1
|
Pham C, Stogios PJ, Savchenko A, Mahadevan R. Computation-guided transcription factor biosensor specificity engineering for adipic acid detection. Comput Struct Biotechnol J 2024; 23:2211-2219. [PMID: 38817964 PMCID: PMC11137364 DOI: 10.1016/j.csbj.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Transcription factor (TF)-based biosensors that connect small-molecule sensing with readouts such as fluorescence have proven to be useful synthetic biology tools for applications in biotechnology. However, the development of specific TF-based biosensors is hindered by the limited repertoire of TFs specific for molecules of interest since current construction methods rely on a limited set of characterized TFs. In this study, we present an approach for engineering the specificity of TFs through a computation-based workflow using molecular docking that enables targeted alteration of TF ligand specificity. Using this method, we engineer the LysR family BenM TF to alter its specificity from its cognate ligand cis,cis-muconic acid to adipic acid through a single amino acid substitution identified by our computational workflow. When implemented in a cell-free system, the engineered biosensor shows higher ligand sensitivity, expanding the potential applications of this circuit. We further investigate ligand binding through molecular dynamics to analyze the substitution, elucidating the impact of modulating a single amino acid position on the mechanism of BenM ligand binding. This study represents the first application of biomolecular modeling methods for altering BenM specificity and for gaining insights into how mutations influence the structural dynamics of BenM. Such methods can potentially be applied to other TFs to alter specificity and analyze the dynamics responsible for these changes, highlighting the applicability of computational tools for informing experiments. In addition, our developed adipic acid biosensor can be applied for the identification and engineering of enzymes to produce adipic acid.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
- The Institute of Biomedical Engineering, University of Toronto, Ontario, Canada
| |
Collapse
|
2
|
Zhu F, Xia L, Wen J, Zhang L. Recent Advances in the Biosynthesis of Mid- and Long-Chain Dicarboxylic Acids Using Terminally Oxidizing Unconventional Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19566-19580. [PMID: 39207200 DOI: 10.1021/acs.jafc.4c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As high-performance monomers for the manufacture of polyamide materials, mid- and long-chain dicarboxylic acids (DCAi, i ≥ 6) have received extensive attention from researchers. Biosynthesis is gradually replacing chemical synthesis due to its outstanding advantages in the industrial production of mid- and long-chain dicarboxylic acids, which is mostly achieved by using the strong terminal oxidation ability of nonmodel microorganisms such as Candida tropicalis to oxidize hydrophobic substrates such as alkanes. Here, we first summarize the metabolic pathways of oxidative alkane conversion into dicarboxylic acid by terminally oxidizing unconventional yeasts and the corresponding metabolic engineering strategies. Then, we summarize the research progress on new dicarboxylic acid production processes. Finally, the future development directions in the biosynthesis of mid- and long-chain dicarboxylic acids are prospected from synthetic biology and bioprocess engineering, which can also provide a reference for the synthesis of other biobased chemicals and biomaterials.
Collapse
Affiliation(s)
- Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Xia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| |
Collapse
|
3
|
Liu L, He Y, Li Q, Cao C, Huang M, Ma D, Wu X, Zhu Q. Self-supported bimetallic array superstructures for high-performance coupling electrosynthesis of formate and adipate. EXPLORATION (BEIJING, CHINA) 2024; 4:20230043. [PMID: 38939862 PMCID: PMC11189569 DOI: 10.1002/exp.20230043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 06/29/2024]
Abstract
The coupling electrosynthesis involving CO2 upgrade conversion is of great significance for the sustainable development of the environment and energy but is challenging. Herein, we exquisitely constructed the self-supported bimetallic array superstructures from the Cu(OH)2 array architecture precursor, which can enable high-performance coupling electrosynthesis of formate and adipate at the anode and the cathode, respectively. Concretely, the faradaic efficiencies (FEs) of CO2-to-formate and cyclohexanone-to-adipate conversion simultaneously exceed 90% at both electrodes with excellent stabilities. Such high-performance coupling electrosynthesis is highly correlated with the porous nanosheet array superstructure of CuBi alloy as the cathode and the nanosheet-on-nanowire array superstructure of CuNi hydroxide as the anode. Moreover, compared to the conventional electrolysis process, the cell voltage is substantially reduced while maintaining the electrocatalytic performance for coupling electrosynthesis in the two-electrode electrolyzer with the maximal FEformate and FEadipate up to 94.2% and 93.1%, respectively. The experimental results further demonstrate that the bimetal composition modulates the local electronic structures, promoting the reactions toward the target products. Prospectively, our work proposes an instructive strategy for constructing adaptive self-supported superstructures to achieve efficient coupling electrosynthesis.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yingchun He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Changsheng Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
| | - Minghong Huang
- School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Dong‐Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin‐Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qi‐Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Nurwono G, O'Keeffe S, Liu N, Park JO. Sustainable metabolic engineering requires a perfect trifecta. Curr Opin Biotechnol 2023; 83:102983. [PMID: 37573625 PMCID: PMC10960266 DOI: 10.1016/j.copbio.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
The versatility of cellular metabolism in converting various substrates to products inspires sustainable alternatives to conventional chemical processes. Metabolism can be engineered to maximize the yield, rate, and titer of product generation. However, the numerous combinations of substrate, product, and organism make metabolic engineering projects difficult to navigate. A perfect trifecta of substrate, product, and organism is prerequisite for an environmentally and economically sustainable metabolic engineering endeavor. As a step toward this endeavor, we propose a reverse engineering strategy that starts with product selection, followed by substrate and organism pairing. While a large bioproduct space has been explored, the top-ten compounds have been synthesized mainly using glucose and model organisms. Unconventional feedstocks (e.g. hemicellulosic sugars and CO2) and non-model organisms are increasingly gaining traction for advanced bioproduct synthesis due to their specialized metabolic modes. Judicious selection of the substrate-organism-product combination will illuminate the untapped territory of sustainable metabolic engineering.
Collapse
Affiliation(s)
| | - Samantha O'Keeffe
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Nian Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Sansatchanon K, Sudying P, Promdonkoy P, Kingcha Y, Visessanguan W, Tanapongpipat S, Runguphan W, Kocharin K. Development of a Novel D-Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746. J Microbiol 2023; 61:853-863. [PMID: 37707762 DOI: 10.1007/s12275-023-00077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains, Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism. We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic acid production, which reduced the product's optical purity. We then used CRISPR/dCas9-assisted transcriptional repression to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.
Collapse
Affiliation(s)
- Kitisak Sansatchanon
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pipat Sudying
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathum Thani, 12120, Thailand
- Chulabhorn Research Institute, Laksi, Bangkok, 10210, Thailand
| | - Peerada Promdonkoy
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Yutthana Kingcha
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Kanokarn Kocharin
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
6
|
Zhi R, Cheng N, Li G, Deng Y. Biosensor-based high-throughput screening enabled efficient adipic acid production. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12669-z. [PMID: 37421473 DOI: 10.1007/s00253-023-12669-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Adipic acid is an industrially important chemical, but the current approach to synthesize it can be of serious pollution to the environment. Rencently, bio-based production of adipic acid has significantly advanced with the development of metabolic engineering and synthetic biology. However, genetic heterogeneity-caused decrease of product titer has largely limited the industrialization of chemicals like adipic acid. Therefore, in the attempt to overcome this challenge, we constitutively expressed the reverse adipate degradation pathway, designed and optimized an adipic acid biosensor, and established a high-throughput screening platform to screen for high-performance strains based on the optimized biosensor. Using this platform, we successfully screened a strain with an adipic acid titer of 188.08 mg·L-1. Coupling the screening platform with fermentation optimization, the titer of adipic acid reached 531.88 mg·L-1 under shake flask fermentation, which achieved an 18.78-fold improvement comparing to the initial strain. Scale-up fermentation in a 5-L fermenter utilizing the screened high-performance strain was eventually conducted, in which the adipic acid titer reached 3.62 g·L-1. Overall, strategies developed in this study proved to be a potentially efficient method in reducing the genetic heterogeneity and was expected to provide guidance in helping to build a more efficient industrial screening process. KEY POINTS: • Developed a fine-tuned adipic acid biosensor. • Established a high-throughput screening platform to screen high-performance strains. • The titer of adipic acid reached 3.62 g·L-1 in a 5-L fermenter.
Collapse
Affiliation(s)
- Rui Zhi
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nan Cheng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guohui Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
7
|
Post C, Maniar D, Voet VSD, Folkersma R, Loos K. Biobased 2,5-Bis(hydroxymethyl)furan as a Versatile Building Block for Sustainable Polymeric Materials. ACS OMEGA 2023; 8:8991-9003. [PMID: 36936293 PMCID: PMC10018510 DOI: 10.1021/acsomega.2c07629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Furanic polymers, currently mainly represented by polyethylene 2,5-furandicarboxylate (PEF), also known as polyethylene furanoate, have a fantastic potential to replace fossil-based polymers: for example, polyethylene terephthalate (PET). While 2,5-furandicarboxylic acid (FDCA), a precursor of PEF, and its derived polymers have been studied extensively, 2,5-bis(hydroxymethyl)furan (BHMF) has received relatively little attention so far. Similarly to FDCA, BHMF is a biobased platform chemical derived from renewable sources such as sugars. This review highlights different polymerization techniques for BHMF-based polyesters and addresses BHMF's relative instability during the synthesis of BHMF-derived polymers, including polycarbonates and polyurethanes. Furthermore, the degradability of furanic polyesters is discussed and BHMF's toxicity is briefly elaborated.
Collapse
Affiliation(s)
- Cornelis Post
- Macromolecular
Chemistry & New Polymeric Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Circular
Plastics, NHL Stenden University of Applied
Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Dina Maniar
- Macromolecular
Chemistry & New Polymeric Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Vincent S. D. Voet
- Circular
Plastics, NHL Stenden University of Applied
Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Rudy Folkersma
- Circular
Plastics, NHL Stenden University of Applied
Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry & New Polymeric Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
8
|
Lignin Valorization: Production of High Value-Added Compounds by Engineered Microorganisms. Catalysts 2023. [DOI: 10.3390/catal13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Lignin is the second most abundant polymer in nature, which is also widely generated during biomass fractionation in lignocellulose biorefineries. At present, most of technical lignin is simply burnt for energy supply although it represents the richest natural source of aromatics, and thus it is a promising feedstock for generation of value-added compounds. Lignin is heterogeneous in composition and recalcitrant to degradation, with this substantially hampering its use. Notably, microbes have evolved particular enzymes and specialized metabolic pathways to degrade this polymer and metabolize its various aromatic components. In recent years, novel pathways have been designed allowing to establish engineered microbial cell factories able to efficiently funnel the lignin degradation products into few metabolic intermediates, representing suitable starting points for the synthesis of a variety of valuable molecules. This review focuses on recent success cases (at the laboratory/pilot scale) based on systems metabolic engineering studies aimed at generating value-added and specialty chemicals, with much emphasis on the production of cis,cis-muconic acid, a building block of recognized industrial value for the synthesis of plastic materials. The upgrade of this global waste stream promises a sustainable product portfolio, which will become an industrial reality when economic issues related to process scale up will be tackled.
Collapse
|
9
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
10
|
Son J, Sohn YJ, Baritugo KA, Jo SY, Song HM, Park SJ. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnol Adv 2023; 62:108070. [PMID: 36462631 DOI: 10.1016/j.biotechadv.2022.108070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
11
|
Bonuccelli G, Sotgia F, Lisanti MP. Identification of natural products and FDA-approved drugs for targeting cancer stem cell (CSC) propagation. Aging (Albany NY) 2022; 14:9466-9483. [PMID: 36455875 PMCID: PMC9792210 DOI: 10.18632/aging.204412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Here, we report the identification of key compounds that effectively inhibit the anchorage-independent growth and propagation of cancer stem cells (CSCs), as determined via screening using MCF7 cells, a human breast adenocarcinoma cell line. More specifically, we employed the mammosphere assay as an experimental format, which involves the generation of 3D spheroid cultures, using low-attachment plates. These positive hit compounds can be divided into 5 categories: 1) dietary supplements (quercetin and glucosamine); 2) FDA-approved drugs (carvedilol and ciprofloxacin); 3) natural products (aloe emodin, aloin, tannic acid, chlorophyllin copper salt, azelaic acid and adipic acid); 4) flavours (citral and limonene); and 5) vitamins (nicotinamide and nicotinic acid). In addition, for the compounds quercetin, glucosamine and carvedilol, we further assessed their metabolic action, using the Seahorse to conduct metabolic flux analysis. Our results indicate that these treatments can affect glycolytic flux and suppress oxidative mitochondrial metabolism (OXPHOS). Therefore, quercetin, glucosamine and carvedilol can reprogram the metabolic phenotype of breast cancer cells. Despite having diverse chemical structures, these compounds all interfere with mitochondrial metabolism. As these compounds halt CSCs propagation, ultimately, they may have therapeutic potential.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
12
|
Pyo SH, Sayed M, Örn OE, Amorrortu Gallo J, Fernandez Ros N, Hatti-Kaul R. A facile process for adipic acid production in high yield by oxidation of 1,6-hexanediol using the resting cells of Gluconobacter oxydans. Microb Cell Fact 2022; 21:223. [PMID: 36307807 PMCID: PMC9617331 DOI: 10.1186/s12934-022-01947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Background Adipic acid (AA) is one of the most important industrial chemicals used mainly for the production of Nylon 6,6 but also for making polyurethanes, plasticizers, and unsaturated polyester resins, and more recently as a component in the biodegradable polyester poly(butylene adipate terephthalate) (PBAT). The main route for AA production utilizes benzene as feedstock and generates copious amounts of the greenhouse gas NO2. Hence, alternative clean production routes for AA from renewable bio-based feedstock are drawing increasing attention. We have earlier reported the potential of Gluconobacter oxydans cells to oxidize 1,6-hexanediol, a potentially biobased diol to AA. Results The present report involves a study on the effect of different parameters on the microbial transformation of 1,6-hexanediol to adipic acid, and subsequently testing the process on a larger lab scale for achieving maximal conversion and yield. Comparison of three wild-type strains of G. oxydans DSM50049, DSM2003, and DSM2343 for the whole-cell biotransformation of 10 g/L 1,6-hexanediol to adipic acid in batch mode at pH 7 and 30 °C led to the selection of G. oxydans DSM50049, which showed 100% conversion of the substrate with over 99% yield of adipic acid in 30 h. An increase in the concentrations of the substrate decreased the degree of conversion, while the product up to 25 g/L in batch and 40 g/L in fed-batch showed no inhibition on the conversion. Moreover, controlling the pH of the reaction at 5–5.5 was required for the cascade oxidation reactions to work. Cell recycling for the biotransformation resulted in a significant decrease in activity during the third cycle. Meanwhile, the fed-batch mode of transformation by intermittent addition of 1,6-hexanediol (30 g in total) in 1 L scale resulted in complete conversion with over 99% yield of adipic acid (approximately 37 g/L). The product was recovered in a pure form using downstream steps without the use of any solvent. Conclusion A facile, efficient microbial process for oxidation of 1,6-hexanediol to adipic acid, having potential for scale up was demonstrated. The entire process is performed in aqueous medium at ambient temperatures with minimal greenhouse gas emissions. The enzymes involved in catalyzing the oxidation steps are currently being identified. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01947-6.
Collapse
Affiliation(s)
- Sang-Hyun Pyo
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden.
| | - Mahmoud Sayed
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden.,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Oliver Englund Örn
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden
| | - Jorge Amorrortu Gallo
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden
| | - Nídia Fernandez Ros
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100, Lund, Sweden
| |
Collapse
|
13
|
Extraction, Isolation, and Purification of Value-Added Chemicals from Lignocellulosic Biomass. Processes (Basel) 2022. [DOI: 10.3390/pr10091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review covers the operating conditions for extracting top value-added chemicals, such as levulinic acid, lactic acid, succinic acid, vanillic acid, 3-hydroxypropionic acid, xylitol, 2,5-furandicarboxylic acid, 5-hydroxymethyl furfural, chitosan, 2,3-butanediol, and xylo-oligosaccharides, from common lignocellulosic biomass. Operating principles of novel extraction methods, beyond pretreatments, such as Soxhlet extraction, ultrasound-assisted extraction, and enzymatic extraction, are also presented and reviewed. Post extraction, high-value biochemicals need to be isolated, which is achieved through a combination of one or more isolation and purification steps. The operating principles, as well as a review of isolation methods, such as membrane filtration and liquid–liquid extraction and purification using preparative chromatography, are also discussed.
Collapse
|
14
|
Electrocatalytic synthesis of adipic acid coupled with H 2 production enhanced by a ligand modification strategy. Nat Commun 2022; 13:5009. [PMID: 36008416 PMCID: PMC9411531 DOI: 10.1038/s41467-022-32769-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Adipic acid is an important building block of polymers, and is commercially produced by thermo-catalytic oxidation of ketone-alcohol oil (a mixture of cyclohexanol and cyclohexanone). However, this process heavily relies on the use of corrosive nitric acid while releases nitrous oxide as a potent greenhouse gas. Herein, we report an electrocatalytic strategy for the oxidation of cyclohexanone to adipic acid coupled with H2 production over a nickel hydroxide (Ni(OH)2) catalyst modified with sodium dodecyl sulfonate (SDS). The intercalated SDS facilitates the enrichment of immiscible cyclohexanone in aqueous medium, thus achieving 3.6-fold greater productivity of adipic acid and higher faradaic efficiency (FE) compared with pure Ni(OH)2 (93% versus 56%). This strategy is demonstrated effective for a variety of immiscible aldehydes and ketones in aqueous solution. Furthermore, we design a realistic two-electrode flow electrolyzer for electrooxidation of cyclohexanone coupling with H2 production, attaining adipic acid productivity of 4.7 mmol coupled with H2 productivity of 8.0 L at 0.8 A (corresponding to 30 mA cm−2) in 24 h. Adipic acid is an important building block of polymers, although its production relies on harmful reagents. Here, authors examined surfactant-modified nickel hydroxide for adipic acid electrosynthesis coupled with hydrogen gas evolution.
Collapse
|
15
|
Carruthers DN, Lee TS. Translating advances in microbial bioproduction to sustainable biotechnology. Front Bioeng Biotechnol 2022; 10:968437. [PMID: 36082166 PMCID: PMC9445250 DOI: 10.3389/fbioe.2022.968437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Advances in synthetic biology have radically changed our ability to rewire microorganisms and significantly improved the scalable production of a vast array of drop-in biopolymers and biofuels. The success of a drop-in bioproduct is contingent on market competition with petrochemical analogues and weighted upon relative economic and environmental metrics. While the quantification of comparative trade-offs is critical for accurate process-level decision making, the translation of industrial ecology to synthetic biology is often ambiguous and assessment accuracy has proven challenging. In this review, we explore strategies for evaluating industrial biotechnology through life cycle and techno-economic assessment, then contextualize how recent developments in synthetic biology have improved process viability by expanding feedstock availability and the productivity of microbes. By juxtaposing biological and industrial constraints, we highlight major obstacles between the disparate disciplines that hinder accurate process evaluation. The convergence of these disciplines is crucial in shifting towards carbon neutrality and a circular bioeconomy.
Collapse
Affiliation(s)
- David N. Carruthers
- Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- *Correspondence: Taek Soon Lee,
| |
Collapse
|
16
|
Saez-Jimenez V, Scrima S, Lambrughi M, Papaleo E, Mapelli V, Engqvist MKM, Olsson L. Directed Evolution of ( R)-2-Hydroxyglutarate Dehydrogenase Improves 2-Oxoadipate Reduction by 2 Orders of Magnitude. ACS Synth Biol 2022; 11:2779-2790. [PMID: 35939387 PMCID: PMC9396657 DOI: 10.1021/acssynbio.2c00162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Pathway engineering is commonly employed to improve the
production
of various metabolites but may incur in bottlenecks due to the low
catalytic activity of a particular reaction step. The reduction of
2-oxoadipate to (R)-2-hydroxyadipate is a key reaction
in metabolic pathways that exploit 2-oxoadipate conversion via α-reduction
to produce adipic acid, an industrially important platform chemical.
Here, we engineered (R)-2-hydroxyglutarate dehydrogenase
from Acidaminococcus fermentans (Hgdh)
with the aim of improving 2-oxoadipate reduction. Using a combination
of computational analysis, saturation mutagenesis, and random mutagenesis,
three mutant variants with a 100-fold higher catalytic efficiency
were obtained. As revealed by rational analysis of the mutations found
in the variants, this improvement could be ascribed to a general synergistic
effect where mutation A206V played a key role since it boosted the
enzyme’s activity by 4.8-fold. The Hgdh variants with increased
activity toward 2-oxoadipate generated within this study pave the
way for the bio-based production of adipic acid.
Collapse
Affiliation(s)
- Veronica Saez-Jimenez
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Simone Scrima
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Valeria Mapelli
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Martin K M Engqvist
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
17
|
Liu J, Liu J, Guo L, Liu J, Chen X, Liu L, Gao C. Advances in microbial synthesis of bioplastic monomers. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:35-81. [DOI: 10.1016/bs.aambs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Bretschneider L, Heuschkel I, Bühler K, Karande R, Bühler B. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120. Metab Eng 2022; 70:206-217. [DOI: 10.1016/j.ymben.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
|
19
|
Tiso T, Winter B, Wei R, Hee J, de Witt J, Wierckx N, Quicker P, Bornscheuer UT, Bardow A, Nogales J, Blank LM. The metabolic potential of plastics as biotechnological carbon sources - Review and targets for the future. Metab Eng 2021; 71:77-98. [PMID: 34952231 DOI: 10.1016/j.ymben.2021.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The plastic crisis requires drastic measures, especially for the plastics' end-of-life. Mixed plastic fractions are currently difficult to recycle, but microbial metabolism might open new pathways. With new technologies for degradation of plastics to oligo- and monomers, these carbon sources can be used in biotechnology for the upcycling of plastic waste to valuable products, such as bioplastics and biosurfactants. We briefly summarize well-known monomer degradation pathways and computed their theoretical yields for industrially interesting products. With this information in hand, we calculated replacement scenarios of existing fossil-based synthesis routes for the same products. Thereby, we highlight fossil-based products for which plastic monomers might be attractive alternative carbon sources. Notably, not the highest yield of product on substrate of the biochemical route, but rather the (in-)efficiency of the petrochemical routes (i.e., carbon, energy use) determines the potential of biochemical plastic upcycling. Our results might serve as a guide for future metabolic engineering efforts towards a sustainable plastic economy.
Collapse
Affiliation(s)
- Till Tiso
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Winter
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany
| | - Ren Wei
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Johann Hee
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Peter Quicker
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - André Bardow
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany; Institute of Energy and Climate Research (IEK 10), Research Center Jülich GmbH, Germany
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
20
|
Wirth NT, Nikel PI. Combinatorial pathway balancing provides biosynthetic access to 2-fluoro- cis, cis-muconate in engineered Pseudomonas putida. CHEM CATALYSIS 2021; 1:1234-1259. [PMID: 34977847 PMCID: PMC8711041 DOI: 10.1016/j.checat.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
The wealth of bio-based building blocks produced by engineered microorganisms seldom include halogen atoms. Muconate is a platform chemical with a number of industrial applications that could be broadened by introducing fluorine atoms to tune its physicochemical properties. The soil bacterium Pseudomonas putida naturally assimilates benzoate via the ortho-cleavage pathway with cis,cis-muconate as intermediate. Here, we harnessed the native enzymatic machinery (encoded within the ben and cat gene clusters) to provide catalytic access to 2-fluoro-cis,cis-muconate (2-FMA) from fluorinated benzoates. The reactions in this pathway are highly imbalanced, leading to accumulation of toxic intermediates and limited substrate conversion. By disentangling regulatory patterns of ben and cat in response to fluorinated effectors, metabolic activities were adjusted to favor 2-FMA biosynthesis. After implementing this combinatorial approach, engineered P. putida converted 3-fluorobenzoate to 2-FMA at the maximum theoretical yield. Hence, this study illustrates how synthetic biology can expand the diversity of nature's biochemical catalysis.
Collapse
Affiliation(s)
- Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Insights in the Degradation of Medium-Chain Length Dicarboxylic Acids in Cupriavidus necator H16 reveal Differences in β-Oxidation between Dicarboxylic Acids and Fatty Acids. Appl Environ Microbiol 2021; 88:e0187321. [PMID: 34731045 DOI: 10.1128/aem.01873-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many homologous genes encoding β-oxidation enzymes were found in the genome of Cupriavidus necator H16 (synonym: Ralstonia eutropha H16). By proteome analysis, the degradation of adipic acid was investigated and showed differences to the degradation of hexanoic acid. During β-oxidation of adipic acid, activation with coenzyme A (CoA) is catalyzed by the two-subunit acyl-CoA ligase encoded by B0198 and B0199. The operon is completed by B0200 encoding a thiolase catalyzing the cleavage of acetyl-CoA at the end of the β-oxidation cycle. Strain C. necator ΔB0198-B0200 showed improved growth on adipic acid. Potential substitutes are B1239 for B0198-B0199 and A0170 as well as A1445 for B0200. A deletion mutant without all three thiolases showed diminished growth. The deletion of detected acyl-CoA dehydrogenase encoded by B2555 has an altered phenotype grown with sebacic acid but not adipic acid. With hexanoic acid, acyl-CoA dehydrogenase encoded by B0087 was detected on 2D gels. Both enzymes are active with adipoyl-CoA and hexanoyl-CoA as substrates, but specific activity indicates a higher activity of B2555 with adipoyl-CoA. 2D gels, growth experiments and enzyme assays suggest the specific expression of B2555 for the degradation of dicarboxylic acids. In C. necator H16 the degradation of carboxylic acids potentially changes with an increasing chain length. Two operons involved in growth with long-chain fatty acids seem to be replaced during growth on medium-chain carboxylic acids. Only two deletion mutants showed diminished growth. Replacement of deleted genes with one of the numerous homologous is likely. Importance The biotechnologically interesting bacterium Cupriavidus necator H16 was thoroughly investigated. Fifteen years ago, it was sequenced entirely and annotated (Pohlmann et al., 2006). Nevertheless, the degradation of monocarboxylic fatty acids and dicarboxylic acids has not been elucidated completely. C. necator is used to produce value-added products from affordable substrates. One of our investigations ' primary targets is the biotechnological production of organic acids with different and specific chain lengths. The versatile metabolism of carboxylic acids recommends C. necator H16 as a candidate for producing value-added organic products. Therefore, the metabolism of these compounds is of interest, and for different applications in industry, understanding such central metabolic pathways is crucial.
Collapse
|
22
|
Shin JH, Andersen AJC, Achterberg P, Olsson L. Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid. Microb Cell Fact 2021; 20:155. [PMID: 34348702 PMCID: PMC8336102 DOI: 10.1186/s12934-021-01647-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Adipic acid, a six-carbon platform chemical mainly used in nylon production, can be produced via reverse β-oxidation in microbial systems. The advantages posed by Corynebacterium glutamicum as a model cell factory for implementing the pathway include: (1) availability of genetic tools, (2) excretion of succinate and acetate when the TCA cycle becomes overflown, (3) initiation of biosynthesis with succinyl-CoA and acetyl-CoA, and (4) established succinic acid production. Here, we implemented the reverse β-oxidation pathway in C. glutamicum and assessed its functionality for adipic acid biosynthesis. RESULTS To obtain a non-decarboxylative condensation product of acetyl-CoA and succinyl-CoA, and to subsequently remove CoA from the condensation product, we introduced heterologous 3-oxoadipyl-CoA thiolase and acyl-CoA thioesterase into C. glutamicum. No 3-oxoadipic acid could be detected in the cultivation broth, possibly due to its endogenous catabolism. To successfully biosynthesize and secrete 3-hydroxyadipic acid, 3-hydroxyadipyl-CoA dehydrogenase was introduced. Addition of 2,3-dehydroadipyl-CoA hydratase led to biosynthesis and excretion of trans-2-hexenedioic acid. Finally, trans-2-enoyl-CoA reductase was inserted to yield 37 µg/L of adipic acid. CONCLUSIONS In the present study, we engineered the reverse β-oxidation pathway in C. glutamicum and assessed its potential for producing adipic acid from glucose as starting material. The presence of adipic acid, albeit small amount, in the cultivation broth indicated that the synthetic genes were expressed and functional. Moreover, 2,3-dehydroadipyl-CoA hydratase and β-ketoadipyl-CoA thiolase were determined as potential target for further improvement of the pathway.
Collapse
Affiliation(s)
- Jae Ho Shin
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Puck Achterberg
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
23
|
Lee HN, Seo SY, Kim HJ, Park JH, Park E, Choi SS, Lee SJ, Kim ES. Artificial cell factory design for shikimate production in Escherichia coli. J Ind Microbiol Biotechnol 2021; 48:6316114. [PMID: 34227672 PMCID: PMC8788726 DOI: 10.1093/jimb/kuab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/26/2021] [Indexed: 11/13/2022]
Abstract
Shikimate is a key intermediate in high-demand for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu®). Microbial-based shikimate production strategies have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. Although shikimate biosynthesis has been reported in several engineered bacterial species, the shikimate production yield is still unsatisfactory. This study designed an Escherichia coli cell factory and optimized the fed-batch culture process to achieve a high titer of shikimate production. Using the previously constructed dehydroshikimate (DHS)-overproducing E. coli strain, two genes (aroK and aroL) responsible for converting shikimate to the next step were disrupted to facilitate shikimate accumulation. The genes with negative effects on shikimate biosynthesis, including tyrR, ptsG, and pykA, were disrupted. In contrast, several shikimate biosynthetic pathway genes, including aroB, aroD, aroF, aroG, and aroE, were overexpressed to maximize the glucose uptake and intermediate flux. The shiA involved in shikimate transport was disrupted, and the tktA involved in the accumulation of both PEP and E4P was overexpressed. The rationally designed shikimate-overproducing E. coli strain grown in an optimized medium produced approximately 101 g/L of shikimate in 7-L fed-batch fermentation, which is the highest level of shikimate production reported thus far. Overall, rational cell factory design and culture process optimization for microbial-based shikimate production will play a key role in complementing traditional plant-derived shikimate production processes.
Collapse
Affiliation(s)
- Han-Na Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.,STR Biotech Co., Ltd., Bioplaza 4-3, 56, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Seung-Yeul Seo
- STR Biotech Co., Ltd., Bioplaza 4-3, 56, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Hey-Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Ji-Hoon Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Eunhwi Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Sang Joung Lee
- STR Biotech Co., Ltd., Bioplaza 4-3, 56, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
24
|
Burgos-Morales O, Gueye M, Lacombe L, Nowak C, Schmachtenberg R, Hörner M, Jerez-Longres C, Mohsenin H, Wagner H, Weber W. Synthetic biology as driver for the biologization of materials sciences. Mater Today Bio 2021; 11:100115. [PMID: 34195591 PMCID: PMC8237365 DOI: 10.1016/j.mtbio.2021.100115] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
Collapse
Affiliation(s)
- O. Burgos-Morales
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Gueye
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - L. Lacombe
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - C. Nowak
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - R. Schmachtenberg
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Hörner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - C. Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| | - H. Mohsenin
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - H.J. Wagner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Department of Biosystems Science and Engineering - D-BSSE, ETH Zurich, Basel, 4058, Switzerland
| | - W. Weber
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
25
|
Ackermann YS, Li WJ, Op de Hipt L, Niehoff PJ, Casey W, Polen T, Köbbing S, Ballerstedt H, Wynands B, O'Connor K, Blank LM, Wierckx N. Engineering adipic acid metabolism in Pseudomonas putida. Metab Eng 2021; 67:29-40. [PMID: 33965615 DOI: 10.1016/j.ymben.2021.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant β-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h-1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate-1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts.
Collapse
Affiliation(s)
- Yannic S Ackermann
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Wing-Jin Li
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Leonie Op de Hipt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Paul-Joachim Niehoff
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - William Casey
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Sebastian Köbbing
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Kevin O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
26
|
Watcharawipas A, Sae-Tang K, Sansatchanon K, Sudying P, Boonchoo K, Tanapongpipat S, Kocharin K, Runguphan W. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield. FEMS Yeast Res 2021; 21:6226681. [PMID: 33856451 DOI: 10.1093/femsyr/foab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
D-lactic acid is a chiral three-carbon organic acid that can improve the thermostability of polylactic acid. Here, we systematically engineered Saccharomyces cerevisiae to produce D-lactic acid from glucose, a renewable carbon source, at near theoretical yield. Specifically, we screened D-lactate dehydrogenase (DLDH) variants from lactic acid bacteria in three different genera and identified the Leuconostoc pseudomesenteroides variant (LpDLDH) as having the highest activity in yeast. We then screened single-gene deletions to minimize the production of the side products ethanol and glycerol as well as prevent the conversion of D-lactic acid back to pyruvate. Based on the results of the DLDH screening and the single-gene deletions, we created a strain called ASc-d789M which overexpresses LpDLDH and contains deletions in glycerol pathway genes GPD1 and GPD2 and lactate dehydrogenase gene DLD1, as well as downregulation of ethanol pathway gene ADH1 using the L-methionine repressible promoter to minimize impact on growth. ASc-d789M produces D-lactic acid at a titer of 17.09 g/L in shake-flasks (yield of 0.89 g/g glucose consumed or 89% of the theoretical yield). Fed-batch fermentation resulted in D-lactic acid titer of 40.03 g/L (yield of 0.81 g/g glucose consumed). Altogether, our work represents progress towards efficient microbial production of D-lactic acid.
Collapse
Affiliation(s)
- Akaraphol Watcharawipas
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kittapong Sae-Tang
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kitisak Sansatchanon
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Pipat Sudying
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kriengsak Boonchoo
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kanokarn Kocharin
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
27
|
Phung Hai TA, Tessman M, Neelakantan N, Samoylov AA, Ito Y, Rajput BS, Pourahmady N, Burkart MD. Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules 2021; 22:1770-1794. [PMID: 33822601 DOI: 10.1021/acs.biomac.0c01610] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the depletion of fossil fuels, higher oil prices, and greenhouse gas emissions, the scientific community has been conducting an ongoing search for viable renewable alternatives to petroleum-based products, with the anticipation of increased adaptation in the coming years. New academic and industrial developments have encouraged the utilization of renewable resources for the development of ecofriendly and sustainable materials, and here, we focus on those advances that impact polyurethane (PU) materials. Vegetable oils, algae oils, and polysaccharides are included among the major renewable resources that have supported the development of sustainable PU precursors to date. Renewable feedstocks such as algae have the benefit of requiring only sunshine, carbon dioxide, and trace minerals to generate a sustainable biomass source, offering an improved carbon footprint to lessen environmental impacts. Incorporation of renewable content into commercially viable polymer materials, particularly PUs, has increasing and realistic potential. Biobased polyols can currently be purchased, and the potential to expand into new monomers offers exciting possibilities for new product development. This Review highlights the latest developments in PU chemistry from renewable raw materials, as well as the various biological precursors being employed in the synthesis of thermoset and thermoplastic PUs. We also provide an overview of literature reports that focus on biobased polyols and isocyanates, the two major precursors to PUs.
Collapse
Affiliation(s)
- Thien An Phung Hai
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Marissa Tessman
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Nitin Neelakantan
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Anton A Samoylov
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Yuri Ito
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Bhausaheb S Rajput
- Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| | - Naser Pourahmady
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States.,Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| |
Collapse
|
28
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
29
|
Hao T, Li G, Zhou S, Deng Y. Engineering the Reductive TCA Pathway to Dynamically Regulate the Biosynthesis of Adipic Acid in Escherichia coli. ACS Synth Biol 2021; 10:632-639. [PMID: 33687200 DOI: 10.1021/acssynbio.0c00648] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adipic acid is a versatile aliphatic dicarboxylic acid. It is applied mainly in the polymerization of nylon-6,6, which accounts for 50.8% of the global consumption market of adipic acid. The microbial production of adipic acid avoids the usage of petroleum resources and the emission of harmful nitrogen oxides that are generated by traditional chemical synthetic approaches. However, in the fermentation process, the low theoretical yield and the usage of expensive inducers hinders the large-scale industrial production of adipic acid. To overcome these challenges, we established an oxygen-dependent dynamic regulation (ODDR) system to control the expression of key genes (sucD, pyc, mdh, and frdABCD) that could be induced to enhance the metabolic flux of the reductive TCA pathway under anaerobic conditions. Coupling of the constitutively expressed adipic acid synthetic pathway not only avoids the use of inducers but also increases the theoretical yield by nearly 50%. After the gene combination and operon structure were optimized, the reaction catalyzed by frdABCD was found to be the rate-limiting step. Further optimizing the relative expression levels of sucD, pyc, and frdABCD improved the titer of adipic acid 41.62-fold compared to the control strain Mad1415, demonstrating the superior performance of our ODDR system.
Collapse
Affiliation(s)
- Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
30
|
Hoff B, Plassmeier J, Blankschien M, Letzel AC, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power-Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2021; 60:2258-2278. [PMID: 33026132 DOI: 10.1002/anie.202004248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Fermentation as a production method for chemicals is especially attractive, as it is based on cheap renewable raw materials and often exhibits advantages in terms of costs and sustainability. The tremendous development of technology in bioscience has resulted in an exponentially increasing knowledge about biological systems and has become the main driver for innovations in the field of metabolic engineering. Progress in recombinant DNA technology, genomics, and computational methods open new, cheaper, and faster ways to metabolically engineer microorganisms. Existing biosynthetic pathways for natural products, such as vitamins, organic acids, amino acids, or secondary metabolites, can be discovered and optimized efficiently, thereby enabling competitive commercial production processes. Novel biosynthetic routes can now be designed by the rearrangement of nature's unlimited number of enzymes and metabolic pathways in microbial strains. This expands the range of chemicals accessible by biotechnology and has yielded the first commercial products, while new fermentation technologies targeting novel active ingredients, commodity chemicals, and CO2 -fixation methods are on the horizon.
Collapse
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Jens Plassmeier
- Biomaterials, Conagen, Inc., 15 DeAngelo Drive, 01730, Bedford, MA, USA
| | - Matthew Blankschien
- James R. Randall Research Center, ADM, 1001 North Brush College Road, 62521, Decatur, Il, USA
| | - Anne-Catrin Letzel
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Lauralynn Kourtz
- R&D, Allied Microbiota, 1345 Ave of Americas, 10105, New York, NY, USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Walter Koch
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| |
Collapse
|
31
|
Zhang L, Zheng J, Zou W, Shu Y, Yang W. Microwave-Assisted Nickel-Catalyzed Rapid Reductive Coupling of Ethyl 3-iodopropionate to Adipic Acid. Catal Letters 2021. [DOI: 10.1007/s10562-020-03496-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol Adv 2020; 43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
|
33
|
Zhang X, Liu Y, Wang J, Zhao Y, Deng Y. Biosynthesis of adipic acid in metabolically engineered Saccharomyces cerevisiae. J Microbiol 2020; 58:1065-1075. [PMID: 33095385 DOI: 10.1007/s12275-020-0261-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/26/2022]
Abstract
Adipic Acid (AA) is a valued platform chemical compound, which can be used as a precursor of nylon-6,6. Due to the generation of an enormous amount of nitric oxide metabolites and the growing depletion of oil resources as a result of AA production from a mixture of cyclohexanol and cyclohexanone, the microbial methods for synthesizing AA have attracted significant attention. Of the several AA-producing pathways, the reverse adipate degradation pathway in Thermobifida fusca (Tfu RADP) is reported to be the most efficient, which has been confirmed in Escherichia coli. In this study, the heterologous Tfu RADP was constructed for producing AA in S. cerevisiae by co-expressing genes of Tfu_0875, Tfu_2399, Tfu_0067, Tfu_1647, Tfu_2576, and Tfu_2576. The AA titer combined with biomass, cofactors and other by-products was all determined after fermentation. During batch fermentation in a shake flask, the maximum AA titer was 3.83 mg/L, while the titer increased to 10.09 mg/L during fed-batch fermentation in a 5-L bioreactor after fermentation modification.
Collapse
Affiliation(s)
- Xi Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, 100048, P. R. China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, 100048, P. R. China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China.
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China.
| |
Collapse
|
34
|
Hoff B, Plassmeier J, Blankschien M, Letzel A, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power—Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Jens Plassmeier
- Biomaterials Conagen, Inc. 15 DeAngelo Drive 01730 Bedford, MA USA
| | - Matthew Blankschien
- James R. Randall Research Center ADM 1001 North Brush College Road 62521 Decatur, Il USA
| | - Anne‐Catrin Letzel
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Lauralynn Kourtz
- R&D Allied Microbiota 1345 Ave of Americas 10105 New York, NY USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Walter Koch
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| |
Collapse
|
35
|
Suitor JT, Varzandeh S, Wallace S. One-Pot Synthesis of Adipic Acid from Guaiacol in Escherichia coli. ACS Synth Biol 2020; 9:2472-2476. [PMID: 32786923 DOI: 10.1021/acssynbio.0c00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adipic acid is one of the most important small molecules in the modern chemical industry. However, the damaging environmental impact of the current industrial synthesis of adipic acid has necessitated the development of greener, biobased approaches to its manufacture. Herein we report the first one-pot synthesis of adipic acid from guaiacol, a lignin-derived feedstock, using genetically engineered whole-cells of Escherichia coli. The reaction is mild, efficient, requires no additional additives or reagents, and produces no byproducts. This study demonstrates how modern synthetic biology can be used to valorize abundant feedstocks into industrially relevant small molecules in living cells.
Collapse
Affiliation(s)
- Jack T. Suitor
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| | - Simon Varzandeh
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| | - Stephen Wallace
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| |
Collapse
|
36
|
Regulatory control circuits for stabilizing long-term anabolic product formation in yeast. Metab Eng 2020; 61:369-380. [DOI: 10.1016/j.ymben.2020.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
|
37
|
Fully biological production of adipic acid analogs from branched catechols. Sci Rep 2020; 10:13367. [PMID: 32770001 PMCID: PMC7414886 DOI: 10.1038/s41598-020-70158-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 01/02/2023] Open
Abstract
Microbial production of adipic acid from lignin-derived monomers, such as catechol, is a greener alternative to the petrochemical-based process. Here, we produced adipic acid from catechol using catechol 1,2-dioxygenase (CatA) and a muconic acid reductase (MAR) in Escherichia coli. As the reaction progressed, the pH of the media dropped from 7 to 4-5 and the muconic acid isomerized from the cis,cis (ccMA) to the cis,trans (ctMA) isomer. Feeding experiments suggested that cells preferentially uptook ctMA and that MAR efficiently reduced all muconic isomers to adipic acid. Intrigued by the substrate promiscuity of MAR, we probed its utility to produce branched chiral diacids. Using branched catechols likely found in pretreated lignin, we found that while MAR fully reduced 2-methyl-muconic acid to 2-methyl-adipic acid, MAR reduced only one double bond in 3-substituted muconic acids. In the future, MAR's substrate promiscuity could be leveraged to produce chiral-branched adipic acid analogs to generate branched, nylon-like polymers with reduced crystallinity.
Collapse
|
38
|
Hydrogenation of Trans,Trans-Muconic Acid to Bio-Adipic Acid: Mechanism Identification and Kinetic Modelling. Processes (Basel) 2020. [DOI: 10.3390/pr8080929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The hydrogenation of trans,trans-muconic acid was investigated on a Pt/C 5% (wt) catalyst in a batch slurry reactor at constant hydrogen pressure (4 bar) and temperature (323, 333 and 343 K), with the purpose of developing a kinetic model able to predict conversions and product distributions. A dual-site Langmuir–Hinshelwood–Hougen–Watson (LHHW) model with hydrogen dissociation provided good fitting of the experimental data. The model parameters were regressed by robust numerical methods to overcome the computational challenges of the model parameters’ collinearity. Different reaction mechanisms were tested; the best model involved two subsequent hydrogenation steps. The first step yielded from trans,trans-muconic acid a monounsaturated intermediate (trans-2-hexenedioic acid), which was further hydrogenated to adipic acid in the second step. The intermediate was subjected to an equilibrium isomerization with cis-2-hexenedioic acid. The activation energy values and the rate constants were calculated for the reactions, providing the first reference for trans,trans-muconic acid hydrogenation.
Collapse
|
39
|
Niu W, Willett H, Mueller J, He X, Kramer L, Ma B, Guo J. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440. Metab Eng 2020; 59:151-161. [DOI: 10.1016/j.ymben.2020.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/28/2022]
|
40
|
Yan W, Zhang G, Wang J, Liu M, Sun Y, Zhou Z, Zhang W, Zhang S, Xu X, Shen J, Jin X. Recent Progress in Adipic Acid Synthesis Over Heterogeneous Catalysts. Front Chem 2020; 8:185. [PMID: 32296677 PMCID: PMC7136574 DOI: 10.3389/fchem.2020.00185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Adipic acid is one of the most important feedstocks for producing resins, nylons, lubricants, plasticizers. Current industrial petrochemical process, producing adipic acid from KA oil, catalyzed by nitric acid, has a serious pollution to the environment, due to the formation of waste nitrous oxide. Hence, developing cleaner methods to produce adipic acid has attracted much attention of both industry and academia. This mini-review article discussed advances on adipic acid synthesis from bio-renewable feedstocks, as well as most recent progress on cleaner technology from fossil fuels over novel catalytic materials. This work on recent advances in green adipic acid production will provide insights and guidance to further study of various other industrial processes for producing nylon precursors.
Collapse
Affiliation(s)
- Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Guangyu Zhang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Yu Sun
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Ziqi Zhou
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Wenxiang Zhang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Shuxia Zhang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Xiaoqiang Xu
- Oil Production Group#2, Huabei Oil Field Company at PetroChina, Langfang, China
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| |
Collapse
|
41
|
Lin CY, Eudes A. Strategies for the production of biochemicals in bioenergy crops. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:71. [PMID: 32318116 PMCID: PMC7158082 DOI: 10.1186/s13068-020-01707-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/02/2020] [Indexed: 05/12/2023]
Abstract
Industrial crops are grown to produce goods for manufacturing. Rather than food and feed, they supply raw materials for making biofuels, pharmaceuticals, and specialty chemicals, as well as feedstocks for fabricating fiber, biopolymer, and construction materials. Therefore, such crops offer the potential to reduce our dependency on petrochemicals that currently serve as building blocks for manufacturing the majority of our industrial and consumer products. In this review, we are providing examples of metabolites synthesized in plants that can be used as bio-based platform chemicals for partial replacement of their petroleum-derived counterparts. Plant metabolic engineering approaches aiming at increasing the content of these metabolites in biomass are presented. In particular, we emphasize on recent advances in the manipulation of the shikimate and isoprenoid biosynthetic pathways, both of which being the source of multiple valuable compounds. Implementing and optimizing engineered metabolic pathways for accumulation of coproducts in bioenergy crops may represent a valuable option for enhancing the commercial value of biomass and attaining sustainable lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
42
|
Capelli S, Motta D, Evangelisti C, Dimitratos N, Prati L, Pirola C, Villa A. Effect of Carbon Support, Capping Agent Amount, and Pd NPs Size for Bio-Adipic Acid Production from Muconic Acid and Sodium Muconate. NANOMATERIALS 2020; 10:nano10030505. [PMID: 32168904 PMCID: PMC7153248 DOI: 10.3390/nano10030505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 11/21/2022]
Abstract
The effect of support, stabilizing agent, and Pd nanoparticles (NPs) size was studied for sodium muconate and t,t-muconic acid hydrogenation to bio-adipic acid. Three different activated carbons (AC) were used (Norit, KB, and G60) and carbon morphology did not affect the substrate conversion, but it greatly influenced the adipic acid yield. 1% Pd/KB Darco catalyst, which has the highest surface area and Pd surface exposure, and the smallest NPs size displayed the highest activity. Furthermore, the effect of the amount of the protective agent was studied varying metal/protective agent weight ratios in the range of 1/0.00–1/1.20, using KB as the chosen support. For sodium muconate reduction 1% Pd/KB_1.2 catalyst gave the best results in terms of activity (0.73 s−1), conversion, and adipic acid yield (94.8%), while for t,t-muconic acid hydrogenation the best activity result (0.85 s−1) was obtained with 1% Pd/KB_0.0 catalyst. Correlating the results obtained from XPS and TEM analyses with catalytic results, we found that the amount of PVA (polyvinyl alcohol) influences mean Pd NPs size, Pd(0)/Pd(II) ratio, and Pd surface exposure. Pd(0)/Pd(II) ratio and Pd NPs size affected adipic acid yield and activity during sodium muconate hydrogenation, respectively, while adipic acid yield was related by exposed Pd amount during t,t-muconic acid hydrogenation. The synthesized catalysts showed higher activity than commercial 5% Pd/AC.
Collapse
Affiliation(s)
- Sofia Capelli
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy; (L.P.); (C.P.)
- Correspondence: (S.C.); (A.V.); Tel.: +39-025-031-4365 (S.C.); +39-025-031-4361 (A.V.)
| | - Davide Motta
- School of Chemistry, Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, UK;
| | - Claudio Evangelisti
- National Council of the Research, CNR-Istituto di Chimica dei Composti Organometallici, Via G. Moruzzi 1, 20124 Pisa, Italy;
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Laura Prati
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy; (L.P.); (C.P.)
| | - Carlo Pirola
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy; (L.P.); (C.P.)
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milan, Italy; (L.P.); (C.P.)
- Correspondence: (S.C.); (A.V.); Tel.: +39-025-031-4365 (S.C.); +39-025-031-4361 (A.V.)
| |
Collapse
|
43
|
Wong SS, Shu R, Zhang J, Liu H, Yan N. Downstream processing of lignin derived feedstock into end products. Chem Soc Rev 2020; 49:5510-5560. [DOI: 10.1039/d0cs00134a] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides critical analysis on various downstream processes to convert lignin derived feedstock into fuels, chemicals and materials.
Collapse
Affiliation(s)
- Sie Shing Wong
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| | - Riyang Shu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
| | - Jiaguang Zhang
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane
- Lincoln
- UK
| | - Haichao Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| |
Collapse
|
44
|
Li G, Huang D, Sui X, Li S, Huang B, Zhang X, Wu H, Deng Y. Advances in microbial production of medium-chain dicarboxylic acids for nylon materials. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00338j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medium-chain dicarboxylic acids (MDCAs) are widely used in the production of nylon materials, and among which, succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic acids are particularly important for that purpose.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Dixuan Huang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Xue Sui
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Bing Huang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| |
Collapse
|
45
|
Yeung AWK, Tzvetkov NT, Gupta VK, Gupta SC, Orive G, Bonn GK, Fiebich B, Bishayee A, Efferth T, Xiao J, Silva AS, Russo GL, Daglia M, Battino M, Orhan IE, Nicoletti F, Heinrich M, Aggarwal BB, Diederich M, Banach M, Weckwerth W, Bauer R, Perry G, Bayer EA, Huber LA, Wolfender JL, Verpoorte R, Macias FA, Wink M, Stadler M, Gibbons S, Cifuentes A, Ibanez E, Lizard G, Müller R, Ristow M, Atanasov AG. Current research in biotechnology: Exploring the biotech forefront. CURRENT RESEARCH IN BIOTECHNOLOGY 2019. [DOI: 10.1016/j.crbiot.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
46
|
Choi SS, Seo SY, Park SO, Lee HN, Song JS, Kim JY, Park JH, Kim S, Lee SJ, Chun GT, Kim ES. Cell Factory Design and Culture Process Optimization for Dehydroshikimate Biosynthesis in Escherichia coli. Front Bioeng Biotechnol 2019; 7:241. [PMID: 31649923 PMCID: PMC6795058 DOI: 10.3389/fbioe.2019.00241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
3-Dehydroshikimate (DHS) is a useful starting metabolite for the biosynthesis of muconic acid (MA) and shikimic acid (SA), which are precursors of various valuable polymers and drugs. Although DHS biosynthesis has been previously reported in several bacteria, the engineered strains were far from satisfactory, due to their low DHS titers. Here, we created an engineered Escherichia coli cell factory to produce a high titer of DHS as well as an efficient system for the conversion DHS into MA. First, the genes showing negative effects on DHS accumulation in E. coli, such as tyrR (tyrosine dependent transcriptional regulator), ptsG (glucose specific sugar: phosphoenolpyruvate phosphotransferase), and pykA (pyruvate kinase 2), were disrupted. In addition, the genes involved in DHS biosynthesis, such as aroB (DHQ synthase), aroD (DHQ dehydratase), ppsA (phosphoenolpyruvate synthase), galP (D-galactose transporter), aroG (DAHP synthase), and aroF (DAHP synthase), were overexpressed to increase the glucose uptake and flux of intermediates. The redesigned DHS-overproducing E. coli strain grown in an optimized medium produced ~117 g/L DHS in 7-L fed-batch fermentation, which is the highest level of DHS production demonstrated in E. coli. To accomplish the DHS-to-MA conversion, which is originally absent in E. coli, a codon-optimized heterologous gene cassette containing asbF, aroY, and catA was expressed as a single operon under a strong promoter in a DHS-overproducing E. coli strain. This redesigned E. coli grown in an optimized medium produced about 64.5 g/L MA in 7-L fed-batch fermentation, suggesting that the rational cell factory design of DHS and MA biosynthesis could be a feasible way to complement petrochemical-based chemical processes.
Collapse
Affiliation(s)
- Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Seung-Yeul Seo
- STR Biotech Co., Ltd., Chuncheon-si, South Korea.,Department of Molecular Bio-Science, Kangwon National University, Chuncheon-si, South Korea
| | - Sun-Ok Park
- STR Biotech Co., Ltd., Chuncheon-si, South Korea
| | - Han-Na Lee
- Department of Biological Engineering, Inha University, Incheon, South Korea.,STR Biotech Co., Ltd., Chuncheon-si, South Korea
| | - Ji-Soo Song
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Ji-Yeon Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Ji-Hoon Park
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Sangyong Kim
- Green Chemistry and Materials Group, Korea Institute of Industrial Technology, Cheonan-si, South Korea.,Green Process and System Engineering Major, Korea University of Science and Technology (UST), Daejeon, South Korea
| | | | - Gie-Taek Chun
- Department of Molecular Bio-Science, Kangwon National University, Chuncheon-si, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
47
|
Wang J, Zhang R, Zhang Y, Yang Y, Lin Y, Yan Y. Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production. Metab Eng 2019; 55:191-200. [PMID: 31348998 DOI: 10.1016/j.ymben.2019.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 11/17/2022]
Abstract
Microbial-based chemical synthesis serves as a promising approach for sustainable production of industrially important products. However, limited production performance caused by metabolic burden or genetic variations poses one of the major challenges in achieving an economically viable biomanufacturing process. To address this issue, one superior strategy is to couple the product synthesis with cellular growth, which renders production obligatory for cell survival. Here we create a pyruvate-driven metabolic scenario in engineered Escherichia coli for growth-coupled bioproduction, with which we demonstrate its application in boosting production of anthranilate and its derivatives. Deletion of a minimal set of endogenous pyruvate-releasing pathways engenders anthranilate synthesis as the salvage route for pyruvate generation to support cell growth, concomitant with simultaneous anthranilate production. Further introduction of native and non-native downstream pathways affords production enhancement of two anthranilate-derived high-value products including L-tryptophan and cis, cis-muconic acid from different carbon sources. The work reported here presents a new growth-coupled strategy with demonstrated feasibility for promoting microbial production.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Ruihua Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yan Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yaping Yang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yuheng Lin
- BiotecEra Inc., 220 Riverbend Rd., Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
48
|
Capelli S, Motta D, Evangelisti C, Dimitratos N, Prati L, Pirola C, Villa A. Bio Adipic Acid Production from Sodium Muconate and Muconic Acid: A Comparison of two Systems. ChemCatChem 2019. [DOI: 10.1002/cctc.201900343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sofia Capelli
- Dipartimento di ChimicaUniversità degli Studi di Milano Via C. Golgi 19 20133 Milan Italy
| | - Davide Motta
- Cardiff Catalysis Institute, School of ChemistryCardiff University Park Place CF10 3AT Cardiff UK
| | - Claudio Evangelisti
- National Council of the ResearchCNR-ISTM Via G. Fantoli, 16/15 20138 Milan Italy
| | - Nikolaos Dimitratos
- Dipartimento di Chimica “Toso Montanari”Università degli Studi di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Laura Prati
- Dipartimento di ChimicaUniversità degli Studi di Milano Via C. Golgi 19 20133 Milan Italy
| | - Carlo Pirola
- Dipartimento di ChimicaUniversità degli Studi di Milano Via C. Golgi 19 20133 Milan Italy
| | - Alberto Villa
- Dipartimento di ChimicaUniversità degli Studi di Milano Via C. Golgi 19 20133 Milan Italy
| |
Collapse
|
49
|
Hatti-Kaul R, Nilsson LJ, Zhang B, Rehnberg N, Lundmark S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol 2019; 38:50-67. [PMID: 31151764 DOI: 10.1016/j.tibtech.2019.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
Abstract
Several concurrent developments are shaping the future of plastics. A transition to a sustainable plastics system requires not only a shift to fossil-free feedstock and energy to produce the carbon-neutral building blocks for polymers used in plastics, but also a rational design of the polymers with both desired material properties for functionality and features facilitating their recyclability. Biotechnology has an important role in producing polymer building blocks from renewable feedstocks, and also shows potential for recycling of polymers. Here, we present strategies for improving the performance and recyclability of the polymers, for enhancing degradability to monomers, and for improving chemical recyclability by designing polymers with different chemical functionalities.
Collapse
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden.
| | - Lars J Nilsson
- Environmental and Energy Systems Studies, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Baozhong Zhang
- Center for Analysis and Synthesis, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Nicola Rehnberg
- Bona Sweden AB, Murmansgatan 130, Box 210 74, SE-200 21, Malmö, Sweden
| | | |
Collapse
|
50
|
Skoog E, Shin JH, Saez-Jimenez V, Mapelli V, Olsson L. Biobased adipic acid – The challenge of developing the production host. Biotechnol Adv 2018; 36:2248-2263. [DOI: 10.1016/j.biotechadv.2018.10.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/27/2018] [Indexed: 11/28/2022]
|