1
|
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. BIOLOGY 2023; 12:biology12040601. [PMID: 37106801 PMCID: PMC10135915 DOI: 10.3390/biology12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.
Collapse
Affiliation(s)
- Zareen Narayanan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA 98011, USA
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
2
|
Banerjee S, Roy P, Nandi S, Roy S. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. PLANT GROWTH REGULATION 2023; 100:355-371. [PMID: 36686885 PMCID: PMC9845834 DOI: 10.1007/s10725-023-00968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/06/2023] [Indexed: 05/17/2023]
Abstract
Micronutrients are essential mineral elements required for both plant and human development.An integrated system involving soil, climatic conditions, and types of crop plants determines the level of micronutrient acquisition and utilization. Most of the staple food crops consumed globally predominantly include the cereal grains, tubers and roots, respectively and in many cases, particularly in the resource-poor countries they are grown in nutrient-deficient soils. These situations frequently lead to micronutrient deficiency in crops. Moreover, crop plants with micronutrient deficiency also show high level of susceptibility to various abiotic and biotic stress factors. Apart from this, climate change and soil pollution severely affect the accumulation of micronutrients, such as zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), and copper (Cu) in food crops. Therefore, overcoming the issue of micronutrient deficiency in staple crops and to achieve the adequate level of food production with enriched nutrient value is one of the major global challenges at present. Conventional breeding approaches are not adequate to feed the increasing global population with nutrient-rich staple food crops. To address these issues, alongside traditional approaches, genetic modification strategies have been adopted during the past couple of years in order to enhance the transport, production, enrichment and bioavailability of micronutrients in staple crops. Recent advances in agricultural biotechnology and genome editing approaches have shown promising response in the development of micronutrient enriched biofortified crops. This review highlights the current advancement of our knowledge on the possible implications of various biotechnological tools for the enrichment and enhancement of bioavailability of micronutrients in crops.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Pinaki Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Shreyashi Nandi
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| |
Collapse
|
3
|
Alvarez D, Cerda-Bennasser P, Stowe E, Ramirez-Torres F, Capell T, Dhingra A, Christou P. Fruit crops in the era of genome editing: closing the regulatory gap. PLANT CELL REPORTS 2021; 40:915-930. [PMID: 33515309 DOI: 10.1007/s00299-021-02664-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 05/27/2023]
Abstract
The conventional breeding of fruits and fruit trees has led to the improvement of consumer-driven traits such as fruit size, yield, nutritional properties, aroma and taste, as well as the introduction of agronomic properties such as disease resistance. However, even with the assistance of modern molecular approaches such as marker-assisted selection, the improvement of fruit varieties by conventional breeding takes considerable time and effort. The advent of genetic engineering led to the rapid development of new varieties by allowing the direct introduction of genes into elite lines. In this review article, we discuss three such case studies: the Arctic® apple, the Pinkglow pineapple and the SunUp/Rainbow papaya. We consider these events in the light of global regulations for the commercialization of genetically modified organisms (GMOs), focusing on the differences between product-related systems (the USA/Canada comparative safety assessment) and process-related systems (the EU "precautionary principle" model). More recently, genome editing has provided an efficient way to introduce precise mutations in plants, including fruits and fruit trees, replicating conventional breeding outcomes without the extensive backcrossing and selection typically necessary to introgress new traits. Some jurisdictions have reacted by amending the regulations governing GMOs to provide exemptions for crops that would be indistinguishable from conventional varieties based on product comparison. This has revealed the deficiencies of current process-related regulatory frameworks, particularly in the EU, which now stands against the rest of the world as a unique example of inflexible and dogmatic governance based on political expediency and activism rather than rigorous scientific evidence.
Collapse
Affiliation(s)
- Derry Alvarez
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Pedro Cerda-Bennasser
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Evan Stowe
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Fabiola Ramirez-Torres
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA.
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA.
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain.
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
4
|
Smyth SJ, McHughen A, Entine J, Kershen D, Ramage C, Parrott W. Removing politics from innovations that improve food security. Transgenic Res 2021; 30:601-612. [PMID: 34053007 PMCID: PMC8164681 DOI: 10.1007/s11248-021-00261-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
Genetically modified (GM) organisms and crops have been a feature of food production for over 30 years. Despite extensive science-based risk assessment, the public and many politicians remain concerned with the genetic manipulation of crops, particularly food crops. Many governments have addressed public concern through biosafety legislation and regulatory frameworks that identify and regulate risks to ensure human health and environmental safety. These domestic regulatory frameworks align to international scientific risk assessment methodologies on a case-by-case basis. Regulatory agencies in 70 countries around the world have conducted in excess of 4400 risk assessments, all reaching the same conclusion: GM crops and foods that have been assessed provide no greater risk to human health or the environment than non-GM crops and foods. Yet, while the science regarding the safety of GM crops and food appears conclusive and societal benefits have been globally demonstrated, the use of innovative products have only contributed minimal improvements to global food security. Regrettably, politically-motivated regulatory barriers are currently being implemented with the next genomic innovation, genome editing, the implications of which are also discussed in this article. A decade of reduced global food insecurity was witnessed from 2005 to 2015, but regrettably, the figure has subsequently risen. Why is this the case? Reasons have been attributed to climate variability, biotic and abiotic stresses, lack of access to innovative technologies and political interference in decision making processes. This commentary highlights how political interference in the regulatory approval process of GM crops is adversely affecting the adoption of innovative, yield enhancing crop varieties, thereby limiting food security opportunities in food insecure economies.
Collapse
Affiliation(s)
- Stuart J Smyth
- Department of Agricultural and Resource Economics, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Alan McHughen
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| | - Jon Entine
- Genetic Literacy Project, Cincinnati, OH, USA
| | - Drew Kershen
- College of Law, University of Oklahoma, Norman, OK, USA
| | - Carl Ramage
- Office of the Deputy Vice-Chancellor, La Trobe University, Melbourne, VIC, Australia
| | - Wayne Parrott
- Department of Crop and Soil Sciences, Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Pachapur PK, Pachapur VL, Brar SK, Galvez R, Le Bihan Y, Surampalli RY. Food Security and Sustainability. SUSTAINABILITY 2020. [DOI: 10.1002/9781119434016.ch17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Neumann AC, Melnik S, Niessner R, Stoeger E, Knopp D. Microcystin-LR Enrichment from Freshwater by a Recombinant Plant-derived Antibody Using Sol-Gel-Glass Immunoextraction. ANAL SCI 2019; 35:207-214. [PMID: 30318489 DOI: 10.2116/analsci.18p384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/01/2018] [Indexed: 11/23/2022]
Abstract
Eutrophication of water bodies can promote cyanobacterial (blue-green algae) blooms, which has become a source of increasing concern for both recreational and drinking water use. Many bacterial species can produce toxins that pose threats to wildlife, domestic animals and humans. Microcystin-leucine-arginine (MC-LR) is the most frequent and most toxic microcystin congener. For the first time, lab-scale investigations were performed to test the application of a recombinant plant-derived anti-MC-LR antibody immobilized on an immunoaffinity support material to selectively extract the toxin from spiked freshwater samples. As a comparison, its hybridoma-derived counterpart (murine monoclonal antibody) was evaluated. The antibody-doped material was prepared via an optimized sol-gel process; its stability and binding efficiency of MC-LR in spiked freshwater samples were thoroughly tested using the ELISA and orthogonal LC-MS methods. For removal, two column-based procedures with sequential or continuous cyclic sample addition and a suspension mode (moving adsorbent) were tested. Noteworthy the results obtained with a crude antibody fraction were fully compatible with the highly purified preparation. This study paves the way for further investigation being focused on novel applications of plant-derived anti-MC-LR antibodies in bioremediation to selectively deplete the toxin from freshwater: a green and promising technology without secondary pollution.
Collapse
Affiliation(s)
- Anna-Cathrine Neumann
- Institute of Hydrochemistry, Chair of Analytical Chemistry, Technical University Munich
| | - Stanislav Melnik
- Department for Applied Genetics and Cell Biology, Molecular Plant Physiology and Crop Biotechnology, University of Natural Resources and Life Sciences
| | - Reinhard Niessner
- Institute of Hydrochemistry, Chair of Analytical Chemistry, Technical University Munich
| | - Eva Stoeger
- Department for Applied Genetics and Cell Biology, Molecular Plant Physiology and Crop Biotechnology, University of Natural Resources and Life Sciences
| | - Dietmar Knopp
- Institute of Hydrochemistry, Chair of Analytical Chemistry, Technical University Munich
| |
Collapse
|
7
|
Badejo AA. Elevated carotenoids in staple crops: The biosynthesis, challenges and measures for target delivery. J Genet Eng Biotechnol 2019; 16:553-562. [PMID: 30733773 PMCID: PMC6353757 DOI: 10.1016/j.jgeb.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/03/2022]
Abstract
Poverty eradication and global food security are among the targets of world leaders, most especially combating the scourge of hidden hunger. Provitamin A carotenoids cannot be synthesized de novo by human and so it must be taken as part of the diet. The deficiency of which is causing almost 6000 sights to be lost daily in most developing countries because of the monotonous starchy diets lacking substantial amount of carotenoid. Conventional breeding as well as genetic engineering have been used to increase the level of carotenoid in many staples including rice, potato, maize and cassava. While products from genetic engineering are still been subjected to strict regulatory measures preventing the delivery of the products to target consumers, some of the products from conventional breeding are already on the table of consumers. Interestingly, both technologies are crucial to tackling micronutrient deficiencies. This review discusses the role of carotenoid in human, the biosynthesis in plant and some of the staple crops that have been modified for increased carotenoid. Some measures expected of the leaders of the countries in need of these products for safe delivery to the target population after two decades is also highlighted.
Collapse
|
8
|
Henriquez-Rodriguez E, Pena RN, Seradj AR, Fraile L, Christou P, Tor M, Estany J. Carotenoid intake and SCD genotype exert complementary effects over fat content and fatty acid composition in Duroc pigs. J Anim Sci 2017; 95:2547-2557. [PMID: 28727051 DOI: 10.2527/jas.2016.1350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nutritional and genetic strategies are needed to enhance intramuscular fat (IMF) and MUFA content without altering carcass leanness. Dietary vitamin A restriction has been suggested to specifically promote IMF, whereas a polymorphism of the () gene has shown to specifically increase MUFA. The purpose of this study was to investigate the combined effects of provitamin A (PVA) carotenoid intake and genotype (>) on hepatic retinoid content and on the liver, muscle (LM and gluteus medius [GM]), and subcutaneous fat (SF) content and fatty acid composition. Following a split-plot design, 32 castrated Duroc pigs, half of each of the 2 homozygous genotypes (CC and TT), were subjected from 165 to 195 d of age to 2 finishing diets differing in the PVA carotenoid content (an enriched-carotene diet [C+] and a control diet [C-]). Both diets were identical except for the corn line used in the feed. The C+ was formulated with 20% of a carotenoid-fortified corn (M37W-Ph3) whereas the C- instead used 20% of its near isogenic M37W line, which did not contain PVA carotenoids. No vitamin A was added to the diets. The C- was estimated to provide, at most, 1,300 IU of vitamin A/kg and the C+ to supply an extra amount of at least 800 IU vitamin A/kg. Compared with the pigs fed the C-, pigs fed with C+ had 3-fold more retinoic acid ( < 0.01) and 4-fold more gene expression in the liver ( = 0.06). The diet did not affect performance traits and backfat thickness, but pigs fed the C+ had less fat (4.0 vs. 5.0%; = 0.07) and MUFA (18.3 vs. 22.5%; = 0.01) in the liver, less IMF (5.4 vs. 8.3%; = 0.04) in the GM, and more fat content (90.4 vs. 87.9%; = 0.09) and MUFA (48.0 vs. 46.6%; = 0.04) in SF. The TT genotype at the gene increased MUFA ( < 0.05) in all tissues (21.4 vs. 19.5% in the liver, 55.0 vs. 53.1% in the LM, 53.9 vs. 51.7% in the GM, and 48.0 vs. 46.7% in SF for TT and CC genotypes, respectively). Liver fat and MUFA content nonlinearly declined with liver all- retinoic acid, indicating a saturation point at relatively low all- retinoic acid content. The results obtained provide evidence for a complementary role between dietary PVA and genotype, in the sense that the TT pigs fed with a low-PVA diet are expected to show higher and more monounsaturated IMF without increasing total fat content.
Collapse
|
9
|
Glass S, Fanzo J. Genetic modification technology for nutrition and improving diets: an ethical perspective. Curr Opin Biotechnol 2017; 44:46-51. [DOI: 10.1016/j.copbio.2016.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
|
10
|
|
11
|
Mihálik D, Klčová L, Ondreičková K, Hudcovicová M, Gubišová M, Klempová T, Čertík M, Pauk J, Kraic J. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene. Int J Mol Sci 2015; 16:30046-60. [PMID: 26694368 PMCID: PMC4691084 DOI: 10.3390/ijms161226137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/03/2022] Open
Abstract
The artificial gene D6D encoding the enzyme ∆⁶desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T₀ and T₁ generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%-0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T₁ generation as well as in immature and mature grains of the T₂ generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%-1.40% (v/v) and 0%-1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat.
Collapse
Affiliation(s)
- Daniel Mihálik
- Research Institute of Plant Production, National Agricultural and Food Center, 921 68 Piešťany, Slovakia.
- Department of Biotechnology, Faculty of Natural Sciences, University of SS, Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia.
| | - Lenka Klčová
- Research Institute of Plant Production, National Agricultural and Food Center, 921 68 Piešťany, Slovakia.
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia.
| | - Katarína Ondreičková
- Research Institute of Plant Production, National Agricultural and Food Center, 921 68 Piešťany, Slovakia.
| | - Martina Hudcovicová
- Research Institute of Plant Production, National Agricultural and Food Center, 921 68 Piešťany, Slovakia.
| | - Marcela Gubišová
- Research Institute of Plant Production, National Agricultural and Food Center, 921 68 Piešťany, Slovakia.
| | - Tatiana Klempová
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia.
| | - Milan Čertík
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia.
| | - János Pauk
- Cereal Research Non-profit Ltd., Szeged, Alsó kikötö sor 9, H-6726 Szeged, Hungary.
| | - Ján Kraic
- Research Institute of Plant Production, National Agricultural and Food Center, 921 68 Piešťany, Slovakia.
- Department of Biotechnology, Faculty of Natural Sciences, University of SS, Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia.
| |
Collapse
|
12
|
Stakeholder reactions toward iodine biofortified foods. An application of protection motivation theory. Appetite 2015; 92:295-302. [DOI: 10.1016/j.appet.2015.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/21/2015] [Accepted: 05/30/2015] [Indexed: 01/10/2023]
|
13
|
Wen JT, Castro C, Tsutsui H. In PlantaMicrosphere-Based Lateral Flow Leaf Biosensor in Maize. ACTA ACUST UNITED AC 2015; 20:500-5. [DOI: 10.1177/2211068214551826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 11/15/2022]
|
14
|
Hefferon KL. Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 2015; 16:3895-914. [PMID: 25679450 PMCID: PMC4346933 DOI: 10.3390/ijms16023895] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/04/2015] [Indexed: 12/13/2022] Open
Abstract
Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world's poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops.
Collapse
Affiliation(s)
- Kathleen L Hefferon
- Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| |
Collapse
|
15
|
Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnol Lett 2014; 36:2367-79. [DOI: 10.1007/s10529-014-1621-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
16
|
Mattoo AK. Translational research in agricultural biology-enhancing crop resistivity against environmental stress alongside nutritional quality. Front Chem 2014; 2:30. [PMID: 24926479 PMCID: PMC4046571 DOI: 10.3389/fchem.2014.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/05/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
- Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, The Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research ServiceBeltsville, MD, USA
| |
Collapse
|
17
|
Rai MK, Shekhawat NS. Recent advances in genetic engineering for improvement of fruit crops. PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC) 2014; 116:1-15. [PMID: 0 DOI: 10.1007/s11240-013-0389-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/30/2013] [Indexed: 05/24/2023]
|
18
|
A question of balance: achieving appropriate nutrient levels in biofortified staple crops. Nutr Res Rev 2013; 26:235-45. [PMID: 24134863 DOI: 10.1017/s0954422413000176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The biofortification of staple crops with vitamins is an attractive strategy to increase the nutritional quality of human food, particularly in areas where the population subsists on a cereal-based diet. Unlike other approaches, biofortification is sustainable and does not require anything more than a standard food-distribution infrastructure. The health-promoting effects of vitamins depend on overall intake and bioavailability, the latter influenced by food processing, absorption efficiency and the utilisation or retention of the vitamin in the body. The bioavailability of vitamins in nutritionally enriched foods should ideally be adjusted to achieve the dietary reference intake in a reasonable portion. Current vitamin biofortification programmes focus on the fat-soluble vitamins A and E, and the water-soluble vitamins C and B9 (folate), but the control of dosage and bioavailability has been largely overlooked. In the present review, we discuss the vitamin content of nutritionally enhanced foods developed by conventional breeding and genetic engineering, focusing on dosage and bioavailability. Although the biofortification of staple crops could potentially address micronutrient deficiency on a global scale, further research is required to develop effective strategies that match the bioavailability of vitamins to the requirements of the human diet.
Collapse
|
19
|
Zhou M, Luo H. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. PLANT MOLECULAR BIOLOGY 2013; 83:59-75. [PMID: 23771582 DOI: 10.1007/s11103-013-0089-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/05/2013] [Indexed: 05/19/2023]
Abstract
Food security is one of the most important issues challenging the world today. Any strategies to solve this problem must include increasing crop yields and quality. MicroRNA-based genetic modification technology (miRNA-based GM tech) can be one of the most promising solutions that contribute to agricultural productivity directly by developing superior crop cultivars with enhanced biotic and abiotic stress tolerance and increased biomass yields. Indirectly, the technology may increase usage of marginal soils and decrease pesticide use, among other benefits. This review highlights the most recent progress of transgenic studies utilizing various miRNAs and their targets for plant trait modifications, and analyzes the potential of miRNA-mediated gene regulation for use in crop improvement. Strategies for manipulating miRNAs and their targets in transgenic plants including constitutive, stress-induced, or tissue-specific expression of miRNAs or their targets, RNA interference, expressing miRNA-resistant target genes, artificial target mimic and artificial miRNAs were discussed. We also discussed potential risks of utilizing miRNA-based GM tech. In general, miRNAs and their targets not only provide an invaluable source of novel transgenes, but also inspire the development of several new GM strategies, allowing advances in breeding novel crop cultivars with agronomically useful characteristics.
Collapse
MESH Headings
- Adaptation, Biological
- Crops, Agricultural/genetics
- Crops, Agricultural/immunology
- Crops, Agricultural/metabolism
- Disease Resistance
- Food Supply
- Food, Genetically Modified
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Engineering/methods
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Risk Factors
- Transgenes
Collapse
Affiliation(s)
- Man Zhou
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | | |
Collapse
|
20
|
Berman J, Zhu C, Pérez-Massot E, Arjó G, Zorrilla-López U, Masip G, Banakar R, Sanahuja G, Farré G, Miralpeix B, Bai C, Vamvaka E, Sabalza M, Twyman RM, Bassié L, Capell T, Christou P. Can the world afford to ignore biotechnology solutions that address food insecurity? PLANT MOLECULAR BIOLOGY 2013; 83:5-19. [PMID: 23430566 DOI: 10.1007/s11103-013-0027-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/06/2013] [Indexed: 06/01/2023]
Abstract
Genetically engineered (GE) crops can be used as part of a combined strategy to address food insecurity, which is defined as a lack of sustainable access to safe and nutritious food. In this article, we discuss the causes and consequences of food insecurity in the developing world, and the indirect economic impact on industrialized countries. We dissect the healthcare costs and lost productivity caused by food insecurity, and evaluate the relative merits of different intervention programs including supplementation, fortification and the deployment of GE crops with higher yields and enhanced nutritional properties. We provide clear evidence for the numerous potential benefits of GE crops, particularly for small-scale and subsistence farmers. GE crops with enhanced yields and nutritional properties constitute a vital component of any comprehensive strategy to tackle poverty, hunger and malnutrition in developing countries and thus reduce the global negative economic effects of food insecurity.
Collapse
Affiliation(s)
- Judit Berman
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Masip G, Sabalza M, Pérez-Massot E, Banakar R, Cebrian D, Twyman RM, Capell T, Albajes R, Christou P. Paradoxical EU agricultural policies on genetically engineered crops. TRENDS IN PLANT SCIENCE 2013; 18:312-324. [PMID: 23623240 DOI: 10.1016/j.tplants.2013.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/04/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
European Union (EU) agricultural policy has been developed in the pursuit of laudable goals such as a competitive economy and regulatory harmony across the union. However, what has emerged is a fragmented, contradictory, and unworkable legislative framework that threatens economic disaster. In this review, we present case studies highlighting differences in the regulations applied to foods grown in EU countries and identical imported products, which show that the EU is undermining its own competitiveness in the agricultural sector, damaging both the EU and its humanitarian activities in the developing world. We recommend the adoption of rational, science-based principles for the harmonization of agricultural policies to prevent economic decline and lower standards of living across the continent.
Collapse
Affiliation(s)
- Gemma Masip
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Arjó G, Portero M, Piñol C, Viñas J, Matias-Guiu X, Capell T, Bartholomaeus A, Parrott W, Christou P. Plurality of opinion, scientific discourse and pseudoscience: an in depth analysis of the Séralini et al. study claiming that Roundup™ Ready corn or the herbicide Roundup™ cause cancer in rats. Transgenic Res 2013; 22:255-67. [PMID: 23430588 DOI: 10.1007/s11248-013-9692-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
A recent paper published in the journal Food and Chemical Toxicology presents the results of a long-term toxicity study related to a widely-used commercial herbicide (Roundup™) and a Roundup-tolerant genetically modified variety of maize, concluding that both the herbicide and the maize varieties are toxic. Here we discuss the many errors and inaccuracies in the published article resulting in highly misleading conclusions, whose publication in the scientific literature and in the wider media has caused damage to the credibility of science and researchers in the field. We and many others have criticized the study, and in particular the manner in which the experiments were planned, implemented, analyzed, interpreted and communicated. The study appeared to sweep aside all known benchmarks of scientific good practice and, more importantly, to ignore the minimal standards of scientific and ethical conduct in particular concerning the humane treatment of experimental animals.
Collapse
Affiliation(s)
- Gemma Arjó
- Departament de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu C, Sanahuja G, Yuan D, Farré G, Arjó G, Berman J, Zorrilla-López U, Banakar R, Bai C, Pérez-Massot E, Bassie L, Capell T, Christou P. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:129-41. [PMID: 22970850 DOI: 10.1111/j.1467-7652.2012.00740.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/04/2012] [Accepted: 08/08/2012] [Indexed: 05/23/2023]
Abstract
Antioxidants are protective molecules that neutralize reactive oxygen species and prevent oxidative damage to cellular components such as membranes, proteins and nucleic acids, therefore reducing the rate of cell death and hence the effects of ageing and ageing-related diseases. The fortification of food with antioxidants represents an overlap between two diverse environments, namely fortification of staple foods with essential nutrients that happen to have antioxidant properties (e.g. vitamins C and E) and the fortification of luxury foods with health-promoting but non-essential antioxidants such as flavonoids as part of the nutraceuticals/functional foods industry. Although processed foods can be artificially fortified with vitamins, minerals and nutraceuticals, a more sustainable approach is to introduce the traits for such health-promoting compounds at source, an approach known as biofortification. Regardless of the target compound, the same challenges arise when considering the biofortification of plants with antioxidants, that is the need to modulate endogenous metabolic pathways to increase the production of specific antioxidants without affecting plant growth and development and without collateral effects on other metabolic pathways. These challenges become even more intricate as we move from the engineering of individual pathways to several pathways simultaneously. In this review, we consider the state of the art in antioxidant biofortification and discuss the challenges that remain to be overcome in the development of nutritionally complete and health-promoting functional foods.
Collapse
Affiliation(s)
- Changfu Zhu
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center, Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Christou P. Plant genetic engineering and agricultural biotechnology 1983-2013. Trends Biotechnol 2013; 31:125-7. [PMID: 23375945 DOI: 10.1016/j.tibtech.2013.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
|
25
|
Pérez-Massot E, Banakar R, Gómez-Galera S, Zorrilla-López U, Sanahuja G, Arjó G, Miralpeix B, Vamvaka E, Farré G, Rivera SM, Dashevskaya S, Berman J, Sabalza M, Yuan D, Bai C, Bassie L, Twyman RM, Capell T, Christou P, Zhu C. The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. GENES & NUTRITION 2013; 8:29-41. [PMID: 22926437 PMCID: PMC3534993 DOI: 10.1007/s12263-012-0315-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Malnutrition is a prevalent and entrenched global socioeconomic challenge that reflects the combined impact of poverty, poor access to food, inefficient food distribution infrastructure, and an over-reliance on subsistence mono-agriculture. The dependence on staple cereals lacking many essential nutrients means that malnutrition is endemic in developing countries. Most individuals lack diverse diets and are therefore exposed to nutrient deficiencies. Plant biotechnology could play a major role in combating malnutrition through the engineering of nutritionally enhanced crops. In this article, we discuss different approaches that can enhance the nutritional content of staple crops by genetic engineering (GE) as well as the functionality and safety assessments required before nutritionally enhanced GE crops can be deployed in the field. We also consider major constraints that hinder the adoption of GE technology at different levels and suggest policies that could be adopted to accelerate the deployment of nutritionally enhanced GE crops within a multicomponent strategy to combat malnutrition.
Collapse
Affiliation(s)
- Eduard Pérez-Massot
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Raviraj Banakar
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Sonia Gómez-Galera
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Uxue Zorrilla-López
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Georgina Sanahuja
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Gemma Arjó
- />Department of Medicine, University of Lleida, Lleida, Spain
| | - Bruna Miralpeix
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Evangelia Vamvaka
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Gemma Farré
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Sol Maiam Rivera
- />Chemistry Department, ETSEA, University of Lleida, 25198 Lleida, Spain
| | - Svetlana Dashevskaya
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Judit Berman
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Maite Sabalza
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Dawei Yuan
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Chao Bai
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Ludovic Bassie
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Richard M. Twyman
- />Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Teresa Capell
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Paul Christou
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
- />Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Changfu Zhu
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| |
Collapse
|
26
|
Arjó G, Capell T, Matias-Guiu X, Zhu C, Christou P, Piñol C. Mice fed on a diet enriched with genetically engineered multivitamin corn show no sub-acute toxic effects and no sub-chronic toxicity. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1026-1034. [PMID: 22928600 DOI: 10.1111/j.1467-7652.2012.00730.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multivitamin corn is a novel genetically engineered variety that simultaneously produces high levels of β-carotene, ascorbate and folate, and therefore has the potential to address simultaneously multiple micronutrient deficiencies caused by the lack of vitamins A, B9 and C in developing country populations. As part of the development process for genetically engineered crops and following European Food Safety Authority (EFSA) recommendations, multivitamin corn must be tested in whole food/feed sub-chronic animal feeding studies to ensure there are no adverse effects, and potential allergens must be identified. We carried out a 28-day toxicity assessment in mice, which showed no short-term sub-acute evidence of diet-related adverse health effects and no difference in clinical markers (food consumption, body weight, organ/tissue weight, haematological and biochemical blood parameters and histopathology) compared to mice fed on a control diet. A subsequent 90-day sub-chronic feeding study again showed no indications of toxicity compared to mice fed on control diets. Our data confirm that diets enriched with multivitamin corn have no adverse effects on mice, do not induce any clinical signs of toxicity and do not contain known allergens.
Collapse
Affiliation(s)
- Gemma Arjó
- Departament de Medicina, Universitat de Lleida-Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Buiatti M, Christou P, Pastore G. The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view. GENES AND NUTRITION 2012; 8:255-70. [PMID: 23076994 PMCID: PMC3639326 DOI: 10.1007/s12263-012-0316-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/03/2012] [Indexed: 12/21/2022]
Abstract
This commentary is a face-to-face debate between two almost opposite positions regarding the application of genetic engineering in agriculture and food production. Seven questions on the potential benefits of the application of genetic engineering in agriculture and on the potentially adverse impacts on the environment and human health were posed to two scientists: one who is sceptical about the use of GMOs in Agriculture, and one who views GMOs as an important tool for quantitatively and qualitatively improving food production.
Collapse
Affiliation(s)
- M Buiatti
- University of Florence, Florence, Italy,
| | | | | |
Collapse
|
28
|
Gómez-Galera S, Twyman RM, Sparrow PAC, Van Droogenbroeck B, Custers R, Capell T, Christou P. Field trials and tribulations--making sense of the regulations for experimental field trials of transgenic crops in Europe. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:511-23. [PMID: 22284604 DOI: 10.1111/j.1467-7652.2012.00681.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transgenic plants that are being developed for commercial cultivation must be tested under field conditions to monitor their effects on surrounding wildlife and conventional crops. Developers also use this opportunity to evaluate the performance of transgenic crops in a typical environment, although this is a matter of commercial necessity rather than regulatory compliance. Most countries have adapted existing regulations or developed new ones to deal specifically with transgenic crops and their commodities. The European Union (EU) is renowned, or perhaps notorious, for having the broadest and most stringent regulations governing such field trials in the world. This reflects its nominal adherence to the precautionary approach, which assumes all transgenic crops carry an inherent risk. Therefore, field trials in the EU need to demonstrate that the risk associated with deploying a transgenic crop has been reduced to the level where it is regarded as acceptable within the narrowly defined limits of the regulations developed and enforced (albeit inconsistently) by national and regional governments, that is, that there is no greater risk than growing an equivalent conventional crop. The involvement of national and regional competent authorities in the decision-making process can add multiple layers of bureaucracy to an already-intricate process. In this review, we use country-based case studies to show how the EU, national and regional regulations are implemented, and we propose strategies that could increase the efficiency of regulation without burdening developers with further unnecessary bureaucracy.
Collapse
Affiliation(s)
- Sonia Gómez-Galera
- Department of Plant Production and Forestry Science-ETSEA, University of Lleida-CRA, Lleida, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Aluru MR, Rodermel SR, Reddy MB. Genetic modification of low phytic acid 1-1 maize to enhance iron content and bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12954-62. [PMID: 22088162 DOI: 10.1021/jf203485a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High phytate content in staple food crops is a major barrier to successful iron biofortification. We have exploited the low phytic acid 1-1 (lpa1-1) mutant of maize to generate transgenic plants with up-to 70 μg/g seed iron through the endosperm-specific overexpression of soybean ferritin, resulting in more than 2-fold improvement in iron bioavailability. The levels of bioavailable seed iron achieved in this study greatly exceed any achieved thus far and closely approach values estimated to have a nutritional impact on target populations. Gene expression studies reveal a large induction of the YS1 transporter in leaves and severe repression of an iron acquisition gene DMAS1 in roots, suggesting significant alterations in the iron homeostatic mechanisms in transgenic lpa1-1. Furthermore, preliminary tests show that the high-iron lpa1-1 seeds have higher germination rates and seedling vigor when compared to those of the nontransgenic seeds, which may help improve their value to plant breeders.
Collapse
Affiliation(s)
- Maneesha R Aluru
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, United States.
| | | | | |
Collapse
|
30
|
Avni A, Blázquez MA. Can plant biotechnology help in solving our food and energy shortage in the future? Curr Opin Biotechnol 2011; 22:220-3. [PMID: 21330127 DOI: 10.1016/j.copbio.2011.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|