1
|
Liu RZ, Zhang Z, Li M, Zhang L. A metabologenomics strategy for rapid discovery of polyketides derived from modular polyketide synthases. Chem Sci 2024:d4sc04174g. [PMID: 39568943 PMCID: PMC11575545 DOI: 10.1039/d4sc04174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Bioinformatics-guided metabolomics is a powerful means for the discovery of novel natural products. However, the application of such metabologenomics approaches on microbial polyketides, a prominent class of natural products with diverse bioactivities, remains largely hindered due to our limited understanding on the mass spectrometry behaviors of these metabolites. Here, we present a metabologenomics approach for the targeted discovery of polyketides biosynthesized by modular type I polyketide synthases. We developed the NegMDF workflow, which uses mass defect filtering (MDF) supported by bioinformatic structural prediction, to connect the biosynthetic gene clusters to corresponding metabolite ions obtained under negative ionization mode. The efficiency of the NegMDF workflow is illustrated by rapid characterization of 22 polyketides synthesized by three gene clusters from a well-characterized strain Streptomyces cattleya NRRL 8057, including cattleyatetronates, new members of polyketides containing a rare tetronate moiety. Our results showcase the effectiveness of the MDF-based metabologenomics workflow for analyzing microbial natural products, and will accelerate the genome mining of microbial polyketides.
Collapse
Affiliation(s)
- Run-Zhou Liu
- Department of Chemistry, Fudan University Shanghai 200433 China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
| | - Zhihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
| | - Min Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University Hangzhou 310030 China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou 310024 China
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou 310030 China
| |
Collapse
|
2
|
Ogonkov A, Dieterich CL, Meoded RA, Piel J, Fraley AE, Sasso S. Characterization of an Unusual α-Oxoamine Synthase Off-Loading Domain from a Cyanobacterial Type I Fatty Acid Synthase. Chembiochem 2023; 24:e202300209. [PMID: 37144248 DOI: 10.1002/cbic.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/06/2023]
Abstract
Type I fatty acid synthases (FASs) are known from higher eukaryotes and fungi. We report the discovery of FasT, a rare type I FAS from the cyanobacterium Chlorogloea sp. CCALA695. FasT possesses an unusual off-loading domain, which was heterologously expressed in E. coli and found to act as an α-oxoamine synthase (AOS) in vitro. Similar to serine palmitoyltransferases from sphingolipid biosynthesis, the AOS off-loading domain catalyzes a decarboxylative Claisen condensation between l-serine and a fatty acyl thioester. While the AOS domain was strictly specific for l-serine, thioesters with saturated fatty acyl chains of six carbon atoms and longer were tolerated, with the highest activity observed for stearoyl-coenzyme A (C18 ). Our findings suggest a novel route to α-amino ketones via the direct condensation of iteratively produced long-chain fatty acids with l-serine by a FAS with a cis-acting AOS off-loading domain.
Collapse
Affiliation(s)
- Andrei Ogonkov
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
- Institute of Biology, Leipzig University, Johannisallee 23, 04107, Leipzig, Germany
| | - Cora L Dieterich
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Roy A Meoded
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Jörn Piel
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Amy E Fraley
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Severin Sasso
- Institute of Biology, Leipzig University, Johannisallee 23, 04107, Leipzig, Germany
| |
Collapse
|
3
|
D'Ambrosio HK, Keeler AM, Derbyshire ER. Examination of Secondary Metabolite Biosynthesis in Apicomplexa. Chembiochem 2023; 24:e202300263. [PMID: 37171468 DOI: 10.1002/cbic.202300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites.
Collapse
Affiliation(s)
- Hannah K D'Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Aaron M Keeler
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
4
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
5
|
Yang Y, Kessler MGC, Marchán-Rivadeneira MR, Han Y. Combating Antimicrobial Resistance in the Post-Genomic Era: Rapid Antibiotic Discovery. Molecules 2023; 28:molecules28104183. [PMID: 37241928 DOI: 10.3390/molecules28104183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Constantly evolving drug-resistant "superbugs" have caused an urgent demand for novel antimicrobial agents. Natural products and their analogs have been a prolific source of antimicrobial agents, even though a high rediscovery rate and less targeted research has made the field challenging in the pre-genomic era. With recent advancements in technology, natural product research is gaining new life. Genome mining has allowed for more targeted excavation of biosynthetic potential from natural sources that was previously overlooked. Researchers use bioinformatic algorithms to rapidly identify and predict antimicrobial candidates by studying the genome before even entering the lab. In addition, synthetic biology and advanced analytical instruments enable the accelerated identification of novel antibiotics with distinct structures. Here, we reviewed the literature for noteworthy examples of novel antimicrobial agents discovered through various methodologies, highlighting the candidates with potent effectiveness against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Yuehan Yang
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Mara Grace C Kessler
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Maria Raquel Marchán-Rivadeneira
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Center for Research on Health in Latinamerica (CISeAL)-Biological Science Department, Pontificia Universidad Católica del Ecuador (PUCE), Quito 170143, Ecuador
| | - Yong Han
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
6
|
Li H, Hu Y, Zhang Y, Ma Z, Bechthold A, Yu X. Identification of RimR2 as a positive pathway-specific regulator of rimocidin biosynthesis in Streptomyces rimosus M527. Microb Cell Fact 2023; 22:32. [PMID: 36810073 PMCID: PMC9942304 DOI: 10.1186/s12934-023-02039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Streoptomyces rimosus M527 is a producer of the polyene macrolide rimocidin which shows activity against various plant pathogenic fungi. Notably, the regulatory mechanisms underlying rimocidin biosynthesis are yet to be elucidated. RESULTS In this study, using domain structure and amino acid alignment and phylogenetic tree construction, rimR2, which located in the rimocidin biosynthetic gene cluster, was first found and identified as a larger ATP-binding regulators of the LuxR family (LAL) subfamily regulator. The rimR2 deletion and complementation assays were conducted to explore its role. Mutant M527-ΔrimR2 lost its ability to produce rimocidin. Complementation of M527-ΔrimR2 restored rimocidin production. The five recombinant strains, M527-ER, M527-KR, M527-21R, M527-57R, and M527-NR, were constructed by overexpressing rimR2 gene using the promoters permE*, kasOp*, SPL21, SPL57, and its native promoter, respectively, to improve rimocidin production. M527-KR, M527-NR, and M527-ER exhibited 81.8%, 68.1%, and 54.5% more rimocidin production, respectively, than the wild-type (WT) strain, while recombinant strains M527-21R and M527-57R exhibited no obvious differences in rimocidin production compared with the WT strain. RT-PCR assays revealed that the transcriptional levels of the rim genes were consistent with the changes in rimocidin production in the recombinant strains. Using electrophoretic mobility shift assays, we confirmed that RimR2 can bind to the promoter regions of rimA and rimC. CONCLUSION A LAL regulator RimR2 was identified as a positive specific-pathway regulator of rimocidin biosynthesis in M527. RimR2 regulates the rimocidin biosynthesis by influencing the transcriptional levels of rim genes and binding to the promoter regions of rimA and rimC.
Collapse
Affiliation(s)
- Huijie Li
- grid.411485.d0000 0004 1755 1108Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Yefeng Hu
- grid.411485.d0000 0004 1755 1108Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Yongyong Zhang
- grid.411485.d0000 0004 1755 1108Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018 Zhejiang People’s Republic of China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang, People's Republic of China.
| | - Andreas Bechthold
- grid.5963.9Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Löhr NA, Urban MC, Eisen F, Platz L, Hüttel W, Gressler M, Müller M, Hoffmeister D. The Ketosynthase Domain Controls Chain Length in Mushroom Oligocyclic Polyketide Synthases. Chembiochem 2023; 24:e202200649. [PMID: 36507600 PMCID: PMC10108026 DOI: 10.1002/cbic.202200649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the β-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.
Collapse
Affiliation(s)
- Nikolai A. Löhr
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Maximilian C. Urban
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Frederic Eisen
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Lukas Platz
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Markus Gressler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Dirk Hoffmeister
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
8
|
Santana-Pereira ALR. Identification of PKS Gene Clusters from Metagenomic Libraries Using a Next-Generation Sequencing Approach. Methods Mol Biol 2023; 2555:73-90. [PMID: 36306079 DOI: 10.1007/978-1-0716-2795-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbial secondary metabolites have been an important source of bioactive compounds with diverse applications from medicine to agriculture, noticeably those encoded by polyketide synthase (PKS) clusters due to their astounding chemical diversity. While most discovered compounds originate from culturable microorganisms, yet-to-be cultured microbes represent a reservoir of previously inaccessible compounds. The advent and development of metagenomics have allowed not only the characterization of these microorganisms but also their metabolic potential, making viable the prospection of environmental PKS for natural product discovery.Study of environmental PKSs often relies on the construction of metagenomic libraries and their mining, with clones containing PKS clusters identified via amplification of conserved domains and then screened for an activity of interest. Compounds produced by clones exhibiting the desired bioactivity can be isolated and characterized. However, these approaches can be less sensitive and biased against more divergent clusters, in addition to precluding the use of bioinformatics for cluster characterization prior to expression. While direct shotgun sequencing of metagenomes has identified and profiled a great number of PKSs from different environments and yet-to-be cultured microorganisms, it does not lend itself well to heterologous expression, the cruxes of natural product discovery.Here, we describe a strategy for sequencing entire metagenomic libraries while maintaining correspondence between sequence and clone, allowing the full characterization and annotation of all clusters present in a library using bioinformatic tools and then seamlessly passing clones of interest for activity screening through heterologous expression. Once a library is sequenced, the methods herein can be adapted for the mining of any biosynthetic gene cluster of interest within a metagenomic library.
Collapse
|
9
|
Lo Giudice A, Rizzo C. Bacteria Associated with Benthic Invertebrates from Extreme Marine Environments: Promising but Underexplored Sources of Biotechnologically Relevant Molecules. Mar Drugs 2022; 20:617. [PMID: 36286440 PMCID: PMC9605250 DOI: 10.3390/md20100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024] Open
Abstract
Microbe-invertebrate associations, commonly occurring in nature, play a fundamental role in the life of symbionts, even in hostile habitats, assuming a key importance for both ecological and evolutionary studies and relevance in biotechnology. Extreme environments have emerged as a new frontier in natural product chemistry in the search for novel chemotypes of microbial origin with significant biological activities. However, to date, the main focus has been microbes from sediment and seawater, whereas those associated with biota have received significantly less attention. This review has been therefore conceived to summarize the main information on invertebrate-bacteria associations that are established in extreme marine environments. After a brief overview of currently known extreme marine environments and their main characteristics, a report on the associations between extremophilic microorganisms and macrobenthic organisms in such hostile habitats is provided. The second part of the review deals with biotechnologically relevant bioactive molecules involved in establishing and maintaining symbiotic associations.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR.ISP), Spianata S. Raineri 86, 98122 Messina, Italy
- Stazione Zoologica Anton Dohrn, National Institute of Biology, Sicily Marine Centre, Department Ecosustainable Marine Biotechnology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| |
Collapse
|
10
|
Wang Y, Chintalapudi V, Gudmundsson HG, Challis GL, Anderson EA. Synthesis of the C50 diastereomers of the C33–C51 fragment of stambomycin D. Org Chem Front 2022. [DOI: 10.1039/d1qo01635k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The preparation of two C50 diastereomers of the C33–C51 region of stambomycin D is described. In addition to excellent correlation with the natural product, this synthesis establishes conditions for eventual global deprotection.
Collapse
Affiliation(s)
- Yongchen Wang
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Venkaiah Chintalapudi
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Gregory L. Challis
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Edward A. Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
11
|
Heterocornols from the Sponge-Derived Fungus Pestalotiopsis heterocornis with Anti-Inflammatory Activity. Mar Drugs 2021; 19:md19110585. [PMID: 34822456 PMCID: PMC8620458 DOI: 10.3390/md19110585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
One strain-many compounds (OSMAC) manipulation of the sponge-derived fungus Pestalotiopsis heterocornis XWS03F09 resulted in the production of new secondary metabolites. The chemical study of the fermentation, cultivated on 3% artificial sea salt in the rice media, led to the isolation of twelve compounds, including eight new polyketide derivatives, heterocornols Q–X (1–8), one new ceramide (9), and three known analogues (10–12). The structures and absolute configurations of the new compounds were elucidated by spectroscopic data and calculated ECD analysis. Heterocornols Q (1) and R (2) are novel 6/5/7/5 tetracyclic polyketide derivatives featuring dihydroisobenzofuran and benzo-fused dioxabicyclo [4.2.1] nonane system, which might be derived from the acetyl-CoA by epoxidation, polyene cyclization, and rearrangement to form the core skeleton. Compound 12 showed moderate or weak antimicrobial activities against with MIC values ranging from 25 to 100 μg/mL. Heterocornols T and X (7 and 8) could inhibit the production of LPS-induced NO significantly, comparable to dexamethasone. Further Western blotting analysis showed 7 and 8 markedly suppressed the iNOS protein expression in LPS-induced RAW 264.7 cells in a dose-dependent manner. The result showed that 7 and 8 might serve as potential leads for development of anti-inflammatory activity.
Collapse
|
12
|
Lim J, Chintalapudi V, Gudmundsson HG, Tran M, Bernasconi A, Blanco A, Song L, Challis GL, Anderson EA. Synthesis of the C1-C27 Fragment of Stambomycin D Validates Modular Polyketide Synthase-Based Stereochemical Assignments. Org Lett 2021; 23:7439-7444. [PMID: 34494848 PMCID: PMC8491158 DOI: 10.1021/acs.orglett.1c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
The
stambomycins
are a family of bioactive macrolides isolated
from Streptomyces ambofaciens. Aside from two stereocenters
installed through cytochrome P450 oxidations, their stereochemistry
has been predicted by sequence analysis of the polyketide synthase.
We report a synthesis of the C1–C27 fragment of stambomycin
D, the spectroscopic data of which correlates well with that of the
natural product, further validating predictive sequence analysis as
a powerful tool for stereochemical assignment of complex polyketide
natural products.
Collapse
Affiliation(s)
- Jieyan Lim
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Venkaiah Chintalapudi
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Haraldur G Gudmundsson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Minh Tran
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Alice Bernasconi
- Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via G. Venezian 21, 20133 Milano, Italy
| | - Araceli Blanco
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Lijiang Song
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, U.K
| | - Gregory L Challis
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, U.K.,Department of Biochemistry and Molecular Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
13
|
Singh TA, Passari AK, Jajoo A, Bhasin S, Gupta VK, Hashem A, Alqarawi AA, Abd Allah EF. Tapping Into Actinobacterial Genomes for Natural Product Discovery. Front Microbiol 2021; 12:655620. [PMID: 34239507 PMCID: PMC8258257 DOI: 10.3389/fmicb.2021.655620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
The presence of secondary metabolite biosynthetic gene clusters (BGCs) makes actinobacteria well-known producers of diverse metabolites. These ubiquitous microbes are extensively exploited for their ability to synthesize diverse secondary metabolites. The extent of their ability to synthesize various molecules is yet to be evaluated. Current advancements in genome sequencing, metabolomics, and bioinformatics have provided a plethora of information about the mechanism of synthesis of these bioactive molecules. Accessing the biosynthetic gene cluster responsible for the production of metabolites has always been a challenging assignment. The genomic approach developments have opened a new gateway for examining and manipulating novel antibiotic gene clusters. These advancements have now developed a better understanding of actinobacterial physiology and their genetic regulation for the prolific production of natural products. These new approaches provide a unique opportunity to discover novel bioactive compounds that might replenish antibiotics’ exhausted stock and counter the microbes’ resistance crisis.
Collapse
Affiliation(s)
- Tanim Arpit Singh
- Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore, India.,School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Ajit Kumar Passari
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Sheetal Bhasin
- Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center and Center for Safe and Improved Food, Scotland's Rural College (SRUC), SRUC Barony Campus, Dumfries, United Kingdom
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Mycology and Plant Disease Survey, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Abdulaziz A Alqarawi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Li H, Zhang M, Li H, Yu H, Chen S, Wu W, Sun P. Discovery of Venturicidin Congeners and Identification of the Biosynthetic Gene Cluster from Streptomyces sp. NRRL S-4. JOURNAL OF NATURAL PRODUCTS 2021; 84:110-119. [PMID: 33356258 DOI: 10.1021/acs.jnatprod.0c01177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical screening of Streptomyces sp. NRRL S-4 with liquid chromatography-mass spectrometry (LC-MS) and the following chromatographic isolation led to the discovery of four 20-membered macrolides, venturicidin A (4) and three new congeners venturicidins D-F (1-3). Genome sequencing of strain S-4 revealed the presence of a biosynthetic gene cluster (BGC) encoding glycosylated type I polyketides (PKS). The BGC designated to venturicidin biosynthesis (ven) was supported by the proposed biosynthetic pathway and confirmed by inactivation of the core PKS gene of venK. Bioinformatic analyses on the conserved motifs and known stereospecificities in PKS modules are consistent with the structure and absolute configuration. This is the first report of venturicidin BGC since the discovery of the macrolide in 1961. In the biological assays, venturicidin A (4) and E (2) displayed a high selective cytotoxicity against acute monocytic leukemia MV-4-11 cells with IC50 values of 0.09 and 0.94 μM, respectively. Venturicidin A (4) also showed a weak inhibitory activity on FMS-like-tyrosine kinase.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Mengxue Zhang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Hongji Li
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Hai Yu
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Shuo Chen
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
15
|
Li JY, Gao TT, Wang Q. Comparative and Functional Analyses of Two Sequenced Paenibacillus polymyxa Genomes Provides Insights Into Their Potential Genes Related to Plant Growth-Promoting Features and Biocontrol Mechanisms. Front Genet 2020; 11:564939. [PMID: 33391337 PMCID: PMC7773762 DOI: 10.3389/fgene.2020.564939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
Many bacteria belonging to Paenibacillus polymyxa are plant growth-promoting rhizobacteria (PGPR) with the potential to promote plant growth and suppress phytopathogens and have been used as biological control agents (BCAs). However, the growth promotion and biocontrol mechanisms of P. polymyxa have not been thoroughly elucidated thus far. In this investigation, the genome sequences of two P. polymyxa strains, ZF129 and ZF197, with broad anti-pathogen activities and potential for growth promotion were comparatively studied. Comparative and functional analyses of the two sequenced P. polymyxa genomes showed that the ZF129 genome consists of one 5,703,931 bp circular chromosome and two 79,020 bp and 37,602 bp plasmids, designated pAP1 and pAP2, respectively. The complete genome sequence of ZF197 consists of one 5,507,169 bp circular chromosome and one 32,065 bp plasmid, designated pAP197. Phylogenetic analysis revealed that ZF129 is highly similar to two P. polymyxa strains, HY96-2 and SQR-21, while ZF197 is highly similar to P. polymyxa strain J. The genes responsible for secondary metabolite synthesis, plant growth-promoting traits, and systemic resistance inducer production were compared between strains ZF129 and ZF197 as well as other P. polymyxa strains. The results indicated that the variation of the corresponding genes or gene clusters between strains ZF129 and ZF197 may lead to different antagonistic activities of their volatiles or cell-free supernatants against Fusarium oxysporum. This work indicates that plant growth promotion by P. polymyxa is largely mediated by phytohormone production, increased nutrient availability and biocontrol mechanisms. This study provides an in-depth understanding of the genome architecture of P. polymyxa, revealing great potential for the application of this bacterium in the fields of agriculture and horticulture as a PGPR.
Collapse
Affiliation(s)
- Jin-Yi Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tan-Tan Gao
- Key Laboratory for Northern Urban Agriculture, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Qi Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Abstract
Interactions among microbes are key drivers of evolutionary progress and constantly shape ecological niches. Microorganisms rely on chemical communication to interact with each other and surrounding organisms. They synthesize natural products as signaling molecules, antibiotics, or modulators of cellular processes that may be applied in agriculture and medicine. Whereas major insight has been gained into the principles of intraspecies interaction, much less is known about the molecular basis of interspecies interplay. In this review, we summarize recent progress in the understanding of chemically mediated bacterial-fungal interrelations. We discuss pairwise interactions among defined species and systems involving additional organisms as well as complex interactions among microbial communities encountered in the soil or defined as microbiota of higher organisms. Finally, we give examples of how the growing understanding of microbial interactions has contributed to drug discovery and hypothesize what may be future directions in studying and engineering microbiota for agricultural or medicinal purposes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
17
|
Russell AH, Truman AW. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Comput Struct Biotechnol J 2020; 18:1838-1851. [PMID: 32728407 PMCID: PMC7369419 DOI: 10.1016/j.csbj.2020.06.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023] Open
Abstract
Genome mining is a computational method for the automatic detection and annotation of biosynthetic gene clusters (BGCs) from genomic data. This approach has been increasingly utilised in natural product (NP) discovery due to the large amount of sequencing data that is now available. Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a class of structurally complex NP with diverse bioactivities. RiPPs have recently been shown to occupy a much larger expanse of genomic and chemical space than previously appreciated, indicating that annotation of RiPP BGCs in genomes may have been overlooked in the past. This review provides an overview of the genome mining tools that have been specifically developed to aid in the discovery of RiPP BGCs, which have been built from an increasing knowledgebase of RiPP structures and biosynthesis. Given these recent advances, the application of targeted genome mining has great potential to accelerate the discovery of important molecules such as antimicrobial and anticancer agents whilst increasing our understanding about how these compounds are biosynthesised in nature.
Collapse
Affiliation(s)
- Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
18
|
Williams DE, Andersen RJ. Biologically active marine natural products and their molecular targets discovered using a chemical genetics approach. Nat Prod Rep 2020; 37:617-633. [PMID: 31750842 PMCID: PMC7874888 DOI: 10.1039/c9np00054b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Covering: 2000 to 2019The discovery of new natural products that have some combination of unprecedented chemical structures, biological activities of therapeutic interest for urgent medical needs, and new molecular targets provides the fuel that sustains the vitality of natural products chemistry research. Unfortunately, finding these important new compounds is neither routine or trivial and a major challenge is finding effective discovery paradigms. This review presents examples that illustrate the effectiveness of a chemical genetics approach to marine natural product (MNP) discovery that intertwines compound discovery, molecular target identification, and phenotypic response/biological activity. The examples include MNPs that have complex unprecedented structures, new or understudied molecular targets, and potent biological activities of therapeutic interest. A variety of methods to identify molecular targets are also featured.
Collapse
Affiliation(s)
- David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| | | |
Collapse
|
19
|
Genome Mining as New Challenge in Natural Products Discovery. Mar Drugs 2020; 18:md18040199. [PMID: 32283638 PMCID: PMC7230286 DOI: 10.3390/md18040199] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Drug discovery is based on bioactivity screening of natural sources, traditionally represented by bacteria fungi and plants. Bioactive natural products and their secondary metabolites have represented the main source for new therapeutic agents, used as drug leads for new antibiotics and anticancer agents. After the discovery of the first biosynthetic genes in the last decades, the researchers had in their hands the tool to understand the biosynthetic logic and genetic basis leading to the production of these compounds. Furthermore, in the genomic era, in which the number of available genomes is increasing, genome mining joined to synthetic biology are offering a significant help in drug discovery. In the present review we discuss the importance of genome mining and synthetic biology approaches to identify new natural products, also underlining considering the possible advantages and disadvantages of this technique. Moreover, we debate the associated techniques that can be applied following to genome mining for validation of data. Finally, we review on the literature describing all novel natural drugs isolated from bacteria, fungi, and other living organisms, not only from the marine environment, by a genome-mining approach, focusing on the literature available in the last ten years.
Collapse
|
20
|
Peng H, Ishida K, Hertweck C. Loss of Single-Domain Function in a Modular Assembly Line Alters the Size and Shape of a Complex Polyketide. Angew Chem Int Ed Engl 2019; 58:18252-18256. [PMID: 31595618 PMCID: PMC6916388 DOI: 10.1002/anie.201911315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The structural wealth of complex polyketide metabolites produced by bacteria results from intricate, highly evolved biosynthetic programs of modular assembly lines, in which the number of modules defines the size of the backbone, and the domain composition controls the degree of functionalization. We report a remarkable case where polyketide chain length and scaffold depend on the function of a single β-keto processing domain: A ketoreductase domain represents a switch between diverging biosynthetic pathways leading either to the antifungal aureothin or to the nematicidal luteoreticulin. By a combination of heterologous expression, mutagenesis, metabolite analyses, and in vitro biotransformation we elucidate the factors governing non-colinear polyketide assembly involving module skipping and demonstrate that a simple point mutation in type I polyketide synthase (PKS) can have a dramatic effect on the metabolic profile. This finding sheds new light on possible evolutionary scenarios and may inspire future synthetic biology approaches.
Collapse
Affiliation(s)
- Huiyun Peng
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
- Faculty of Biological SciencesChair for Natural Product ChemistryFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
21
|
Mullis MM, Rambo IM, Baker BJ, Reese BK. Diversity, Ecology, and Prevalence of Antimicrobials in Nature. Front Microbiol 2019; 10:2518. [PMID: 31803148 PMCID: PMC6869823 DOI: 10.3389/fmicb.2019.02518] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Microorganisms possess a variety of survival mechanisms, including the production of antimicrobials that function to kill and/or inhibit the growth of competing microorganisms. Studies of antimicrobial production have largely been driven by the medical community in response to the rise in antibiotic-resistant microorganisms and have involved isolated pure cultures under artificial laboratory conditions neglecting the important ecological roles of these compounds. The search for new natural products has extended to biofilms, soil, oceans, coral reefs, and shallow coastal sediments; however, the marine deep subsurface biosphere may be an untapped repository for novel antimicrobial discovery. Uniquely, prokaryotic survival in energy-limited extreme environments force microbial populations to either adapt their metabolism to outcompete or produce novel antimicrobials that inhibit competition. For example, subsurface sediments could yield novel antimicrobial genes, while at the same time answering important ecological questions about the microbial community.
Collapse
Affiliation(s)
- Megan M. Mullis
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Ian M. Rambo
- Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States
| | - Brett J. Baker
- Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
22
|
Peng H, Ishida K, Hertweck C. Loss of Single‐Domain Function in a Modular Assembly Line Alters the Size and Shape of a Complex Polyketide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Huiyun Peng
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
- Faculty of Biological SciencesChair for Natural Product ChemistryFriedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
23
|
Emulating evolutionary processes to morph aureothin-type modular polyketide synthases and associated oxygenases. Nat Commun 2019; 10:3918. [PMID: 31477708 PMCID: PMC6718629 DOI: 10.1038/s41467-019-11896-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Polyketides produced by modular type I polyketide synthases (PKSs) play eminent roles in the development of medicines. Yet, the production of structural analogs by genetic engineering poses a major challenge. We report an evolution-guided morphing of modular PKSs inspired by recombination processes that lead to structural diversity in nature. By deletion and insertion of PKS modules we interconvert the assembly lines for related antibiotic and antifungal agents, aureothin (aur) and neoaureothin (nor) (aka spectinabilin), in both directions. Mutational and functional analyses of the polyketide-tailoring cytochrome P450 monooxygenases, and PKS phylogenies give contradictory clues on potential evolutionary scenarios (generalist-to-specialist enzyme evolution vs. most parsimonious ancestor). The KS-AT linker proves to be well suited as fusion site for both excision and insertion of modules, which supports a model for alternative module boundaries in some PKS systems. This study teaches important lessons on the evolution of PKSs, which may guide future engineering approaches. The wealth of complex polyketides is an essential source for drug discovery. Here, the authors report an evolution-guided rational morphing of modular polyketide synthases (PKSs) for aurothin and neoaurothin biosynthesis, and reveal engineering site suitable for diversifying PKS systems.
Collapse
|
24
|
Liao J, Pang K, Sun G, Pai T, Hsu P, Lin J, Sun K, Hsieh C, Tang S. Chimeric 6-methylsalicylic acid synthase with domains of acyl carrier protein and methyltransferase from Pseudallescheria boydii shows novel biosynthetic activity. Microb Biotechnol 2019; 12:920-931. [PMID: 31199579 PMCID: PMC6681407 DOI: 10.1111/1751-7915.13445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 01/09/2023] Open
Abstract
Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7 H10 O3 , and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.
Collapse
Affiliation(s)
- Ji‐Long Liao
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Ka‐Lai Pang
- Department of Marine BiologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Guang‐Huan Sun
- Division of UrologyDepartment of SurgeryNational Defense Medical CenterTri‐Service General HospitalNo. 325, Sec. 2, Cheng‐gong Rd.TaipeiTaiwan
| | - Tun‐Wen Pai
- Department of Computer Science and EngineeringNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Pang‐Hung Hsu
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Jyuan‐Siou Lin
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| | - Kuang‐Hui Sun
- Department of Biotechnology and Laboratory Science in MedicineNational Yang‐Ming UniversityNo. 155, Sec. 2, Linong StreetTaipeiTaiwan
- Department of Education and ResearchTaipei City HospitalTaipeiTaiwan
| | | | - Shye‐Jye Tang
- Department of Bioscience and BiotechnologyCenter of Excellence for the OceansNational Taiwan Ocean UniversityNo. 2 Pei‐Ning RoadKeelung20224Taiwan
| |
Collapse
|
25
|
Helfrich EJN, Ueoka R, Dolev A, Rust M, Meoded RA, Bhushan A, Califano G, Costa R, Gugger M, Steinbeck C, Moreno P, Piel J. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat Chem Biol 2019; 15:813-821. [PMID: 31308532 PMCID: PMC6642696 DOI: 10.1038/s41589-019-0313-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/23/2019] [Indexed: 12/01/2022]
Abstract
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are among the most complex known enzymes from secondary metabolism and are responsible for the biosynthesis of highly diverse bioactive polyketides. However, most of these metabolites remain uncharacterized, since trans-AT PKSs frequently occur in poorly studied microbes and feature a remarkable array of non-canonical biosynthetic components with poorly understood functions. As a consequence, genome-guided natural product identification has been challenging. To enable de novo structural predictions for trans-AT PKS-derived polyketides, we developed the trans-AT PKS polyketide predictor (TransATor). TransATor is a versatile bio- and chemoinformatics web application that suggests informative chemical structures for even highly aberrant trans-AT PKS biosynthetic gene clusters, thus permitting hypothesis-based, targeted biotechnological discovery and biosynthetic studies. We demonstrate the applicative scope in several examples, including the characterization of new variants of bioactive natural products as well as structurally new polyketides from unusual bacterial sources.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Alon Dolev
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Roy A Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Agneya Bhushan
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Gianmaria Califano
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Rodrigo Costa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK
| | - Pablo Moreno
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK.
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland.
| |
Collapse
|
26
|
Nelkner J, Henke C, Lin TW, Pätzold W, Hassa J, Jaenicke S, Grosch R, Pühler A, Sczyrba A, Schlüter A. Effect of Long-Term Farming Practices on Agricultural Soil Microbiome Members Represented by Metagenomically Assembled Genomes (MAGs) and Their Predicted Plant-Beneficial Genes. Genes (Basel) 2019; 10:E424. [PMID: 31163637 PMCID: PMC6627896 DOI: 10.3390/genes10060424] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022] Open
Abstract
To follow the hypothesis that agricultural management practices affect structure and function of the soil microbiome regarding soil health and plant-beneficial traits, high-throughput (HT) metagenome analyses were performed on Chernozem soil samples from a long-term field experiment designated LTE-1 carried out at Bernburg-Strenzfeld (Saxony-Anhalt, Germany). Metagenomic DNA was extracted from soil samples representing the following treatments: (i) plough tillage with standard nitrogen fertilization and use of fungicides and growth regulators, (ii) plough tillage with reduced nitrogen fertilization (50%), (iii) cultivator tillage with standard nitrogen fertilization and use of fungicides and growth regulators, and (iv) cultivator tillage with reduced nitrogen fertilization (50%). Bulk soil (BS), as well as root-affected soil (RS), were considered for all treatments in replicates. HT-sequencing of metagenomic DNA yielded approx. 100 Giga bases (Gb) of sequence information. Taxonomic profiling of soil communities revealed the presence of 70 phyla, whereby Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Thaumarchaeota, Firmicutes, Verrucomicrobia and Chloroflexi feature abundances of more than 1%. Functional microbiome profiling uncovered, i.a., numerous potential plant-beneficial, plant-growth-promoting and biocontrol traits predicted to be involved in nutrient provision, phytohormone synthesis, antagonism against pathogens and signal molecule synthesis relevant in microbe-plant interaction. Neither taxonomic nor functional microbiome profiling based on single-read analyses revealed pronounced differences regarding the farming practices applied. Soil metagenome sequences were assembled and taxonomically binned. The ten most reliable and abundant Metagenomically Assembled Genomes (MAGs) were taxonomically classified and metabolically reconstructed. Importance of the phylum Thaumarchaeota for the analyzed microbiome is corroborated by the fact that the four corresponding MAGs were predicted to oxidize ammonia (nitrification), thus contributing to the cycling of nitrogen, and in addition are most probably able to fix carbon dioxide. Moreover, Thaumarchaeota and several bacterial MAGs also possess genes with predicted functions in plant-growth-promotion. Abundances of certain MAGs (species resolution level) responded to the tillage practice, whereas the factors compartment (BS vs. RS) and nitrogen fertilization only marginally shaped MAG abundance profiles. Hence, soil management regimes promoting plant-beneficial microbiome members are very likely advantageous for the respective agrosystem, its health and carbon sequestration and accordingly may enhance plant productivity. Since Chernozem soils are highly fertile, corresponding microbiome data represent a valuable reference resource for agronomy in general.
Collapse
Affiliation(s)
- Johanna Nelkner
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Christian Henke
- Center for Biotechnology (CeBiTec), Bielefeld University, Computational Metagenomics Group, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Timo Wentong Lin
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Wiebke Pätzold
- Center for Biotechnology (CeBiTec), Bielefeld University, Computational Metagenomics Group, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Sebastian Jaenicke
- Justus-Liebig-University Gießen, Bioinformatics & Systems Biology, Heinrich-Buff-Ring 58, 35392 Gießen, Germany.
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ) Großbeeren/Erfurt eV, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Computational Metagenomics Group, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| |
Collapse
|
27
|
Schaub AJ, Moreno GO, Zhao S, Truong HV, Luo R, Tsai SC. Computational structural enzymology methodologies for the study and engineering of fatty acid synthases, polyketide synthases and nonribosomal peptide synthetases. Methods Enzymol 2019; 622:375-409. [PMID: 31155062 PMCID: PMC7197764 DOI: 10.1016/bs.mie.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various computational methodologies can be applied to enzymological studies on enzymes in the fatty acid, polyketide, and non-ribosomal peptide biosynthetic pathways. These multi-domain complexes are called fatty acid synthases, polyketide synthases, and non-ribosomal peptide synthetases. These mega-synthases biosynthesize chemically diverse and complex bioactive molecules, with the intermediates being chauffeured between catalytic partners via a carrier protein. Recent efforts have been made to engineer these systems to expand their product diversity. A major stumbling block is our poor understanding of the transient protein-protein and protein-substrate interactions between the carrier protein and its many catalytic partner domains and product intermediates. The innate reactivity of pathway intermediates in two major classes of polyketide synthases has frustrated our mechanistic understanding of these interactions during the biosynthesis of these natural products, ultimately impeding the engineering of these systems for the generation of engineered natural products. Computational techniques described in this chapter can aid data interpretation or used to generate testable models of these experimentally intractable transient interactions, thereby providing insight into key interactions that are difficult to capture otherwise, with the potential to expand the diversity in these systems.
Collapse
Affiliation(s)
- Andrew J Schaub
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Gabriel O Moreno
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Shiji Zhao
- Mathematical, Computational and Systems Biology Program, Center for Complex Biological Systems, University of California, Irvine, CA, United States
| | - Hau V Truong
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, CA, United States.
| | - Shiou-Chuan Tsai
- Department of Molecular Biology and Biochemistry, Chemistry, Pharmaceutical Sciences, University of California, Irvine, CA, United States.
| |
Collapse
|
28
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
29
|
Li P, Guo Z, Tang W, Chen Y. Activation of three natural product biosynthetic gene clusters from Streptomyces lavendulae CGMCC 4.1386 by a reporter-guided strategy. Synth Syst Biotechnol 2018; 3:254-260. [PMID: 30417141 PMCID: PMC6223227 DOI: 10.1016/j.synbio.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022] Open
Abstract
Along with the fast developing of DNA sequencing technology, a great number of natural product biosynthetic gene clusters have been discovered by bioinformatic analysis, which demands novel high-throughput genome mining methods to obtain the diverse compounds dictated by those gene clusters. In this work, a method based on the reporter gene xylE was established to screen for the activation conditions of thirteen different gene clusters from Streptomyces lavendulae CGMCC 4.1386. In this reporter-guided method, the key structure gene was replaced by a xylE-kana R cassette with the xylE gene being controlled by the transcription and translation machinery of the key structure gene. It not only facilitated the screening of activation conditions, but also provided the null mutants of specific natural product gene clusters as controls to link those clusters with their products conveniently. The potential activation conditions of eleven gene clusters from S. lavendulae CGMCC 4.1386 were obtained. In addition, activation of three of the eleven gene clusters was confirmed and their products were identified.
Collapse
Affiliation(s)
- Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Roulet J, Taton A, Golden JW, Arabolaza A, Burkart MD, Gramajo H. Development of a cyanobacterial heterologous polyketide production platform. Metab Eng 2018; 49:94-104. [PMID: 30036678 PMCID: PMC6279439 DOI: 10.1016/j.ymben.2018.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022]
Abstract
The development of new heterologous hosts for polyketides production represents an excellent opportunity to expand the genomic, physiological, and biochemical backgrounds that better fit the sustainable production of these valuable molecules. Cyanobacteria are particularly attractive for the production of natural compounds because they have minimal nutritional demands and several strains have well established genetic tools. Using the model strain Synechococcus elongatus, a generic platform was developed for the heterologous production of polyketide synthase (PKS)-derived compounds. The versatility of this system is based on interchangeable modules harboring promiscuous enzymes for PKS activation and the production of PKS extender units, as well as inducible circuits for a regulated expression of the PKS biosynthetic gene cluster. To assess the capability of this platform, we expressed the mycobacterial PKS-based mycocerosic biosynthetic pathway to produce multimethyl-branched esters (MBE). This work is a foundational step forward for the production of high value polyketides in a photosynthetic microorganism.
Collapse
Affiliation(s)
- Julia Roulet
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina
| | - Arnaud Taton
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - James W Golden
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Arabolaza
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | - Hugo Gramajo
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina
| |
Collapse
|
31
|
Wang Y, Geng C, Yuan X, Hua M, Tian F, Li C. Identification of a putative polyketide synthase gene involved in usnic acid biosynthesis in the lichen Nephromopsis pallescens. PLoS One 2018; 13:e0199110. [PMID: 30020937 PMCID: PMC6051580 DOI: 10.1371/journal.pone.0199110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 11/30/2022] Open
Abstract
Usnic acid is a unique polyketide produced by lichens. To characterize usnic acid biosynthesis, the transcriptome of the usnic-acid-producing lichen-forming fungus Nephromopsis pallescens was sequenced using Illumina NextSeq technology. Seven complete non-reducing polyketide synthase genes and nine highly-reducing polyketide synthase genes were obtained through transcriptome analysis. Gene expression results obtained by qPCR and usnic acid detection with LCMS-IT-TOF showed that Nppks7 is probably involved in usnic acid biosynthesis in N. pallescens. Nppks7 is a non-reducing polyketide synthase with a MeT domain that also possesses beta-ketoacyl-ACP synthase, acyl transferase, product template, acyl carrier protein, C-methyltransferase, and Claisen cyclase domains. Phylogenetic analysis shows that Nppks7and other polyketide synthases from lichens form a unique monophyletic clade. Taken together, our data indicate that Nppks7 is a novel PKS in N. pallescens that is likely involved in usnic acid biosynthesis.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry, Kunming Yunnan, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Changan Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaolong Yuan
- Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry, Kunming Yunnan, China
| | - Mei Hua
- Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry, Kunming Yunnan, China
| | - Fenghua Tian
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
32
|
Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1351-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
33
|
Dong LB, Rudolf JD, Deng MR, Yan X, Shen B. Discovery of the Tiancilactone Antibiotics by Genome Mining of Atypical Bacterial Type II Diterpene Synthases. Chembiochem 2018; 19:10.1002/cbic.201800285. [PMID: 29806086 PMCID: PMC6258353 DOI: 10.1002/cbic.201800285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 12/19/2022]
Abstract
Although genome mining has advanced the identification, discovery, and study of microbial natural products, the discovery of bacterial diterpenoids continues to lag behind. Herein, we report the identification of 66 putative producers of novel bacterial diterpenoids, and the discovery of the tiancilactone (TNL) family of antibiotics, by genome mining of type II diterpene synthases that do not possess the canonical DXDD motif. The TNLs, which are broad-spectrum antibiotics with moderate activities, are produced by both Streptomyces sp. CB03234 and Streptomyces sp. CB03238 and feature a highly functionalized diterpenoid skeleton that is further decorated with chloroanthranilate and γ-butyrolactone moieties. Genetic manipulation of the tnl gene cluster resulted in TNL congeners, which provided insights into their biosynthesis and structure-activity relationships. This work highlights the biosynthetic potential that bacteria possess to produce diterpenoids and should inspire continued efforts to discover terpenoid natural products from bacteria.
Collapse
Affiliation(s)
- Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute Jupiter, FL 33458 (USA),
| | - Jeffrey D. Rudolf
- Department of Chemistry, The Scripps Research Institute Jupiter, FL 33458 (USA),
| | - Ming-Rong Deng
- Department of Chemistry, The Scripps Research Institute Jupiter, FL 33458 (USA),
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute Jupiter, FL 33458 (USA),
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute Jupiter, FL 33458 (USA),
- Department of Molecular Medicine, Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458 (USA)
| |
Collapse
|
34
|
Bertrand RL, Abdel-Hameed M, Sorensen JL. Lichen Biosynthetic Gene Clusters. Part I. Genome Sequencing Reveals a Rich Biosynthetic Potential. JOURNAL OF NATURAL PRODUCTS 2018; 81:723-731. [PMID: 29485276 DOI: 10.1021/acs.jnatprod.7b00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lichens are symbionts of fungi and algae that produce diverse secondary metabolites with useful properties. Little is known of lichen natural product biosynthesis because of the challenges of working with lichenizing fungi. We describe the first attempt to comprehensively profile the genetic secondary metabolome of a lichenizing fungus. An Illumina platform combined with the Antibiotics and Secondary Metabolites Analysis Shell (FungiSMASH, version 4.0) was used to sequence and annotate assembled contigs of the fungal partner of Cladonia uncialis. Up to 48 putative gene clusters are described comprising type I and type III polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), hybrid PKS-NRPS, and terpene synthases. The number of gene clusters revealed by this work dwarfs the number of known secondary metabolites from C. uncialis, suggesting that lichenizing fungi have an unexplored biosynthetic potential.
Collapse
Affiliation(s)
- Robert L Bertrand
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Mona Abdel-Hameed
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - John L Sorensen
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
35
|
Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chem Soc Rev 2018; 47:1730-1760. [PMID: 29094129 DOI: 10.1039/c7cs00431a] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lichens, which are defined by a core symbiosis between a mycobiont (fungal partner) and a photobiont (photoautotrophic partner), are in fact complex assemblages of microorganisms that constitute a largely untapped source of bioactive secondary metabolites. Historically, compounds isolated from lichens have predominantly been those produced by the dominant fungal partner, and these continue to be of great interest for their unique chemistry and biotechnological potential. In recent years it has become apparent that many photobionts and lichen-associated bacteria also produce a range of potentially valuable molecules. There is evidence to suggest that the unique nature of the symbiosis has played a substantial role in shaping many aspects of lichen chemistry, for example driving bacteria to produce metabolites that do not bring them direct benefit but are useful to the lichen as a whole. This is most evident in studies of cyanobacterial photobionts, which produce compounds that differ from free living cyanobacteria and are unique to symbiotic organisms. The roles that these and other lichen-derived molecules may play in communication and maintaining the symbiosis are poorly understood at present. Nonetheless, advances in genomics, mass spectrometry and other analytical technologies are continuing to illuminate the wealth of biological and chemical diversity present within the lichen holobiome. Implementation of novel biodiscovery strategies such as metagenomic screening, coupled with synthetic biology approaches to reconstitute, re-engineer and heterologously express lichen-derived biosynthetic gene clusters in a cultivable host, offer a promising means for tapping into this hitherto inaccessible wealth of natural products.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
36
|
Chen R, Zhang Q, Tan B, Zheng L, Li H, Zhu Y, Zhang C. Genome Mining and Activation of a Silent PKS/NRPS Gene Cluster Direct the Production of Totopotensamides. Org Lett 2017; 19:5697-5700. [PMID: 29019409 DOI: 10.1021/acs.orglett.7b02878] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 92 kb silent hybrid polyketide and nonribosomal peptide gene cluster in marine-derived Streptomyces pactum SCSIO 02999 was activated by genetically manipulating the regulatory genes, including the knockout of two negative regulators (totR5 and totR3) and overexpression of a positive regulator totR1, to direct the production of the known totopotensamides (TPMs) A (1) and B (3) and a novel sulfonate-containing analogue TPM C (2). Inactivation of totG led to accumulation of TPM B (3) lacking the glycosyl moiety, which indicated TotG as a dedicated glycosyltransferase in the biosynthesis of 1 and 2.
Collapse
Affiliation(s)
- Ruidong Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Liujuan Zheng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Huixian Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
37
|
Chang S, Zhang G, Chen X, Long H, Wang Y, Chen T, Liu G. The complete genome sequence of the cold adapted crude-oil degrader: Pedobacter steynii DX4. Stand Genomic Sci 2017; 12:45. [PMID: 28770030 PMCID: PMC5531107 DOI: 10.1186/s40793-017-0249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/29/2017] [Indexed: 11/26/2022] Open
Abstract
Pedobacter steynii DX4 was isolated from the soil of Tibetan Plateau and it can use crude oil as sole carbon and energy source at 15 °C. The genome of Pedobacter steynii DX4 has been sequenced and served as basis for analysis its metabolic mechanism. It is the first genome of crude oil degrading strain in Pedobacter genus. The 6.58 Mb genome has an average G + C content of 41.31% and encodes 5464 genes. In addition, annotation revealed that Pedobacter steynii DX4 has cold shock proteins, abundant response regulators for cell motility, and enzymes involved in energy conversion and fatty acid metabolism. The genomic characteristics could provide information for further study of oil-degrading microbes for recovery of crude oil polluted environment.
Collapse
Affiliation(s)
- Sijing Chang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Ximing Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Haozhi Long
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Yilin Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
38
|
Kishimoto S, Tsunematsu Y, Sato M, Watanabe K. Elucidation of Biosynthetic Pathways of Natural Products. CHEM REC 2017; 17:1095-1108. [PMID: 28387469 DOI: 10.1002/tcr.201700015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 01/22/2023]
Abstract
During the last decade, we have revealed biosynthetic pathways responsible for the formation of important and chemically complex natural products isolated from various organisms through genetic manipulation. Detailed in vivo and in vitro characterizations enabled elucidation of unexpected mechanisms of secondary metabolite biosynthesis. This personal account focuses on our recent efforts in identifying the genes responsible for the biosynthesis of spirotryprostatin, aspoquinolone, Sch 210972, pyranonigrin, fumagillin and pseurotin. We exploit heterologous reconstitution of biosynthetic pathways of interest in our study. In particular, extensive involvement of oxidation reactions is discussed. Heterologous hosts employed here are Saccharomyces cerevisiae, Aspergillus nidulans and A. niger that can also be used to prepare biosynthetic intermediates and product analogs by engineering the biosynthetic pathways using the knowledge obtained by detailed characterizations of the enzymes. (998 char.).
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| |
Collapse
|
39
|
Shimizu Y, Ogata H, Goto S. Type III Polyketide Synthases: Functional Classification and Phylogenomics. Chembiochem 2016; 18:50-65. [DOI: 10.1002/cbic.201600522] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yugo Shimizu
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Hiroyuki Ogata
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Susumu Goto
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
40
|
Abstract
The diversity and natural modularity of their biosynthetic pathways has turned natural products into attractive, but challenging, targets for synthetic biology approaches. Here, we discuss the current state of the field, highlighting recent advances and remaining bottlenecks. Global genomic assessments of natural product biosynthetic capacities across large parts of microbial diversity provide a first survey of the available natural parts libraries and identify evolutionary design rules for further engineering. Methods for compound and pathway detection and characterization are developed increasingly on the basis of synthetic biology tools, contributing to an accelerated translation of genomic information into usable building blocks for pathway assembly. A wide range of methods is also becoming available for accessing ever larger parts of chemical space by rational diversification of natural products, guided by rapid progress in our understanding of the underlying biochemistry and enzymatic mechanisms. Enhanced genome assembly and editing tools, adapted to the needs of natural products research, facilitate the realization of ambitious engineering strategies, ranging from combinatorial library generation to high-throughput optimization of product titers. Together, these tools and concepts contribute to the emergence of a new generation of revitalized natural product research.
Collapse
Affiliation(s)
- Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
41
|
Borchert E, Jackson SA, O'Gara F, Dobson ADW. Diversity of Natural Product Biosynthetic Genes in the Microbiome of the Deep Sea Sponges Inflatella pellicula, Poecillastra compressa, and Stelletta normani. Front Microbiol 2016; 7:1027. [PMID: 27446062 PMCID: PMC4925706 DOI: 10.3389/fmicb.2016.01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/16/2016] [Indexed: 11/27/2022] Open
Abstract
Three different deep sea sponge species, Inflatella pellicula, Poecillastra compressa, and Stelletta normani comprising seven individual samples, retrieved from depths of 760–2900 m below sea level, were investigated using 454 pyrosequencing for their secondary metabolomic potential targeting adenylation domain and ketosynthase domain sequences. The data obtained suggest a diverse microbial origin of nonribosomal peptide synthetases and polyketide synthase fragments that in part correlates with their respective microbial community structures that were previously described and reveals an untapped source of potential novelty. The sequences, especially the ketosynthase fragments, display extensive clade formations which are clearly distinct from sequences hosted in public databases, therefore highlighting the potential of the microbiome of these deep sea sponges to produce potentially novel small-molecule chemistry. Furthermore, sequence similarities to gene clusters known to be involved in the production of many classes of antibiotics and toxins including lipopeptides, glycopeptides, macrolides, and hepatotoxins were also identified.
Collapse
Affiliation(s)
- Erik Borchert
- School of Microbiology, University College Cork, National University of Ireland Cork, Ireland
| | - Stephen A Jackson
- School of Microbiology, University College Cork, National University of Ireland Cork, Ireland
| | - Fergal O'Gara
- School of Microbiology, University College Cork, National University of IrelandCork, Ireland; Biomerit Research Centre, University College Cork, National University of IrelandCork, Ireland; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin UniversityPerth, WA, Australia
| | - Alan D W Dobson
- School of Microbiology, University College Cork, National University of IrelandCork, Ireland; Environmental Research Institute, University College Cork, National University of IrelandCork, Ireland
| |
Collapse
|
42
|
Influence of Niche-Specific Nutrients on Secondary Metabolism in Vibrionaceae. Appl Environ Microbiol 2016; 82:4035-4044. [PMID: 27129958 DOI: 10.1128/aem.00730-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Many factors, such as the substrate and the growth phase, influence biosynthesis of secondary metabolites in microorganisms. Therefore, it is crucial to consider these factors when establishing a bioprospecting strategy. Mimicking the conditions of the natural environment has been suggested as a means of inducing or influencing microbial secondary metabolite production. The purpose of the present study was to determine how the bioactivity of Vibrionaceae was influenced by carbon sources typical of their natural environment. We determined how mannose and chitin, compared to glucose, influenced the antibacterial activity of a collection of Vibrionaceae strains isolated because of their ability to produce antibacterial compounds but that in subsequent screenings seemed to have lost this ability. The numbers of bioactive isolates were 2- and 3.5-fold higher when strains were grown on mannose and chitin, respectively, than on glucose. As secondary metabolites are typically produced during late growth, potential producers were also allowed 1 to 2 days of growth before exposure to the pathogen. This strategy led to a 3-fold increase in the number of bioactive strains on glucose and an 8-fold increase on both chitin and mannose. We selected two bioactive strains belonging to species for which antibacterial activity had not previously been identified. Using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry and bioassay-guided fractionation, we found that the siderophore fluvibactin was responsible for the antibacterial activity of Vibrio furnissii and Vibrio fluvialis These results suggest a role of chitin in the regulation of secondary metabolism in vibrios and demonstrate that considering bacterial ecophysiology during development of screening strategies will facilitate bioprospecting. IMPORTANCE A challenge in microbial natural product discovery is the elicitation of the biosynthetic gene clusters that are silent when microorganisms are grown under standard laboratory conditions. We hypothesized that, since the clusters are not lost during proliferation in the natural niche of the microorganisms, they must, under such conditions, be functional. Here, we demonstrate that an ecology-based approach in which the producer organism is allowed a temporal advantage and where growth conditions are mimicking the natural niche remarkably increases the number of Vibrionaceae strains producing antibacterial compounds.
Collapse
|
43
|
Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes - a review. Nat Prod Rep 2016; 33:988-1005. [PMID: 27272205 DOI: 10.1039/c6np00025h] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2006 to 2016The computational mining of genomes has become an important part in the discovery of novel natural products as drug leads. Thousands of bacterial genome sequences are publically available these days containing an even larger number and diversity of secondary metabolite gene clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews the development of these computational approaches during the last decade and shows how the revolution of next generation sequencing methods has led to an evolution of various genome mining approaches, techniques and tools. After a short introduction and brief overview of important milestones, this article will focus on the different approaches of mining genomes for secondary metabolites, from detecting biosynthetic genes to resistance based methods and "evo-mining" strategies including a short evaluation of the impact of the development of genome mining methods and tools on the field of natural products and microbial ecology.
Collapse
Affiliation(s)
- Nadine Ziemert
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tuebingen, Germany.
| | | | | |
Collapse
|
44
|
Bekiesch P, Basitta P, Apel AK. Challenges in the Heterologous Production of Antibiotics inStreptomyces. Arch Pharm (Weinheim) 2016; 349:594-601. [DOI: 10.1002/ardp.201600058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Paulina Bekiesch
- Pharmaceutical Biology; Pharmaceutical Institute; Eberhard-Karls-Universität Tübingen; Tübingen Germany
- German Centre for Infection Research (DZIF); Partner Site Tübingen; Tübingen Germany
| | - Patrick Basitta
- Pharmaceutical Biology; Pharmaceutical Institute; Eberhard-Karls-Universität Tübingen; Tübingen Germany
- German Centre for Infection Research (DZIF); Partner Site Tübingen; Tübingen Germany
| | - Alexander K. Apel
- Pharmaceutical Biology; Pharmaceutical Institute; Eberhard-Karls-Universität Tübingen; Tübingen Germany
- German Centre for Infection Research (DZIF); Partner Site Tübingen; Tübingen Germany
| |
Collapse
|
45
|
Matsuda Y, Mitsuhashi T, Lee S, Hoshino M, Mori T, Okada M, Zhang H, Hayashi F, Fujita M, Abe I. Astellifadiene: Structure Determination by NMR Spectroscopy and Crystalline Sponge Method, and Elucidation of its Biosynthesis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601448] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yudai Matsuda
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shoukou Lee
- Graduate School of Engineering; The University of Tokyo; JST-ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Manabu Hoshino
- Graduate School of Engineering; The University of Tokyo; JST-ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masahiro Okada
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Huiping Zhang
- RIKEN Center for Life Science Technologies, Yokohama; Kanagawa 230-0045 Japan
| | - Fumiaki Hayashi
- RIKEN Center for Life Science Technologies, Yokohama; Kanagawa 230-0045 Japan
| | - Makoto Fujita
- Graduate School of Engineering; The University of Tokyo; JST-ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
46
|
Khater S, Anand S, Mohanty D. In silico methods for linking genes and secondary metabolites: The way forward. Synth Syst Biotechnol 2016; 1:80-88. [PMID: 29062931 PMCID: PMC5640692 DOI: 10.1016/j.synbio.2016.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 11/26/2022] Open
Abstract
In silico methods for linking genomic space to chemical space have played a crucial role in genomics driven discovery of new natural products as well as biosynthesis of altered natural products by engineering of biosynthetic pathways. Here we give an overview of available computational tools and then briefly describe a novel computational framework, namely retro-biosynthetic enumeration of biosynthetic reactions, which can add to the repertoire of computational tools available for connecting natural products to their biosynthetic gene clusters. Most of the currently available bioinformatics tools for analysis of secondary metabolite biosynthetic gene clusters utilize the “Genes to Metabolites” approach. In contrast to the “Genes to Metabolites” approach, the “Metabolites to Genes” or retro-biosynthetic approach would involve enumerating the various biochemical transformations or enzymatic reactions which would generate the given chemical moiety starting from a set of precursor molecules and identifying enzymatic domains which can potentially catalyze the enumerated biochemical transformations. In this article, we first give a brief overview of the presently available in silico tools and approaches for analysis of secondary metabolite biosynthetic pathways. We also discuss our preliminary work on development of algorithms for retro-biosynthetic enumeration of biochemical transformations to formulate a novel computational method for identifying genes associated with biosynthesis of a given polyketide or nonribosomal peptide.
Collapse
Affiliation(s)
- Shradha Khater
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swadha Anand
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
47
|
Matsuda Y, Mitsuhashi T, Lee S, Hoshino M, Mori T, Okada M, Zhang H, Hayashi F, Fujita M, Abe I. Astellifadiene: Structure Determination by NMR Spectroscopy and Crystalline Sponge Method, and Elucidation of its Biosynthesis. Angew Chem Int Ed Engl 2016; 55:5785-8. [DOI: 10.1002/anie.201601448] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Yudai Matsuda
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shoukou Lee
- Graduate School of Engineering; The University of Tokyo; JST-ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Manabu Hoshino
- Graduate School of Engineering; The University of Tokyo; JST-ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masahiro Okada
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Huiping Zhang
- RIKEN Center for Life Science Technologies, Yokohama; Kanagawa 230-0045 Japan
| | - Fumiaki Hayashi
- RIKEN Center for Life Science Technologies, Yokohama; Kanagawa 230-0045 Japan
| | - Makoto Fujita
- Graduate School of Engineering; The University of Tokyo; JST-ACCEL; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
48
|
Miura T, Nishizawa A, Nishizawa T, Asayama M, Shirai M. Actinophage R4 integrase-based site-specific chromosomal integration of non-replicative closed circular DNA. J Basic Microbiol 2016; 56:635-44. [PMID: 26870903 DOI: 10.1002/jobm.201500658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/27/2016] [Indexed: 11/07/2022]
Abstract
The actinophage R4 integrase (Sre)-based molecular genetic engineering system was developed for the chromosomal integration of multiple genes in Escherichia coli. A cloned DNA fragment containing two attP sites, green fluorescent protein (gfp) as a first transgene, and an antibiotic resistance gene as a selection marker was self-ligated to generate non-replicative closed circular DNA (nrccDNA) for integration. nrccDNA was introduced into attB-inserted E. coli cells harboring the plasmid expressing Sre by electroporation. The expressed Sre catalyzed site-specific integration between one of the two attP sites on nrccDNA and the attB site on the E. coli chromosome. The integration frequency was affected by the chromosomal location of the target site. A second nrccDNA containing two attB sites, lacZα encoding the alpha fragment of β-galactosidase as a transgene, and another antibiotic resistance gene was integrated into the residual attP site on the gfp-integrated E. coli chromosome via one of the two attB sites according to reiterating site-specific recombination. The integrants clearly exhibited β-galactosidase activity and green fluorescence, suggesting the simultaneous expression of multiple recombinant proteins in E. coli. The results of the present study showed that a step-by-step integration procedure using nrccDNA achieved the chromosomal integration of multiple genes.
Collapse
Affiliation(s)
- Takamasa Miura
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Akito Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Munehiko Asayama
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Makoto Shirai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| |
Collapse
|
49
|
Crane EA, Gademann K. Synthetisch gewonnene Naturstofffragmente in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201505863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Erika A. Crane
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 CH-4056 Basel Schweiz
| | - Karl Gademann
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 CH-4056 Basel Schweiz
- Institut für Chemie; Universität Zürich; Winterthurerstrasse 190 CH-8057 Zürich Schweiz
| |
Collapse
|
50
|
Crane EA, Gademann K. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis. Angew Chem Int Ed Engl 2016; 55:3882-902. [PMID: 26833854 PMCID: PMC4797711 DOI: 10.1002/anie.201505863] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.
Collapse
Affiliation(s)
- Erika A Crane
- Department of Chemistry, University of Basel, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Basel, Switzerland. .,Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|