1
|
Esembaeva MA, Kulyashov MA, Kolpakov FA, Akberdin IR. A Study of the Community Relationships Between Methanotrophs and Their Satellites Using Constraint-Based Modeling Approach. Int J Mol Sci 2024; 25:12469. [PMID: 39596533 PMCID: PMC11594979 DOI: 10.3390/ijms252212469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Biotechnology continues to drive innovation in the production of pharmaceuticals, biofuels, and other valuable compounds, leveraging the power of microbial systems for enhanced yield and sustainability. Genome-scale metabolic (GSM) modeling has become an essential approach in this field, which enables a guide for targeting genetic modifications and the optimization of metabolic pathways for various industrial applications. While single-species GSM models have traditionally been employed to optimize strains like Escherichia coli and Lactococcus lactis, the integration of these models into community-based approaches is gaining momentum. Herein, we present a pipeline for community metabolic modeling with a user-friendly GUI, applying it to analyze interactions between Methylococcus capsulatus, a biotechnologically important methanotroph, and Escherichia coli W3110 under oxygen- and nitrogen-limited conditions. We constructed models with unmodified and homoserine-producing E. coli strains using the pipeline implemented in the original BioUML platform. The E. coli strain primarily utilized acetate from M. capsulatus under oxygen limitation. However, homoserine produced by E. coli significantly reduced acetate secretion and the community growth rate. This homoserine was taken up by M. capsulatus, converted to threonine, and further exchanged as amino acids. In nitrogen-limited modeling conditions, nitrate and ammonium exchanges supported the nitrogen needs, while carbon metabolism shifted to fumarate and malate, enhancing E. coli TCA cycle activity in both cases, with and without modifications. The presence of homoserine altered cross-feeding dynamics, boosting amino acid exchanges and increasing pyruvate availability for M. capsulatus. These findings suggest that homoserine production by E. coli optimizes resource use and has potential for enhancing microbial consortia productivity.
Collapse
Affiliation(s)
| | | | | | - Ilya R. Akberdin
- Department of Computational Biology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia; (M.A.E.); (M.A.K.); (F.A.K.)
| |
Collapse
|
2
|
Ulmer A, Veit S, Erdemann F, Freund A, Loesch M, Teleki A, Zeidan AA, Takors R. A Two-Compartment Fermentation System to Quantify Strain-Specific Interactions in Microbial Co-Cultures. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010103. [PMID: 36671675 PMCID: PMC9854596 DOI: 10.3390/bioengineering10010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
To fulfil the growing interest in investigating microbial interactions in co-cultures, a novel two-compartment bioreactor system was developed, characterised, and implemented. The system allowed for the exchange of amino acids and peptides via a polyethersulfone membrane that retained biomass. Further system characterisation revealed a Bodenstein number of 18, which hints at backmixing. Together with other physical settings, the existence of unwanted inner-compartment substrate gradients could be ruled out. Furthermore, the study of Damkoehler numbers indicated that a proper metabolite supply between compartments was enabled. Implementing the two-compartment system (2cs) for growing Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus, which are microorganisms commonly used in yogurt starter cultures, revealed only a small variance between the one-compartment and two-compartment approaches. The 2cs enabled the quantification of the strain-specific production and consumption rates of amino acids in an interacting S. thermophilus-L. bulgaricus co-culture. Therefore, comparisons between mono- and co-culture performance could be achieved. Both species produce and release amino acids. Only alanine was produced de novo from glucose through potential transaminase activity by L. bulgaricus and consumed by S. thermophilus. Arginine availability in peptides was limited to S. thermophilus' growth, indicating active biosynthesis and dependency on the proteolytic activity of L. bulgaricus. The application of the 2cs not only opens the door for the quantification of exchange fluxes between microbes but also enables continuous production modes, for example, for targeted evolution studies.
Collapse
Affiliation(s)
- Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefan Veit
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maren Loesch
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ahmad A. Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
3
|
Ulmer A, Erdemann F, Mueller S, Loesch M, Wildt S, Jensen ML, Gaspar P, Zeidan AA, Takors R. Differential Amino Acid Uptake and Depletion in Mono-Cultures and Co-Cultures of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in a Novel Semi-Synthetic Medium. Microorganisms 2022; 10:microorganisms10091771. [PMID: 36144373 PMCID: PMC9505316 DOI: 10.3390/microorganisms10091771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
The mechanistic understanding of the physiology and interactions of microorganisms in starter cultures is critical for the targeted improvement of fermented milk products, such as yogurt, which is produced by Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus. However, the use of complex growth media or milk is a major challenge for quantifying metabolite production, consumption, and exchange in co-cultures. This study developed a synthetic medium that enables the establishment of defined culturing conditions and the application of flow cytometry for measuring species-specific biomass values. Time courses of amino acid concentrations in mono-cultures and co-cultures of L. bulgaricus ATCC BAA-365 with the proteinase-deficient S. thermophilus LMG 18311 and with a proteinase-positive S. thermophilus strain were determined. The analysis revealed that amino acid release rates in co-culture were not equivalent to the sum of amino acid release rates in mono-cultures. Data-driven and pH-dependent amino acid release models were developed and applied for comparison. Histidine displayed higher concentrations in co-cultures, whereas isoleucine and arginine were depleted. Amino acid measurements in co-cultures also confirmed that some amino acids, such as lysine, are produced and then consumed, thus being suitable candidates to investigate the inter-species interactions in the co-culture and contribute to the required knowledge for targeted shaping of yogurt qualities.
Collapse
Affiliation(s)
- Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Susanne Mueller
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maren Loesch
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sandy Wildt
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | | | - Paula Gaspar
- Systems Biology, R&D Discovery, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Ahmad A. Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
4
|
Anagnostopoulos DA, Parlapani FF, Boziaris IS. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century: Have we finished or just begun? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Zommiti M, Feuilloley MGJ, Connil N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020; 8:E1907. [PMID: 33266303 PMCID: PMC7760123 DOI: 10.3390/microorganisms8121907] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are known for their biotechnological potential. Moreover, LAB are distinguished by amazing criteria: Adjusting the intestinal environment, inhibiting pathogenic microbes in the gastrointestinal tract, ability to reduce pathogen adhesion activity, improving the balance of the microbiota inside the intestine, capabilities of regulating intestinal mucosal immunity, and maintaining intestinal barrier function. The escalating number of research and studies about beneficial microorganisms and their impact on promoting health has attracted a big interest in the last decades. Since antiquity, various based fermented products of different kinds have been utilized as potential probiotic products. Nevertheless, the current upsurge in consumers' interest in bioalternatives has opened new horizons for the probiotic field in terms of research and development. The present review aims at shedding light on the world of probiotics, a continuous story of astonishing success in various fields, in particular, the biomedical sector and pharmaceutical industry, as well as to display the importance of probiotics and their therapeutic potential in purpose to compete for sturdy pathogens and to struggle against diseases and acute infections. Shadows and future trends of probiotics use are also discussed.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université Tunis El-Manar, Tunis 1006, Tunisia
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| |
Collapse
|
6
|
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The Evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 2018; 41:S220-S243. [PMID: 28830093 DOI: 10.1093/femsre/fux028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden.
Collapse
Affiliation(s)
- Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Lieke A van Gijtenbeek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sjoerd B van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
7
|
Constraint-based modeling in microbial food biotechnology. Biochem Soc Trans 2018; 46:249-260. [PMID: 29588387 PMCID: PMC5906707 DOI: 10.1042/bst20170268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
Genome-scale metabolic network reconstruction offers a means to leverage the value of the exponentially growing genomics data and integrate it with other biological knowledge in a structured format. Constraint-based modeling (CBM) enables both the qualitative and quantitative analyses of the reconstructed networks. The rapid advancements in these areas can benefit both the industrial production of microbial food cultures and their application in food processing. CBM provides several avenues for improving our mechanistic understanding of physiology and genotype–phenotype relationships. This is essential for the rational improvement of industrial strains, which can further be facilitated through various model-guided strain design approaches. CBM of microbial communities offers a valuable tool for the rational design of defined food cultures, where it can catalyze hypothesis generation and provide unintuitive rationales for the development of enhanced community phenotypes and, consequently, novel or improved food products. In the industrial-scale production of microorganisms for food cultures, CBM may enable a knowledge-driven bioprocess optimization by rationally identifying strategies for growth and stability improvement. Through these applications, we believe that CBM can become a powerful tool for guiding the areas of strain development, culture development and process optimization in the production of food cultures. Nevertheless, in order to make the correct choice of the modeling framework for a particular application and to interpret model predictions in a biologically meaningful manner, one should be aware of the current limitations of CBM.
Collapse
|
8
|
Watkins C, Stanton C, Ryan CA, Ross RP. Microbial Therapeutics Designed for Infant Health. Front Nutr 2017; 4:48. [PMID: 29124056 PMCID: PMC5662644 DOI: 10.3389/fnut.2017.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Acknowledgment of the gut microbiome as a vital asset to health has led to multiple studies attempting to elucidate its mechanisms of action. During the first year of life, many factors can cause fluctuation in the developing gut microbiome. Host genetics, maternal health status, mode of delivery, gestational age, feeding regime, and perinatal antibiotic usage, are known factors which can influence the development of the infant gut microbiome. Thus, the microbiome of vaginally born, exclusively breastfed infants at term, with no previous exposure to antibiotics, either directly or indirectly from the mother, is to be considered the "gold standard." Moreover, the use of prebiotics as an aid for the development of a healthy gut microbiome is equally as important in maintaining gut homeostasis. Breastmilk, a natural prebiotic source, provides optimal active ingredients for the growth of beneficial microbial species. However, early life disorders such as necrotising enterocolitis, childhood obesity, and even autism have been associated with an altered/disturbed gut microbiome. Subsequently, microbial therapies have been introduced, in addition to suitable prebiotic ingredients, which when administered, may aid in the prevention of a microbial disturbance in the gastrointestinal tract. The aim of this mini-review is to highlight the beneficial effects of different probiotic and prebiotic treatments in early life, with particular emphasis on the different conditions which negatively impact microbial colonisation at birth.
Collapse
Affiliation(s)
- Claire Watkins
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Ireland
| | - C. Anthony Ryan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Ireland
- School of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
van der Ark KCH, van Heck RGA, Martins Dos Santos VAP, Belzer C, de Vos WM. More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. MICROBIOME 2017; 5:78. [PMID: 28705224 PMCID: PMC5512848 DOI: 10.1186/s40168-017-0299-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/05/2017] [Indexed: 05/14/2023]
Abstract
The human gut is colonized with a myriad of microbes, with substantial interpersonal variation. This complex ecosystem is an integral part of the gastrointestinal tract and plays a major role in the maintenance of homeostasis. Its dysfunction has been correlated to a wide array of diseases, but the understanding of causal mechanisms is hampered by the limited amount of cultured microbes, poor understanding of phenotypes, and the limited knowledge about interspecies interactions. Genome-scale metabolic models (GEMs) have been used in many different fields, ranging from metabolic engineering to the prediction of interspecies interactions. We provide showcase examples for the application of GEMs for gut microbes and focus on (i) the prediction of minimal, synthetic, or defined media; (ii) the prediction of possible functions and phenotypes; and (iii) the prediction of interspecies interactions. All three applications are key in understanding the role of individual species in the gut ecosystem as well as the role of the microbiota as a whole. Using GEMs in the described fashions has led to designs of minimal growth media, an increased understanding of microbial phenotypes and their influence on the host immune system, and dietary interventions to improve human health. Ultimately, an increased understanding of the gut ecosystem will enable targeted interventions in gut microbial composition to restore homeostasis and appropriate host-microbe crosstalk.
Collapse
Affiliation(s)
- Kees C H van der Ark
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruben G A van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- LifeGlimmer GmbH, Markelstrasse 38, 12163, Berlin, Germany
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- RPU Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Haartmanikatu 4, 002940, Helsinki, Finland.
| |
Collapse
|
10
|
Evivie SE, Huo GC, Igene JO, Bian X. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food Nutr Res 2017; 61:1318034. [PMID: 28659729 PMCID: PMC5475324 DOI: 10.1080/16546628.2017.1318034] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Several mechanism and non-mechanism-based studies supporting the claim that lactic acid bacteria (LAB) strains confer health benefits and play immune-modulatory roles were examined in this review. Probiotic applications of LAB on global burdens such as obesity and type-2 diabetes were discussed as well as the use of yoghurt and ice cream as important vehicles to convey several beneficial LAB strains. Probiotic and symbiotic dairy products may be used in the nearest future to treat a variety of health disorders. Current studies suggest that lactic acid bacteria possess anti-obesity and anti-diabetic propensities on their hosts and thus can play a crucial role in human health care. Research in the rheological and physicochemical properties of ice cream as well as its applications are also on the increase. These applications face certain hurdles including technological (for less developed countries), consumer acceptability of new functional foods may be influenced by culture, ethics or religion. There is need for more studies on the genetic basis for probiotic properties which will give further understanding regarding novel manipulation skills and applicability in nutrition and health sectors. More studies confirming the direct effects of probiotic LABs in lowering the spread of food-borne and other pathogens are also anticipated.
Collapse
Affiliation(s)
- Smith Etareri Evivie
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University (NEAU), Harbin, PR China
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Gui-Cheng Huo
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University (NEAU), Harbin, PR China
| | - John Oamen Igene
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Xin Bian
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University (NEAU), Harbin, PR China
| |
Collapse
|
11
|
Walsh AM, Crispie F, Claesson MJ, Cotter PD. Translating Omics to Food Microbiology. Annu Rev Food Sci Technol 2017; 8:113-134. [DOI: 10.1146/annurev-food-030216-025729] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aaron M. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Marcus J. Claesson
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Abstract
Network reconstruction procedures based on meta-"omics" data are an invaluable tool for inferring total and active set of reactions mediated by different members in a microbial community. Within them, network-based methods for automatic analysis of catabolic capacities in metagenomes are currently limited. Here, we describe the complete workflow, scripts, and commands allowing the automatic reconstruction of biodegradation networks using as an input meta-sequences generated by direct DNA sequencing.
Collapse
Affiliation(s)
- Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
13
|
Du W, Jongbloets JA, Pineda Hernández H, Bruggeman FJ, Hellingwerf KJ, Branco dos Santos F. Photonfluxostat: A method for light-limited batch cultivation of cyanobacteria at different, yet constant, growth rates. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Ravcheev DA, Thiele I. Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis. Front Microbiol 2016; 7:128. [PMID: 26904004 PMCID: PMC4746308 DOI: 10.3389/fmicb.2016.00128] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023] Open
Abstract
Ubiquinone and menaquinone are membrane lipid-soluble carriers of electrons that are essential for cellular respiration. Eukaryotic cells can synthesize ubiquinone but not menaquinone, whereas prokaryotes can synthesize both quinones. So far, most of the human gut microbiome (HGM) studies have been based on metagenomic analysis. Here, we applied an analysis of individual HGM genomes to the identification of ubiquinone and menaquinone biosynthetic pathways. In our opinion, the shift from metagenomics to analysis of individual genomes is a pivotal milestone in investigation of bacterial communities, including the HGM. The key results of this study are as follows. (i) The distribution of the canonical pathways in the HGM genomes was consistent with previous reports and with the distribution of the quinone-dependent reductases for electron acceptors. (ii) The comparative genomics analysis identified four alternative forms of the previously known enzymes for quinone biosynthesis. (iii) Genes for the previously unknown part of the futalosine pathway were identified, and the corresponding biochemical reactions were proposed. We discuss the remaining gaps in the menaquinone and ubiquinone pathways in some of the microbes, which indicate the existence of further alternate genes or routes. Together, these findings provide further insight into the biosynthesis of quinones in bacteria and the physiology of the HGM.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| |
Collapse
|
15
|
Kergourlay G, Taminiau B, Daube G, Champomier Vergès MC. Metagenomic insights into the dynamics of microbial communities in food. Int J Food Microbiol 2015; 213:31-9. [DOI: 10.1016/j.ijfoodmicro.2015.09.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/04/2015] [Accepted: 09/13/2015] [Indexed: 02/06/2023]
|
16
|
Rites of passage: requirements and standards for building kinetic models of metabolic phenotypes. Curr Opin Biotechnol 2015; 36:146-53. [PMID: 26342586 DOI: 10.1016/j.copbio.2015.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
The overarching ambition of kinetic metabolic modeling is to capture the dynamic behavior of metabolism to such an extent that systems and synthetic biology strategies can reliably be tested in silico. The lack of kinetic data hampers the development of kinetic models, and most of the current models use ad hoc reduced stoichiometry or oversimplified kinetic rate expressions, which may limit their predictive strength. There is a need to introduce the community-level standards that will organize and accelerate the future developments in this area. We introduce here a set of requirements that will ensure the model quality, we examine the current kinetic models with respect to these requirements, and we propose a general workflow for constructing models that satisfy these requirements.
Collapse
|
17
|
Betteridge A, Grbin P, Jiranek V. Improving Oenococcus oeni to overcome challenges of wine malolactic fermentation. Trends Biotechnol 2015. [PMID: 26197706 DOI: 10.1016/j.tibtech.2015.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oenococcus oeni is crucial for winemaking, bringing stabilization, deacidification, and sensory impacts through malolactic fermentation (MLF) to most wine styles. The poor nutritional make-up of wine together with typically low processing temperatures and pH and high ethanol content and sulfur dioxide (SO2) hinder O. oeni growth and activity. Production delays and interventions with starter cultures and nutritional supplements have significant cost and quality implications; thus, optimization of O. oeni has long been a priority. A range of optimization strategies, some guided by detailed characterization of O. oeni, have been exploited. Varying degrees of success have been seen with classical strain selection, mutagenesis, gene recombination, genome shuffling, and, most recently, directed evolution (DE). The merits, limitations, and future prospects of each are discussed.
Collapse
Affiliation(s)
- Alice Betteridge
- School of Agriculture, Food, and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia
| | - Paul Grbin
- School of Agriculture, Food, and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia
| | - Vladimir Jiranek
- School of Agriculture, Food, and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia.
| |
Collapse
|
18
|
Guo J, Wang Q, Wang X, Wang F, Yao J, Zhu H. Horizontal gene transfer in an acid mine drainage microbial community. BMC Genomics 2015; 16:496. [PMID: 26141154 PMCID: PMC4490635 DOI: 10.1186/s12864-015-1720-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/25/2015] [Indexed: 01/17/2023] Open
Abstract
Background Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance. Results Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT. Conclusions Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1720-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiangtao Guo
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Qi Wang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Xiaoqi Wang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Fumeng Wang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Jinxian Yao
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Huaiqiu Zhu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Alkema W, Boekhorst J, Wels M, van Hijum SAFT. Microbial bioinformatics for food safety and production. Brief Bioinform 2015; 17:283-92. [PMID: 26082168 PMCID: PMC4793891 DOI: 10.1093/bib/bbv034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
In the production of fermented foods, microbes play an important role. Optimization of fermentation processes or starter culture production traditionally was a trial-and-error approach inspired by expert knowledge of the fermentation process. Current developments in high-throughput 'omics' technologies allow developing more rational approaches to improve fermentation processes both from the food functionality as well as from the food safety perspective. Here, the authors thematically review typical bioinformatics techniques and approaches to improve various aspects of the microbial production of fermented food products and food safety.
Collapse
|
20
|
Ferrer Valenzuela J, Pinuer LA, García Cancino A, Bórquez Yáñez R. Metabolic Fluxes in Lactic Acid Bacteria—A Review. FOOD BIOTECHNOL 2015. [DOI: 10.1080/08905436.2015.1027913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Tobalina L, Bargiela R, Pey J, Herbst FA, Lores I, Rojo D, Barbas C, Peláez AI, Sánchez J, von Bergen M, Seifert J, Ferrer M, Planes FJ. Context-specific metabolic network reconstruction of a naphthalene-degrading bacterial community guided by metaproteomic data. ACTA ACUST UNITED AC 2015; 31:1771-9. [PMID: 25618865 DOI: 10.1093/bioinformatics/btv036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
Abstract
MOTIVATION With the advent of meta-'omics' data, the use of metabolic networks for the functional analysis of microbial communities became possible. However, while network-based methods are widely developed for single organisms, their application to bacterial communities is currently limited. RESULTS Herein, we provide a novel, context-specific reconstruction procedure based on metaproteomic and taxonomic data. Without previous knowledge of a high-quality, genome-scale metabolic networks for each different member in a bacterial community, we propose a meta-network approach, where the expression levels and taxonomic assignments of proteins are used as the most relevant clues for inferring an active set of reactions. Our approach was applied to draft the context-specific metabolic networks of two different naphthalene-enriched communities derived from an anthropogenically influenced, polyaromatic hydrocarbon contaminated soil, with (CN2) or without (CN1) bio-stimulation. We were able to capture the overall functional differences between the two conditions at the metabolic level and predict an important activity for the fluorobenzoate degradation pathway in CN1 and for geraniol metabolism in CN2. Experimental validation was conducted, and good agreement with our computational predictions was observed. We also hypothesize different pathway organizations at the organismal level, which is relevant to disentangle the role of each member in the communities. The approach presented here can be easily transferred to the analysis of genomic, transcriptomic and metabolomic data.
Collapse
Affiliation(s)
- Luis Tobalina
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rafael Bargiela
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jon Pey
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Florian-Alexander Herbst
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Iván Lores
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - David Rojo
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Coral Barbas
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ana I Peláez
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jesús Sánchez
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Martin von Bergen
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jana Seifert
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Manuel Ferrer
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Francisco J Planes
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain, CSIC, Institute of Catalysis, Madrid, Spain, Helmholtz Centre for Environmental Research, Department of Proteomics, Leipzig, Germany, Área de Microbiología, IUBA, Universidad de Oviedo, Oviedo, Spain, Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain, Department of Metabolomics, UFZ-Helmholtz-Zentrum für Umweltforschung GmbH, Leipzig, Germany and Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
22
|
Branco dos Santos F, Du W, Hellingwerf KJ. Synechocystis: Not Just a Plug-Bug for CO2, but a Green E. coli. Front Bioeng Biotechnol 2014; 2:36. [PMID: 25279375 PMCID: PMC4166995 DOI: 10.3389/fbioe.2014.00036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/03/2014] [Indexed: 01/23/2023] Open
Abstract
Following multiple reports warning for threats posed by raising levels of atmospheric CO2, it is of paramount importance that human society rapidly evolves to be sustainable. Processes relying on photosynthetic microorganisms, converting CO2 and water into compounds of interest, fueled by light, are very pertinent, particularly if not directly competing for arable land. Here, we identify specific research questions that remain to be targeted to exploit the full potential of cyanobacterial cell factories. We argue that this approach will be more likely to be successful if organisms such as Synechocystis are not perceived as mere chassis for CO2 fixation, but rather considered as the "green" E. coli.
Collapse
Affiliation(s)
- Filipe Branco dos Santos
- Molecular Microbial Physiology Group, Faculty of Life Sciences, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Wei Du
- Molecular Microbial Physiology Group, Faculty of Life Sciences, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology Group, Faculty of Life Sciences, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Photanol B.V., Amsterdam, Netherlands
| |
Collapse
|
23
|
Abstract
Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.
Collapse
|
24
|
Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl Microbiol Biotechnol 2013; 97:8729-39. [DOI: 10.1007/s00253-013-5140-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
|
25
|
Maarleveld TR, Khandelwal RA, Olivier BG, Teusink B, Bruggeman FJ. Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnol J 2013; 8:997-1008. [PMID: 23893965 PMCID: PMC4671265 DOI: 10.1002/biot.201200291] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/03/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022]
Abstract
Metabolic networks supply the energy and building blocks for cell growth and maintenance. Cells continuously rewire their metabolic networks in response to changes in environmental conditions to sustain fitness. Studies of the systemic properties of metabolic networks give insight into metabolic plasticity and robustness, and the ability of organisms to cope with different environments. Constraint-based stoichiometric modeling of metabolic networks has become an indispensable tool for such studies. Herein, we review the basic theoretical underpinnings of constraint-based stoichiometric modeling of metabolic networks. Basic concepts, such as stoichiometry, chemical moiety conservation, flux modes, flux balance analysis, and flux solution spaces, are explained with simple, illustrative examples. We emphasize the mathematical definitions and their network topological interpretations.
Collapse
Affiliation(s)
- Timo R Maarleveld
- Life Sciences, Center for Mathematics and Computer Science, Amsterdam, The Netherlands; Systems Bioinformatics, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands; BioSolar Cells, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Khandelwal RA, Olivier BG, Röling WFM, Teusink B, Bruggeman FJ. Community flux balance analysis for microbial consortia at balanced growth. PLoS One 2013; 8:e64567. [PMID: 23741341 PMCID: PMC3669319 DOI: 10.1371/journal.pone.0064567] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
A central focus in studies of microbial communities is the elucidation of the relationships between genotype, phenotype, and dynamic community structure. Here, we present a new computational method called community flux balance analysis (cFBA) to study the metabolic behavior of microbial communities. cFBA integrates the comprehensive metabolic capacities of individual microorganisms in terms of (genome-scale) stoichiometric models of metabolism, and the metabolic interactions between species in the community and abiotic processes. In addition, cFBA considers constraints deriving from reaction stoichiometry, reaction thermodynamics, and the ecosystem. cFBA predicts for communities at balanced growth the maximal community growth rate, the required rates of metabolic reactions within and between microbes and the relative species abundances. In order to predict species abundances and metabolic activities at the optimal community growth rate, a nonlinear optimization problem needs to be solved. We outline the methodology of cFBA and illustrate the approach with two examples of microbial communities. These examples illustrate two useful applications of cFBA. Firstly, cFBA can be used to study how specific biochemical limitations in reaction capacities cause different types of metabolic limitations that microbial consortia can encounter. In silico variations of those maximal capacities allow for a global view of the consortium responses to various metabolic and environmental constraints. Secondly, cFBA is very useful for comparing the performance of different metabolic cross-feeding strategies to either find one that agrees with experimental data or one that is most efficient for the community of microorganisms.
Collapse
Affiliation(s)
- Ruchir A. Khandelwal
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Brett G. Olivier
- Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Systems Biology (NISB), Amsterdam, The Netherlands
| | - Wilfred F. M. Röling
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Systems Biology (NISB), Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Systems Biology (NISB), Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Bioinformatics, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Systems Biology (NISB), Amsterdam, The Netherlands
| |
Collapse
|
27
|
Hugenholtz J. Traditional biotechnology for new foods and beverages. Curr Opin Biotechnol 2013; 24:155-9. [PMID: 23395405 DOI: 10.1016/j.copbio.2013.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 11/18/2022]
Abstract
The food and beverage industry is re-discovering fermentation as a crucial step in product innovation. Fermentation can provide various benefits such as unique flavor, health and nutrition, texture and safety (shelf life), while maintaining a 100% natural label. In this review several examples are presented on how fermentation is used to replace, modify or improve current, artificially produced, foods and beverages and how also fermentation can be used for completely novel consumer products.
Collapse
Affiliation(s)
- Jeroen Hugenholtz
- Swammerdam Institute for Life Sciences, University of Amsterdam and Coca-Cola Corporate Research, Mainburger Strasse 19, 84072 Au/Hallertau, Germany.
| |
Collapse
|
28
|
|