1
|
Shabbir M, Atiq A, Wang J, Atiq M, Saeed N, Yildiz I, Yan X, Xing R, Abbas M. Metal‐coordinated amino acid/peptide/protein‐based supramolecular self‐assembled nanomaterials for anticancer applications. AGGREGATE 2024. [DOI: 10.1002/agt2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
AbstractBiomolecules with metals can form supramolecular nanomaterials through coordination assembly, opening new avenues for cancer theranostics and bringing unique insights into personalized nanomedicine. These biomaterials have been considered versatile and innovative nanoagents due to their structure‒function control, biological nature, and simple preparation methods. This review article summarized the recent developments in multicomponent nanomaterials formed from metal coordination interactions with amino acids, peptides, and proteins, together with anticancer drugs, for cancer theranostics. We discussed the role of functional groups anchored in building blocks for coordination interactions, and subsequently, the types of interactions were examined from a structure‒function perspective. Amino acids with different metals and anticancer drugs forming supramolecular nanomaterials and their anticancer mechanisms were highlighted. Peptides with different metals and anticancer drugs, proteins with metals and anticancer drugs used for material formations, and anticancer activity have been discussed. Ultimately, the conclusion and future outlook for multicomponent supramolecular nanomaterials offer fundamental insights into fabrication design and precision medicine.
Collapse
Affiliation(s)
- Maryam Shabbir
- Institute of Physics The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Atia Atiq
- Division of Science and Technology Department of Physics University of Education Lahore Pakistan
| | - Jiahua Wang
- Department of Radiology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Maria Atiq
- Institute of Physics The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Nyla Saeed
- Institute of Physics The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Ibrahim Yildiz
- Department of Chemistry Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
- Functional Biomaterials Group Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| | - Xuehai Yan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Ruirui Xing
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Manzar Abbas
- Department of Chemistry Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
- Functional Biomaterials Group Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| |
Collapse
|
2
|
Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug Coordination Nanoparticles and Hydrogels for Enhanced Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404053. [PMID: 38602715 DOI: 10.1002/adma.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Drug delivery is a key component of nanomedicine, and conventional delivery relies on the adsorption or encapsulation of drug molecules to a nanomaterial. Many delivery vehicles contain metal ions, such as metal-organic frameworks, metal oxides, transition metal dichalcogenides, MXene, and noble metal nanoparticles. These materials have a high metal content and pose potential long-term toxicity concerns leading to difficulties for clinical approval. In this review, recent developments are summarized in the use of drug molecules as ligands for metal coordination forming various nanomaterials and soft materials. In these cases, the drug-to-metal ratio is much higher than conventional adsorption-based strategies. The drug molecules are divided into small-molecule drugs, nucleic acids, and proteins. The formed hybrid materials mainly include nanoparticles and hydrogels, upon which targeting ligands can be grafted to improve efficacy and further decrease toxicity. The application of these materials for addressing cancer, viral infection, bacterial infection inflammatory bowel disease, and bone diseases is reviewed. In the end, some future directions are discussed from fundamental research, materials science, and medicine.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| | - Zhenyu Nie
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| |
Collapse
|
3
|
Bacanlı M, Secerli J, Karayavuz B, Erdem O, Erdoğan H. Is a non-cytotoxic and non-genotoxic novel bioinspired dipeptide structure synthesis possible for theragnostic applications? Drug Chem Toxicol 2023; 46:1015-1023. [PMID: 36050831 DOI: 10.1080/01480545.2022.2118315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
The diagnosis and treatment of the diseases in a certain coordination is a subject that has been emphasized in recent years. Theragnostics approaches allow simultaneous diagnosis and treatment of chronic diseases such as cancer. An ideal theragnostic should be biocompatible and can be used safely in humans. Although several types of theragnostics have been developed, none of yet satisfied these criteria. Bioinspired materials with noble metal centers encapsulating therapeutic and imaging agents were shown to possess theragnostic activities. In this study, it was aimed to synthesize, characterize, and evaluate the cytotoxic and genotoxic effects of self-assembly of diphenylalanine (Phe-Phe) dipeptides presence of mercury (Hg2+) ions to be used for theragnostic. Cytotoxicity and genotoxicity studies were done in mouse fibroblast (NIH/3T3) cells by 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) and single cell gel electrophoresis (Comet) assays, respectively. It was found that cell viability decreased in a dose-dependent manner in 24-, 48-, and 72-h treatment. Also, Phe-Phe dipeptides did not cause any significant changes in DNA damage at the concentrations of 1, 2, and 5 mg/mL in 4- and 24-h exposures. In the 48-h exposure, Phe-Phe peptide exposure at concentrations of 2 and 5 mg/mL caused a significant increase in DNA damage and in the 72-h of exposure, a significant increase in DNA damage was observed at all studied concentrations. According to the results of the study, it can be said that Phe-Phe dipeptides presence of Hg2+ ions are biocompatible and can be used safely for theragnostic purposes.
Collapse
Affiliation(s)
- Merve Bacanlı
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Jülide Secerli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Burcu Karayavuz
- Department of Pharmaceutical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Onur Erdem
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| | - Hakan Erdoğan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara, Turkey
| |
Collapse
|
4
|
Ji M, Liu H, Wang H, Liang X, Wei M, Shi D, Gou J, Yin T, He H, Tang X, Zhang Y. pH-Activatable copper-axitinib coordinated multifunctional nanoparticles for synergistic chemo-chemodynamic therapy against aggressive cancers. Biomater Sci 2023; 11:6267-6279. [PMID: 37545202 DOI: 10.1039/d3bm00861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging oncological treatment that eliminates tumor cells by generating lethal hydroxyl radicals (˙OH) through Fenton or Fenton-like reactions within tumors. However, the effectiveness of CDT is limited by the overexpression of glutathione (GSH) and low reaction efficiency in the tumor microenvironment (TME). To address these challenges and enhance tumor treatment, we developed a novel pH-activatable metal ion-drug coordinated nanoparticle (Cu-AXB NPs) system, incorporating a CDT agent (Cu2+) and a chemotherapeutic agent (axitinib, AXB). The obtained Cu-AXB NPs exhibited exceptional characteristics, including ultrahigh drug loading capacity (87.55%) and an average size of 180 nm. These nanoparticles also demonstrated excellent plasma stability and pH-responsive drug release, enabling prolonged circulation in the bloodstream and targeted therapy at weakly acidic tumor sites. Upon release, AXB acted as a chemotherapeutic agent, effectively eliminating tumor cells, while Cu2+ ions were reduced to Cu+ by GSH, further generating toxic ˙OH with hydrogen peroxide (H2O2) for CDT through a Fenton-like reaction. Additionally, the Cu-AXB NPs efficiently disrupted the copper metabolic balance and increased the intracellular Cu content, further amplifying the therapeutic impact of CDT. In vitro studies assessing cytotoxicity and apoptosis confirmed the superior tumor cell-killing efficacy of the Cu-AXB NPs. This enhanced efficacy can be attributed to the synergistic effect of CDT and chemotherapy. Moreover, the Cu-AXB NPs exhibited excellent tumor targeting capabilities, resulting in significant tumor inhibition (77.53% inhibition) while maintaining favorable biocompatibility in tumor-bearing mice. In conclusion, this study presents a promising and safe strategy for cancer therapy by combining CDT with chemotherapy, offering a potential breakthrough in the field of oncology.
Collapse
Affiliation(s)
- Muse Ji
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Hongbing Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Hanxun Wang
- Faculty of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Xinxin Liang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Mingli Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Dongmei Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
5
|
Chang Y, Cui P, Zhou S, Qiu L, Jiang P, Chen S, Wang C, Wang J. Metal-phenolic network for cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Zhang H, Zhu J, Li M, Chen G, Chen Q, Fang T. Supramolecular biomaterials for enhanced cancer immunotherapy. J Mater Chem B 2022; 10:7183-7193. [DOI: 10.1039/d2tb00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer immunotherapy has achieved promising clinical results. However, many limitations associated with current cancer immunotherapy still exist, including low response rates and severe adverse effects in patients. Engineering biomaterials for...
Collapse
|
7
|
Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101101. [PMID: 34145984 PMCID: PMC8373122 DOI: 10.1002/advs.202101101] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Indexed: 05/07/2023]
Abstract
Metal-coordinated supramolecular nanoassemblies have recently attracted extensive attention as materials for cancer theranostics. Owing to their unique physicochemical properties, metal-coordinated supramolecular self-assemblies can bridge the boundary between traditional inorganic and organic materials. By tailoring the structural components of the metal ions and binding ligands, numerous multifunctional theranostic nanomedicines can be constructed. Metal-coordinated supramolecular nanoassemblies can modulate the tumor microenvironment (TME), thus facilitating the development of TME-responsive nanomedicines. More importantly, TME-responsive organic-inorganic hybrid nanomaterials can be constructed in vivo by exploiting the metal-coordinated self-assembly of a variety of functional ligands, which is a promising strategy for enhancing the tumor accumulation of theranostic molecules. In this review, recent advancements in the design and fabrication of metal-coordinated supramolecular nanomedicines for cancer theranostics are highlighted. These supramolecular compounds are classified according to the order in which the coordinated metal ions appear in the periodic table. Furthermore, the prospects and challenges of metal-coordinated supramolecular self-assemblies for both technical advances and clinical translation are discussed. In particular, the superiority of TME-responsive nanomedicines for in vivo coordinated self-assembly is elaborated, with an emphasis on strategies that enhance the accumulation of functional components in tumors for an ideal theranostic outcome.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jun Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
8
|
Xu P, Wang X, Li T, Li L, Wu H, Tu J, Zhang R, Zhang L, Guo Z, Chen Q. Bioinspired Microenvironment Responsive Nanoprodrug as an Efficient Hydrophobic Drug Self-Delivery System for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33926-33936. [PMID: 34254767 DOI: 10.1021/acsami.1c09612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artemisinin compounds have shown satisfactory safety records in anti-malarial clinical practice over decades and have revealed value as inexpensive anti-tumor adjuvant chemotherapeutic drugs. However, the rational design and precise preparation of nanomedicines based on the artemisinin drugs are still limited due to their non-aromatic and fragile chemical structure. Herein, a bioinspired coordination-driven self-assembly strategy was developed to manufacture the artemisinin-based nanoprodrug with a significantly increased drug loading efficacy (∼70 wt %) and decreased preparation complexity compared to conventional nanodrugs. The nanoprodrug has suitable size distribution and robust colloidal stability for cancer targeting in vivo. The nanoprodrug was able to quickly disassemble in the tumor microenvironment with weak acidity and a high glutathione concentration, which guarantees a better tumor inhibitory effect than direct administration and fewer side effects on normal tissues in vivo. This work highlights a new strategy to harness a robust, simplified, organic solvent-free, and highly repeatable route for nanoprodrug manufacturing, which may offer opportunities to develop cost-effective, safe, and clinically available nanomedicines.
Collapse
Affiliation(s)
- Pengping Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xueying Wang
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Tuanwei Li
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lingli Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, China
| | - Huihui Wu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jinwei Tu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ruoyang Zhang
- Changzhou Senior High School of Jiangsu Province, Changzhou, Jiangsu 213003, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, China
| | - Zhen Guo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Qianwang Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Abbas M, Atiq A, Xing R, Yan X. Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. J Mater Chem B 2021; 9:4444-4458. [PMID: 33978051 DOI: 10.1039/d1tb00025j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The natural biomolecules of peptides and proteins are able to form elegant metal incorporating supramolecular nanomaterials through multiple weak non-covalent interactions. The use of toxic chemical reagents to fabricate silver nanoparticles poses a danger to apply them in various biomedical applications. Peptide and protein biomolecules have the potential to overcome this barrier by the supramolecular chemistry approach. In this review, we focus on the self-assembly of peptides and proteins to synthesize silver incorporating supramolecular nanoarchitectures, which in turn enhance the biological properties of these silver nanomaterials being used in nanomedicine. This review aims to illustrate the recent developments in amphiphilic peptides, oligopeptides, collagen, bovine serum albumin (BSA), and human serum albumin (HSA) as capping, stabilizing, and reducing agents to form silver incorporating supramolecular nanostructures. Finally, we provide some biomedical applications of silver-incorporating supramolecular nanomaterials along with future perspectives.
Collapse
Affiliation(s)
- Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Atia Atiq
- Department of Physics, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. and Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. and Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Li Y, Sun P, Zhao L, Yan X, Ng DKP, Lo P. Ferric Ion Driven Assembly of Catalase‐like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angew Chem Int Ed Engl 2020; 59:23228-23238. [DOI: 10.1002/anie.202010005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Yongxin Li
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Pan Sun
- CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin N.T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
11
|
Li Y, Sun P, Zhao L, Yan X, Ng DKP, Lo P. Ferric Ion Driven Assembly of Catalase‐like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yongxin Li
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Pan Sun
- CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin N.T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
12
|
Zou Q, Chang R, Yan X. Self-Assembling Proteins for Design of Anticancer Nanodrugs. Chem Asian J 2020; 15:1405-1419. [PMID: 32147947 DOI: 10.1002/asia.202000135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Inspired by the diverse protein-based structures and materials in organisms, proteins have been expected as promising biological components for constructing nanomaterials toward various applications. In numerous studies protein-based nanomaterials have been constructed with the merits of abundant bioactivity and good biocompatibility. However, self-assembly of proteins as a dominant approach in constructing anticancer nanodrugs has not been reviewed. Here, we provide a comprehensive account of the role of protein self-assembly in fabrication, regulation, and application of anticancer nanodrugs. The supramolecular strategies, building blocks, and molecular interactions of protein self-assembly as well as the properties, functions, and applications of the resulting nanodrugs are discussed. The applications in chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, gene therapy, and combination therapy are included. Especially, manipulation of molecular interactions for realizing cancer-specific response and cancer theranostics are emphasized. By expounding the impact of molecular interactions on therapeutic activity, rational design of highly efficient protein-based nanodrugs for precision anticancer therapy can be envisioned. Also, the challenges and perspectives in constructing nanodrugs based on protein self-assembly are presented to advance clinical translation of protein-based nanodrugs and next-generation nanomedicine.
Collapse
Affiliation(s)
- Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Xing R, Liu Y, Zou Q, Yan X. Self-assembled injectable biomolecular hydrogels towards phototherapy. NANOSCALE 2019; 11:22182-22195. [PMID: 31728467 DOI: 10.1039/c9nr06266a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomolecular hydrogels assembled from biomolecules, such as proteins, peptides, and polysaccharides, are promising candidates for facilitating biomedical applications due to their advantages of high biocompatibility, adjustable mechanical properties, functional diversity, and good degradability. This review focuses on current progress in the field of supramolecular injectable biomolecular hydrogels and their applications in antitumor photodynamic therapy (PDT), photothermal therapy (PTT), combined PDT and PTT, and antibacterial phototherapy with emphasis on biomolecular hydrogelators, injectable behaviors, phototherapeutic functions, and the remaining challenges. We hope that this review can provide useful inspiration for the construction and biological applications of novel photo-functional hydrogels as well as phototherapies.
Collapse
Affiliation(s)
- Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
14
|
Cao M, Xing R, Chang R, Wang Y, Yan X. Peptide-coordination self-assembly for the precise design of theranostic nanodrugs. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Sharma P, Kaur H, Roy S. Inducing Differential Self-Assembling Behavior in Ultrashort Peptide Hydrogelators Using Simple Metal Salts. Biomacromolecules 2019; 20:2610-2624. [DOI: 10.1021/acs.biomac.9b00416] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pooja Sharma
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Harsimran Kaur
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Sangita Roy
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, Punjab 160062, India
| |
Collapse
|
16
|
Li S, Zou Q, Xing R, Govindaraju T, Fakhrullin R, Yan X. Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics 2019; 9:3249-3261. [PMID: 31244952 PMCID: PMC6567973 DOI: 10.7150/thno.31814] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/09/2019] [Indexed: 12/21/2022] Open
Abstract
Advances in supramolecular self-assembly have promoted the development of theranostics, the combination of both therapeutic and diagnostic functions in a single nanoplatform, which is closely associated with antitumor applications and has shown promising potential in personalized medicine. Peptide-modulated self-assembly serves as a versatile strategy for tumor supramolecular nanotheranostics possessing controllability, programmability, functionality and biosafety, thus promoting the translation of nanotheranostics from bench to bedside. In this review, we will focus on the self-assembly of peptide-photosensitizers and peptide-drugs as well as multicomponent cooperative self-assembly for the fabrication of nanotheranostics that integrate diagnosis and therapeutics for antitumor applications. Emphasis will be placed on building block design, interaction strategies and the potential relationships between their structures and properties, aiming to increase understanding of the critical role of peptide-modulated self-assembly in advancing antitumor supramolecular nanotheranostics.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences Beijing 100049, P. R. China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences Beijing 100049, P. R. China
| |
Collapse
|
17
|
Chang R, Zou Q, Xing R, Yan X. Peptide‐Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rui Chang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qianli Zou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
- Center for MesoscienceInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|