1
|
Li M, Zuo J, Yang K, Wang P, Zhou S. Proteomics mining of cancer hallmarks on a single-cell resolution. MASS SPECTROMETRY REVIEWS 2024; 43:1019-1040. [PMID: 37051664 DOI: 10.1002/mas.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
Collapse
Affiliation(s)
- Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Han X, Ma D, Wang J, Pei L, Liu L, Shi W, Rong Z, Wang X, Zhang Y, Zheng Y, Sun H. Spatial Mapping of Bioactive Metabolites in the Roots of Three Bupleurum Species by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Molecules 2024; 29:3746. [PMID: 39202826 PMCID: PMC11356868 DOI: 10.3390/molecules29163746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Bupleurum is a kind of medicinal plant that has made a great contribution to human health because of the presence of bioactive metabolites: Bupleurum saikosaponins and flavonoids. Despite their importance, it has been a challenge to visually characterize the spatial distribution of these metabolites in situ within the plant tissue, which is essential for assessing the quality of Bupleurum. The development of a new technology to identify and evaluate the quality of medicinal plants is therefore necessary. Here, the spatial distribution and quality characteristics of metabolites of three Bupleurum species: Bupleurum smithii (BS), Bupleurum marginatum var. stenophyllum (BM), and Bupleurum chinense (BC) were characterized by Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Twenty-nine metabolites, including saikosaponins, non-saikosaponins, and compounds from the saikosaponin synthesis pathway, were characterized. Some of these were successfully localized and visualized in the transverse section of roots. In these Bupleurum species, twelve saikosaponins, five non-saikosaponins, and five saikosaponin synthesis pathway compounds were detected. Twenty-two major influencing components, which exhibit higher ion intensities in higher quality samples, were identified as potential quality markers of Bupleurum. The final outcome indicates that BC has superior quality compared to BS and BM. MALDI-MSI has effectively distinguished the quality of these Bupleurum species, providing an intuitive and effective marker for the quality control of medicinal plants.
Collapse
Affiliation(s)
- Xiaowei Han
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (X.H.); (D.M.); (J.W.); (W.S.); (Z.R.); (X.W.)
| | - Donglai Ma
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (X.H.); (D.M.); (J.W.); (W.S.); (Z.R.); (X.W.)
| | - Jiemin Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (X.H.); (D.M.); (J.W.); (W.S.); (Z.R.); (X.W.)
| | - Lin Pei
- Hebei Academy of Traditional Chinese Medicine, Shijiazhuang 050031, China;
| | - Lingdi Liu
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China;
| | - Weihong Shi
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (X.H.); (D.M.); (J.W.); (W.S.); (Z.R.); (X.W.)
| | - Zhengpu Rong
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (X.H.); (D.M.); (J.W.); (W.S.); (Z.R.); (X.W.)
| | - Xiaoyuan Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (X.H.); (D.M.); (J.W.); (W.S.); (Z.R.); (X.W.)
| | - Ye Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (X.H.); (D.M.); (J.W.); (W.S.); (Z.R.); (X.W.)
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (X.H.); (D.M.); (J.W.); (W.S.); (Z.R.); (X.W.)
| | - Huigai Sun
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (X.H.); (D.M.); (J.W.); (W.S.); (Z.R.); (X.W.)
| |
Collapse
|
3
|
Wang J, Zhu Y, Ye B, Dun J, Yu X, Sui Q. Absorption and translocation of selected pharmaceuticals in Pistia stratiotes: Spatial distribution analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134028. [PMID: 38493630 DOI: 10.1016/j.jhazmat.2024.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Phytoremediation can eliminate pharmaceuticals from aquatic environments through absorption; however, understanding of absorption and transport processes in plants remains limited. In this study, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method was developed to explore the absorption and translocation mechanisms of seven common pharmaceuticals in Pistia stratiotes. Results showed that 2,3-dicyanohydroquinone, an infrequently used matrix, exhibited outstanding performance in MALDI-MSI analysis, producing the highest signal intensity for four of the seven pharmaceuticals. Region of Interest (ROI) analysis revealed that charge speciation of pharmaceuticals significantly influenced their ability to enter vascular bundle. Neutral and positively charged pharmaceuticals easily entered vascular bundle, while negatively charged pharmaceuticals faced difficulty. ROI results for neutral and negatively charged pharmaceuticals exhibited positive correlation with their transfer factor values, indicating that their translocation ability from root to shoot was related to their capacity to enter vascular bundle. However, no correlation was observed for positively charged pharmaceuticals, suggesting that these compounds, upon entering vascular bundle, encountered difficulties in upward translocation through the xylem. This study introduces an innovative approach and offers novel insights into the retention and migration of pharmaceuticals in plant tissues, aiming to enhance the understanding of pharmaceutical accumulation in plants. ENVIRONMENTAL IMPLICATION: Pharmaceuticals in aquatic environment can inflict detrimental effects on both human health and ecosystem. Phytoremediation can remove pharmaceuticals from aquatic environments through absorption. However, our understanding of absorption and transportation of pharmaceuticals in plants remains limited. This study developed a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method for pharmaceuticals in plant roots, and to explore the absorption and translocation mechanisms of pharmaceuticals. The study offers direct evidence of differences in accumulation behavior of pharmaceuticals in plants, providing valuable insights for targeted and effective strategies in using plants for remediating the aquatic ecosystem from pharmaceuticals.
Collapse
Affiliation(s)
- Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiwen Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Beibei Ye
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junling Dun
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Zhang YX, Zhang YD, Shi YP. Novel Small Molecule Matrix Screening for Simultaneous MALDI Mass Spectrometry Imaging of Multiple Lipids and Phytohormones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6762-6771. [PMID: 38478706 DOI: 10.1021/acs.jafc.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Most of the traditional matrices cannot simultaneously image multiple lipids and phytohormones, so screening and discovery of novel matrices stand as essential approaches for broadening the application scope of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). In this work, 12 organic small molecule compounds were comprehensively screened and investigated as potential MALDI matrices for simultaneous imaging analysis of various lipids and phytohormones. In the positive ionization mode, p-nitroaniline, m-nitroaniline, and 2-aminoterephthalic acid displayed good performance for the highly sensitive detection of lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), and triacylglycerols (TGs). Furthermore, p-nitroaniline possessed excellent characteristics of strong ultraviolet absorption and homogeneous cocrystallization, making it a desirable matrix for MALDI-MSI analysis of eight plant hormones. Compared with conventional matrices (2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and 9-aminoacridine (9-AA), the use of p-nitroaniline resulted in higher ionization efficiency, superior sensitivity, and clearer imaging images in dual polarity mode. Our research offers valuable guidance and new ideas for future endeavors in matrix screening.
Collapse
Affiliation(s)
- Yan-Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
5
|
Piga I, Magni F, Smith A. The journey towards clinical adoption of MALDI-MS-based imaging proteomics: from current challenges to future expectations. FEBS Lett 2024; 598:621-634. [PMID: 38140823 DOI: 10.1002/1873-3468.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Among the spatial omics techniques available, mass spectrometry imaging (MSI) represents one of the most promising owing to its capability to map the distribution of hundreds of peptides and proteins, as well as other classes of biomolecules, within a complex sample background in a multiplexed and relatively high-throughput manner. In particular, matrix-assisted laser desorption/ionisation (MALDI-MSI) has come to the fore and established itself as the most widely used technique in clinical research. However, the march of this technique towards clinical utility has been hindered by issues related to method reproducibility, appropriate biocomputational tools, and data storage. Notwithstanding these challenges, significant progress has been achieved in recent years regarding multiple facets of the technology and has rendered it more suitable for a possible clinical role. As such, there is now more robust and extensive evidence to suggest that the technology has the potential to support clinical decision-making processes under appropriate circumstances. In this review, we will discuss some of the recent developments that have facilitated this progress and outline some of the more promising clinical proteomics applications which have been developed with a clear goal towards implementation in mind.
Collapse
Affiliation(s)
- Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
6
|
Huergo-Baños C, Velasco V, Garate J, Fernández R, Martín-Allende J, Zabalza I, Artola JL, Martí RM, Asumendi A, Astigarraga E, Barreda-Gómez G, Fresnedo O, Ochoa B, Boyano MD, Fernández JA. Lipid fingerprint-based histology accurately classifies nevus, primary melanoma, and metastatic melanoma samples. Int J Cancer 2024; 154:712-722. [PMID: 37984064 DOI: 10.1002/ijc.34800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Probably, the most important factor for the survival of a melanoma patient is early detection and precise diagnosis. Although in most cases these tasks are readily carried out by pathologists and dermatologists, there are still difficult cases in which no consensus among experts is achieved. To deal with such cases, new methodologies are required. Following this motivation, we explore here the use of lipid imaging mass spectrometry as a complementary tool for the aid in the diagnosis. Thus, 53 samples (15 nevus, 24 primary melanomas, and 14 metastasis) were explored with the aid of a mass spectrometer, using negative polarity. The rich lipid fingerprint obtained from the samples allowed us to set up an artificial intelligence-based classification model that achieved 100% of specificity and precision both in training and validation data sets. A deeper analysis of the image data shows that the technique reports important information on the tumor microenvironment that may give invaluable insights in the prognosis of the lesion, with the correct interpretation.
Collapse
Affiliation(s)
- Cristina Huergo-Baños
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Verónica Velasco
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Jone Garate
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Javier Martín-Allende
- Languages and Computer Systems, School of Engineering University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ignacio Zabalza
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Department of Pathology, Galdakao-Usansolo University Hospital, Galdakao, Spain
| | - Juan L Artola
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Department of Dermatology, Galdakao-Usansolo University Hospital, Galdakao, Spain
| | - Rosa M Martí
- Department of Dermatology, Arnau de Vilanova University Hospital, Institute of Biomedic Research (IRBLleida), University of Lleida, Lleida, Spain
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aintzane Asumendi
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria D Boyano
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
7
|
Grgic A, Nagornov KO, Kozhinov AN, Michael JA, Anthony IG, Tsybin YO, Heeren RM, Ellis SR. Ultrahigh-Mass Resolution Mass Spectrometry Imaging with an Orbitrap Externally Coupled to a High-Performance Data Acquisition System. Anal Chem 2024; 96:794-801. [PMID: 38127459 PMCID: PMC10794996 DOI: 10.1021/acs.analchem.3c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) is a powerful analytical tool that enables molecular sample analysis while simultaneously providing the spatial context of hundreds or even thousands of analytes. However, because of the lack of a separation step prior to ionization and the immense diversity of biomolecules, such as lipids, including numerous isobaric species, the coupling of ultrahigh mass resolution (UHR) with MSI presents one way in which this complexity can be resolved at the spectrum level. Until now, UHR MSI platforms have been restricted to Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Here, we demonstrate the capabilities of an Orbitrap-based UHR MSI platform to reach over 1,000,000 mass resolution in a lipid mass range (600-950 Da). Externally coupling the Orbitrap Q Exactive HF with the high-performance data acquisition system FTMS Booster X2 provided access to the unreduced data in the form of full-profile absorption-mode FT mass spectra. In addition, it allowed us to increase the time-domain transient length from 0.5 to 10 s, providing improvement in the mass resolution, signal-to-noise ratio, and mass accuracy. The resulting UHR performance generates high-quality MALDI MSI images and simplifies the identification of lipids. Collectively, these improvements resulted in a 1.5-fold increase in annotations, demonstrating the advantages of this UHR imaging platform for spatial lipidomics using MALDI-MSI.
Collapse
Affiliation(s)
- Andrej Grgic
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | | | | | - Jesse A. Michael
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Ian G.M. Anthony
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | | | - Ron M.A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging (M4I) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229-ER Maastricht, Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
8
|
Maugrion E, Shedova EN, Uzbekov R, Teixeira-Gomes AP, Labas V, Tomas D, Banliat C, Singina GN, Uzbekova S. Extracellular Vesicles Contribute to the Difference in Lipid Composition between Ovarian Follicles of Different Size Revealed by Mass Spectrometry Imaging. Metabolites 2023; 13:1001. [PMID: 37755281 PMCID: PMC10538054 DOI: 10.3390/metabo13091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.
Collapse
Affiliation(s)
- Emilie Maugrion
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | | | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Medical Faculty, University of Tours, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| | - Ana-Paula Teixeira-Gomes
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Valerie Labas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Daniel Tomas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Charles Banliat
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
- Ecole Supérieure d’Agricultures (ESA), 49007 Angers, France
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia
| | - Svetlana Uzbekova
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
| |
Collapse
|
9
|
Jiang LX, Hernly E, Hu H, Hilger RT, Neuweger H, Yang M, Laskin J. Nanospray Desorption Electrospray Ionization (Nano-DESI) Mass Spectrometry Imaging with High Ion Mobility Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1798-1804. [PMID: 37463098 PMCID: PMC10513741 DOI: 10.1021/jasms.3c00199] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Untargeted separation of isomeric and isobaric species in mass spectrometry imaging (MSI) is challenging. The combination of ion mobility spectrometry (IMS) with MSI has emerged as an effective strategy for differentiating isomeric and isobaric species, which substantially enhances the molecular coverage and specificity of MSI experiments. In this study, we have implemented nanospray desorption electrospray ionization (nano-DESI) MSI on a trapped ion mobility spectrometry (TIMS) mass spectrometer. A new nano-DESI source was constructed, and a specially designed inlet extension was fabricated to accommodate the new source. The nano-DESI-TIMS-MSI platform was evaluated by imaging mouse brain tissue sections. We achieved high ion mobility resolution by utilizing three narrow mobility scan windows that covered the majority of the lipid molecules. Notably, the mobility resolution reaching up to 300 in this study is much higher than the resolution obtained in our previous study using drift tube IMS. High-resolution TIMS successfully separated lipid isomers and isobars, revealing their distinct localizations in tissue samples. Our results further demonstrate the power of high-mobility-resolution IMS for unraveling the complexity of biomolecular mixtures analyzed in MSI experiments.
Collapse
Affiliation(s)
- Li-Xue Jiang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Emerson Hernly
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Ryan T. Hilger
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | | | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| |
Collapse
|
10
|
Zheng Y, Lin C, Chu Y, Gu S, Deng H, Shen Z. Spatial metabolomics in head and neck tumors: a review. Front Oncol 2023; 13:1213273. [PMID: 37519782 PMCID: PMC10374363 DOI: 10.3389/fonc.2023.1213273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
The joint analysis of single-cell transcriptomics, proteomics, lipidomics, metabolomics and spatial metabolomics is continually transforming our understanding of the mechanisms of metabolic reprogramming in tumor cells. Since head and neck tumor is the sixth most common tumor in the world, the study of the metabolic mechanism of its occurrence, development and prognosis is still undeveloped. In the past decade, this field has witnessed tremendous technological revolutions and considerable development that enables major breakthroughs to be made in the study of human tumor metabolism. In this review, a comprehensive comparison of traditional metabolomics and spatial metabolomics has been concluded, and the recent progress and challenges of the application of spatial metabolomics combined multi-omics in the research of metabolic reprogramming in tumors are reviewed. Furthermore, we also highlight the advances of spatial metabolomics in the study of metabolic mechanisms of head and neck tumors, and provide an outlook of its application prospects.
Collapse
Affiliation(s)
- Ye Zheng
- Health Science Center, Ningbo University, Ningbo, China
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Chen Lin
- Health Science Center, Ningbo University, Ningbo, China
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yidian Chu
- Health Science Center, Ningbo University, Ningbo, China
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hongxia Deng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhisen Shen
- Health Science Center, Ningbo University, Ningbo, China
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Liu J, Hu W, Han Y, Nie H. Recent advances in mass spectrometry imaging of single cells. Anal Bioanal Chem 2023:10.1007/s00216-023-04774-9. [PMID: 37269305 DOI: 10.1007/s00216-023-04774-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Mass spectrometry imaging (MSI) is a sensitive, specific, label-free imaging analysis technique that can simultaneously obtain the spatial distribution, relative content, and structural information of hundreds of biomolecules in cells and tissues, such as lipids, small drug molecules, peptides, proteins, and other compounds. The study of molecular mapping of single cells can reveal major scientific issues such as the activity pattern of living organisms, disease pathogenesis, drug-targeted therapy, and cellular heterogeneity. Applying MSI technology to the molecular mapping of single cells can provide new insights and ideas for the study of single-cell metabolomics. This review aims to provide an informative resource for those in the MSI community who are interested in single-cell imaging. Particularly, we discuss advances in imaging schemes and sample preparation, instrumentation improvements, data processing and analysis, and 3D MSI over the past few years that have allowed MSI to emerge as a powerful technique in the molecular imaging of single cells. Also, we highlight some of the most cutting-edge studies in single-cell MSI, demonstrating the future potential of single-cell MSI. Visualizing molecular distribution at the single-cell or even sub-cellular level can provide us with richer cell information, which strongly contributes to advancing research fields such as biomedicine, life sciences, pharmacodynamic testing, and metabolomics. At the end of the review, we summarize the current development of single-cell MSI technology and look into the future of this technology.
Collapse
Affiliation(s)
- Jikun Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Analytical Instrumental Center, Peking University, Beijing, 100871, China
| | - Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Analytical Instrumental Center, Peking University, Beijing, 100871, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China.
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Analytical Instrumental Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Jiang LX, Yang M, Wali SN, Laskin J. High-Throughput Mass Spectrometry Imaging of Biological Systems: Current Approaches and Future Directions. Trends Analyt Chem 2023; 163:117055. [PMID: 37206615 PMCID: PMC10191415 DOI: 10.1016/j.trac.2023.117055] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the past two decades, the power of mass spectrometry imaging (MSI) for the label free spatial mapping of molecules in biological systems has been substantially enhanced by the development of approaches for imaging with high spatial resolution. With the increase in the spatial resolution, the experimental throughput has become a limiting factor for imaging of large samples with high spatial resolution and 3D imaging of tissues. Several experimental and computational approaches have been recently developed to enhance the throughput of MSI. In this critical review, we provide a succinct summary of the current approaches used to improve the throughput of MSI experiments. These approaches are focused on speeding up sampling, reducing the mass spectrometer acquisition time, and reducing the number of sampling locations. We discuss the rate-determining steps for different MSI methods and future directions in the development of high-throughput MSI techniques.
Collapse
Affiliation(s)
- Li-Xue Jiang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Syeda Nazifa Wali
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| |
Collapse
|
13
|
Li Q, Chen Y, Gao H, Li Z, Qiu D, Hu G. In situ analysis of volatile oil in Angelica sinensis roots by fluorescence imaging combined with mass spectrometry imaging. Talanta 2023; 255:124253. [PMID: 36630786 DOI: 10.1016/j.talanta.2023.124253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
In this study, the spatial distribution and accumulation dynamics of volatile oil in Angelica sinensis roots was realized by fluorescence imaging combined with mass spectrometry imaging. The laser scanning confocal microscopy was used to determine the optimal excitation wavelength and the fluorescent stability of volatile oil in the sections of Angelica sinensis roots. The results demonstrated that 488 nm was the most suitable excitation wavelength for the identification and quantitative analysis of volatile oil. It was observed that volatile oil accumulated in the oil chamber of the phelloderm and secondary phloem, and the oil canal of the secondary xylem. The results also indicated that there were differences in content during different periods. Furthermore, the MALDI-TOF-MSI technology was used to study the spatial distribution and compare the chemical compositions of different parts of Angelica sinensis roots during the harvest period. A total of 55, 49, 50 and 30 compounds were identified from the head, body, tail of the root and root bark, respectively. The spatial distribution of phthalides, organic acids and other compounds were revealed in Angelica sinensis roots. The method developed in this study could be used for the in situ analysis of volatile oil in Angelica sinensis roots.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yuying Chen
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hui Gao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeyu Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Daiyu Qiu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guangzhi Hu
- Department of Physics, Umeå University, Umeå, 901 87, Sweden.
| |
Collapse
|
14
|
Zhou X, Gao S, Yue M, Zhu S, Liu Q, Zhao XE. Recent advances in analytical methods of oxidative stress biomarkers induced by environmental pollutant exposure. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Rončević A, Koruga N, Soldo Koruga A, Debeljak Ž, Rončević R, Turk T, Kretić D, Rotim T, Krivdić Dupan Z, Troha D, Perić M, Šimundić T. MALDI Imaging Mass Spectrometry of High-Grade Gliomas: A Review of Recent Progress and Future Perspective. Curr Issues Mol Biol 2023; 45:838-851. [PMID: 36826000 PMCID: PMC9955680 DOI: 10.3390/cimb45020055] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the brain with a relatively short median survival and high mortality. Advanced age, high socioeconomic status, exposure to ionizing radiation, and other factors have been correlated with an increased incidence of GBM, while female sex hormones, history of allergies, and frequent use of specific drugs might exert protective effects against this disease. However, none of these explain the pathogenesis of GBM. The most recent WHO classification of CNS tumors classifies neoplasms based on their histopathological and molecular characteristics. Modern laboratory techniques, such as matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry, enable the comprehensive metabolic analysis of the tissue sample. MALDI imaging is able to characterize the spatial distribution of a wide array of biomolecules in a sample, in combination with histological features, without sacrificing the tissue integrity. In this review, we first provide an overview of GBM epidemiology, risk, and protective factors, as well as the recent WHO classification of CNS tumors. We then provide an overview of mass spectrometry workflow, with a focus on MALDI imaging, and recent advances in cancer research. Finally, we conclude the review with studies of GBM that utilized MALDI imaging and offer our perspective on future research.
Collapse
Affiliation(s)
- Alen Rončević
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-98-169-8481
| | - Nenad Koruga
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Anamarija Soldo Koruga
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Neurology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Željko Debeljak
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Clinical Institute of Laboratory Diagnostics, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Robert Rončević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tajana Turk
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Domagoj Kretić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tatjana Rotim
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Zdravka Krivdić Dupan
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Damir Troha
- Department of Radiology, Vinkovci General Hospital, 31000 Osijek, Croatia
| | - Marija Perić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Clinical Cytology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tihana Šimundić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Center Osijek, 31000 Osijek, Croatia
| |
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Caleb Bagley M, Garrard KP, Muddiman DC. The development and application of matrix assisted laser desorption electrospray ionization: The teenage years. MASS SPECTROMETRY REVIEWS 2023; 42:35-66. [PMID: 34028071 DOI: 10.1002/mas.21696] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 05/24/2023]
Abstract
In the past 15 years, ambient ionization techniques have witnessed a significant incursion into the field of mass spectrometry imaging, demonstrating their ability to provide complementary information to matrix-assisted laser desorption ionization. Matrix-assisted laser desorption electrospray ionization is one such technique that has evolved since its first demonstrations with ultraviolet lasers coupled to Fourier transform-ion cyclotron resonance mass spectrometers to extensive use with infrared lasers coupled to orbitrap-based mass spectrometers. Concurrently, there have been transformative developments of this imaging platform due to the high level of control the principal group has retained over the laser technology, data acquisition software (RastirX), instrument communication, and image processing software (MSiReader). This review will discuss the developments of MALDESI since its first laboratory demonstration in 2005 to the most recent advances in 2021.
Collapse
Affiliation(s)
- Michael Caleb Bagley
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth P Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- The Precision Engineering Consortium, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
18
|
Liu H, Pan Y, Xiong C, Han J, Wang X, Chen J, Nie Z. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for in situ analysis of endogenous small molecules in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Hou JJ, Zhang ZJ, Wu WY, He QQ, Zhang TQ, Liu YW, Wang ZJ, Gao L, Long HL, Lei M, Wu WY, Guo DA. Mass spectrometry imaging: new eyes on natural products for drug research and development. Acta Pharmacol Sin 2022; 43:3096-3111. [PMID: 36229602 PMCID: PMC9712638 DOI: 10.1038/s41401-022-00990-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.
Collapse
Affiliation(s)
- Jin-Jun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Jia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Yong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing-Qing He
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Teng-Qian Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Wen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Jun Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Gao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Li Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Ganeshalingam M, Enstad S, Sen S, Cheema S, Esposito F, Thomas R. Role of lipidomics in assessing the functional lipid composition in breast milk. Front Nutr 2022; 9:899401. [PMID: 36118752 PMCID: PMC9478754 DOI: 10.3389/fnut.2022.899401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Breast milk is the ideal source of nutrients for infants in early life. Lipids represent 2–5% of the total breast milk composition and are a major energy source providing 50% of an infant’s energy intake. Functional lipids are an emerging class of lipids in breast milk mediating several different biological functions, health, and developmental outcome. Lipidomics is an emerging field that studies the structure and function of lipidome. It provides the ability to identify new signaling molecules, mechanisms underlying physiological activities, and possible biomarkers for early diagnosis and prognosis of diseases, thus laying the foundation for individualized, targeted, and precise nutritional management strategies. This emerging technique can be useful to study the major role of functional lipids in breast milk in several dimensions. Functional lipids are consumed with daily food intake; however, they have physiological benefits reported to reduce the risk of disease. Functional lipids are a new area of interest in lipidomics, but very little is known of the functional lipidome in human breast milk. In this review, we focus on the role of lipidomics in assessing functional lipid composition in breast milk and how lipid bioinformatics, a newly emerging branch in this field, can help to determine the mechanisms by which breast milk affects newborn health.
Collapse
Affiliation(s)
- Moganatharsa Ganeshalingam
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- *Correspondence: Moganatharsa Ganeshalingam,
| | - Samantha Enstad
- Neonatal Intensive Care Unit, Orlando Health Winne Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Sarbattama Sen
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sukhinder Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, Bari, Italy
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Raymond Thomas,
| |
Collapse
|
21
|
Luo Y, Song C, Mao J, Peng Z, Sun S, Zhang Y, Yu A, Zhang W, Zhao W, Ouyang G. Developing a Noncontact Heating Matrix Spraying Apparatus with Controllable Matrix Film Formation for MALDI Mass Spectrometry Imaging. Anal Chem 2022; 94:12136-12143. [PMID: 35993787 DOI: 10.1021/acs.analchem.2c02192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Matrix deposition plays an important role in obtaining high-quality and reliable molecular spatial location information for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To control the matrix film formation, an automatic matrix spraying apparatus was developed with the introduction of a noncontact heating lamp. Compared with the unheated condition, the noncontact heating lamp suppressed the coffee-ring effect and the diffusion phenomenon of the analyte effectively by controllable matrix film formation. Meanwhile, the signal intensity was increased by 2-5 fold. To prove the ability of the matrix deposition apparatus, the apparatus combined with metabolomics analysis was used to show the spatial distribution of the substance in sprouted potato tubers. The potential biomarkers at m/z 868.5049 and m/z 852.5101 were identified as α-solanine and α-chaconine, and the synthesis pathways were further searched. To further demonstrate the quality of MALDI images including localization and spatial resolution, lipid distribution in rat brain tissue was investigated by the developed noncontact heating matrix spraying apparatus. An excellent match with distinguishable compartments of lipids in the rat brain was obtained between the H&E-stained sections and MALDI-MSI images. These results indicate that the developed noncontact heating matrix spraying apparatus is reliable and provides a low-cost, high-quality, rapid approach for MALDI-MSI.
Collapse
Affiliation(s)
- Yake Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenchen Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Mao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zifang Peng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shihao Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
23
|
Wan K, Jiang X, Tang X, Xiao L, Chen Y, Huang C, Zhu F, Wang F, Xu H. Study on Absorption, Distribution, Metabolism, and Excretion Properties of Novel Insecticidal GABA Receptor Antagonist, Pyraquinil, in Diamondback Moth Combining MALDI Mass Spectrometry Imaging and High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6072-6083. [PMID: 35576451 DOI: 10.1021/acs.jafc.2c00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A thorough understanding of absorption, distribution, metabolism, and excretion (ADME) of insecticide candidates is essential in insecticide development and structural optimization. Here, ADME of pyraquinil, a novel insecticidal GABA receptor antagonist, in Plutella xylostella larvae during the accumulation phase and depuration phase was investigated separately using a combination of UHPLC-Q-Orbitrap, HPLC-MS/MS, and MALDI-MSI. Five new metabolites of pyraquinil were identified, and a metabolic pathway was proposed. The oxidative metabolite (pyraquinil-sulfone) was identified as the main metabolite and confirmed by its standard. Quantitative results showed that pyraquinil was taken up by the larvae rapidly and then undergone a cytochrome P450s-mediated oxidative transformation into pyraquinil-sulfone. Both fecal excretion and oxidative metabolism were demonstrated to be predominant ways to eliminate pyraquinil in P. xylostella larvae during accumulation, while oxidative metabolism followed by fecal excretion was probably the major pathway during depuration. MALDI-MSI revealed that pyraquinil was homogeneously distributed in the larvae, while pyraquinil-sulfone presented a continuous enrichment in the midgut during accumulation. Conversely, pyraquinil-sulfone located in hemolymph can be preferentially eliminated during depuration, suggesting its tissue tropism. It improves the understanding of the fate of pyraquinil in P. xylostella and provides useful information for insecticidal mechanism elucidation and structural optimization of pyraquinil.
Collapse
Affiliation(s)
- Kai Wan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Lu Xiao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Congling Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Fuwei Zhu
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Fuhua Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
24
|
Huang L, Nie L, Dai Z, Dong J, Jia X, Yang X, Yao L, Ma SC. The application of mass spectrometry imaging in traditional Chinese medicine: a review. Chin Med 2022; 17:35. [PMID: 35248086 PMCID: PMC8898510 DOI: 10.1186/s13020-022-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 08/26/2023] Open
Abstract
AbstractMass spectrometry imaging is a frontier technique which connects classical mass spectrometry with ion imaging. Various types of chemicals could be visualized in their native tissues using mass spectrometry imaging. Up to now, the most commonly applied mass spectrometry imaging techniques are matrix assisted laser desorption ionization mass spectrometry imaging, desorption electrospray ionization mass spectrometry imaging and secondary ion mass spectrometry imaging. This review gives an introduction to the principles, development and applications of commonly applied mass spectrometry imaging techniques, and then illustrates the application of mass spectrometry imaging in the investigation of traditional Chinese medicine. Recently, mass spectrometry imaging has been adopted to explore the spatial distribution of endogenous metabolites in traditional Chinese medicine. Data collected from mass spectrometry imaging can be further utilized to search for marker components of traditional Chinese medicine, discover new compounds from traditional herbs, and differentiate between medicinal plants that are similar in botanical features. Moreover, mass spectrometry imaging also plays a role in revealing the pharmacological and toxicological mechanisms of traditional Chinese medicine.
Collapse
|
25
|
Zhu X, Xu T, Peng C, Wu S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem 2022; 9:782432. [PMID: 35186891 PMCID: PMC8850921 DOI: 10.3389/fchem.2021.782432] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Compared with conventional optical microscopy techniques, mass spectrometry imaging (MSI) or imaging mass spectrometry (IMS) is a powerful, label-free analytical technique, which can sensitively and simultaneously detect, quantify, and map hundreds of biomolecules, such as peptides, proteins, lipid, and other organic compounds in cells and tissues. So far, although several soft ionization techniques, such as desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS) have been used for imaging biomolecules, matrix-assisted laser desorption/ionization (MALDI) is still the most widespread MSI scanning method. Here, we aim to provide a comprehensive review of MALDI-MSI with an emphasis on its advances of the instrumentation, methods, application, and future directions in single cell and biological tissues.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Xu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Shihua Wu, ; Shihua Wu,
| |
Collapse
|
26
|
Su CH, Wang BW, Dutkiewicz EP, Hsu CC, Yang YL. Surface-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry (SALDI-IMS)-Based Detection of Vinca Alkaloids Distribution in the Petal of Madagascar Periwinkle. Methods Mol Biol 2022; 2505:45-58. [PMID: 35732935 DOI: 10.1007/978-1-0716-2349-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The surface-assisted laser desorption/ionization (SALDI) technique uses inorganic materials to aid desorption and ionization of molecules. SALDI is suitable for analyzing small molecules due to the absence of interfering signals in the low m/z range originating from the organic matrix. Imaging mass spectrometry (IMS) is a versatile imaging approach with high spatial resolution for analyzing various molecular species, but its application depends heavily on the ionization method. We have developed a functionalized titanium dioxide (TiO2) nanowire as a solid substrate for SALDI-MS detection of low-molecular-weight molecules. We apply this novel substrate for imprinting fragile specimens such as petals and further SALDI-IMS analysis. The TiO2 nanowire substrate is prepared from a commercial Ti plate by a hydrothermal process and subsequently chemically modified to improve the quality and selectivity of imprinting as well as the sensitivity of SALDI-IMS analysis. Here, the functionalized TiO2 nanowire substrate is applied to visualize the distribution of vinca alkaloids in the petal of Madagascar periwinkle (Catharanthus roseus).
Collapse
Affiliation(s)
- Chun-Han Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Bo-Wei Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ewelina P Dutkiewicz
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
27
|
Chen J, Mao S, He Z, Yang L, Zhang J, Lin JM, Lin ZX. Proteomic Distributions in CD34+ Microvascular Niche Patterns of Glioblastoma. J Histochem Cytochem 2022; 70:99-110. [PMID: 34751042 PMCID: PMC8721573 DOI: 10.1369/00221554211058098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The poor clinical prognosis and microvascular patterns of glioblastoma (GBM) are of serious concern to many clinicians and researchers. However, very few studies have examined the correlation between microvascular niche patterns (MVNPs) and proteomic distribution. In this study, CD34 immunofluorescence staining and matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-IMS) technology were used to investigate the protein distributions in MVNPs. CD34+ microvascular phenotype could be divided into four types: microvascular sprouting (MS), vascular cluster (VC), vascular garland (VG), and glomeruloid vascular proliferation (GVP). Based on such characteristics, MVNPs were divided into two types by cluster analysis, namely, type I, comprising primarily MS and VC, and type II, comprising many VGs and GVPs. Survival analysis indicated the type of MVNPs to be an independent prognostic factor for progression-free and overall survival in GBM. MALDI-IMS results showed the peaks at m/z 1037 and 8960 to exhibit stronger ion signals in type II, while those at m/z 3240 and 3265 exhibited stronger ion signals in type I. The findings may assist future research on therapy and help predict prognosis in GBM. However, due to the limited number of studies, more well-designed studies are warranted to further verify our results.
Collapse
Affiliation(s)
- Jintao Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China,Department of Neurosurgery, Fujian Sanbo Funeng Brain Hospital, Fuzhou, China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Ziyi He
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Lijuan Yang
- Department of Pharmacology, Fujian Medical University, Fuzhou, China
| | - Jinfeng Zhang
- Department of Neurosurgery, Fujian Sanbo Funeng Brain Hospital, Fuzhou, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Zhi-Xiong Lin
- Jin-Ming Lin, Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China. E-mail:
| |
Collapse
|
28
|
Borisov RS, Matveeva MD, Zaikin VG. Reactive Matrices for Analytical Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. Crit Rev Anal Chem 2021; 53:1027-1043. [PMID: 34969337 DOI: 10.1080/10408347.2021.2001309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In recent years, a special focus is placed on the usage of reactive matrices for analytical matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Since 2003, when the term "reactive matrices" was suggested and the dignity of compounds, possessing dualistic properties as matrices and derivatization agents was demonstrated, corresponding approach has found application in various fields and, in particular, in bioanalysis (metabolomics, lipidomics, etc.). The main advantage of this methodology is that it reduces sample treatment time, simplifies the procedure of sample handling, improves the sensitivity of analysis, enhances the molecular identification and profiling. Within the framework of this review, the main attention is paid to "true" reactive matrices that interact with analyte molecules through an exchange or addition reactions. A special section discusses practical application of reactive matrices in the determination of the distribution of targeted and non-targeted organic substances on the surface of biological tissue sections by MALDI-MS imaging. In this critical review, a controversial proposal is made to consider protonating and deprotonating matrices as reactive, because they can undergo a chemical reaction such as proton transfer that occurs in both target solution and MALDI plume. In this respect, special attention is paid to "proton sponge" matrices that have found a wide application in the analysis of various acidic compounds by MALDI-MS in the negative mode. Historical data on the formation of ions and the fate of matrices in MALDI are considered at the beginning of this article.
Collapse
Affiliation(s)
- Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mariya D Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
29
|
Patel MK, Pandey S, Kumar M, Haque MI, Pal S, Yadav NS. Plants Metabolome Study: Emerging Tools and Techniques. PLANTS (BASEL, SWITZERLAND) 2021; 10:2409. [PMID: 34834772 PMCID: PMC8621461 DOI: 10.3390/plants10112409] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Metabolomics is now considered a wide-ranging, sensitive and practical approach to acquire useful information on the composition of a metabolite pool present in any organism, including plants. Investigating metabolomic regulation in plants is essential to understand their adaptation, acclimation and defense responses to environmental stresses through the production of numerous metabolites. Moreover, metabolomics can be easily applied for the phenotyping of plants; and thus, it has great potential to be used in genome editing programs to develop superior next-generation crops. This review describes the recent analytical tools and techniques available to study plants metabolome, along with their significance of sample preparation using targeted and non-targeted methods. Advanced analytical tools, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectroscopy (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) matrix-assisted laser desorption/ionization (MALDI), ion mobility spectrometry (IMS) and nuclear magnetic resonance (NMR) have speed up precise metabolic profiling in plants. Further, we provide a complete overview of bioinformatics tools and plant metabolome database that can be utilized to advance our knowledge to plant biology.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Sonika Pandey
- Independent Researcher, Civil Line, Fathepur 212601, India;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Md Intesaful Haque
- Fruit Tree Science Department, Newe Ya’ar Research Center, Agriculture Research Organization, Volcani Center, Ramat Yishay 3009500, Israel;
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
30
|
Zhang J, Sans M, Garza KY, Eberlin LS. MASS SPECTROMETRY TECHNOLOGIES TO ADVANCE CARE FOR CANCER PATIENTS IN CLINICAL AND INTRAOPERATIVE USE. MASS SPECTROMETRY REVIEWS 2021; 40:692-720. [PMID: 33094861 DOI: 10.1002/mas.21664] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Developments in mass spectrometry technologies have driven a widespread interest and expanded their use in cancer-related research and clinical applications. In this review, we highlight the developments in mass spectrometry methods and instrumentation applied to direct tissue analysis that have been tailored at enhancing performance in clinical research as well as facilitating translation and implementation of mass spectrometry in clinical settings, with a focus on cancer-related studies. Notable studies demonstrating the capabilities of direct mass spectrometry analysis in biomarker discovery, cancer diagnosis and prognosis, tissue analysis during oncologic surgeries, and other clinically relevant problems that have the potential to substantially advance cancer patient care are discussed. Key challenges that need to be addressed before routine clinical implementation including regulatory efforts are also discussed. Overall, the studies highlighted in this review demonstrate the transformative potential of mass spectrometry technologies to advance clinical research and care for cancer patients. © 2020 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Marta Sans
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Kyana Y Garza
- Department of Chemistry, University of Texas at Austin, Austin, TX
| | - Livia S Eberlin
- Department of Chemistry, University of Texas at Austin, Austin, TX
| |
Collapse
|
31
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
32
|
Development of MALDI MS peptide array for thrombin inhibitor screening. Talanta 2021; 226:122129. [PMID: 33676683 DOI: 10.1016/j.talanta.2021.122129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 11/20/2022]
Abstract
The development of in situ methods for the analysis and visualization of enzyme activity is of paramount importance in drug discovery, research, and development. In this work, the functionalized and array patterned indium tin oxide (ITO) glass slides were fabricated by non-covalent immobilization of amphipathic phospholipid-tagged peptides encompassing the thrombin cleavage site on steric acid-modified ITO slides. The fabricated peptide arrays provide 60 spots per slide, and are compatible with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) measurement, free matrix peak interference, and tolerance to repeated aqueous washing. The peptide arrays were used for the investigation of thrombin activity and screening for its potential inhibitors. The thrombin activity and its Michaelis-Menten constant (Km) for immobilized peptide substrate was determined using developed MALDI MS peptide array. To investigate the applicability and effectiveness of peptide arrays, the anti-thrombin activity of grape seed proanthocyanidins with different degrees of polymerization (DP) was monitored and visualized. MALDI MS imaging results showed that the fractions of proanthocyanidins with the mean DP of 4.61-6.82 had good thrombin inhibitory activity and their half-maximal inhibitory concentration (IC50) were below 10 μg/mL. Therefore, the developed peptide array is a reliable platform for the discovery of natural thrombin inhibitors.
Collapse
|
33
|
Qiao Z, Lissel F. MALDI Matrices for the Analysis of Low Molecular Weight Compounds: Rational Design, Challenges and Perspectives. Chem Asian J 2021; 16:868-878. [PMID: 33657276 PMCID: PMC8251880 DOI: 10.1002/asia.202100044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Indexed: 02/03/2023]
Abstract
The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and "MALDI silent", i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode.
Collapse
Affiliation(s)
- Zhi Qiao
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
| |
Collapse
|
34
|
Taylor M, Lukowski JK, Anderton CR. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:872-894. [PMID: 33656885 PMCID: PMC8033567 DOI: 10.1021/jasms.0c00439] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 05/02/2023]
Abstract
Biological systems are composed of heterogeneous populations of cells that intercommunicate to form a functional living tissue. Biological function varies greatly across populations of cells, as each single cell has a unique transcriptome, proteome, and metabolome that translates to functional differences within single species and across kingdoms. Over the past decade, substantial advancements in our ability to characterize omic profiles on a single cell level have occurred, including in multiple spectroscopic and mass spectrometry (MS)-based techniques. Of these technologies, spatially resolved mass spectrometry approaches, including mass spectrometry imaging (MSI), have shown the most progress for single cell proteomics and metabolomics. For example, reporter-based methods using heavy metal tags have allowed for targeted MS investigation of the proteome at the subcellular level, and development of technologies such as laser ablation electrospray ionization mass spectrometry (LAESI-MS) now mean that dynamic metabolomics can be performed in situ. In this Perspective, we showcase advancements in single cell spatial metabolomics and proteomics over the past decade and highlight important aspects related to high-throughput screening, data analysis, and more which are vital to the success of achieving proteomic and metabolomic profiling at the single cell scale. Finally, using this broad literature summary, we provide a perspective on how the next decade may unfold in the area of single cell MS-based proteomics and metabolomics.
Collapse
Affiliation(s)
- Michael
J. Taylor
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jessica K. Lukowski
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher R. Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
35
|
Dutkiewicz EP, Su CH, Lee HJ, Hsu CC, Yang YL. Visualizing vinca alkaloids in the petal of Catharanthus roseus using functionalized titanium oxide nanowire substrate for surface-assisted laser desorption/ionization imaging mass spectrometry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1123-1133. [PMID: 33220116 DOI: 10.1111/tpj.15092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Imaging mass spectrometry (IMS) is a powerful technique that enables analysis of various molecular species at a high spatial resolution with low detection limits. In contrast to the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) approach, surface-assisted laser desorption/ionization (SALDI) can be more effective in the detection of small molecules due to the absence of interfering background signals in low m/z ranges. We developed a functionalized TiO2 nanowire as a solid substrate for IMS of low-molecular-weight species in plant tissues. We prepared TiO2 nanowires using an inexpensive modified hydrothermal process and subsequently functionalized them chemically with various silane analogs to overcome the problem of superhydrophilicity of the substrate. Chemical modification changed the selectivity of imprinting of samples deposited on the substrate surface and thus improved the detection limits. The substrate was applied to image distribution of the metabolites in very fragile specimens such as the petal of Catharanthus roseus. We observed that the metabolites are distributed heterogeneously in the petal, which is consistent with previous results reported for the C. roseus plant leaf and stem. The intermediates corresponding to the biosynthesis pathway of some vinca alkaloids were clearly shown in the petal. We also performed profiling of petals from five different cultivars of C. roseus plant. We verified the semi-quantitative capabilities of the imprinting/imaging approach by comparing results using the LC-MS analysis of the plant extracts. This suggested that the functionalized TiO2 nanowire substrate-based SALDI is a powerful technique complementary to MALDI-MS.
Collapse
Affiliation(s)
- Ewelina P Dutkiewicz
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Han Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Han-Jung Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
36
|
Theiner S, Schoeberl A, Schweikert A, Keppler BK, Koellensperger G. Mass spectrometry techniques for imaging and detection of metallodrugs. Curr Opin Chem Biol 2021; 61:123-134. [PMID: 33535112 DOI: 10.1016/j.cbpa.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
Undoubtedly, metallomic approaches based on mass spectrometry have evolved into essential tools supporting the drug development of novel metal-based anticancer drugs. This article will comment on the state-of-the-art instrumentation and highlight some of the recent analytical advances beyond routine, especially focusing on the latest developments in inductively coupled plasma-mass spectrometry (ICP-MS). Mass spectrometry-based bioimaging and single-cell methods will be presented, paving the way to exciting investigations of metal-based anticancer drugs in heterogeneous and structurally, as well as functionally complex solid tumor tissues.
Collapse
Affiliation(s)
- Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria; Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
37
|
Wang J, Wang C, Han X. Mass Spectrometry-Based Shotgun Lipidomics for Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:39-55. [PMID: 33791973 DOI: 10.1007/978-3-030-51652-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Shotgun lipidomics is an analytical approach for large-scale and systematic analysis of the composition, structure, and quantity of cellular lipids directly from lipid extracts of biological samples by mass spectrometry. This approach possesses advantages of high throughput and quantitative accuracy, especially in absolute quantification. As cancer research deepens at the level of quantitative biology and metabolomics, the demand for lipidomics approaches such as shotgun lipidomics is becoming greater. In this chapter, the principles, approaches, and some applications of shotgun lipidomics for cancer research are overviewed.
Collapse
Affiliation(s)
- Jianing Wang
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
- Department of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
38
|
Dueñas ME, Lee YJ. Single-Cell Metabolomics by Mass Spectrometry Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:69-82. [PMID: 33791975 DOI: 10.1007/978-3-030-51652-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multicellular organisms achieve their complex living activities through the highly organized metabolic interplay of individual cells and tissues. This complexity has driven the need to spatially resolve metabolomics down to the cellular and subcellular level. Recent technological advances have enabled mass spectrometry imaging (MSI), especially matrix-assisted laser desorption/ionization (MALDI), to become a powerful tool for the visualization of molecular species down to subcellular spatial resolution. In the present chapter, we summarize recent advances in the field of MALDI-MSI, with respect to single-cell level resolution metabolomics directly on tissue. In more detail, we focus on advancements in instrumentation for MSI at single-cell resolution, and the applications towards metabolomic scale imaging. Finally, we discuss new computational tools to aid in metabolite identification, future perspective, and the overall direction that the field of single-cell metabolomics directly on tissue may take in the years to come.
Collapse
Affiliation(s)
- Maria Emilia Dueñas
- Department of Chemistry, Iowa State University, Ames, IA, USA.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA, USA
| |
Collapse
|
39
|
The distribution and changes of glycoalkaloids in potato tubers under different storage time based on MALDI-TOF mass spectrometry imaging. Talanta 2021; 221:121453. [PMID: 33076076 DOI: 10.1016/j.talanta.2020.121453] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/20/2022]
Abstract
Glycoalkaloids (GAs) are toxic secondary metabolites in potatoes, which are harmful to human body. The storage time has a great influence on the biosynthesis and distribution of GAs. In present study, an imaging mass microscope (iMScope) was used to investigate the distribution and changes of GAs in potato tubers under different storage time (0, 10, 15, 20, 30, 40 and 60 days). We established a growth model with logistic equation to evaluate the growth trends of four major GAs in sprout, periderm and medulla. The results showed that the growth rate and relative contents of four GAs in sprout and periderm were significantly higher than that in medulla. In addition, four GAs also presented different change trends. For dehydrosolanine and α-solanine, rapid growth period of these two GAs in sprout (about at the day 23, similar to these in medulla) was later than which period in periderm (about at the day 17), while rapid growth of dehydrochaconine and α-chaconine appeared at almost the same time (about at the day 20). Based on the biosynthesis and metabolism of GAs, we have made possible explanations for these results. This study is useful for comprehending the metabolism of GAs in different parts and monitoring food safety in potatoes.
Collapse
|
40
|
Wang T, Cai Z, Chen Y, Lee WK, Kwan CS, Li M, Chan ASC, Chen ZF, Cheung AKL, Leung KCF. MALDI-MS Imaging Analysis of Noninflammatory Type III Rotaxane Dendrimers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2488-2494. [PMID: 32813518 DOI: 10.1021/jasms.0c00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rotaxane dendrimers with hyperbranched macromolecular interlocked structures and size modulation capacity demonstrate drug binding and release ability upon external stimuli. Mass spectrometry imaging (MSI) can offer the high-throughput screening of endogenous/exogenous compounds. Herein, we reported a novel method to display the in situ spatial distribution of label-free monodispersed type III rotaxane dendrimers (RDs) G1 (first generation, size ∼1.5 nm) and G2 (second generation, size ∼5 nm) that were explored as potential drug vehicles in spleen tissue by using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-MSI). Experimental results indicated that the trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) matrix exhibited the best performance for monodispersed type III RDs G1 and G2. The optimized method was successfully applied to map the in vivo spatial distribution of type III RDs G1 and G2 in the spleen from intraperitoneally injected mice. The MALDI-MSI images revealed that RDs G1 and G2 were relatively stable in the spleen within 24 h after administration. It was found that the identified type III RDs G1 and G2 penetrated through the tunica serosa and were predominantly localized in red pulp regions of spleens. They were also mapped in a marginal zone of spleens simultaneously. There was almost no toxicity of type III RDs G1 and G2 to mice spleens from the H&E results. Furthermore, the type III RDs did not induce the expression of inflammatory cytokines from peripheral blood mononuclear cells (PBMCs) or THP-1 monocytes. The MSI analysis not only demonstrated its ability to image select rotaxane dendrimers in a rapid and efficient manner but also provided tremendous assistance on the applications of the further treatment of cancerous tissue as safe drug carriers. Furthermore, the new strategy demonstrated in this study could be applied on other label-free mechanically interlocked molecules, molecular machines, and macromolecules, which opened a new path to evaluate the toxicological and pharmacokinetic characteristics of these novel materials at the suborgan level.
Collapse
Affiliation(s)
- Tao Wang
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Yanyan Chen
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Wang Ka Lee
- Department of Biology, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Chak-Shing Kwan
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Min Li
- School of Chinese Medicine, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangzhou Lee & Man Technology Company Ltd., 8 Huanshi Avenue, Nansha, Guangzhou, China
| | - Zhi-Feng Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Allen Ka Loon Cheung
- Department of Biology, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ken Cham-Fai Leung
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
41
|
Zhou Q, Fülöp A, Hopf C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Anal Bioanal Chem 2020; 413:2599-2617. [PMID: 33215311 PMCID: PMC8007514 DOI: 10.1007/s00216-020-03023-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a fast-growing technique for visualization of the spatial distribution of the small molecular and macromolecular biomolecules in tissue sections. Challenges in MALDI-MSI, such as poor sensitivity for some classes of molecules or limited specificity, for instance resulting from the presence of isobaric molecules or limited resolving power of the instrument, have encouraged the MSI scientific community to improve MALDI-MSI sample preparation workflows with innovations in chemistry. Recent developments of novel small organic MALDI matrices play a part in the improvement of image quality and the expansion of the application areas of MALDI-MSI. This includes rationally designed/synthesized as well as commercially available small organic molecules whose superior matrix properties in comparison with common matrices have only recently been discovered. Furthermore, on-tissue chemical derivatization (OTCD) processes get more focused attention, because of their advantages for localization of poorly ionizable metabolites and their‚ in several cases‚ more specific imaging of metabolites in tissue sections. This review will provide an overview about the latest developments of novel small organic matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Graphical abstract ![]()
Collapse
Affiliation(s)
- Qiuqin Zhou
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Annabelle Fülöp
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany.
| |
Collapse
|
42
|
Kołodziej A, Ruman T, Nizioł J. Gold and silver nanoparticles-based laser desorption/ionization mass spectrometry method for detection and quantification of carboxylic acids. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4604. [PMID: 32720749 DOI: 10.1002/jms.4604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
A comparison of ionization efficiency for gold and silver nanoparticles used as an active media of matrix-less laser desorption/ionization (LDI) mass spectrometry (MS) methods was made for carboxylic acids including fatty acids. The matrix-assisted laser desorption/ionization (MALDI)-type targets containing monoisotopic cationic 109 Ag nanoparticles (109 AgNPs) and Au nanoparticles (AuNPs) were used for rapid MS measurements of 10 carboxylic acids of different chemical properties. Carboxylic acids were directly quantified in experiments with 10 000-fold concentration change conditions ranging from 1 mg/ml to 100 ng/ml which equates to 1 μg to 100 pg of carboxylic acids per measurement spot.
Collapse
Affiliation(s)
- Artur Kołodziej
- Doctoral School of Engineering and Technical Sciences, Rzeszów University of Technology, 8 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland
| | - Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland
| |
Collapse
|
43
|
Abstract
Analysis of intact proteins by native mass spectrometry has emerged as a powerful tool for obtaining insight into subunit diversity, post-translational modifications, stoichiometry, structural arrangement, stability, and overall architecture. Typically, such an analysis is performed following protein purification procedures, which are time consuming, costly, and labor intensive. As this technology continues to move forward, advances in sample handling and instrumentation have enabled the investigation of intact proteins in situ and in crude samples, offering rapid analysis and improved conservation of the biological context. This emerging field, which involves various ion source platforms such as matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) for both spatial imaging and solution-based analysis, is expected to impact many scientific fields, including biotechnology, pharmaceuticals, and clinical sciences. In this Perspective, we discuss the information that can be retrieved by such experiments as well as the current advantages and technical challenges associated with the different sampling strategies. Furthermore, we present future directions of these MS-based methods, including current limitations and efforts that should be made to make these approaches more accessible. Considering the vast progress we have witnessed in recent years, we anticipate that the advent of further innovations enabling minimal handling of MS samples will make this field more robust, user friendly, and widespread.
Collapse
Affiliation(s)
- Shay Vimer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Fu T, Oetjen J, Chapelle M, Verdu A, Szesny M, Chaumot A, Degli-Esposti D, Geffard O, Clément Y, Salvador A, Ayciriex S. In situ isobaric lipid mapping by MALDI-ion mobility separation-mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4531. [PMID: 32567158 DOI: 10.1002/jms.4531] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 05/18/2023]
Abstract
The highly diverse chemical structures of lipids make their analysis directly from biological tissue sections extremely challenging. Here, we report the in situ mapping and identification of lipids in a freshwater crustacean Gammarus fossarum using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in combination with an additional separation dimension using ion mobility spectrometry (IMS). The high-resolution trapped ion mobility spectrometry (TIMS) allowed efficient separation of isobaric/isomeric lipids showing distinct spatial distributions. The structures of the lipids were further characterized by MS/MS analysis. It is demonstrated that MALDI MSI with mobility separation is a powerful tool for distinguishing and localizing isobaric/isomeric lipids.
Collapse
Affiliation(s)
- Tingting Fu
- Institut des Sciences Analytiques, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5280, Villeurbanne, France
| | | | | | | | | | - Arnaud Chaumot
- Laboratoire d'écotoxicologie, UR RiverLy, INRAE, Villeurbanne, France
| | | | - Olivier Geffard
- Laboratoire d'écotoxicologie, UR RiverLy, INRAE, Villeurbanne, France
| | - Yohann Clément
- Institut des Sciences Analytiques, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5280, Villeurbanne, France
| | - Arnaud Salvador
- Institut des Sciences Analytiques, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5280, Villeurbanne, France
| | - Sophie Ayciriex
- Institut des Sciences Analytiques, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5280, Villeurbanne, France
| |
Collapse
|
45
|
Bagley MC, Pace CL, Ekelöf M, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging analysis of endogenous metabolites in cherry tomatoes. Analyst 2020; 145:5516-5523. [PMID: 32602477 PMCID: PMC7423647 DOI: 10.1039/d0an00818d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the spatially resolved metabolic profiling of cherry tomatoes using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI), a mass spectrometry imaging (MSI) technique that operates at ambient conditions and requires no sample derivatization. Tomatoes were flash frozen, cryosectioned and imaged with adequate spatial resolution to distinguish between the major tissue structures of a tomato including the skin, mesocarp, endocarp, locular tissue, septum, placenta, seed and seed coating. Metabolites were imaged from 100-1200 m/z, enabling significant coverage of a diverse array of metabolites including amino acids and lipids along with the major secondary metabolite classes: terpenes, phenolics, glycosides, and alkaloids. During the metabolic profiling, we found endogenous carotenoid hydrocarbons, namely lycopene or its structural isomer β-carotene, ionized as radical cations. To our knowledge, this is the first demonstration of ionizing hydrocarbons in the MSI field.
Collapse
Affiliation(s)
- M Caleb Bagley
- FTMS Laboratory for Human Health Research, Department of Chemistry, USA.
| | - Crystal L Pace
- FTMS Laboratory for Human Health Research, Department of Chemistry, USA.
| | - Måns Ekelöf
- FTMS Laboratory for Human Health Research, Department of Chemistry, USA.
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, USA. and Department of Plant and Microbial Biology, USA and Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
46
|
Sun C, Wang F, Zhang Y, Yu J, Wang X. Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer. Theranostics 2020; 10:7070-7082. [PMID: 32641979 PMCID: PMC7330837 DOI: 10.7150/thno.45543] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
New insights into tumor-associated metabolic reprogramming have provided novel vulnerabilities that can be targeted for cancer therapy. Here, we propose a mass spectrometry imaging (MSI)-based metabolomic strategy to visualize the spatially resolved reprogramming of carnitine metabolism in heterogeneous breast cancer. Methods: A wide carnitine coverage MSI method was developed to investigate the spatial alternations of carnitines in cancer tissues of xenograft mouse models and human samples. Spatial expression of key metabolic enzymes that are closely associated with the altered carnitines was examined in adjacent cancer tissue sections. Results: A total of 17 carnitines, including L-carnitine, 6 short-chain acylcarnitines, 3 middle-chain acylcarnitines, and 7 long-chain acylcarnitines were imaged. L-carnitine and short-chain acylcarnitines are significantly reprogrammed in breast cancer. A classification model based on the carnitine profiles of 170 cancer samples and 128 normal samples enables an accurate identification of breast cancer. CPT 1A, CPT 2, and CRAT, which are extensively involved in carnitine system-mediated fatty acid β-oxidation pathway were also found to be abnormally expressed in breast cancer. Remarkably, the expressions of CPT 2 and CRAT were found for the first time to be altered in breast cancer. Conclusion: These data not only expand our understanding of the complex tumor metabolic reprogramming, but also provide the first evidence that carnitine metabolism is reprogrammed at both the metabolite and enzyme levels in breast cancer.
Collapse
Affiliation(s)
- Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Fukai Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yang Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jinqian Yu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
47
|
Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis. Int J Mol Sci 2020; 21:ijms21082873. [PMID: 32326049 PMCID: PMC7216093 DOI: 10.3390/ijms21082873] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 01/15/2023] Open
Abstract
Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks.
Collapse
|
48
|
Wang K, Donnarumma F, Pettit ME, Szot CW, Solouki T, Murray KK. MALDI imaging directed laser ablation tissue microsampling for data independent acquisition proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4475. [PMID: 31726477 DOI: 10.1002/jms.4475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
A multimodal workflow for mass spectrometry imaging was developed that combines MALDI imaging with protein identification and quantification by liquid chromatography tandem mass spectrometry (LC-MS/MS). Thin tissue sections were analyzed by MALDI imaging, and the regions of interest (ROI) were identified using a smoothing and edge detection procedure. A midinfrared laser at 3-μm wavelength was used to remove the ROI from the brain tissue section after MALDI mass spectrometry imaging (MALDI MSI). The captured material was processed using a single-pot solid-phase-enhanced sample preparation (SP3) method and analyzed by LC-MS/MS using ion mobility (IM) enhanced data independent acquisition (DIA) to identify and quantify proteins; more than 600 proteins were identified. Using a modified database that included isoform and the post-translational modifications chain, loss of the initial methionine, and acetylation, 14 MALDI MSI peaks were identified. Comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the identified proteins was achieved through an evolutionary relationships classification system.
Collapse
Affiliation(s)
- Kelin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Michael E Pettit
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, United States
| | - Carson W Szot
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| |
Collapse
|
49
|
Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends Cell Biol 2020; 30:173-188. [DOI: 10.1016/j.tcb.2019.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
|
50
|
Borgmann-Winter KE, Wang K, Bandyopadhyay S, Torshizi AD, Blair IA, Hahn CG. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophr Res 2020; 217:148-161. [PMID: 31416743 PMCID: PMC7500806 DOI: 10.1016/j.schres.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Karin E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America; Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Sabyasachi Bandyopadhyay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America.
| |
Collapse
|