Pb, Cd, Cr, Cu, Zn, Ni, As, and Hg) bioaccumulation and translocation factors were also revealed to be < 1 and >1, respectively, demonstrating that these plants have considerable absorption and translocation abilities. Plant growth-promoting activity, such as ligninolytic enzymes, hydrolytic enzymes, indole acetic acid, and siderophore production activity of Brevundimonas sp. (PS-4 MN238722.1) were also noted to be higher. These findings support the use of Brevundimonas sp (PS-4 MN238722.1) in combination with Saccharum munja L. plant as interdisciplinary management of industrial sludge at polluted areas for the prevention of soils near the industrial site.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
29
|
Oleńska E, Małek W, Sujkowska-Rybkowska M, Szopa S, Włostowski T, Aleksandrowicz O, Swiecicka I, Wójcik M, Thijs S, Vangronsveld J. An Alliance of Trifolium repens—Rhizobium leguminosarum bv. trifolii—Mycorrhizal Fungi From an Old Zn-Pb-Cd Rich Waste Heap as a Promising Tripartite System for Phytostabilization of Metal Polluted Soils. Front Microbiol 2022; 13:853407. [PMID: 35495712 PMCID: PMC9051510 DOI: 10.3389/fmicb.2022.853407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The Bolesław waste heap in South Poland, with total soil Zn concentrations higher than 50,000 mg kg–1, 5,000 mg Pb kg–1, and 500 mg Cd kg–1, is a unique habitat for metallicolous plants, such as Trifolium repens L. The purpose of this study was to characterize the association between T. repens and its microbial symbionts, i.e., Rhizobium leguminosarum bv. trifolii and mycorrhizal fungi and to evaluate its applicability for phytostabilization of metal-polluted soils. Rhizobia originating from the nutrient-poor waste heap area showed to be efficient in plant nodulation and nitrogen fixation. They demonstrated not only potential plant growth promotion traits in vitro, but they also improved the growth of T. repens plants to a similar extent as strains from a non-polluted reference area. Our results revealed that the adaptations of T. repens to high Zn-Pb-Cd concentrations are related to the storage of metals predominantly in the roots (excluder strategy) due to nodule apoplast modifications (i.e., thickening and suberization of cell walls, vacuolar storage), and symbiosis with arbuscular mycorrhizal fungi of a substantial genetic diversity. As a result, the rhizobia-mycorrhizal fungi-T. repens association appears to be a promising tool for phytostabilization of Zn-Pb-Cd-polluted soils.
Collapse
Affiliation(s)
- Ewa Oleńska
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- *Correspondence: Ewa Oleńska,
| | - Wanda Małek
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
30
|
Gayathiri E, Prakash P, Selvam K, Awasthi MK, Gobinath R, Karri RR, Ragunathan MG, Jayanthi J, Mani V, Poudineh MA, Chang SW, Ravindran B. Plant microbe based remediation approaches in dye removal: A review. Bioengineered 2022; 13:7798-7828. [PMID: 35294324 PMCID: PMC9208495 DOI: 10.1080/21655979.2022.2049100] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Increased industrialization demand using synthetic dyes in the newspaper, cosmetics, textiles, food, and leather industries. As a consequence, harmful chemicals from dye industries are released into water reservoirs with numerous structural components of synthetic dyes, which are hazardous to the ecosystem, plants and humans. The discharge of synthetic dye into various aquatic environments has a detrimental effect on the balance and integrity of ecological systems. Moreover, numerous inorganic dyes exhibit tolerance to degradation and repair by natural and conventional processes. So, the present condition requires the development of efficient and effective waste management systems that do not exacerbate environmental stress or endanger other living forms. Numerous biological systems, including microbes and plants, have been studied for their ability to metabolize dyestuffs. To minimize environmental impact, bioremediation uses endophytic bacteria, which are plant beneficial bacteria that dwell within plants and may improve plant development in both normal and stressful environments. Moreover, Phytoremediation is suitable for treating dye contaminants produced from a wide range of sources. This review article proves a comprehensive evaluation of the most frequently utilized plant and microbes as dye removal technologies from dye-containing industrial effluents. Furthermore, this study examines current existing technologies and proposes a more efficient, cost-effective method for dye removal and decolorization on a big scale. This study also aims to focus on advanced degradation techniques combined with biological approaches, well regarded as extremely effective treatments for recalcitrant wastewater, with the greatest industrial potential.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai - 600 042, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem636011, India
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem636011, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi712100, PRChina
| | | | - Rama Rao Karri
- Faculty of Engineering, University Teknologi, Brunei, Asia
| | | | - Jayaprakash Jayanthi
- Department of Advanced Zoology and Biotechnology, Guru Nanak College, Chennai, India
| | - Vimalraj Mani
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju54874, Korea
| | | | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon16227, Republic of Korea
| |
Collapse
|
31
|
Ji RQ, Xie ML, Li GL, Xu Y, Gao TT, Xing PJ, Meng LP, Liu SY. Response of bacterial community structure to different ecological niches and their functions in Korean pine forests. PeerJ 2022; 10:e12978. [PMID: 35251783 PMCID: PMC8893031 DOI: 10.7717/peerj.12978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
A healthy plant microbiome is diverse, taxonomically-structured, and gives its plant host moderate advantages in growth, development, stress tolerance, and disease resistance. The plant microbiome varies with ecological niches and is influenced by variables that are complex and difficult to separate from each other, such as the plant species, soil, and environmental factors. To explore the composition, diversity, and functions of the bacterial community of Korean pine forests, we used high-throughput sequencing to study five areas with different forest ages from June to October 2017 in northeast China. We obtained 3,247 operational taxonomic units (OTUs) based on 16S rRNA gene sequencing via an Illumina Hi-seq platform. A total of 36 phyla and 159 known genera were classified. The Shannon index of the bacterial community from the rhizospheric soil was significantly higher (p < 0.01, n = 10) than that of the root tips. Beta-diversity analysis confirmed that the bacterial community of the rhizospheric soil was significantly different (p < 0.001) from the root tips. Nine bacterial phyla were dominant (relative richness > 1%) in the rhizospheric soil, but there were six dominant phyla in the root tips. Proteobacteria was the core flora in the root tips with a relative abundance of more than 50%. It is known that the formation of bacterial communities in the rhizospheric soil or the root is mainly caused by the processes of selection, and we found a relatively high abundance of a few dominant species. We further analyzed the correlations between the bacterial community from the rhizospheric soil with that of the root tips, as well as the correlations of the bacterial community with soil physicochemical properties and climate factors. We used Functional Annotation of the Prokaryotic Tax (FAPROTAX) to predict the functions of the bacterial community in the rhizospheric soil and root tips. Five related phototrophic functions, nine nitrogen cycle functions, two related chemoheterotrophic functions, and two others were predicted. The abundance of the bacteria phyla performing relevant functions was different in the rhizospheric soil than in the root tips. These functions were significantly influenced by the contents of nitrogen, phosphorus, and potassium in the soil habitat. The bacterial composition and functions in the rhizospheric soil and root tips of Korean pine were analyzed, and the results demonstrated the importance of soil and plant species on the bacterial community in the below ground plant microbiome.
Collapse
Affiliation(s)
- Rui-Qing Ji
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China,Key Laboratory of Edible Fungus Resources Utilization in North China, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Meng-Le Xie
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China,Life Science College, Northeast Normal University, Changchun, Jilin Province, China
| | - Guan-Lin Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yang Xu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Ting-Ting Gao
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Peng-Jie Xing
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Li-Peng Meng
- Wood Research Institute, Jilin Forestry Science Institute, Changchun, Jilin Province, China
| | - Shu-Yan Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China
| |
Collapse
|
32
|
Sun H, Li Y, Wang P, Yang R, Pei Z, Zhang Q, Jiang G. First report on hydroxylated and methoxylated polybrominated diphenyl ethers in terrestrial environment from the Arctic and Antarctica. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127644. [PMID: 34749998 DOI: 10.1016/j.jhazmat.2021.127644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial plants, which account for the world's largest biomass and constitute the basis of most food webs, take up, transform, and accumulate organic chemical contaminants from the ambient environment. In this study, we determined the concentrations and congener profiles of polybrominated diphenyl ethers (PBDEs) and hydroxylated and methoxylated polybrominated diphenyl ethers (OH-PBDEs and MeO-PBDEs) in surface soil and vegetation samples collected from the Arctic (Svalbard) and Antarctica (King George Island) during the Chinese Scientific Research Expeditions. The concentrations of total PBDEs (∑PBDEs) in soil and vegetation samples collected from the Arctic (5.6-270 pg/g dry weight) were higher than those from Antarctica (2.3-33 pg/g dw), whereas the concentrations of ∑MeO-PBDEs and ∑OH-PBDEs were lower in Arctic terrestrial samples (n.d.-0.75 and 0.0008-1.1 ng/g dw, respectively) than in samples from Antarctica (0.007-4.0 and 0.034-25 ng/g dw, respectively). Long-range atmospheric transport and human activities were potential sources of PBDEs in polar regions, whereas the dominance of ortho-substituted MeO-PBDE and OH-PBDE congeners in terrestrial matrices indicated the importance of natural sources. To the best of our knowledge, this study represents the first report on the levels and behaviors of MeO-PBDEs and OH-PBDEs in terrestrial environment of polar regions.
Collapse
Affiliation(s)
- Huizhong Sun
- Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing 100037, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Perreault R, Laforest-Lapointe I. Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. THE ISME JOURNAL 2022; 16:339-345. [PMID: 34522008 PMCID: PMC8776876 DOI: 10.1038/s41396-021-01109-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Global change is a defining feature of the Anthropocene, the current human-dominated epoch, and poses imminent threats to ecosystem dynamics and services such as plant productivity, biodiversity, and environmental regulation. In this era, terrestrial ecosystems are experiencing perturbations linked to direct habitat modifications as well as indirect effects of global change on species distribution and extreme abiotic conditions. Microorganisms represent an important reservoir of biodiversity that can influence macro-organisms as they face habitat loss, rising atmospheric CO2 concentration, pollution, global warming, and increased frequency of drought. Plant-microbe interactions in the phyllosphere have been shown to support plant growth and increase host resistance to biotic and abiotic stresses. Here, we review how plant-microbe interactions in the phyllosphere can influence host survival and fitness in the context of global change. We highlight evidence that plant-microbe interactions (1) improve urban pollution remediation through the degradation of pollutants such as ultrafine particulate matter, black carbon, and atmospheric hydrocarbons, (2) have contrasting impacts on plant species range shifts through the loss of symbionts or pathogens, and (3) drive plant host adaptation to drought and warming. Finally, we discuss how key community ecology processes could drive plant-microbe interactions facing challenges of the Anthropocene.
Collapse
Affiliation(s)
- Rosaëlle Perreault
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| | - Isabelle Laforest-Lapointe
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada ,grid.86715.3d0000 0000 9064 6198Centre Sève, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| |
Collapse
|
34
|
Pal G, Kumar K, Verma A, Verma SK. Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease. Microbiol Res 2021; 255:126926. [PMID: 34856481 DOI: 10.1016/j.micres.2021.126926] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022]
Abstract
Bacteria from different crops and plant varieties have been shown to possess enormous growth promotional attributes. The study aimed to investigate the role of the endophytic microbiome of seeds of corn in improving the growth of seedlings of two different varieties of maize crops (K-25 and baby corn). Furthermore, the study also assessed the role of these bacteria in the protection of seedlings from fungal pathogens. Total twenty-three endophytic bacterial strains were isolated from maize seeds and identified using 16S rDNA sequencing. Most of the isolates had the ability to synthesize auxin (70 %) and solubilize phosphate (74 %), while all the isolates showed nitrogen fixation ability. Some isolates also showed antagonistic activity against phytopathogenic fungi including Rhizoctonia solani and Fusarium sp. suggesting their biocontrol potential. The presence of different lipopeptide genes including bacillomycin D, fengycin, iturin A and surfactin was confirmed in some of the isolates. We observed that treating seeds with an antibiotic compromised the seedlings' growth; however, re-inoculation with endophytic isolates (ZM1/Lysinibacillus sp. and ZM2/Paenibacillus dendritiformis) restored the growth of the seedlings in terms of improved root and shoot development in comparison to non-inoculated controls. The colonization of inoculated bacteria on the root surface was visualized using fluorescent microscopy. Seedling protection assay showed that treated seeds (with ZMW8/ Bacillus velezensis) were protected from fungal infestation (Fusarium verticillioides) even after 12 days of inoculation in comparison to the uninoculated control. The study concludes that indigenous seed-associated bacteria of maize play a major role during seed germination, seedling formation and protect them from phytopathogens.
Collapse
Affiliation(s)
- Gaurav Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Kanchan Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Anand Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Satish Kumar Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
35
|
Phytoremediation: The Sustainable Strategy for Improving Indoor and Outdoor Air Quality. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most of the world’s population is exposed to highly polluted air conditions exceeding the WHO limits, causing various human diseases that lead towards increased morbidity as well as mortality. Expenditures on air purification and costs spent on the related health issues are rapidly increasing. To overcome this burden, plants are potential candidates to remove pollutants through diverse biological mechanisms involving accumulation, immobilization, volatilization, and degradation. This eco-friendly, cost-effective, and non-invasive method is considered as a complementary or alternative tool compared to engineering-based remediation techniques. Various plant species remove indoor and outdoor air pollutants, depending on their morphology, growth condition, and microbial communities. Hence, appropriate plant selection with optimized growth conditions can enhance the remediation capacity significantly. Furthermore, suitable supplementary treatments, or finding the best combination junction with other methods, can optimize the phytoremediation process.
Collapse
|
36
|
Wang Y, Li M, Liu Z, Zhao J, Chen Y. Interactions between pyrene and heavy metals and their fates in a soil-maize (Zea mays L.) system: Perspectives from the root physiological functions and rhizosphere microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117616. [PMID: 34174663 DOI: 10.1016/j.envpol.2021.117616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in agricultural soils has become a worldwide food crop security concern. Pot experiments, rhizosphere microbial metagenomic sequencing, and root metatranscriptomic sequencing were performed to investigate the interactions among pyrene, Cu, and Cd in a soil-maize (Zea mays L.) system. This study provided direct evidence that the co-presence of PAHs and heavy metals changed the root physiological functions and the rhizosphere microbial community, which subsequently influenced the fate of the contaminants. Co-contamination at low levels tended to enhance the uptake potential and biodegradation performance of the plant, whereas increased contaminant concentrations produced opposite effects. The co-presence of 1000 mg/kg Cu decreased the abundance of Mycobacterium in the rhizosphere and reduced pyrene degradation by 12%-16%. The presence of 400-750 mg/kg pyrene altered the metabolic processes, molecular binding functions, and catalytic activity of enzymes in the maize roots, thus impeding the phytoextraction of Cu and Cd. Competitive absorption between Cu and Cd was observed for the 800-1000 mg/kg Cu and 50-100 mg/kg Cd co-treatment, in which Cu showed a competitive advantage, enhancing its root-to-shoot translocation. These findings provide important information for the production of safe crops and for the development of phytoremediation technologies.
Collapse
Affiliation(s)
- Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Manjie Li
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, PR China.
| | - Zhaowei Liu
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Juanjuan Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yongcan Chen
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, PR China; Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
37
|
Plant growth-promoting abilities and community structure of culturable endophytic bacteria from the fruit of an invasive plant Xanthium italicum. 3 Biotech 2021; 11:449. [PMID: 34631350 DOI: 10.1007/s13205-021-02997-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
Diversity of endophytic bacterial communities of capsular fruit, upper and lower seeds of an invasive plant Xanthium italicum growing in Xinjiang, China, was investigated. All isolates from the seed capsules, the upper seeds, and the lower seeds were identified by 16S rRNA gene sequencing, and sequences were compared to bacterial databases to define operational taxonomic units (OTUs). Finally, we obtained 316 endophytic isolates corresponding to 58 OTUs based on 16S rRNA gene sequences. The most common OTU corresponded most closely to Bacillus zhangzhouensis and comprised 9.49% of all bacterial isolates. The richness and diversity of endophytes in lower seeds were higher than that of the upper seeds; moreover, the Chao estimator and Shannon index of endophytes in the lower seeds were approximate to that in the seed capsules. Bacillus and Staphylococcus were found as the common taxa in three different tissues that were investigated (OTUs belong to these genera constituted > 70% of the total community). The bacterial endophytic communities differed significantly among these three fruit tissues, especially Bacillus strains, which have been reported to contribute to plant growth promotion and stress resilience to their hosts in harsh environment; abundance of Bacillus species was in the following order: capsules (78 OTUs) > lower seeds (55 OTUs) > upper seeds (40 OTUs). The lower seeds harboring more Bacillus species might be responsible for their earlier seed germination compared with the upper seeds.
Collapse
|
38
|
Feng F, Zhan H, Wan Q, Wang Y, Li Y, Ge J, Sun X, Zhu H, Yu X. Rice recruits Sphingomonas strain HJY-rfp via root exudate regulation to increase chlorpyrifos tolerance and boost residual catabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5673-5686. [PMID: 33987653 DOI: 10.1093/jxb/erab210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Inoculation with pollution-degrading endophytes boosts the catabolism of residual contaminants and promotes the pollution adaptation of host plants. We investigated the interaction pattern between Sphingomonas strain HJY-rfp, a chlorpyrifos-degrading endophytic bacterium, and rice (Oryza sativa) under pesticide stress using hydroponic cultivation. We observed a notable trend of endophytic root colonization in rice plants treated with 10 mg l-1 chlorpyrifos solution, and after 24 h the migration of HJY-rfp enhanced the chlorpyrifos degradation rate in leaves and stems by 53.36% and 40.81%, respectively. Critically, the rice root exudate profile (organic acids and amino acids) changed under chlorpyrifos stress, and variations in the contents of several components affected the chemotactic behaviour of HJY-rfp. HJY-rfp colonization dramatically activated defensive enzymes, which enabled efficient scavenging of reactive oxygen species, and led to 9.8%, 22.5%, and 41.9% increases in shoot length, fresh weight, and accumulation of total chlorophyll, respectively, in rice suffering from oxidative damage by chlorpyrifos. Endophytic colonization caused up-regulation of detoxification genes that have shown a significant positive correlation with chlorpyrifos degradation in vivo. Collectively, our results demonstrate that agrochemical stress causes plants to actively recruit specific symbiotic microbes to detoxify contaminants and survive better under pollution conditions.
Collapse
Affiliation(s)
- Fayun Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, China
| | - Honglin Zhan
- Department of Biotechnology, Qingdao University of Science &Technology, Qingdao, China
| | - Qun Wan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ya Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yong Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Ge
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Sun
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hong Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiangyang Yu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
39
|
Kanté M, Lemauviel-Lavenant S, Cliquet JB. Remediation of atmospheric sulfur and ammonia by wetland plants: development of a study method. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:373-383. [PMID: 35180015 DOI: 10.1080/15226514.2021.1949264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the context of S and N pollutant remediation, this study aimed to develop a methodology to test the ability of wetland plants to reduce atmospheric pollution by S and N. A methodology using 34S and 15N-labeled Sinapsis alba compost and five species (trap plants) used to fix volatile compounds was developed. 18.66% of 34S and 40.63% of 15N produced by Sinapsis alba compost, equivalent to 67 mg of S and 1611 mg of N, were recovered in trap plants, a negligible proportion of the labeling was found in the culture substrate. 34S and 15N atom% excess were two to ten times higher in leaves than in roots. Agrostis stolonifera, Symphytum officinale, and Lythrum salicaria were more efficient to use atmospheric inorganic sources of S and N than Mentha aquatica and Carex riparia. A low concentration of sulfate in the leaf laminas, a high specific leaf area, and a low leaf dry mass content could represent trait patterns that explain higher abilities to fix pollutants. This study confirms that plants can be used to remediate inorganic atmospheric pollution and highlights the importance of plant screening for this environmental function.Novelty statementThe removal efficiency of botanical biofiltration is well-documented for Volatile Organic pollutants, but little is known concerning Volatile Inorganic pollutants, such as SO2 and NH3 which can also constitute plant nutrients.We developed a methodology based on the use of 34S and 15N-labeled mustard compost to study the ability of wetland plant species to fix volatile N and S pollutants. This methodology was effective as 19% of 34S and 41% of 15N lost by mustard compost were recovered in trap plants. Among the species used as "trap plants" Agrostis stolonifera, Symphytum officinale, and Lythrum salicaria appeared more efficient to use atmospheric inorganic sources of S and N than Mentha aquatica and Carex riparia.
Collapse
Affiliation(s)
- Mohamed Kanté
- Normandy University, UNICAEN, INRAE, EVA, Caen Cedex, France
| | | | | |
Collapse
|
40
|
Ali S, Xie L. Plant Growth Promoting and Stress Mitigating Abilities of Soil Born Microorganisms. Recent Pat Food Nutr Agric 2021; 11:96-104. [PMID: 31113355 DOI: 10.2174/2212798410666190515115548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 02/16/2019] [Indexed: 12/16/2022]
Abstract
Abiotic stresses affect the plant growth in different ways and at different developmental stages that reduce the crop yields. The increasing world population continually demands more crop yields; therefore it is important to use low-cost technologies against abiotic stresses to increase crop productivity. Soil microorganisms survive in the soil associated with plants in extreme condition. It was demonstrated that these beneficial microorganisms promote plant growth and development under various stresses. The soil microbes interact with the plant through rhizospheric or endophytic association and promote the plant growth through different processes such as nutrients mobilization, disease suppression, and hormone secretions. The microorganisms colonized in the rhizospheric region and imparted the abiotic stress tolerance by producing 1-aminocyclopropane-1- carboxylate (ACC) deaminase, antioxidant, and volatile compounds, inducing the accumulation of osmolytes, production of exopolysaccharide, upregulation or downregulation of stress genes, phytohormones and change the root morphology. A large number of these rhizosphere microorganisms are now patented. In the present review, an attempt was made to throw light on the mechanism of micro-organism that operates during abiotic stresses and promotes plant survival and productivity.
Collapse
Affiliation(s)
- Shahid Ali
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Linan Xie
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| |
Collapse
|
41
|
Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance. Sci Rep 2021; 11:13307. [PMID: 34172799 PMCID: PMC8233371 DOI: 10.1038/s41598-021-92706-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
The mutualistic relationship between alien plant species and microorganisms is proposed to facilitate or hinder invasive success, depending on whether plants can form novel associations with microorganisms in the introduced habitats. However, this hypothesis has not considered seed endophytes that would move together with plant propagules. Little information is available on the seed endophytic bacteria of invasive species and their effects on plant performance. We isolated the seed endophytic bacteria of a xerophytic invasive plant, Lactuca serriola, and examined their plant growth-promoting traits. In addition, we assessed whether these seed endophytes contributed to plant drought tolerance. Forty-two bacterial species were isolated from seeds, and all of them exhibited at least one plant growth-promoting trait. Kosakonia cowanii occurred in all four tested plant populations and produced a high concentration of exopolysaccharides in media with a highly negative water potential. Notably, applying K. cowanii GG1 to Arabidopsis thaliana stimulated plant growth under drought conditions. It also reduced soil water loss under drought conditions, suggesting bacterial production of exopolysaccharides might contribute to the maintenance of soil water content. These results imply that invasive plants can disperse along with beneficial bacterial symbionts, which potentially improve plant fitness and help to establish alien plant species.
Collapse
|
42
|
Zhang D, Xu H, Gao J, Portieles R, Du L, Gao X, Borroto Nordelo C, Borrás-Hidalgo O. Endophytic Bacillus altitudinis Strain Uses Different Novelty Molecular Pathways to Enhance Plant Growth. Front Microbiol 2021; 12:692313. [PMID: 34248918 PMCID: PMC8268155 DOI: 10.3389/fmicb.2021.692313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022] Open
Abstract
The identification and use of endophytic bacteria capable of triggering plant growth is an important aim in sustainable agriculture. In nature, plants live in alliance with multiple plant growth-promoting endophytic microorganisms. In the current study, we isolated and identified a new endophytic bacterium from a wild plant species Glyceria chinensis (Keng). The bacterium was designated as a Bacillus altitudinis strain using 16S rDNA sequencing. The endophytic B. altitudinis had a notable influence on plant growth. The results of our assays revealed that the endophytic B. altitudinis raised the growth of different plant species. Remarkably, we found transcriptional changes in plants treated with the bacterium. Genes such as maturase K, tetratricopeptide repeat-like superfamily protein, LOB domain-containing protein, and BTB/POZ/TAZ domain-containing protein were highly expressed. In addition, we identified for the first time an induction in the endophytic bacterium of the major facilitator superfamily transporter and DNA gyrase subunit B genes during interaction with the plant. These new findings show that endophytic B. altitudinis could be used as a favourable candidate source to enhance plant growth in sustainable agriculture.
Collapse
Affiliation(s)
- Dening Zhang
- Joint R&D Center of Biotechnology, Retda, Yota Bio-Engineering Co., Ltd., Rizhao, China
| | - Hongli Xu
- Joint R&D Center of Biotechnology, Retda, Yota Bio-Engineering Co., Ltd., Rizhao, China
| | - Jingyao Gao
- Joint R&D Center of Biotechnology, Retda, Yota Bio-Engineering Co., Ltd., Rizhao, China
| | - Roxana Portieles
- Joint R&D Center of Biotechnology, Retda, Yota Bio-Engineering Co., Ltd., Rizhao, China
| | - Lihua Du
- Joint R&D Center of Biotechnology, Retda, Yota Bio-Engineering Co., Ltd., Rizhao, China
| | - Xiangyou Gao
- Joint R&D Center of Biotechnology, Retda, Yota Bio-Engineering Co., Ltd., Rizhao, China
| | | | - Orlando Borrás-Hidalgo
- Joint R&D Center of Biotechnology, Retda, Yota Bio-Engineering Co., Ltd., Rizhao, China.,State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| |
Collapse
|
43
|
Tondera K, Chazarenc F, Chagnon PL, Brisson J. Bioaugmentation of treatment wetlands - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145820. [PMID: 33618303 DOI: 10.1016/j.scitotenv.2021.145820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Bioaugmentation in the form of artificial mycorrhization of plant roots and bacterial inoculation has been successfully implemented in several fields including soil remediation or activated sludge treatment. Likewise, bioaugmentation seems a promising approach to improve the functioning of treatment wetlands, considering that natural mycorrhization has been detected in treatment wetlands and that bacteria are the main driver of contaminant degradation processes. However, to date, full scale implementation seems to be rare. This review synthesizes the effects of bioaugmentation on different types of treatment wetlands, to a large extent performed on a microcosm (<0.5 m2) or mesocosm scale (0.51 to 5 m2). While inoculation with arbuscular mycorrhizal fungi tended to show a positive effect on the growth of some wetland plants (e.g. Phragmites australis), the mechanisms underlying such positive effects are not well understood and the effects of upscaling to full scale treatment wetlands remain unknown. Bacterial inoculation tended to promote plant growth and pollutant degradation, but longer term data is required.
Collapse
Affiliation(s)
- Katharina Tondera
- INRAE, REVERSAAL, F-69625 Villeurbanne, France; IMT Atlantique Bretagne-Pays de Loire, Department of Energy Systems and Environment, 44307 Nantes, France.
| | | | - Pierre-Luc Chagnon
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| | - Jacques Brisson
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
44
|
Li K, Li H, Li C, Xie H. Phytoremediation of aniline by Salix babylonica cuttings: Removal, accumulation, and photosynthetic response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112124. [PMID: 33711578 DOI: 10.1016/j.ecoenv.2021.112124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Aniline, a synthetic compound widely used in industrial and pesticide production, is a potential environmental pollutant. The removal of aniline is extremely important to minimize threats to human health and the surrounding environment. The objectives of this study were to investigate the removal efficiency and physiological response of Salix. babylonica cuttings to aniline pollution. Photosynthesis, chlorophyll fluorescence, spectral reflectance and the concentration of aniline in leaves, stems and roots were analysed. The experiment showed that S. babylonica has a strong removal effect on aniline wastewater. Cuttings from S. babylonica stems and roots played an important role in accumulating aniline. However, this increase in aniline concentration was dose dependent and was not always linear. With increasing aniline concentration in S. babylonica was increasingly stressed, with negative impacts on photosynthesis, chlorophyll fluorescence and spectral reflectance index in S. babylonica leaves. These results indicate that non-stomatal limitations are the main reason for the reduction in Pn in S. babylonica leaves due to chlorophyll structure destruction under aniline stress. In addition, aniline concentrations result in an unbalanced distribution of excitation energy between the two light systems, thereby hindering photosynthetic electron transfer and restricting the efficient operation of photosynthesis. Salix babylonica can endure moderate concentrations of aniline and has potential for the phyto-management of aniline-polluted wastewater, although further studies are needed using polluted wastewater.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Shandong Agricultural University, Tai'an, China
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong, China
| | - Chuanrong Li
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Shandong Agricultural University, Tai'an, China
| | - Huicheng Xie
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River/Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
45
|
Antioxidant metabolites from riparian fungal endophytes improve the tolerance of rice seedlings to flooding. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00351-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Oleńska E, Małek W, Kotowska U, Wydrych J, Polińska W, Swiecicka I, Thijs S, Vangronsveld J. Exopolysaccharide Carbohydrate Structure and Biofilm Formation by Rhizobium leguminosarum bv. trifolii Strains Inhabiting Nodules of Trifoliumrepens Growing on an Old Zn-Pb-Cd-Polluted Waste Heap Area. Int J Mol Sci 2021; 22:ijms22062808. [PMID: 33802057 PMCID: PMC7998805 DOI: 10.3390/ijms22062808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/03/2022] Open
Abstract
Heavy metals polluting the 100-year-old waste heap in Bolesław (Poland) are acting as a natural selection factor and may contribute to adaptations of organisms living in this area, including Trifolium repens and its root nodule microsymbionts—rhizobia. Exopolysaccharides (EPS), exuded extracellularly and associated with bacterial cell walls, possess variable structures depending on environmental conditions; they can bind metals and are involved in biofilm formation. In order to examine the effects of long-term exposure to metal pollution on EPS structure and biofilm formation of rhizobia, Rhizobium leguminosarum bv. trifolii strains originating from the waste heap area and a non-polluted reference site were investigated for the characteristics of the sugar fraction of their EPS using gas chromatography mass-spectrometry and also for biofilm formation and structural characteristics using confocal laser scanning microscopy under control conditions as well as when exposed to toxic concentrations of zinc, lead, and cadmium. Significant differences in EPS structure, biofilm thickness, and ratio of living/dead bacteria in the biofilm were found between strains originating from the waste heap and from the reference site, both without exposure to metals and under metal exposure. Received results indicate that studied rhizobia can be assumed as potentially useful in remediation processes.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, 1J Ciołkowski, 15-245 Białystok, Poland;
- Correspondence: ; Tel.: +48-8-5738-8366
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland;
| | - Urszula Kotowska
- Division of Environmental Chemistry, Department of Analytic and Inorganic Chemistry, Faculty of Chemistry, University of Białystok, 1K Ciołkowski, 15-245 Białystok, Poland;
| | - Jerzy Wydrych
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland;
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Białystok, 1K Ciołkowski, 15-245 Białystok, Poland;
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, 1J Ciołkowski, 15-245 Białystok, Poland;
- Laboratory of Applied Microbiology, Faculty of Biology, University of Białystok, 1J Ciołkowski, 15-245 Białystok, Poland
| | - Sofie Thijs
- Centre for Environmental Sciences, Faculty of Sciences, Hasselt University, Agoralaan D, B-3590 Diepenbeek, Belgium; (S.T.); (J.V.)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Faculty of Sciences, Hasselt University, Agoralaan D, B-3590 Diepenbeek, Belgium; (S.T.); (J.V.)
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland
| |
Collapse
|
47
|
Wiewióra B, Żurek G. The Response of the Associations of Grass and Epichloë Endophytes to the Increased Content of Heavy Metals in the Soil. PLANTS (BASEL, SWITZERLAND) 2021; 10:429. [PMID: 33668289 PMCID: PMC7996287 DOI: 10.3390/plants10030429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022]
Abstract
The rapid development of civilization increases the area of land exposed to the accumulation of toxic compounds, including heavy metals, both in water and soil. Endophytic fungi associated with many species of grasses are related to the resistance of plants to biotic and abiotic stresses, which include heavy metals. This paper reviews different aspects of symbiotic interactions between grass species and fungal endophytes from the genera Epichloë with special attention paid to the elevated concentration of heavy metals in growing substrates. The evidence shows the high resistance variation of plant endophyte symbiosis on the heavy metals in soil outcome. The fungal endophytes confer high heavy metal tolerance, which is the key feature in its practical application with their host plants, i.e., grasses in phytoremediation.
Collapse
Affiliation(s)
- Barbara Wiewióra
- Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute-NRI, Radzików, 05-870 Błonie, Poland
| | - Grzegorz Żurek
- Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute-NRI, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
48
|
Chemical removal of cobalt and lithium in contaminated soils using promoted white eggshells with different catalysts. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Gupta S, Kaur G, Nirwan J. Role of Endophytes in Plant-Associated Remediation and Plant Growth Promotion: A Deep Insight. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Rattanapolsan L, Nakbanpote W, Sangdee A. Zinc- and cadmium-tolerant endophytic bacteria from Murdannia spectabilis (Kurz) Faden. studied for plant growth-promoting properties, in vitro inoculation, and antagonism. Arch Microbiol 2020; 203:1131-1148. [PMID: 33206216 DOI: 10.1007/s00203-020-02108-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/28/2023]
Abstract
This research aims to isolate and identify Zn- and Cd-tolerant endophytic bacteria from Murdannia spectabilis, identify their properties with and without Zn and Cd stress, and to investigate the effect of bacterial inoculation in an in vitro system. Twenty-four isolates could survive on trypticase soya agar (TSA) supplemented with Zn (250-500 mg L-1) and/or Cd (20-50 mg L-1) that belonged to the genera Bacillus, Pantoea, Microbacterium, Curtobacterium, Chryseobacterium, Cupriavidus, Siphonobacter, and Pseudomonas. Each strain had different indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and siderophore production, nitrogen fixation, phosphate solubilization, and lignocellulosic enzyme characteristics. Cupriavidus plantarum MDR5 and Chryseobacterium sp. MDR7 were selected for inoculation into plantlets that were already occupied by Curtobacterium sp. TMIL due to them have a high tolerance for Zn and Cd while showing no pathogenicity. As determined via an in vitro system, Cupriavidus plantarum MDR5 remained in the plants to a greater extent than Chryseobacterium sp. MDR7, while Curtobacterium sp. TMIL was the dominant species. The Zn plus Cd treatment supported the persistence of Cupriavidus plantarum MDR5. Dual and mixed cultivation showed no antagonistic effects between the endophytes. Although the plant growth and Zn/Cd accumulation were not significantly affected by the Zn-/Cd-tolerant endophytes, the inoculation did not weaken the plants. Therefore, Cupriavidus plantarum MDR5 could be applied in a bioaugmentation process.
Collapse
Affiliation(s)
- Ladawan Rattanapolsan
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Woranan Nakbanpote
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand.
| | - Aphidech Sangdee
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| |
Collapse
|