1
|
Wasmund K, Singleton C, Dahl Dueholm MK, Wagner M, Nielsen PH. The predicted secreted proteome of activated sludge microorganisms indicates distinct nutrient niches. mSystems 2024; 9:e0030124. [PMID: 39254351 PMCID: PMC11495043 DOI: 10.1128/msystems.00301-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
In wastewater treatment plants (WWTPs), complex microbial communities process diverse chemical compounds from sewage. Secreted proteins are critical because many are the first to interact with or degrade external (macro)molecules. To better understand microbial functions in WWTPs, we predicted secreted proteomes of WWTP microbiota from more than 1,000 high-quality metagenome-assembled genomes (MAGs) from 23 Danish WWTPs with biological nutrient removal. Focus was placed on examining secreted catabolic exoenzymes that target major classes of macromolecules. We demonstrate that Bacteroidota has a high potential to digest complex polysaccharides, but also proteins and nucleic acids. Poorly understood activated sludge members of Acidobacteriota and Gemmatimonadota also have high capacities for extracellular polysaccharide digestion. Secreted nucleases are encoded by 61% of MAGs indicating an importance for extracellular DNA and/or RNA digestion in WWTPs. Secreted lipases were the least common macromolecule-targeting enzymes predicted, encoded mainly by Gammaproteobacteria and Myxococcota. In contrast, diverse taxa encode extracellular peptidases, indicating that proteins are widely used nutrients. Diverse secreted multi-heme cytochromes suggest capabilities for extracellular electron transfer by various taxa, including some Bacteroidota that encode undescribed cytochromes with >100 heme-binding motifs. Myxococcota have exceptionally large secreted protein complements, probably related to predatory lifestyles and/or complex cell cycles. Many Gammaproteobacteria MAGs (mostly former Betaproteobacteria) encode few or no secreted hydrolases, but many periplasmic substrate-binding proteins and ABC- and TRAP-transporters, suggesting they are mostly sustained by small molecules. Together, this study provides a comprehensive overview of how WWTPs microorganisms interact with the environment, providing new insights into their functioning and niche partitioning.IMPORTANCEWastewater treatment plants (WWTPs) are critical biotechnological systems that clean wastewater, allowing the water to reenter the environment and limit eutrophication and pollution. They are also increasingly important for the recovery of resources. They function primarily by the activity of microorganisms, which act as a "living sponge," taking up and transforming nutrients, organic material, and pollutants. Despite much research, many microorganisms in WWTPs are uncultivated and poorly characterized, limiting our understanding of their functioning. Here, we analyzed a large collection of high-quality metagenome-assembled genomes from WWTPs for encoded secreted enzymes and proteins, with special emphasis on those used to degrade organic material. This analysis showed highly distinct secreted proteome profiles among different major phylogenetic groups of microorganisms, thereby providing new insights into how different groups function and co-exist in activated sludge. This knowledge will contribute to a better understanding of how to efficiently manage and exploit WWTP microbiomes.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Lei X, Cui G, Sun H, Hou S, Deng H, Li B, Yang Z, Xu Q, Huo X, Cai J. How do earthworms affect the pathway of sludge bio-stabilization via vermicomposting? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170411. [PMID: 38280597 DOI: 10.1016/j.scitotenv.2024.170411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The synergy effects between earthworms and microorganisms promote nitrogen mineralization and enhance stabilization of organic matters in a vermicomposting system. However, the stabilization pathways of vermicomposting in the system remain unknown. The aim of this study was to investigate the effect of earthworms on the stabilization pathway and associated microbial population of waste activated sludge recycled by vermicomposting. The treatment of sludge with and without earthworms was conducted at 20 °C for 60 days. The trends in organic matter (OM), dissolved organic carbon (DOC), NH4+-N, electrical conductivity (EC), microbial biomass carbon (MBC), and dehydrogenase activity (DHA) were similar in both systems over time. At the end of the treatment, OM and DOC were significantly lower (p < 0.05), and EC, NH4+-N, and NO3--N were significantly higher (p < 0.05) in the vermicomposting group than in the control. Based on the statistical results of principal component analysis (PCA), it was proposed that the stabilization pathway in both treatment systems required a sequence of reactions characterized by the degradation of organic matter, accumulation of dissolved organic carbon, ammonification, and nitrification. Vermicomposting led to greater abundance and diversity (Shannon index) of 16S rDNA microbial species, but more even distribution in microbial community composition (Simpson index) than the control. However, the opposite performance for 18S rDNA microbes was observed. Vermicomposting enhanced the abundance of microorganisms involved in organic matter degradation and nitrification, facilitating the conversion of organic matter and favoring the nitrification. In short, the pathway of sludge bio-stabilization is not altered regardless of the addition of earthworms or not, which enables us to better understand vermicomposting process of sludge.
Collapse
Affiliation(s)
- Xuyang Lei
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Guangyu Cui
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Hongxin Sun
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Suxia Hou
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Hongying Deng
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Bo Li
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Zhengzheng Yang
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Qiushi Xu
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Xueyu Huo
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Jiaxuan Cai
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| |
Collapse
|
3
|
Rachbauer L, Granda CB, Shrestha S, Fuchs W, Gabauer W, Singer SW, Simmons BA, Urgun-Demirtas M. Energy and nutrient recovery from municipal and industrial waste and wastewater-a perspective. J Ind Microbiol Biotechnol 2024; 51:kuae040. [PMID: 39448370 PMCID: PMC11586630 DOI: 10.1093/jimb/kuae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2022] [Indexed: 10/26/2024]
Abstract
This publication highlights the latest advancements in the field of energy and nutrient recovery from organics rich municipal and industrial waste and wastewater. Energy and carbon rich waste streams are multifaceted, including municipal solid waste, industrial waste, agricultural by-products and residues, beached or residual seaweed biomass from post-harvest processing, and food waste, and are valuable resources to overcome current limitations with sustainable feedstock supply chains for biorefining approaches. The emphasis will be on the most recent scientific progress in the area, including the development of new and innovative technologies, such as microbial processes and the role of biofilms for the degradation of organic pollutants in wastewater, as well as the production of biofuels and value-added products from organic waste and wastewater streams. The carboxylate platform, which employs microbiomes to produce mixed carboxylic acids through methane-arrested anaerobic digestion, is the focus as a new conversion technology. Nutrient recycling from conventional waste streams such as wastewater and digestate, and the energetic valorization of such streams will also be discussed. The selected technologies significantly contribute to advanced waste and wastewater treatment and support the recovery and utilization of carboxylic acids as the basis to produce many useful and valuable products, including food and feed preservatives, human and animal health supplements, solvents, plasticizers, lubricants, and even biofuels such as sustainable aviation fuel. ONE-SENTENCE SUMMARY Multifaceted waste streams as the basis for resource recovery are essential to achieve environmental sustainability in a circular economy, and require the development of next-generation waste treatment technologies leveraging a highly adaptive mixed microbial community approach to produce new biochemicals, biomaterials, and biofuels from carbon-rich organic waste streams.
Collapse
Affiliation(s)
- Lydia Rachbauer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Shilva Shrestha
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Werner Fuchs
- Department for Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Wolfgang Gabauer
- Department for Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Blake A Simmons
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | | |
Collapse
|
4
|
Sieber G, Drees F, Shah M, Stach TL, Hohrenk-Danzouma L, Bock C, Vosough M, Schumann M, Sures B, Probst AJ, Schmidt TC, Beisser D, Boenigk J. Exploring the efficacy of metabarcoding and non-target screening for detecting treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:167457. [PMID: 37777125 DOI: 10.1016/j.scitotenv.2023.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Wastewater treatment processes can eliminate many pollutants, yet remainder pollutants contain organic compounds and microorganisms released into ecosystems. These remainder pollutants have the potential to adversely impact downstream ecosystem processes, but their presence is currently not being monitored. This study was set out with the aim of investigating the effectiveness and sensitivity of non-target screening of chemical compounds, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding techniques for detecting treated wastewater in receiving waters. We aimed at assessing the impact of introducing 33 % treated wastewater into a triplicated large-scale mesocosm setup during a 10-day exposure period. Discharge of treated wastewater significantly altered the chemical signature as well as the microeukaryotic and prokaryotic diversity of the mesocosms. Non-target screening, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding detected these changes with significant covariation of the detected pattern between methods. The 18S V9 rRNA gene metabarcoding exhibited superior sensitivity immediately following the introduction of treated wastewater and remained one of the top-performing methods throughout the study. Full-length 16S rRNA gene metabarcoding demonstrated sensitivity only in the initial hour, but became insignificant thereafter. The non-target screening approach was effective throughout the experiment and in contrast to the metabarcoding methods the signal to noise ratio remained similar during the experiment resulting in an increasing relative strength of this method. Based on our findings, we conclude that all methods employed for monitoring environmental disturbances from various sources are suitable. The distinguishing factor of these methods is their ability to detect unknown pollutants and organisms, which sets them apart from previously utilized approaches and allows for a more comprehensive perspective. Given their diverse strengths, particularly in terms of temporal resolution, these methods are best suited as complementary approaches.
Collapse
Affiliation(s)
- Guido Sieber
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany.
| | - Felix Drees
- Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Manan Shah
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Tom L Stach
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Lotta Hohrenk-Danzouma
- Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Christina Bock
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Maryam Vosough
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Mark Schumann
- Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Bernd Sures
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Alexander J Probst
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Daniela Beisser
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| | - Jens Boenigk
- Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany
| |
Collapse
|
5
|
Muniz Sacco FC, Frkova Z, Venditti S, Pastore C, Guignard C, Hansen J. Operation of a pilot-scale lipid accumulation technology employing parameters to select Microthrix parvicella for biodiesel production from wastewater. BIORESOURCE TECHNOLOGY 2023; 369:128498. [PMID: 36535616 DOI: 10.1016/j.biortech.2022.128498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Wastewater treatment plants (WWTPs) may play a crucial role in shifting to a zero-emission future by becoming more sustainable and contributing to the circular economy (CE). Recovered lipids from urban sewage can serve as a raw material for biofuel production contributing to a waste reduction, mitigation of natural resources depletion and reinforcing security and energy independence. A novel, pilot-scale lipid accumulation technology (LAT) employing parameters to select M. parvicella for the biofuel/biodiesel production was implemented on a side stream of an urban WWTP. The LAT proved its concept as the average amount of extracted lipids accumulated in the bioreactors was three-fold higher when compared to the lipids existing in activated sludge. The average transesterification of extracted lipids to biodiesel resulted in a 1.6 % yield, meaning that from 1 kg of dried sludge, 16 g of biodiesel could be formed. The biodiesel produced complies with European standard specifications (EN14214).
Collapse
Affiliation(s)
- Fernanda Cristina Muniz Sacco
- University of Luxembourg, Faculty of Science, Technology and Medicine (FSTM), rue Richard Coudenhove-Kalergi 6, L-1359 Luxembourg, Luxembourg.
| | - Zuzana Frkova
- University of Luxembourg, Faculty of Science, Technology and Medicine (FSTM), rue Richard Coudenhove-Kalergi 6, L-1359 Luxembourg, Luxembourg; Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation Department, rue du Brill 41, L-4422 Belvaux, Luxembourg
| | - Silvia Venditti
- University of Luxembourg, Faculty of Science, Technology and Medicine (FSTM), rue Richard Coudenhove-Kalergi 6, L-1359 Luxembourg, Luxembourg
| | - Carlo Pastore
- Water Research Institute (IRSA-CNR), National Research Council, Via de Blasio 5, 70132 Bari, Italy
| | - Cedric Guignard
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation Department, rue du Brill 41, L-4422 Belvaux, Luxembourg
| | - Joachim Hansen
- University of Luxembourg, Faculty of Science, Technology and Medicine (FSTM), rue Richard Coudenhove-Kalergi 6, L-1359 Luxembourg, Luxembourg
| |
Collapse
|
6
|
Comparative Evaluation of Pyrolysis and Hydrothermal Liquefaction for Obtaining Biofuel from a Sustainable Consortium of Microalgae Arthrospira platensis with Heterotrophic Bacteria. Processes (Basel) 2022. [DOI: 10.3390/pr10112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This article presents a comparative evaluation of pyrolysis and hydrothermal liquefaction (HTL) for obtaining biofuel from microalgal biomass (MAB). The research was carried out using biomass of a stable microalgae-bacteria consortium based on Arthrospira platensis. A. platensis was chosen because of its simple cultivation and harvesting. Pyrolysis was carried out at temperatures of 300, 400, 500, and 600 °C with a constant rate of temperature change of 10 °C/min; HTL was carried out at temperatures of 270, 300, and 330 °C. The bio-oil yield obtained by HTL (38.8–45.7%) was significantly higher than that of pyrolysis (up to 21.9%). At the same time, the bio-coal yields using both technologies were almost the same—about 27%. Biochar (bio-coal) can be considered as an alternative strategy for CO2 absorption and subsequent storage since it is 90% geologically stabilized carbon.
Collapse
|
7
|
Gudiukaite R, Nadda AK, Gricajeva A, Shanmugam S, Nguyen DD, Lam SS. Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113831. [PMID: 34649321 DOI: 10.1016/j.jenvman.2021.113831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Wastewater and activated sludge present a major challenge worldwide. Wastewater generated from large and small-scale industries, laundries, human residential areas and other sources is emerging as a main problem in sanitation and maintenance of smart/green cities. During the last decade, different technologies and processes have been developed to recycle and purify the wastewater. Currently, identification and fundamental consideration of development of more advanced microbial-based technologies that enable wastewater treatment and simultaneous resource recovery to produce bioenergy, biofuels and other value-added compounds (organic acids, fatty acids, bioplastics, bio-pesticides, bio-surfactants and bio-flocculants etc.) became an emerging topic. In the last several decades, significant development of bioprocesses and techniques for the extraction and recovery of mentioned valuable molecules and compounds from wastewater, waste biomass or sludge has been made. This review presents different microbial-based process routes related to resource recovery and wastewater application for the production of value-added products and bioenergy. Current process limitations and insights for future research to promote more efficient and sustainable routes for this under-utilized and continually growing waste stream are also discussed.
Collapse
Affiliation(s)
- Renata Gudiukaite
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Alisa Gricajeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania
| | - Sabarathinam Shanmugam
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 442-760, South Korea
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
8
|
Vethathirri RS, Santillan E, Wuertz S. Microbial community-based protein production from wastewater for animal feed applications. BIORESOURCE TECHNOLOGY 2021; 341:125723. [PMID: 34411939 DOI: 10.1016/j.biortech.2021.125723] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Single cell protein (SCP) derived from microbial biomass represents a promising source of protein for animal feed additives. While microbial community-based approaches to SCP production using nutrient-rich wastewaters incur lower costs than traditional single organism-based approaches, they have received little attention. This review focuses on SCP production using wastewaters with an emphasis on food-processing wastewaters. An elemental carbon-to-nitrogen ratio ranging from 10 to 20 is recommended to promote a high microbial biomass protein yield. Proteobacteria was identified as the most prevalent phylum within SCP-producing microbial communities. More research is needed to determine the composition of the microbial community best suited for SCP production, as well as its relationship with the microbial community in influent food-processing wastewaters. Remaining challenges are target protein and essential amino acids content, protein quantification and biomass yield assessment. The review presents bioreactor design considerations towards defining suitable operating conditions for SCP production through microbial community-based fermentation.
Collapse
Affiliation(s)
- Ramanujam Srinivasan Vethathirri
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore.
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
9
|
Gao F, Yang ZY, Zhao QL, Chen DZ, Li C, Liu M, Yang JS, Liu JZ, Ge YM, Chen JM. Mixotrophic cultivation of microalgae coupled with anaerobic hydrolysis for sustainable treatment of municipal wastewater in a hybrid system of anaerobic membrane bioreactor and membrane photobioreactor. BIORESOURCE TECHNOLOGY 2021; 337:125457. [PMID: 34182348 DOI: 10.1016/j.biortech.2021.125457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the possibility of coupling anaerobic hydrolysis in an anaerobic membrane bioreactor (AnMBR) with mixotrophic microalgae cultivation in a membrane photobioreactor (MPBR) for the sustainable treatment of municipal wastewater. Using the hydrolyzed wastewater discharged from AnMBR, Chlorella pyrenoidosa in MPBR grew in a mixotrophic mode and realized rapid growth. During the stable operation, MPBR achieved average carbon capture rate of 42.82 mg L-1 d-1 and algal lipid production rate of 19.66 mg L-1 d-1. The average reduction in TN, TP, and TOC during stable operation was 96.7%, 98.0%, and 95.9%, respectively. Mass balance analysis showed that the overall system captured 14.76 mg of carbon from the atmosphere per liter of wastewater treated. Therefore, this AnMBR-MPBR hybrid system simultaneously realized advanced treatment of municipal wastewater, efficient production of algal lipid, and carbon capture from atmosphere, and thus has a good potential in the sustainable treatment of municipal wastewater.
Collapse
Affiliation(s)
- Feng Gao
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Zi-Yan Yang
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qiao-Ling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan 316021, China
| | - Dong-Zhi Chen
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Chen Li
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Mei Liu
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jin-Sheng Yang
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jun-Zhi Liu
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Jian-Meng Chen
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
10
|
Nierychlo M, Singleton CM, Petriglieri F, Thomsen L, Petersen JF, Peces M, Kondrotaite Z, Dueholm MS, Nielsen PH. Low Global Diversity of Candidatus Microthrix, a Troublesome Filamentous Organism in Full-Scale WWTPs. Front Microbiol 2021; 12:690251. [PMID: 34248915 PMCID: PMC8267870 DOI: 10.3389/fmicb.2021.690251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Candidatus Microthrix is one of the most common bulking filamentous microorganisms found in activated sludge wastewater treatment plants (WWTPs) across the globe. One species, Ca. M. parvicella, is frequently observed, but global genus diversity, as well as important aspects of its ecology and physiology, are still unknown. Here, we use the MiDAS ecosystem-specific 16S rRNA gene database in combination with amplicon sequencing of Danish and global WWTPs to investigate Ca. Microthrix spp. diversity, distribution, and factors affecting their global presence. Only two species were abundant across the world confirming low diversity of the genus: the dominant Ca. M. parvicella and an unknown species typically present along with Ca. M. parvicella, although usually in lower abundances. Both species were mostly found in Europe at low-to-moderate temperatures and their growth was favored in municipal WWTPs with advanced process designs. As no isolate is available for the novel species, we propose the name "Candidatus Microthrix subdominans." Ten high-quality metagenome-assembled genomes recovered from Danish WWTPs, including 6 representing the novel Ca. M. subdominans, demonstrated high genetic similarity between the two species with a likely preference for lipids, a putative capability to reduce nitrate and nitrite, and the potential to store lipids and poly-P. Ca. M. subdominans had a potentially more versatile metabolism including additional sugar transporters, higher oxygen tolerance, and the potential to use carbon monoxide as energy source. Newly designed fluorescence in situ hybridization probes revealed similar filamentous morphology for both species. Raman microspectroscopy was used to quantify the in situ levels of intracellular poly-P. Despite the observed similarities in their physiology (both by genomes and in situ), the two species showed different seasonal dynamics in Danish WWTPs through a 13-years survey, possibly indicating occupation of slightly different niches. The genomic information provides the basis for future research into in situ gene expression and regulation, while the new FISH probes provide a useful tool for further characterization in situ. This study is an important step toward understanding the ecology of Ca. Microthrix in WWTPs, which may eventually lead to optimization of control strategies for its growth in this ecosystem.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
11
|
Cao XT, Vo TK, An TNM, Nguyen TD, Kabtamu DM, Kumar S. Enhanced Dye Adsorption of Mixed‐Matrix Membrane by Covalent Incorporation of Metal‐Organic Framework with Poly(styrene‐
alt
‐maleic anhydride). ChemistrySelect 2021. [DOI: 10.1002/slct.202100615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuan Thang Cao
- Faculty of Chemical Engineering Industrial University of Ho Chi Minh City Vietnam
| | - The Ky Vo
- Faculty of Chemical Engineering Industrial University of Ho Chi Minh City Vietnam
| | - Tran Nguyen Minh An
- Faculty of Chemical Engineering Industrial University of Ho Chi Minh City Vietnam
| | - Trinh Duy Nguyen
- NTT Institute of Hi-Technology Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Daniel Manaye Kabtamu
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Subodh Kumar
- Regional Centre of Advanced Technologies and Materials Faculty of Science Palacký University Olomouc 779 00 Czech Republic
| |
Collapse
|
12
|
Shakeri S, Khoshbasirat F, Maleki M. Rhodosporidium sp. DR37: a novel strain for production of squalene in optimized cultivation conditions. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:95. [PMID: 33858494 PMCID: PMC8048366 DOI: 10.1186/s13068-021-01947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rhodosporidium strain, a well-known oleaginous yeast, has been widely used as a platform for lipid and carotenoid production. However, the production of squalene for application in lipid-based biofuels is not reported in this strain. Here, a new strain of Rhodosporidium sp. was isolated and identified, and its potential was investigated for production of squalene under various cultivation conditions. RESULTS In the present study, Rhodosporidium sp. DR37 was isolated from mangrove ecosystem and its potential for squalene production was assessed. When Rhodosporidium sp. DR37 was cultivated on modified YEPD medium (20 g/L glucose, 5 g/L peptone, 5 g/L YE, seawater (50% v/v), pH 7, 30 °C), 64 mg/L of squalene was produced. Also, squalene content was obtained as 13.9% of total lipid. Significantly, use of optimized medium (20 g/L sucrose, 5 g/L peptone, seawater (20% v/v), pH 7, 25 °C) allowed highest squalene accumulation (619 mg/L) and content (21.6% of total lipid) in Rhodosporidium sp. DR37. Moreover, kinetic parameters including maximum specific cell growth rate (μmax, h-1), specific lipid accumulation rate (qp, h-1), specific squalene accumulation rate (qsq, h-1) and specific sucrose consumption rate (qs, h-1) were determined in optimized medium as 0.092, 0.226, 0.036 and 0.010, respectively. CONCLUSIONS This study is the first report to employ marine oleaginous Rhodosporidium sp. DR37 for accumulation of squalene in optimized medium. These findings provide the potential of Rhodosporidium sp. DR37 for production of squalene as well as lipid and carotenoids for biofuel applications in large scale.
Collapse
Affiliation(s)
- Shahryar Shakeri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Farshad Khoshbasirat
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
13
|
Martínez Arbas S, Narayanasamy S, Herold M, Lebrun LA, Hoopmann MR, Li S, Lam TJ, Kunath BJ, Hicks ND, Liu CM, Price LB, Laczny CC, Gillece JD, Schupp JM, Keim PS, Moritz RL, Faust K, Tang H, Ye Y, Skupin A, May P, Muller EEL, Wilmes P. Roles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics. Nat Microbiol 2021; 6:123-135. [PMID: 33139880 PMCID: PMC7752763 DOI: 10.1038/s41564-020-00794-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE-host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR-Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid-host and phage-host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant 'Candidatus Microthrix parvicella' population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes.
Collapse
Affiliation(s)
- Susana Martínez Arbas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Megeno S.A., Esch-sur-Alzette, Luxembourg
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laura A Lebrun
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Sujun Li
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Tony J Lam
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Benoît J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nathan D Hicks
- TGen North, Flagstaff, AZ, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cindy M Liu
- TGen North, Flagstaff, AZ, USA
- Department of Environmental and Occupational Health, Miken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Lance B Price
- TGen North, Flagstaff, AZ, USA
- Department of Environmental and Occupational Health, Miken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | | | - Paul S Keim
- TGen North, Flagstaff, AZ, USA
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Karoline Faust
- Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Haixu Tang
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Yuzhen Ye
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Neuroscience, University of California, La Jolla, CA, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Emilie E L Muller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Microbiology, Genomics and the Environment, UMR 7156 UNISTRA-CNRS, Université de Strasbourg, Strasbourg, France
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
14
|
Jawaharraj K, Shrestha N, Chilkoor G, Dhiman SS, Islam J, Gadhamshetty V. Valorization of methane from environmental engineering applications: A critical review. WATER RESEARCH 2020; 187:116400. [PMID: 32979578 DOI: 10.1016/j.watres.2020.116400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 05/09/2023]
Abstract
Wastewater and waste management sectors alone account for 18% of the anthropogenic methane (CH4) emissions. This study presents a critical overview of methanotrophs ("methane oxidizing microorganisms") for valorizing typically discarded CH4 from environmental engineering applications, focusing on wastewater treatment plants. Methanotrophs can convert CH4 into valuable bioproducts including chemicals, biodiesel, DC electricity, polymers, and S-layers, all under ambient conditions. As discarded CH4 and its oxidation products can also be used as a carbon source in nitrification and annamox processes. Here we discuss modes of CH4 assimilation by methanotrophs in both natural and engineered systems. We also highlight the technical challenges and technological breakthroughs needed to enable targeted CH4 oxidation in wastewater treatment plants.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Namita Shrestha
- Civil and Environmental Engineering, Rose-Hulman Institute of Technology, Terre Haute 47803, IN, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States
| | - Saurabh Sudha Dhiman
- BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; Biological and Chemical Engineering, South Dakota School of Mines & Technology, Rapid City 57701, SD, United States
| | - Jamil Islam
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States; BuG ReMeDEE consortium, South Dakota Mines, Rapid City 57701, SD, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, Rapid City 57701, SD, United States.
| |
Collapse
|
15
|
Saha S, Basak B, Hwang JH, Salama ES, Chatterjee PK, Jeon BH. Microbial Symbiosis: A Network towards Biomethanation. Trends Microbiol 2020; 28:968-984. [DOI: 10.1016/j.tim.2020.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
|
16
|
Herold M, Martínez Arbas S, Narayanasamy S, Sheik AR, Kleine-Borgmann LAK, Lebrun LA, Kunath BJ, Roume H, Bessarab I, Williams RBH, Gillece JD, Schupp JM, Keim PS, Jäger C, Hoopmann MR, Moritz RL, Ye Y, Li S, Tang H, Heintz-Buschart A, May P, Muller EEL, Laczny CC, Wilmes P. Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance. Nat Commun 2020; 11:5281. [PMID: 33077707 PMCID: PMC7572474 DOI: 10.1038/s41467-020-19006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts. Herold et al. present an integrated meta-omics framework to investigate how mixed microbial communities, such as oleaginous bacterial populations in biological wastewater treatment plants, respond with distinct adaptation strategies to disturbances. They show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity.
Collapse
Affiliation(s)
- Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,Epidemiology and Microbial Genomics, Laboratoire National de Santé, 1 rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Susana Martínez Arbas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,Megeno S.A., 6A Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Abdul R Sheik
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Luise A K Kleine-Borgmann
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Laura A Lebrun
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Benoît J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Hugo Roume
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,MetaGenoPolis, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris-Saclay, Domaine de Vilvert, Bâtiment 325, 78350, Jouy-en-Josas, France
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Dr, Singapore, 637551, Singapore
| | - John D Gillece
- The Translational Genomics Research Institute, 3051 West Shamrell Boulevard, Flagstaff, AZ, 86001, USA
| | - James M Schupp
- The Translational Genomics Research Institute, 3051 West Shamrell Boulevard, Flagstaff, AZ, 86001, USA
| | - Paul S Keim
- The Translational Genomics Research Institute, 3051 West Shamrell Boulevard, Flagstaff, AZ, 86001, USA
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Michael R Hoopmann
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Yuzhen Ye
- School of Informatics, Computing and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN, 47405, USA
| | - Sujun Li
- School of Informatics, Computing and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN, 47405, USA
| | - Haixu Tang
- School of Informatics, Computing and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN, 47405, USA
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.,Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Emilie E L Muller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg.,Equipe Adaptations et Interactions Microbiennes, UMR 7156 UNISTRA-CNRS, Université de Strasbourg, Strasbourg, France
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg, Luxembourg. .,Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
17
|
Hwangbo M, Chu KH. Recent advances in production and extraction of bacterial lipids for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139420. [PMID: 32464391 DOI: 10.1016/j.scitotenv.2020.139420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Lipid-based biofuel is a clean and renewable energy that has been recognized as a promising replacement for petroleum-based fuels. Lipid-based biofuel can be made from three different types of intracellular biolipids; triacylglycerols (TAGs), wax esters (WEs), and polyhydroxybutyrate (PHB). Among many lipid-producing prokaryotes and eukaryotes, biolipids from prokaryotes have been recently highlighted due to simple cultivation of lipid-producing prokaryotes and their ability to accumulate high biolipid contents. However, the cost of lipid-based biofuel production remains high, in part, because of high cost of lipid extraction processes. This review summarizes the production mechanisms of these different types of biolipids from prokaryotes and extraction methods for these biolipids. Traditional and improved physical/chemical approaches for biolipid extraction remain costly, and these methods are summarized and compared in this review. Recent advances in biological lipid extraction including phage-based cell lysis or secretion of biolipids are also discussed. These new techniques are promising for bacterial biolipids extraction. Challenges and future research needs for cost-effective lipid extraction are identified in this review.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
18
|
Usman M, Zha L, Abomohra AEF, Li X, Zhang C, Salama ES. Evaluation of animal- and plant-based lipidic waste in anaerobic digestion: kinetics of long-chain fatty acids degradation. Crit Rev Biotechnol 2020; 40:733-749. [DOI: 10.1080/07388551.2020.1756215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Muhammad Usman
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, Gansu Province, China
| | - Abd El-Fatah Abomohra
- New Energy Department, School of Energy and Power Engineering, Jiangsu University, Jiangsu Province, China
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Xiangkai Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, Gansu Province, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
19
|
Characterization and Recovery of In Situ Transesterifiable Lipids (TLs) as Potential Biofuel Feedstock from Sewage Sludge Obtained from Various Sewage Treatment Plants (STPs). ENERGIES 2019. [DOI: 10.3390/en12203952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study purposed to characterize the sewage sludge from various sewage treatment plants (STPs) as a biodiesel feedstock. Crude biodiesel was produced from each dried primary sludge (PS) and waste activated sludge (WAS) via in situ transesterification process. The average yield of transesterifiable lipid (TL) was 77.8% and 60.4% of the total lipid content from PS and WAS, respectively. The TL yield had a greater margin among WAS than PS samples due to differences in the biological processes adopted in each treatment plant. The TL recovered from PS and WAS contained 54.2% and 40.1% fatty acid methyl esters (FAMEs), respectively, which were mostly made up of palmitic acid (C16:0) and stearic acid (C18:0). The FAME composition of the biodiesel in the WAS sample was highly associated with a microbial community that grows otherwise, depending on the purpose of the biological treatment process. In particular, the increase in the proportion of nitrifying bacteria that grow predominantly under a relatively longer solid retention time (SRT) contributed significantly to the improvement in FAME content.
Collapse
|
20
|
Mandal B, Prabhu A, Pakshirajan K, Veeranki Dasu V. Construction and parameters modulation of a novel variant Rhodococcus opacus BM985 to achieve enhanced triacylglycerol-a biodiesel precursor, using synthetic dairy wastewater. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Fortela DLB, Hernandez R, Revellame E, Holmes W, Sharp W, Zappi M. Lipids from Wastewater‐Activated Sludge Cultivated on Acetic Acid as Potential Alternatives to High‐Value Oils and Fats. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dhan Lord B. Fortela
- Department of Chemical EngineeringUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
- Energy Institute of LouisianaUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
| | - Rafael Hernandez
- Department of Chemical EngineeringUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
- Energy Institute of LouisianaUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
| | - Emmanuel Revellame
- Energy Institute of LouisianaUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
- Department of Industrial TechnologyUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
| | - William Holmes
- Department of Chemical EngineeringUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
- Energy Institute of LouisianaUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
| | - Wayne Sharp
- Energy Institute of LouisianaUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
- Department of Civil EngineeringUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
| | - Mark Zappi
- Department of Chemical EngineeringUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
- Energy Institute of LouisianaUniversity of Louisiana 131 Rex St, Lafayette LA 70504 USA
| |
Collapse
|
22
|
Kamaraj SK, Rivera AE, Murugesan S, García-Mena J, Maya O, Frausto-Reyes C, Tapia-Ramírez J, Espino HS, Caballero-Briones F. Electricity generation from Nopal biogas effluent using a surface modified clay cup ( cantarito) microbial fuel cell. Heliyon 2019; 5:e01506. [PMID: 31183413 PMCID: PMC6495065 DOI: 10.1016/j.heliyon.2019.e01506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/21/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
A modified clay cup (cantarito) microbial fuel cell (C-MFCs) was designed to digest the biomass effluent from a nopal biogas (NBE). To improve the process, commercial acrylic varnish (AV) was applied to the C-MFCs. The experiment was performed as:Both-C-MFCs, painting of AV on both sides of the clay cup; In-C-MFCs, painting of AV on the internal side, and Out-C-MFCs painting of AV on the external side. The order for the maximum volumetric power densities were Both-C-MFCs (1841.99 mW/m3)>Out-C-MFCs (1023.74 mW/m3) >In-C-MFCs (448.90 mW/m3). The control experiment without applied varnish did not show a stable potential, supporting the idea that the acryloyl group in varnish could favor the performance. Finally, a 4-digits clock was powered with two, Both-C-MFCs connected in series; the microbial diversity in this format was explored and a well-defined bacterial community including members of the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Synergistetes and candidate division TM7 was found.
Collapse
Affiliation(s)
- Sathish-Kumar Kamaraj
- Laboratorio de medio ambiente sostenible y Laboratorio de Cultivo de Tejidos Vegetales, Instituto Tecnológico El Llano (ITEL)/ Tecnológico Nacional de México (TecNM), Aguascalientes. Km 18 carr, Aguascalientes-San Luis Potosí, El Llano Ags., C.P. 20330, Mexico
| | - Alejandro Esqueda Rivera
- Universidad Politécnica de Aguascalientes, Ingeniería en Energía, Calle Paseo San Gerardo No. 207, Fracc. San Gerardo, Aguascalientes, Ags., 20342, Mexico
| | - Selvasankar Murugesan
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México DF, D.F. 07360, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México DF, D.F. 07360, Mexico
| | - Otoniel Maya
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México DF, D.F. 07360, Mexico
| | - Claudio Frausto-Reyes
- Centro de Investigaciones en Óptica, A.C., Unidad Aguascalientes, Prol. Constitución 607, Fracc. Reserva Loma Bonita Aguascalientes, 20200, Mexico
| | - José Tapia-Ramírez
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México DF, D.F. 07360, Mexico
| | - Hector Silos Espino
- Laboratorio de medio ambiente sostenible y Laboratorio de Cultivo de Tejidos Vegetales, Instituto Tecnológico El Llano (ITEL)/ Tecnológico Nacional de México (TecNM), Aguascalientes. Km 18 carr, Aguascalientes-San Luis Potosí, El Llano Ags., C.P. 20330, Mexico
| | - Felipe Caballero-Briones
- Instituto Politécnico Nacional, Materials and Technologies for Energy, Health and Environment (GESMAT), CICATA Altamira, Km 14.5 Carretera Tampico-Puerto Industrial Altamira, 89600, Altamira, Mexico
| |
Collapse
|
23
|
Lee SY, Sankaran R, Chew KW, Tan CH, Krishnamoorthy R, Chu DT, Show PL. Waste to bioenergy: a review on the recent conversion technologies. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42500-019-0004-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Gu Y, Zhang X, Deal B, Han L. Biological systems for treatment and valorization of wastewater generated from hydrothermal liquefaction of biomass and systems thinking: A review. BIORESOURCE TECHNOLOGY 2019; 278:329-345. [PMID: 30723025 DOI: 10.1016/j.biortech.2019.01.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Hydrothermal liquefaction (HTL) is one of the most promising platforms to valorize diverse biomass. Yet, a large amount of wastewater is produced containing a large amount of recalcitrant substances. Valorization of the refractory wastewater by biological systems to recapture organic matter and nutrients is not only clearly beneficial for the environment but also good for energy recovery. To this end, this study reviews the valorization of HTL wastewater via biological systems from many points of view, starting with the brief characterization of wastewater derived from HTL of diverse biomass. The fundamentals, pros and cons, and the most recent outcomes of numerous biological systems are comprehensively demonstrated with emphasis on their combinations. We then use a systems-thinking concept to shed light on a procedural model exhibiting a new perspective to consolidate the utilization of these systems. Finally, this review elucidates the future perspectives of HTL wastewater valorization.
Collapse
Affiliation(s)
- Yexuan Gu
- Department of Landscape Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Xuesong Zhang
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, 1 Hazelwood Drive, Champaign, IL 61820, USA; Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Brian Deal
- Department of Landscape Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
25
|
Yousuf A, Ethiraj B, Khan MR, Pirozzi D. Fungal Biorefinery for the Production of Single Cell Oils as Advanced Biofuels. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Johnravindar D, Karthikeyan OP, Selvam A, Murugesan K, Wong JWC. Lipid accumulation potential of oleaginous yeasts: A comparative evaluation using food waste leachate as a substrate. BIORESOURCE TECHNOLOGY 2018; 248:221-228. [PMID: 28736146 DOI: 10.1016/j.biortech.2017.06.151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
In present study, the efficiency of three oleaginous yeasts i.e., Yarrowia lipolytica, Rhodotorula glutinis and Cryptococcus curvatus were compared for their lipid assimilation capacities using three different FW-leachates as a medium. The FW-leachates were collected from dry anaerobic digesters and diluted to achieve carbohydrate content of 25gL-1 prior to yeast inoculations. Around 5% of yeast cultures were individually mixed in three different FW-leachate mediums and incubated under 30°C and 150rpm agitation for 6days. The Y. lipolytica produced high biomass with lipid contents of 49.0±2% on dry weight basis. Whereas, the acetic acid concentration of >6gL-1 inhibited the growth of R. glutinis. The study observed that the selection of appropriate FW-leachate composition is highly important for biolipid accumulation by oleaginous yeasts.
Collapse
Affiliation(s)
- Davidraj Johnravindar
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China
| | - Obulisamy Parthiba Karthikeyan
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China
| | - Ammaiyappan Selvam
- Department of Plant Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Kumarasamy Murugesan
- Deparment of Environmental Science, Periyar University, Salem, Tamil Nadu, India
| | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
27
|
Muller EEL, Narayanasamy S, Zeimes M, Laczny CC, Lebrun LA, Herold M, Hicks ND, Gillece JD, Schupp JM, Keim P, Wilmes P. First draft genome sequence of a strain belonging to the Zoogloea genus and its gene expression in situ. Stand Genomic Sci 2017; 12:64. [PMID: 29075368 PMCID: PMC5648520 DOI: 10.1186/s40793-017-0274-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/21/2017] [Indexed: 11/10/2022] Open
Abstract
The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and annotation together with a general physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater.
Collapse
Affiliation(s)
- Emilie E. L. Muller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- Present address: Department of Microbiology, Genomics and the Environment, UMR 7156 UNISTRA – CNRS, Université de Strasbourg, Strasbourg, France
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Myriam Zeimes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Cédric C. Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- Present address: Saarland University, Building E2 1, 66123 Saarbrücken, Germany
| | - Laura A. Lebrun
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nathan D. Hicks
- TGen North, 3051 West Shamrell Boulevard, Flagstaff, AZ 86001 USA
| | - John D. Gillece
- TGen North, 3051 West Shamrell Boulevard, Flagstaff, AZ 86001 USA
| | - James M. Schupp
- TGen North, 3051 West Shamrell Boulevard, Flagstaff, AZ 86001 USA
| | - Paul Keim
- TGen North, 3051 West Shamrell Boulevard, Flagstaff, AZ 86001 USA
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
28
|
Song X, Ma Z, Tan Y, Zhang H, Cui Q. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production. BIORESOURCE TECHNOLOGY 2017; 235:79-86. [PMID: 28365352 DOI: 10.1016/j.biortech.2017.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL-1, respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production.
Collapse
Affiliation(s)
- Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Qingdao Engineering Laboratory of Single Cell Oil, Qingdao 266101, Shandong, China
| | - Zengxin Ma
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Qingdao Engineering Laboratory of Single Cell Oil, Qingdao 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanzhen Tan
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Huidan Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Qingdao Engineering Laboratory of Single Cell Oil, Qingdao 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Qingdao Engineering Laboratory of Single Cell Oil, Qingdao 266101, Shandong, China.
| |
Collapse
|
29
|
He Y, Li X, Xue X, Swita MS, Schmidt AJ, Yang B. Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci. BIORESOURCE TECHNOLOGY 2017; 224:457-464. [PMID: 27806887 DOI: 10.1016/j.biortech.2016.10.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/10/2016] [Accepted: 10/19/2016] [Indexed: 05/10/2023]
Abstract
In this study, R. opacus PD630, R. jostii RHA1, R. jostii RHA1 VanA-, and their co-culture were employed to convert hydrothermal liquefaction aqueous waste (HTLAW) into lipids. After 11days, the COD reduction of algal-HTLAW reached 93.4% and 92.7% by R. jostii RHA1 and its mutant VanA-, respectively. Woody-HTLAW promoted lipid accumulation of 0.43glipid/gcell dry weight in R. opacus PD630 cells. Additionally, the total number of chemicals in HTLAW decreased by over 1/3 after 7days of coculture, and 0.10g/L and 0.46g/L lipids were incrementally accumulated in the cellular mass during the fermentation of wood- and algal-HTLAW, respectively. The GC-MS data supported that different metabolism pathways were followed when these Rhodococci strains degraded algae- and woody-HTLAW. These results indicated promising potential of bioconversion of under-utilized carbon and toxic compounds in HTLAW into useful products by selected Rhodococci.
Collapse
Affiliation(s)
- Yucai He
- Bioproducts, Sciences and Engineering Laboratory and Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, United States
| | - Xiaolu Li
- Bioproducts, Sciences and Engineering Laboratory and Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, United States
| | - Xiaoyun Xue
- Bioproducts, Sciences and Engineering Laboratory and Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, United States
| | - Marie S Swita
- Energy and Efficiency Division and the Bioproduct Sciences and Engineering Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Andrew J Schmidt
- Energy and Efficiency Division and the Bioproduct Sciences and Engineering Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory and Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, United States.
| |
Collapse
|
30
|
Da Silva PDMP, Lima F, Alves MM, Bijmans MFM, Pereira MA. Valorization of lubricant-based wastewater for bacterial neutral lipids production: Growth-linked biosynthesis. WATER RESEARCH 2016; 101:17-24. [PMID: 27244293 DOI: 10.1016/j.watres.2016.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/20/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Lipids produced by microorganisms are currently of great interest as raw material for either biofuels or oleochemicals production. Significant biosynthesis of neutral lipids, such as triacylglycerol (TAG) and wax esters (WE) are thought to be limited to a few strains. Hydrocarbonoclastic bacteria (HCB), key players in bioremediation of hydrocarbon contaminated ecosystems, are among this group of strains. Hydrocarbon rich wastewaters have been overlooked concerning their potential as raw material for microbial lipids production. In this study, lubricant-based wastewater was fed, as sole carbon source, to two HCB representative wild strains: Alcanivorax borkumensis SK2, and Rhodococcus opacus PD630. Neutral lipid production was observed with both strains cultivated under uncontrolled conditions of pH and dissolved oxygen. A. borkumensis SK2 was further investigated in a pH- and OD-controlled fermenter. Different phases were assessed separately in terms of lipids production and alkanes removal. The maximum TAG production rate occurred during stationary phase (4 mg-TAG/L h). The maximum production rate of WE-like compounds was 15 mg/L h, and was observed during exponential growth phase. Hydrocarbons removal was 97% of the gas chromatography (GC) resolved straight-chain alkanes. The maximum removal rate was observed during exponential growth phase (6 mg-alkanes/L h). This investigation proposes a novel approach for the management of lubricant waste oil, aiming at its conversion into valuable lipids. The feasibility of the concept is demonstrated under low salt (0.3%) and saline (3.3%) conditions, and presents clues for its technological development, since growth associated oil production opens the possibility for establishing continuous fermentation processes.
Collapse
Affiliation(s)
- Pedro D M P Da Silva
- Wetsus, European Centre of Excellence for Sustainable Water Technology, PO Box 1113, 8900 CC Leeuwarden, The Netherlands; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-57 Braga, Portugal
| | - Filipa Lima
- Wetsus, European Centre of Excellence for Sustainable Water Technology, PO Box 1113, 8900 CC Leeuwarden, The Netherlands; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-57 Braga, Portugal
| | - Maria Madalena Alves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-57 Braga, Portugal
| | - Martijn F M Bijmans
- Wetsus, European Centre of Excellence for Sustainable Water Technology, PO Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Maria Alcina Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-57 Braga, Portugal.
| |
Collapse
|
31
|
Modin O, Persson F, Wilén BM, Hermansson M. Nonoxidative removal of organics in the activated sludge process. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2016; 46:635-672. [PMID: 27453679 PMCID: PMC4940897 DOI: 10.1080/10643389.2016.1149903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants.
Collapse
Affiliation(s)
- Oskar Modin
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
32
|
Lanfranconi MP, Alvarez AF, Alvarez HM. Identification of genes coding for putative wax ester synthase/diacylglycerol acyltransferase enzymes in terrestrial and marine environments. AMB Express 2015; 5:128. [PMID: 26228353 PMCID: PMC4520822 DOI: 10.1186/s13568-015-0128-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 11/29/2022] Open
Abstract
Synthesis of neutral lipids such as triacylglycerols (TAG) and wax esters (WE) is catalyzed in bacteria by wax ester synthase/diacylglycerol acyltransferase enzymes (WS/DGAT). We investigated
the diversity of genes encoding this enzyme in contrasting natural environments from Patagonia (Argentina). The content of petroleum hydrocarbons in samples collected from oil-producing areas was measured. PCR-based analysis covered WS/DGAT occurrence in marine sediments and soil. No product was obtained in seawater samples. All clones retrieved from marine sediments affiliated with gammaproteobacterial sequences and within them, most phylotypes formed a unique cluster related to putative WS/DGAT belonging to marine OM60 clade. In contrast, soils samples contained phylotypes only related to actinomycetes. Among them, phylotypes affiliated with representatives largely or recently reported as oleaginous bacteria, as well as with others considered as possible lipid-accumulating bacteria based on the analysis of their annotated genomes. Our study shows for the first time that the environment could contain a higher variety of ws/dgat than that reported from bacterial isolates. The results of this study highlight the relevance of the environment in a natural process such as the synthesis and accumulation of neutral lipids. Particularly, both marine sediments and soil may serve as a useful source for novel WS/DGAT with biotechnological interest.
Collapse
|
33
|
Cea M, Sangaletti-Gerhard N, Acuña P, Fuentes I, Jorquera M, Godoy K, Osses F, Navia R. Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. ACTA ACUST UNITED AC 2015; 8:116-123. [PMID: 28352580 PMCID: PMC4980706 DOI: 10.1016/j.btre.2015.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/22/2015] [Accepted: 10/29/2015] [Indexed: 11/22/2022]
Abstract
Sewage sludge was evaluated as high available and low cost microbial oils feedstock for biodiesel production. Samples from four different wastewater treatment plants from La Araucanía Region in Southern Chile presented total lipids content ranging between 7.7 and 12.6%, being Vilcún sewage sludge that with the highest transesterifiable lipids content of about 50% of the total extracted lipids. The most relevant identified bacteria present in sludge samples were Acinetobacter, Pseudomonas and Bacillus, being Bacillus sp. V10 the strain with the highest transesterfiable lipids content of 7.4%. Bacillus sp. V10 was cultured using urban wastewater supplemented with glucose to achieve nitrogen depleted medium and using milk processing wastewater as a low-cost carbon source. Bacillus sp. V10 lipid profile indicates that low degree unsaturated long chain fatty acids such as C18:1 may account for approximately 50% of the lipids content, indicating its suitability to be used as raw material for biodiesel production.
Collapse
Affiliation(s)
- Mara Cea
- Scientific and Technological Bioresource Nucleus, University of La Frontera, P.O. Box 54-D, Temuco, Chile
- Department of Chemical Engineering, University of La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Naiane Sangaletti-Gerhard
- Laboratory of Oils and Fats, Department of Agro-food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz” (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Pedro Acuña
- Scientific and Technological Bioresource Nucleus, University of La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Idi Fuentes
- Scientific and Technological Bioresource Nucleus, University of La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Milko Jorquera
- Scientific and Technological Bioresource Nucleus, University of La Frontera, P.O. Box 54-D, Temuco, Chile
- Department of Chemical Sciences and Natural Resources, University of La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Karina Godoy
- Scientific and Technological Bioresource Nucleus, University of La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Francisco Osses
- Scientific and Technological Bioresource Nucleus, University of La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Rodrigo Navia
- Scientific and Technological Bioresource Nucleus, University of La Frontera, P.O. Box 54-D, Temuco, Chile
- Department of Chemical Engineering, University of La Frontera, P.O. Box 54-D, Temuco, Chile
- Centre for Biotechnology & Bioengineering (CeBiB), University of La Frontera, P.O. Box 54-D, Temuco, Chile
- Corresponding author at: University of La Frontera, Department of Chemical Engineering, P.O. Box 54-D, Temuco, Chile. Fax: +56 45 2732402.
| |
Collapse
|
34
|
In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella. ISME JOURNAL 2015; 10:1274-9. [PMID: 26505828 PMCID: PMC5029219 DOI: 10.1038/ismej.2015.181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/27/2015] [Accepted: 09/07/2015] [Indexed: 01/11/2023]
Abstract
Microorganisms in biological wastewater treatment plants require adaptive strategies to deal with rapidly fluctuating environmental conditions. At the population level, the filamentous bacterium Candidatus Microthrix parvicella (Ca. M. parvicella) has been found to fine-tune its gene expression for optimized substrate assimilation. Here we investigated in situ substrate assimilation by single cells of Ca. M. parvicella using nano-scale secondary-ion mass spectrometry (nanoSIMS). NanoSIMS imaging highlighted phenotypic heterogeneity among Ca. M. parvicella cells of the same filament, whereby 13C-oleic acid and 13C-glycerol-3-phosphate assimilation occurred in ≈21–55% of cells, despite non-assimilating cells being intact and alive. In response to alternating aerobic–anoxic regimes, 13C-oleic acid assimilation occurred among subpopulations of Ca. M. parvicella cells (≈3–28% of cells). Furthermore, Ca. M. parvicella cells exhibited two temperature optima for 13C-oleic acid assimilation and associated growth rates. These results suggest that phenotypic heterogeneity among Ca. M. parvicella cells allows the population to adapt rapidly to fluctuating environmental conditions facilitating its widespread occurrence in biological wastewater treatment plants.
Collapse
|
35
|
Roume H, Heintz-Buschart A, Muller EEL, May P, Satagopam VP, Laczny CC, Narayanasamy S, Lebrun LA, Hoopmann MR, Schupp JM, Gillece JD, Hicks ND, Engelthaler DM, Sauter T, Keim PS, Moritz RL, Wilmes P. Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. NPJ Biofilms Microbiomes 2015; 1:15007. [PMID: 28721231 PMCID: PMC5515219 DOI: 10.1038/npjbiofilms.2015.7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/24/2015] [Accepted: 05/06/2015] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Mixed microbial communities underpin important biotechnological processes such as biological wastewater treatment (BWWT). A detailed knowledge of community structure and function relationships is essential for ultimately driving these systems towards desired outcomes, e.g., the enrichment in organisms capable of accumulating valuable resources during BWWT. METHODS A comparative integrated omic analysis including metagenomics, metatranscriptomics and metaproteomics was carried out to elucidate functional differences between seasonally distinct oleaginous mixed microbial communities (OMMCs) sampled from an anoxic BWWT tank. A computational framework for the reconstruction of community-wide metabolic networks from multi-omic data was developed. These provide an overview of the functional capabilities by incorporating gene copy, transcript and protein abundances. To identify functional genes, which have a disproportionately important role in community function, we define a high relative gene expression and a high betweenness centrality relative to node degree as gene-centric and network topological features, respectively. RESULTS Genes exhibiting high expression relative to gene copy abundance include genes involved in glycerolipid metabolism, particularly triacylglycerol lipase, encoded by known lipid accumulating populations, e.g., CandidatusMicrothrix parvicella. Genes with a high relative gene expression and topologically important positions in the network include genes involved in nitrogen metabolism and fatty acid biosynthesis, encoded by Nitrosomonas spp. and Rhodococcus spp. Such genes may be regarded as 'keystone genes' as they are likely to be encoded by keystone species. CONCLUSION The linking of key functionalities to community members through integrated omics opens up exciting possibilities for devising prediction and control strategies for microbial communities in the future.
Collapse
Affiliation(s)
- Hugo Roume
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Emilie E L Muller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata P Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cédric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laura A Lebrun
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - James M Schupp
- The Translational Genomic Research Institute-North, Flagstaff, AZ, USA
| | - John D Gillece
- The Translational Genomic Research Institute-North, Flagstaff, AZ, USA
| | - Nathan D Hicks
- The Translational Genomic Research Institute-North, Flagstaff, AZ, USA
| | | | - Thomas Sauter
- Life Science Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - Paul S Keim
- The Translational Genomic Research Institute-North, Flagstaff, AZ, USA
| | | | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
36
|
Bommareddy RR, Sabra W, Maheshwari G, Zeng AP. Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microb Cell Fact 2015; 14:36. [PMID: 25888986 PMCID: PMC4377193 DOI: 10.1186/s12934-015-0217-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/24/2015] [Indexed: 01/04/2023] Open
Abstract
Background Microbial lipids (triacylglycerols, TAG) have received large attention for a sustainable production of oleochemicals and biofuels. Rhodosporidium toruloides can accumulate lipids up to 70% of its cell mass under certain conditions. However, our understanding of lipid production in this yeast is still much limited, especially for growth with mixed substrates at the level of metabolic network. In this work, the potentials of several important carbon sources for TAG production in R.toruloides are first comparatively studied in silico by means of elementary mode analysis followed by experimental validation. Results A simplified metabolic network of R.toruloides was reconstructed based on a combination of genome and proteome annotations. Optimal metabolic space was studied using elementary mode analysis for growth on glycerol, glucose, xylose and arabinose or in mixtures. The in silico model predictions of growth and lipid production are in agreement with experimental results. Both the in silico and experimental studies revealed that glycerol is an attractive substrate for lipid synthesis in R. toruloides either alone or in blend with sugars. A lipid yield as high as 0.53 (C-mol TAG/C-mol) has been experimentally obtained for growth on glycerol, compared to a theoretical maximum of 0.63 (C-mol TAG/C-mol). The lipid yield on glucose is much lower (0.29 (experimental) vs. 0.58 (predicted) C-mol TAG/C-mol). The blend of glucose with glycerol decreased the lipid yield on substrate but can significantly increase the overall volumetric productivity. Experimental studies revealed catabolite repression of glycerol by the presence of glucose for the first time. Significant influence of oxygen concentration on the yield and composition of lipids were observed which have not been quantitatively studied before. Conclusions This study provides for the first time a simplified metabolic model of R.toruloides and its detailed in silico analysis for growth on different carbon sources for their potential of TAG synthesis. Experimental studies revealed the phenomenon of catabolite repression of glycerol by glucose and the importance of oxygen supply on the yield and composition of lipids. More systematic studies are needed to understand the mechanisms which should help to further optimize the lipid production in this strain of industrial interest. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0217-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rajesh Reddy Bommareddy
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| | - Wael Sabra
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| | - Garima Maheshwari
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| |
Collapse
|
37
|
Tamis J, Sorokin DY, Jiang Y, van Loosdrecht MCM, Kleerebezem R. Lipid recovery from a vegetable oil emulsion using microbial enrichment cultures. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:39. [PMID: 25798194 PMCID: PMC4369065 DOI: 10.1186/s13068-015-0228-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Many waste streams have a relatively high vegetable oil content, which is a potential resource that should be recovered. Microbial storage compound production for the recovery of lipids from lipid-water emulsions with open (unsterilized) microbial cultures was investigated in a sequencing batch reactor using a diluted vegetable oil emulsion as model substrate. RESULTS After feeding, triacylglycerides (TAG) were accumulated intracellular by the microbial enrichment culture and subsequently used for growth in the remainder of the sequencing batch cycle. Roughly 50% of the added TAG could be recovered as intracellular lipids in this culture. The maximum lipid storage capacity of the enrichment culture was 54% on volatile suspended solids (VSS) mass basis in a separate fed-batch accumulation experiment. The microbial community was dominated by a lipolytic fungus, Trichosporon gracile, that was responsible for intracellular lipid accumulation but also a significant fraction of lipolytic and long chain fatty-acid-utilizing bacteria was present. CONCLUSION Herewith, we demonstrate an effective strategy for enrichment of a microbial community that can accumulate significant amounts of lipids from wastewaters without the need for sterilization of substrates or equipment. Further optimization of this process will make recovery of lipids from wastewater possible.
Collapse
Affiliation(s)
- Jelmer Tamis
- />Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Dimitry Y Sorokin
- />Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- />Winogradsky Institute of Microbiology, RAS, Leninskii avenue, 14, Leninskii avenue, 32а, Moscow, 119991 Russia
| | - Yang Jiang
- />Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Mark C M van Loosdrecht
- />Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Robbert Kleerebezem
- />Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
38
|
Narayanasamy S, Muller EEL, Sheik AR, Wilmes P. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities. Microb Biotechnol 2015; 8:363-8. [PMID: 25678254 PMCID: PMC4408170 DOI: 10.1111/1751-7915.12255] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 11/30/2022] Open
Abstract
Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalities within the framework of Eco-Systems Biology. The integration of information from genome to metabolome allows the establishment of associations between genetic potential and final phenotype, a feature not realizable by only considering single ‘omes’. Therefore, in our opinion, integrated omics will become the future standard for large-scale characterization of microbial consortia including those underpinning biological wastewater treatment processes. Systematically obtained time and space-resolved omic datasets will allow deconvolution of structure–function relationships by identifying key members and functions. Such knowledge will form the foundation for discovering novel genes on a much larger scale compared with previous efforts. In general, these insights will allow us to optimize microbial biotechnological processes either through better control of mixed culture processes or by use of more efficient enzymes in bioengineering applications.
Collapse
Affiliation(s)
- Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, Esch-Sur-Alzette, L-4362, Luxembourg
| | | | | | | |
Collapse
|
39
|
Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage. Nat Commun 2014; 5:5603. [PMID: 25424998 PMCID: PMC4263124 DOI: 10.1038/ncomms6603] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/20/2014] [Indexed: 11/08/2022] Open
Abstract
Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle strategies) relates to ecological success, we develop and apply an integrative workflow for the multi-omic analysis of oleaginous mixed microbial communities from a biological wastewater treatment plant. Time- and space-resolved coupled metabolomic and taxonomic analyses demonstrate that the community-wide lipid accumulation phenotype is associated with the dominance of the generalist bacterium Candidatus Microthrix spp. By integrating population-level genomic reconstructions (reflecting fundamental niches) with transcriptomic and proteomic data (realised niches), we identify finely tuned gene expression governing resource usage by Candidatus Microthrix parvicella over time. Moreover, our results indicate that the fluctuating environmental conditions constrain the accumulation of genetic variation in Candidatus Microthrix parvicella likely due to fitness trade-offs. Based on our observations, niche breadth has to be considered as an important factor for understanding the evolutionary processes governing (microbial) population sizes and structures in situ. Within microbial communities, microorganisms adopt different lifestyle strategies to use the available resources. Here, the authors use an integrated ‘multi-omic’ approach to study niche breadth (generalist versus specialist lifestyles) in oleaginous microbial assemblages from an anoxic wastewater treatment tank.
Collapse
|