1
|
Wang M, Lv L, Liu R, Han Y, Luan M, Tang SY, Niu G. Engineering of tnaC-Based Tryptophan Biosensors for Dynamic Control of Violacein Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24668-24676. [PMID: 39440815 DOI: 10.1021/acs.jafc.4c07638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Tryptophan not only serves as a fundamental building block for protein synthesis but also acts as a metabolic precursor for a diverse array of high-value chemicals. Although a few tryptophan-responsive biosensors are currently available, there is a growing interest in developing high-performance biosensors. In this study, we create a miniature toolkit of tryptophan biosensors based upon the leader regulatory region of the tnaCAB operon, which is responsible for tryptophan catabolism in Escherichia coli. Four variants are generated by engineering the tnaC leader sequence, which encodes a leader peptide composed of 24 amino acid residues. Subsequently, the performance of both the natural tnaC sequence and its engineered variants is assessed in a reporter strain based on the MazEF toxin-antitoxin system. The results demonstrate that two engineered variants exhibit increased sensitivity to low levels of tryptophan. Moreover, the engineered biosensors are further optimized by replacing the native promoter of tnaC with a phage-derived constitutive promoter. Intriguingly, the engineered biosensors can be reconstructed for extended application in Pseudomonas putida, a robust microbial chassis for metabolic engineering. In summary, our study expands the toolkit of tryptophan biosensors that can be broadly used for the bioproduction of many other high-value tryptophan-derived products.
Collapse
Affiliation(s)
- Meiyan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lanxin Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Rong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co., Ltd., Chongqing 400060, China
| | - Yiran Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengao Luan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Shuang-Yan Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoqing Niu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Zhao Y, Xue L, Huang Z, Lei Z, Xie S, Cai Z, Rao X, Zheng Z, Xiao N, Zhang X, Ma F, Yu H, Xie S. Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system. Nat Commun 2024; 15:9288. [PMID: 39468081 PMCID: PMC11519575 DOI: 10.1038/s41467-024-53609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R. eutropha H16 for different lignin-derived aromatics (LDAs) are systematically characterized and complemented by integrating robust functional modules including O-demethylation, aromatic aldehyde metabolism and the mitigation of by-product inhibition. A pivotal discovery is the regulatory element PcaQ, which is highly responsive to the aromatic hub metabolite protocatechuic acid during lignin degradation. Based on the computer-aided design of PcaQ, we develop a hub metabolite-based autoregulation (HMA) system. This system can control the functional genes expression in response to heterologous LDAs and enhance metabolism efficiency. Multi-module genome integration and directed evolution further fortify the strain's stability and lignin conversion capacities, leading to PHB production titer of 2.38 g/L using heterologous LDAs as sole carbon source. This work not only marks a leap in bioplastic production from lignin components but also provides a strategy to redesign the non-LDAs-degrading microbes for efficient lignin valorization.
Collapse
Affiliation(s)
- Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyi Huang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixian Lei
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiyu Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cai
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Zheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Xiao
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Gong X, Teng Y, Zhang J, Gan Q, Song M, Alaraj A, Kner P, Yan Y. Architecting a Transcriptional Repressor-based Genetic Inverter for Tryptophan Derived Pathway Regulation in Escherichia coli. Metab Eng 2024:S1096-7176(24)00123-X. [PMID: 39293710 DOI: 10.1016/j.ymben.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Efficient microbial cell factories require intricate and precise metabolic regulations for optimized production, which can be significantly aided by implementing regulatory genetic circuits with versatile functions. However, constructing functionally diverse genetic circuits in host strains is challenging. Especially, functional diversification based on transcriptional repressors has been rarely explored due to the difficulty in inverting their repression properties. To address this, we proposed a design logic to create transcriptional repressor-based genetic inverters for functional enrichment. As proof of concept, a tryptophan-inducible genetic inverter was constructed by integrating two sets of transcriptional repressors, PtrpO1-TrpR1 and PtetO1-TetR. In this genetic inverter, the repression of TetR towards PtetO1 could be alleviated by the tryptophan-TrpR1 complex in the presence of tryptophan, leading to the activated output. Subsequently, we optimized the dynamic performance of the inverter and constructed tryptophan-triggered dynamic activation systems. Further coupling of the original repression function of PtrpO1-TrpR1 with inverter variants realized the tryptophan-triggered bifunctional regulation system. Finally, the dynamic regulation systems enabled tryptophan production monitoring. These systems also remarkably increased the titers of the tryptophan derivatives tryptamine and violacein by 2.0-fold and 7.4-fold, respectively. The successful design and application of the genetic inverter enhanced the applicability of transcriptional repressors.
Collapse
Affiliation(s)
- Xinyu Gong
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qi Gan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Ming Song
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Ameen Alaraj
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Peter Kner
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Mao J, Zhang H, Chen Y, Wei L, Liu J, Nielsen J, Chen Y, Xu N. Relieving metabolic burden to improve robustness and bioproduction by industrial microorganisms. Biotechnol Adv 2024; 74:108401. [PMID: 38944217 DOI: 10.1016/j.biotechadv.2024.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Metabolic burden is defined by the influence of genetic manipulation and environmental perturbations on the distribution of cellular resources. The rewiring of microbial metabolism for bio-based chemical production often leads to a metabolic burden, followed by adverse physiological effects, such as impaired cell growth and low product yields. Alleviating the burden imposed by undesirable metabolic changes has become an increasingly attractive approach for constructing robust microbial cell factories. In this review, we provide a brief overview of metabolic burden engineering, focusing specifically on recent developments and strategies for diminishing the burden while improving robustness and yield. A variety of examples are presented to showcase the promise of metabolic burden engineering in facilitating the design and construction of robust microbial cell factories. Finally, challenges and limitations encountered in metabolic burden engineering are discussed.
Collapse
Affiliation(s)
- Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Hongyu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark.
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
5
|
Gong X, Zhang J, Gan Q, Teng Y, Hou J, Lyu Y, Liu Z, Wu Z, Dai R, Zou Y, Wang X, Zhu D, Zhu H, Liu T, Yan Y. Advancing microbial production through artificial intelligence-aided biology. Biotechnol Adv 2024; 74:108399. [PMID: 38925317 DOI: 10.1016/j.biotechadv.2024.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Microbial cell factories (MCFs) have been leveraged to construct sustainable platforms for value-added compound production. To optimize metabolism and reach optimal productivity, synthetic biology has developed various genetic devices to engineer microbial systems by gene editing, high-throughput protein engineering, and dynamic regulation. However, current synthetic biology methodologies still rely heavily on manual design, laborious testing, and exhaustive analysis. The emerging interdisciplinary field of artificial intelligence (AI) and biology has become pivotal in addressing the remaining challenges. AI-aided microbial production harnesses the power of processing, learning, and predicting vast amounts of biological data within seconds, providing outputs with high probability. With well-trained AI models, the conventional Design-Build-Test (DBT) cycle has been transformed into a multidimensional Design-Build-Test-Learn-Predict (DBTLP) workflow, leading to significantly improved operational efficiency and reduced labor consumption. Here, we comprehensively review the main components and recent advances in AI-aided microbial production, focusing on genome annotation, AI-aided protein engineering, artificial functional protein design, and AI-enabled pathway prediction. Finally, we discuss the challenges of integrating novel AI techniques into biology and propose the potential of large language models (LLMs) in advancing microbial production.
Collapse
Affiliation(s)
- Xinyu Gong
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yuxi Teng
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jixin Hou
- School of ECAM, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yanjun Lyu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington 76019, USA
| | - Zhengliang Liu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Zihao Wu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Runpeng Dai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yusong Zou
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Xianqiao Wang
- School of ECAM, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington 76019, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Moon JH, Nam S, Jeung K, Noh MH, Jung GY. Biosensor-Assisted Engineering for Diverse Microbial Cellular Physiologies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18321-18334. [PMID: 39107094 DOI: 10.1021/acs.jafc.4c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Recent advancements in biosensor technology have revolutionized the field of microbial engineering, enabling efficient and precise optimization of strains for the production of valuable chemicals. This review comprehensively explores the innovative integration of biosensors to enhance microbial cell factories, with a particular emphasis on the crucial role of high-throughput biosensor-assisted screening. Biosensor-assisted approaches have enabled the identification of novel transporters, the elucidation of underlying transport mechanisms, and the fine-tuning of metabolic pathways for enhanced production. Furthermore, this review illustrates the utilization of biosensors for manipulating cellular behaviors, including interactions with environmental factors, and the reduction of nongenetic cell-to-cell variations. This review highlights the indispensable role of biosensors in advancing the field of microbial engineering through the modulation and exploitation of diverse cellular physiological processes.
Collapse
Affiliation(s)
- Jo Hyun Moon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sunghyun Nam
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Kumyoung Jeung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Myung Hyun Noh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
7
|
Huang J, Liu J, Dong H, Shi J, You X, Zhang Y. Engineering of a Substrate Affinity Reduced S-Adenosyl-methionine Synthetase as a Novel Biosensor for Growth-Coupling Selection of L-Methionine Overproducers. Appl Biochem Biotechnol 2024; 196:5161-5180. [PMID: 38150159 DOI: 10.1007/s12010-023-04807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Biosensors are powerful tools for monitoring specific metabolites or controlling metabolic flux towards the products in a single cell, which play important roles in microbial cell factory construction. Despite their potential role in metabolic flux monitoring, the development of biosensors for small molecules is still limited. Reported biosensors often exhibit bottlenecks of poor specificity and a narrow dynamic range. Moreover, fine-tuning the substrate binding affinity of a crucial enzyme can decrease its catalytic activity, which ultimately results in the repression of the corresponding essential metabolite biosynthesis and impairs cell growth. However, increasing intracellular substrate concentration can elevate the availability of the essential metabolite and may lead to restore cellular growth. Herein, a new strategy was proposed for constructing whole-cell biosensors based on enzyme encoded by essential gene that offer inherent specificity and universality. Specifically, S-adenosyl-methionine synthetase (MetK) in E. coli was chosen as the crucial enzyme, and a series of MetK variants were identified that were sensitive to L-methionine concentration. This occurrence enabled the engineered cell to sense L-methionine and exhibit L-methionine dose-dependent cell growth. To improve the biosensor's dynamic range, an S-adenosyl-methionine catabolic enzyme was overexpressed to reduce the intracellular availability of S-adenosyl-methionine. The resulting whole-cell biosensor effectively coupled the intracellular concentration of L-methionine with growth and was successfully applied to select strains with enhanced L-methionine biosynthesis from random mutagenesis libraries. Overall, our study presents a universal strategy for designing and constructing growth-coupled biosensors based on crucial enzyme, which can be applied to select strains overproducing high value-added metabolites in cellular metabolism.
Collapse
Affiliation(s)
- Jianfeng Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Jinhui Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Huaming Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Jingjing Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Xiaoyan You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
8
|
Tang M, You J, Yang T, Sun Q, Jiang S, Xu M, Pan X, Rao Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. BIORESOURCE TECHNOLOGY 2024; 406:131050. [PMID: 38942210 DOI: 10.1016/j.biortech.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Qisheng Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Shuran Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
9
|
Teng Y, Gong X, Zhang J, Obideen Z, Yan Y. Investigating and Engineering an 1,2-Propanediol-Responsive Transcription Factor-Based Biosensor. ACS Synth Biol 2024; 13:2177-2187. [PMID: 38968698 PMCID: PMC11264322 DOI: 10.1021/acssynbio.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Transcription factor (TF)-based biosensors have arisen as powerful tools in the advancement of metabolic engineering. However, with the emergence of numerous bioproduction targets, the variety of applicable TF-based biosensors remains severely limited. In this study, we investigated and engineered an 1,2-propanediol (1,2-PD)-responsive transcription activator, PocR, from Salmonella typhimurium to enrich the current biosensor repertoire. Heterologous characterization of PocR in E. coli revealed a significantly limited operational range and dynamic range, primarily attributed to the leaky binding between PocR and its corresponding promoters in the absence of the 1,2-PD inducer. Promiscuity characterization uncovered the minor responsiveness of PocR toward glycerol and 1,2-butanediol (1,2-BD). Using AlphaFold-predicted structure and protein mutagenesis, we preliminarily explored the underlying mechanism of PocR. Based on the investigated mechanism, we engineered a PcoR-F46R/G105D variant with an altered inducer specificity to glycerol, as well as a PocR-ARE (Q107A/S192R/A203E) variant with nearly a 4-fold higher dynamic range (6.7-fold activation) and a 20-fold wider operational range (0-20 mM 1,2-PD). Finally, we successfully converted PocR to a repressor through promoter engineering. Integrating the activation and repression functions established a versatile 1,2-PD-induced bifunctional regulation system based on PocR-ARE. Our work showcases the exploration and exploitation of an underexplored type of transcriptional activator capable of recruiting RNA polymerase. It also expands the biosensor toolbox by providing a 1,2-PD-responsive bifunctional regulator and glycerol-responsive activator.
Collapse
Affiliation(s)
- Yuxi Teng
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xinyu Gong
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jianli Zhang
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Ziad Obideen
- Franklin
College of Arts and Sciences, The University
of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
10
|
Chen Z, Yu S, Liu J, Guo L, Wu T, Duan P, Yan D, Huang C, Huo Y. Concentration Recognition-Based Auto-Dynamic Regulation System (CRUISE) Enabling Efficient Production of Higher Alcohols. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310215. [PMID: 38626358 PMCID: PMC11187965 DOI: 10.1002/advs.202310215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Indexed: 04/18/2024]
Abstract
Microbial factories lacking the ability of dynamically regulating the pathway enzymes overexpression, according to in situ metabolite concentrations, are suboptimal, especially when the metabolic intermediates are competed by growth and chemical production. The production of higher alcohols (HAs), which hijacks the amino acids (AAs) from protein biosynthesis, minimizes the intracellular concentration of AAs and thus inhibits the host growth. To balance the resource allocation and maintain stable AA flux, this work utilizes AA-responsive transcriptional attenuator ivbL and HA-responsive transcriptional activator BmoR to establish a concentration recognition-based auto-dynamic regulation system (CRUISE). This system ultimately maintains the intracellular homeostasis of AA and maximizes the production of HA. It is demonstrated that ivbL-driven enzymes overexpression can dynamically regulate the AA-to-HA conversion while BmoR-driven enzymes overexpression can accelerate the AA biosynthesis during the HA production in a feedback activation mode. The AA flux in biosynthesis and conversion pathways is balanced via the intracellular AA concentration, which is vice versa stabilized by the competition between AA biosynthesis and conversion. The CRUISE, further aided by scaffold-based self-assembly, enables 40.4 g L-1 of isobutanol production in a bioreactor. Taken together, CRUISE realizes robust HA production and sheds new light on the dynamic flux control during the process of chemical production.
Collapse
Affiliation(s)
- Zhenya Chen
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
- Tangshan Research InstituteBeijing Institute of Technology, No. 57, South Jianshe Road, Lubei DistrictTangshanHebei063000China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Jing Liu
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Tong Wu
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Peifeng Duan
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Dongli Yan
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Chaoyong Huang
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Yi‐Xin Huo
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
- Tangshan Research InstituteBeijing Institute of Technology, No. 57, South Jianshe Road, Lubei DistrictTangshanHebei063000China
| |
Collapse
|
11
|
Zhang K, Li M, Wang J, Huang G, Ma K, Peng J, Lin H, Zhang C, Wang H, Zhan T, Sun Z, Zhang X. Optimizing enzyme properties to enhance dihydroxyacetone production via methylglyoxal biosensor development. Microb Cell Fact 2024; 23:153. [PMID: 38796416 PMCID: PMC11127321 DOI: 10.1186/s12934-024-02393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Dihydroxyacetone (DHA) stands as a crucial chemical material extensively utilized in the cosmetics industry. DHA production through the dephosphorylation of dihydroxyacetone phosphate, an intermediate product of the glycolysis pathway in Escherichia coli, presents a prospective alternative for industrial production. However, insights into the pivotal enzyme, dihydroxyacetone phosphate dephosphorylase (HdpA), remain limited for informed engineering. Consequently, the development of an efficient tool for high-throughput screening of HdpA hypermutants becomes imperative. RESULTS This study introduces a methylglyoxal biosensor, based on the formaldehyde-responding regulator FrmR, for the selection of HdpA. Initial modifications involved the insertion of the FrmR binding site upstream of the -35 region and into the spacer region between the -10 and -35 regions of the constitutive promoter J23110. Although the hybrid promoter retained constitutive expression, expression of FrmR led to complete repression. The addition of 350 μM methylglyoxal promptly alleviated FrmR inhibition, enhancing promoter activity by more than 40-fold. The methylglyoxal biosensor system exhibited a gradual increase in fluorescence intensity with methylglyoxal concentrations ranging from 10 to 500 μM. Notably, the biosensor system responded to methylglyoxal spontaneously converted from added DHA, facilitating the separation of DHA producing and non-producing strains through flow cytometry sorting. Subsequently, the methylglyoxal biosensor was successfully applied to screen a library of HdpA mutants, identifying two strains harboring specific mutants 267G > T and D110G/G151C that showed improved DHA production by 68% and 114%, respectively. Expressing of these two HdpA mutants directly in a DHA-producing strain also increased DHA production from 1.45 to 1.92 and 2.29 g/L, respectively, demonstrating the enhanced enzyme properties of the HdpA mutants. CONCLUSIONS The methylglyoxal biosensor offers a novel strategy for constructing genetically encoded biosensors and serves as a robust platform for indirectly determining DHA levels by responding to methylglyoxal. This property enables efficiently screening of HdpA hypermutants to enhance DHA production.
Collapse
Affiliation(s)
- Kaibo Zhang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, Jilin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Mengying Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Sciences and Technology, Tianjin, 300457, China
| | - Jinsheng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guozhong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Kang Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Sciences and Technology, Tianjin, 300457, China
| | - Jiani Peng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Haoyue Lin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, Jilin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chunjie Zhang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, Jilin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Honglei Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, Jilin, China.
| | - Tao Zhan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Zhe Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
12
|
Lu M, Sha Y, Kumar V, Xu Z, Zhai R, Jin M. Transcription factor-based biosensor: A molecular-guided approach for advanced biofuel synthesis. Biotechnol Adv 2024; 72:108339. [PMID: 38508427 DOI: 10.1016/j.biotechadv.2024.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/22/2024]
Abstract
As a sustainable and renewable alternative to petroleum fuels, advanced biofuels shoulder the responsibility of energy saving, emission reduction and environmental protection. Traditional engineering of cell factories for production of advanced biofuels lacks efficient high-throughput screening tools and regulating systems, impeding the improvement of cellular productivity and yield. Transcription factor-based biosensors have been widely applied to monitor and regulate microbial cell factory products due to the advantages of fast detection and in-situ screening. This review updates the design and application of transcription factor-based biosensors tailored for advanced biofuels and related intermediates. The construction and genetic parts selection principle of biosensors are discussed. Strategies to enhance the performance of biosensor, including regulating promoter strength and RBS strength, optimizing plasmid copy number, implementing genetic amplifier, and modulating the structure of transcription factor, have also been summarized. We further review the application of biosensors in high-throughput screening of new metabolic engineering targets, evolution engineering, confirmation of protein function, and dynamic regulation of metabolic flux for higher production of advanced biofuels. At last, we discuss the current limitations and future trends of transcription factor-based biosensors.
Collapse
Affiliation(s)
- Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Chaisupa P, Wright RC. State-of-the-art in engineering small molecule biosensors and their applications in metabolic engineering. SLAS Technol 2024; 29:100113. [PMID: 37918525 PMCID: PMC11314541 DOI: 10.1016/j.slast.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Genetically encoded biosensors are crucial for enhancing our understanding of how molecules regulate biological systems. Small molecule biosensors, in particular, help us understand the interaction between chemicals and biological processes. They also accelerate metabolic engineering by increasing screening throughput and eliminating the need for sample preparation through traditional chemical analysis. Additionally, they offer significantly higher spatial and temporal resolution in cellular analyte measurements. In this review, we discuss recent progress in in vivo biosensors and control systems-biosensor-based controllers-for metabolic engineering. We also specifically explore protein-based biosensors that utilize less commonly exploited signaling mechanisms, such as protein stability and induced degradation, compared to more prevalent transcription factor and allosteric regulation mechanism. We propose that these lesser-used mechanisms will be significant for engineering eukaryotic systems and slower-growing prokaryotic systems where protein turnover may facilitate more rapid and reliable measurement and regulation of the current cellular state. Lastly, we emphasize the utilization of cutting-edge and state-of-the-art techniques in the development of protein-based biosensors, achieved through rational design, directed evolution, and collaborative approaches.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
14
|
Zou Y, Zhang J, Wang J, Gong X, Jiang T, Yan Y. A self-regulated network for dynamically balancing multiple precursors in complex biosynthetic pathways. Metab Eng 2024; 82:69-78. [PMID: 38316239 PMCID: PMC10947840 DOI: 10.1016/j.ymben.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Microbial synthesis has emerged as a promising and sustainable alternative to traditional chemical synthesis and plant extraction. However, the competition between synthetic pathways and central metabolic pathways for cellular resources may impair final production efficiency. Moreover, when the synthesis of target product requires multiple precursors from the same node, the conflicts of carbon flux have further negative impacts on yields. In this study, a self-regulated network was developed to relieve the competition of precursors in complex synthetic pathways. Using 4-hydroxycoumarin (4-HC) synthetic pathway as a proof of concept, we employed an intermediate as a trigger to dynamically rewire the metabolic flux of pyruvate and control the expression levels of genes in 4-HC synthetic pathway, achieving self-regulation of multiple precursors and enhanced titer. Transcriptomic analysis results additionally demonstrated that the gene transcriptional levels of both pyruvate kinase PykF and synthetic pathway enzyme SdgA dynamically changed according to the intermediate concentrations. Overall, our work established a self-regulated network to dynamically balance the metabolic flux of two precursors in 4-HC biosynthesis, providing insight into balancing biosynthetic pathways where multiple precursors compete and interfere with each other.
Collapse
Affiliation(s)
- Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Xinyu Gong
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
15
|
Lv Y, Chang J, Zhang W, Dong H, Chen S, Wang X, Zhao A, Zhang S, Alam MA, Wang S, Du C, Xu J, Wang W, Xu P. Improving Microbial Cell Factory Performance by Engineering SAM Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3846-3871. [PMID: 38372640 DOI: 10.1021/acs.jafc.3c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Methylated natural products are widely spread in nature. S-Adenosyl-l-methionine (SAM) is the secondary abundant cofactor and the primary methyl donor, which confer natural products with structural and functional diversification. The increasing demand for SAM-dependent natural products (SdNPs) has motivated the development of microbial cell factories (MCFs) for sustainable and efficient SdNP production. Insufficient and unsustainable SAM availability hinders the improvement of SdNP MCF performance. From the perspective of developing MCF, this review summarized recent understanding of de novo SAM biosynthesis and its regulatory mechanism. SAM is just the methyl mediator but not the original methyl source. Effective and sustainable methyl source supply is critical for efficient SdNP production. We compared and discussed the innate and relatively less explored alternative methyl sources and identified the one involving cheap one-carbon compound as more promising. The SAM biosynthesis is synergistically regulated on multilevels and is tightly connected with ATP and NAD(P)H pools. We also covered the recent advancement of metabolic engineering in improving intracellular SAM availability and SdNP production. Dynamic regulation is a promising strategy to achieve accurate and dynamic fine-tuning of intracellular SAM pool size. Finally, we discussed the design and engineering constraints underlying construction of SAM-responsive genetic circuits and envisioned their future applications in developing SdNP MCFs.
Collapse
Affiliation(s)
- Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xian Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Chaojun Du
- Nanyang Research Institute of Zhengzhou University, Nanyang Institute of Technology, No. 80 Changjiang Road, Nanyang 473004, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- National Key Laboratory of Biobased Transportation Fuel Technology, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Palo Alto, California 94305, United States
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China
| |
Collapse
|
16
|
Teng Y, Jiang T, Yan Y. The expanded CRISPR toolbox for constructing microbial cell factories. Trends Biotechnol 2024; 42:104-118. [PMID: 37500408 PMCID: PMC10808275 DOI: 10.1016/j.tibtech.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Microbial cell factories (MCFs) convert low-cost carbon sources into valuable compounds. The CRISPR/Cas9 system has revolutionized MCF construction as a remarkable genome editing tool with unprecedented programmability. Recently, the CRISPR toolbox has been significantly expanded through the exploration of new CRISPR systems, the engineering of Cas effectors, and the incorporation of other effectors, enabling multi-level regulation and gene editing free of double-strand breaks. This expanded CRISPR toolbox powerfully promotes MCF construction by facilitating pathway construction, enzyme engineering, flux redistribution, and metabolic burden control. In this article, we summarize different CRISPR tool designs and their applications in MCF construction for gene editing, transcriptional regulation, and enzyme modulation. Finally, we also discuss future perspectives for the development and application of the CRISPR toolbox.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
17
|
Bamezai S, Maresca di Serracapriola G, Morris F, Hildebrandt R, Amil MAS, Ledesma‐Amaro R. Protein engineering in the computational age: An open source framework for exploring mutational landscapes in silico. ENGINEERING BIOLOGY 2023; 7:29-38. [PMID: 38094241 PMCID: PMC10715127 DOI: 10.1049/enb2.12028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/16/2024] Open
Abstract
The field of protein engineering has seen tremendous expansion in the last decade, with researchers developing novel proteins with specialised functionalities for a range of uses, from drug discovery to industrial biotechnology. The emergence of computational tools and high-throughput screening technology has substantially sped up the process of protein engineering. However, much of the expertise required to engage in such projects is still concentrated in the hands of a few specialised individuals, including computational biologists and structural biochemists. The international Genetically Engineered Machine (iGEM) competition represents a platform for undergraduate students to innovate in synthetic biology. Yet, due to their complexity, arduous protein engineering projects are hindered by the resources available and strict timelines of the competition. The authors highlight how the 2022 iGEM Team, 'Sporadicate', set out to develop InFinity 1.0, a computational framework for increased accessibility to effective protein engineering, hoping to increase awareness and accessibility to novel in silico tools.
Collapse
Affiliation(s)
- Shirin Bamezai
- Department of Bioengineering and Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
| | | | - Freya Morris
- Department of Bioengineering and Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
| | | | | | - Rodrigo Ledesma‐Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic BiologyImperial College LondonLondonUK
| |
Collapse
|
18
|
Xiao C, Pan Y, Huang M. Advances in the dynamic control of metabolic pathways in Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2023; 3:100103. [PMID: 39628908 PMCID: PMC11610979 DOI: 10.1016/j.engmic.2023.100103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 12/06/2024]
Abstract
The metabolic engineering of Saccharomyces cerevisiae has great potential for enhancing the production of high-value chemicals and recombinant proteins. Recent studies have demonstrated the effectiveness of dynamic regulation as a strategy for optimizing metabolic flux and improving production efficiency. In this review, we provide an overview of recent advancements in the dynamic regulation of S. cerevisiae metabolism. Here, we focused on the successful utilization of transcription factor (TF)-based biosensors within the dynamic regulatory network of S. cerevisiae. These biosensors are responsive to a wide range of endogenous and exogenous signals, including chemical inducers, light, temperature, cell density, intracellular metabolites, and stress. Additionally, we explored the potential of omics tools for the discovery of novel responsive promoters and their roles in fine-tuning metabolic networks. We also provide an outlook on the development trends in this field.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
19
|
Patwari P, Pruckner F, Fabris M. Biosensors in microalgae: A roadmap for new opportunities in synthetic biology and biotechnology. Biotechnol Adv 2023; 68:108221. [PMID: 37495181 DOI: 10.1016/j.biotechadv.2023.108221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Biosensors are powerful tools to investigate, phenotype, improve and prototype microbial strains, both in fundamental research and in industrial contexts. Genetic and biotechnological developments now allow the implementation of synthetic biology approaches to novel different classes of microbial hosts, for example photosynthetic microalgae, which offer unique opportunities. To date, biosensors have not yet been implemented in phototrophic eukaryotic microorganisms, leaving great potential for novel biological and technological advancements untapped. Here, starting from selected biosensor technologies that have successfully been implemented in heterotrophic organisms, we project and define a roadmap on how these could be applied to microalgae research. We highlight novel opportunities for the development of new biosensors, identify critical challenges, and finally provide a perspective on the impact of their eventual implementation to tackle research questions and bioengineering strategies. From studying metabolism at the single-cell level to genome-wide screen approaches, and assisted laboratory evolution experiments, biosensors will greatly impact the pace of progress in understanding and engineering microalgal metabolism. We envision how this could further advance the possibilities for unraveling their ecological role, evolutionary history and accelerate their domestication, to further drive them as resource-efficient production hosts.
Collapse
Affiliation(s)
- Payal Patwari
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Florian Pruckner
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark.
| |
Collapse
|
20
|
Mao Y, Huang C, Zhou X, Han R, Deng Y, Zhou S. Genetically Encoded Biosensor Engineering for Application in Directed Evolution. J Microbiol Biotechnol 2023; 33:1257-1267. [PMID: 37449325 PMCID: PMC10619561 DOI: 10.4014/jmb.2304.04031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
Although rational genetic engineering is nowadays the favored method for microbial strain improvement, building up mutant libraries based on directed evolution for improvement is still in many cases the better option. In this regard, the demand for precise and efficient screening methods for mutants with high performance has stimulated the development of biosensor-based high-throughput screening strategies. Genetically encoded biosensors provide powerful tools to couple the desired phenotype to a detectable signal, such as fluorescence and growth rate. Herein, we review recent advances in engineering several classes of biosensors and their applications in directed evolution. Furthermore, we compare and discuss the screening advantages and limitations of two-component biosensors, transcription-factor-based biosensors, and RNA-based biosensors. Engineering these biosensors has focused mainly on modifying the expression level or structure of the biosensor components to optimize the dynamic range, specificity, and detection range. Finally, the applications of biosensors in the evolution of proteins, metabolic pathways, and genome-scale metabolic networks are described. This review provides potential guidance in the design of biosensors and their applications in improving the bioproduction of microbial cell factories through directed evolution.
Collapse
Affiliation(s)
- Yin Mao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Chao Huang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Xuan Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
21
|
Teng Y, Wang J, Jiang T, Zou Y, Yan Y. Engineering a Streptococcus Cas9 Ortholog with an RxQ PAM-Binding Motif for PAM-Free Gene Control in Bacteria. ACS Synth Biol 2023; 12:2764-2772. [PMID: 37643152 PMCID: PMC10510713 DOI: 10.1021/acssynbio.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 08/31/2023]
Abstract
The RNA-guided Cas9 endonucleases have revolutionized gene editing and regulation, but their targeting scope is limited by the protospacer adjacent motif (PAM) requirement. The most extensively used SpCas9 from Streptococcus pyogenes recognizes the NGG PAM via an RxR PAM-binding motif within its PAM-interaction (PI) domain. To overcome the strict PAM requirement, we identified and characterized a Cas9 ortholog from Streptococcus equinus HC5 (SeHCas9) that shows high sequence identity with SpCas9 but harbors a different RxQ PAM-binding motif. Complete PAM profiling revealed that SeHCas9 recognized an NAG PAM and accommodated NKG and NAW PAMs. We investigated the PAM interaction mechanism by identifying the crucial role of R1336 within the RxQ motif in determining PAM specificity, as well as the essentiality of two conserved residues (R1152 and Q1229) across Cas9 orthologs bearing the RxQ motif for PAM recognition. Further protein engineering created two variants, SeHdCas9-Q1229R and SeHdCas9-RR, that showed robust repression across an NNG and NNN PAM range, respectively. Our work proposes a novel Cas9 PAM interaction mechanism and establishes PAM-free Cas9 variants for bacterial gene control with almost no targeting restriction.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jian Wang
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Tian Jiang
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yusong Zou
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School of Chemical, Materials
and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Li C, Zhou Y, Zou Y, Jiang T, Gong X, Yan Y. Identifying, Characterizing, and Engineering a Phenolic Acid-Responsive Transcriptional Factor from Bacillus amyloliquefaciens. ACS Synth Biol 2023; 12:2382-2392. [PMID: 37499217 PMCID: PMC10443031 DOI: 10.1021/acssynbio.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 07/29/2023]
Abstract
Transcriptional factors-based biosensors are commonly used in metabolic engineering for inducible control of gene expression and related applications such as high-throughput screening and dynamic pathway regulations. Mining for novel transcriptional factors is essential for expanding the usability of these toolsets. Here, we report the identification, characterization, and engineering of a phenolic acid responsive regulator PadR from Bacillus amyloliquefaciens (BaPadR). This BaPadR-based biosensor system showed a unique ligand preference and exhibited a high output strength comparable to that of commonly used inducible expression systems. Through engineering the DNA binding region of BaPadR, we further enhanced the dynamic range of the biosensor system. The DNA sequences that are responsible for BaPadR recognition were located by promoter truncation and hybrid promoter building. To further explore the tunability of the sensor system, base substitutions were performed on the BaPadR binding region of the phenolic acid decarboxylase promoter (PpadC) and the hybrid promoter. This novel biosensor system can serve as a valuable tool in future synthetic biology applications.
Collapse
Affiliation(s)
- Chenyi Li
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yuyang Zhou
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yusong Zou
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Tian Jiang
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xinyu Gong
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
23
|
Zhang J, Gong X, Gan Q, Yan Y. Application of Metabolite-Responsive Biosensors for Plant Natural Products Biosynthesis. BIOSENSORS 2023; 13:633. [PMID: 37366998 DOI: 10.3390/bios13060633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Plant natural products (PNPs) have shown various pharmaceutical activities, possessing great potential in global markets. Microbial cell factories (MCFs) provide an economical and sustainable alternative for the synthesis of valuable PNPs compared with traditional approaches. However, the heterologous synthetic pathways always lack native regulatory systems, bringing extra burden to PNPs production. To overcome the challenges, biosensors have been exploited and engineered as powerful tools for establishing artificial regulatory networks to control enzyme expression in response to environments. Here, we reviewed the recent progress involved in the application of biosensors that are responsive to PNPs and their precursors. Specifically, the key roles these biosensors played in PNP synthesis pathways, including isoprenoids, flavonoids, stilbenoids and alkaloids, were discussed in detail.
Collapse
Affiliation(s)
- Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Xinyu Gong
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
24
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
25
|
Hanko EKR, Joosab Noor Mahomed TA, Stoney RA, Breitling R. TFBMiner: A User-Friendly Command Line Tool for the Rapid Mining of Transcription Factor-Based Biosensors. ACS Synth Biol 2023; 12:1497-1507. [PMID: 37053505 DOI: 10.1021/acssynbio.2c00679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Transcription factors responsive to small molecules are essential elements in synthetic biology designs. They are often used as genetically encoded biosensors with applications ranging from the detection of environmental contaminants and biomarkers to microbial strain engineering. Despite our efforts to expand the space of compounds that can be detected using biosensors, the identification and characterization of transcription factors and their corresponding inducer molecules remain labor- and time-intensive tasks. Here, we introduce TFBMiner, a new data mining and analysis pipeline that enables the automated and rapid identification of putative metabolite-responsive transcription factor-based biosensors (TFBs). This user-friendly command line tool harnesses a heuristic rule-based model of gene organization to identify both gene clusters involved in the catabolism of user-defined molecules and their associated transcriptional regulators. Ultimately, biosensors are scored based on how well they fit the model, providing wet-lab scientists with a ranked list of candidates that can be experimentally tested. We validated the pipeline using a set of molecules for which TFBs have been reported previously, including sensors responding to sugars, amino acids, and aromatic compounds, among others. We further demonstrated the utility of TFBMiner by identifying a biosensor for S-mandelic acid, an aromatic compound for which a responsive transcription factor had not been found previously. Using a combinatorial library of mandelate-producing microbial strains, the newly identified biosensor was able to distinguish between low- and high-producing strain candidates. This work will aid in the unraveling of metabolite-responsive microbial gene regulatory networks and expand the synthetic biology toolbox to allow for the construction of more sophisticated self-regulating biosynthetic pathways.
Collapse
Affiliation(s)
- Erik K R Hanko
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Tariq A Joosab Noor Mahomed
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Ruth A Stoney
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
26
|
Wu Y, Li Y, Jin K, Zhang L, Li J, Liu Y, Du G, Lv X, Chen J, Ledesma-Amaro R, Liu L. CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization. Nat Chem Biol 2023; 19:367-377. [PMID: 36646959 DOI: 10.1038/s41589-022-01230-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023]
Abstract
The production efficiency of microbial cell factories is sometimes limited by the lack of effective methods to regulate multiple targets in a coordinated manner. Here taking the biosynthesis of glucosamine-6-phosphate (GlcN6P) in Bacillus subtilis as an example, a 'design-build-test-learn' framework was proposed to achieve efficient multiplexed optimization of metabolic pathways. A platform strain was built to carry biosensor signal-amplifying circuits and two genetic regulation circuits. Then, a synthetic CRISPR RNA array blend for boosting and leading (ScrABBLE) device was integrated into the platform strain, which generated 5,184 combinatorial assemblies targeting three genes. The best GlcN6P producer was screened and engineered for the synthesis of valuable pharmaceuticals N-acetylglucosamine and N-acetylmannosamine. The N-acetylglucosamine titer reached 183.9 g liter-1 in a 15-liter bioreactor. In addition, the potential generic application of the ScrABBLE device was also verified using three fluorescent proteins as a case study.
Collapse
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
| |
Collapse
|
27
|
Tellechea-Luzardo J, Stiebritz MT, Carbonell P. Transcription factor-based biosensors for screening and dynamic regulation. Front Bioeng Biotechnol 2023; 11:1118702. [PMID: 36814719 PMCID: PMC9939652 DOI: 10.3389/fbioe.2023.1118702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Advances in synthetic biology and genetic engineering are bringing into the spotlight a wide range of bio-based applications that demand better sensing and control of biological behaviours. Transcription factor (TF)-based biosensors are promising tools that can be used to detect several types of chemical compounds and elicit a response according to the desired application. However, the wider use of this type of device is still hindered by several challenges, which can be addressed by increasing the current metabolite-activated transcription factor knowledge base, developing better methods to identify new transcription factors, and improving the overall workflow for the design of novel biosensor circuits. These improvements are particularly important in the bioproduction field, where researchers need better biosensor-based approaches for screening production-strains and precise dynamic regulation strategies. In this work, we summarize what is currently known about transcription factor-based biosensors, discuss recent experimental and computational approaches targeted at their modification and improvement, and suggest possible future research directions based on two applications: bioproduction screening and dynamic regulation of genetic circuits.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Martin T. Stiebritz
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
28
|
Yu W, Xu X, Jin K, Liu Y, Li J, Du G, Lv X, Liu L. Genetically encoded biosensors for microbial synthetic biology: From conceptual frameworks to practical applications. Biotechnol Adv 2023; 62:108077. [PMID: 36502964 DOI: 10.1016/j.biotechadv.2022.108077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Genetically encoded biosensors are the vital components of synthetic biology and metabolic engineering, as they are regarded as powerful devices for the dynamic control of genotype metabolism and evolution/screening of desirable phenotypes. This review summarized the recent advances in the construction and applications of different genetically encoded biosensors, including fluorescent protein-based biosensors, nucleic acid-based biosensors, allosteric transcription factor-based biosensors and two-component system-based biosensors. First, the construction frameworks of these biosensors were outlined. Then, the recent progress of biosensor applications in creating versatile microbial cell factories for the bioproduction of high-value chemicals was summarized. Finally, the challenges and prospects for constructing robust and sophisticated biosensors were discussed. This review provided theoretical guidance for constructing genetically encoded biosensors to create desirable microbial cell factories for sustainable bioproduction.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
29
|
Leonard AC, Whitehead TA. Design and engineering of genetically encoded protein biosensors for small molecules. Curr Opin Biotechnol 2022; 78:102787. [PMID: 36058141 DOI: 10.1016/j.copbio.2022.102787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Genetically encoded protein biosensors controlled by small organic molecules are valuable tools for many biotechnology applications, including control of cellular decisions in living cells. Here, we review recent advances in protein biosensor design and engineering for binding to novel ligands. We categorize sensor architecture as either integrated or portable, where portable biosensors uncouple molecular recognition from signal transduction. Proposed advances to improve portable biosensor development include standardizing a limited set of protein scaffolds, and automating ligand-compatibility screening and ligand-protein-interface design.
Collapse
Affiliation(s)
- Alison C Leonard
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80305, USA.
| |
Collapse
|
30
|
Jiang T, Li C, Zou Y, Zhang J, Gan Q, Yan Y. Establishing an Autonomous Cascaded Artificial Dynamic (AutoCAD) regulation system for improved pathway performance. Metab Eng 2022; 74:1-10. [PMID: 36041638 PMCID: PMC10947494 DOI: 10.1016/j.ymben.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Endogenous metabolic pathways in microbial cells are usually precisely controlled by sophisticated regulation networks. However, the lack of such regulations when introducing heterologous pathways in microbial hosts often causes unbalanced enzyme expression and carbon flux distribution, hindering the construction of highly efficient microbial biosynthesis systems. Here, using naringenin as the target compound, we developed an Autonomous Cascaded Artificial Dynamic (AutoCAD) regulation system to automatically coordinate the pathway expression and redirect carbon fluxes for enhanced naringenin production. The AutoCAD regulation system, consisting of both intermediate-based feedforward and product-based feedback control genetic circuits, resulted in a 16.5-fold increase in naringenin titer compared with the static control. Fed-batch fermentation using the strain with AutoCAD regulation further enhanced the naringenin titer to 277.2 mg/L. The AutoCAD regulation system, with intermediate-based feedforward control and product-triggered feedback control, provides a new paradigm of developing complicated cascade dynamic control to engineer heterologous pathways.
Collapse
Affiliation(s)
- Tian Jiang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yusong Zou
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
31
|
Xu P, Zhou K. Editorial overview: Analytical biotechnology for healthcare, strain engineering, biosensing and synthetic biology. Curr Opin Biotechnol 2022; 77:102765. [PMID: 35988531 DOI: 10.1016/j.copbio.2022.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Xu
- Department of Chemical Engineering, Guangdong - Technion, Israel Institute of Technology, Shantou 515063, China.
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|