1
|
Zuzak T, Bogaczyk A, Krata AA, Kamiński R, Paneth P, Kluz T. Isotopic Composition of C, N, and S as an Indicator of Endometrial Cancer. Cancers (Basel) 2024; 16:3169. [PMID: 39335141 PMCID: PMC11430076 DOI: 10.3390/cancers16183169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES The metabolic pathway of cancerous tissue differs from healthy tissue, leading to the unique isotopic composition of stable isotopes at their natural abundance. We have studied if these changes can be developed into diagnostic or prognostic tools in the case of endometrial cancer. METHODS Measurements of stable isotope ratios were performed using isotope ratio mass spectrometry for nitrogen, carbon, and sulfur isotopic assessment. Uterine tissue and serum samples were collected from patients and the control group. RESULTS At a natural abundance, the isotopic compositions of all three of the studied elements of uterus cancerous and healthy tissues are different. However, no correlation of the isotopic composition of the tissues with that of serum was found. CONCLUSIONS Differences in the isotopic composition of the tissues might be a potential prognostic tool. However, the lack of a correlation between the differences in the isotopic composition of the tissues and serum seems to exclude their application as diagnostic biomarkers, which, however, might be possible if a position-specific isotopic analysis is performed.
Collapse
Affiliation(s)
- Tomasz Zuzak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
| | - Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
| | - Agnieszka Anna Krata
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Rafał Kamiński
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
2
|
Yu L, Xie M, Chen M, Yang H, Chen L, Xing P, Tian Z, Wang C. An ortho-activation strategy to develop NIR fluorescent probe for rapid imaging of biothiols in vivo. Talanta 2024; 266:125110. [PMID: 37633039 DOI: 10.1016/j.talanta.2023.125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Biothiols are the main antioxidants in regulating the redox balance and resisting oxidative stress in various biological processes, but the long detection time of current fluorescent probes hinders their rapid imaging in vitro and in vivo. To reveal the influx of biothiols, we rationally develop an ortho-activation approach to accelerate the reaction between the probe and biothiols, by introducing electron-withdrawing fluorine atom into the ortho-site of the phenolic hydroxyl group in the NIR probe to generate an ortho-inductive effect. The ortho-fluorine helps to increase the chemical reactivity of the molecular structure, resulting in a significantly shorter detection time (within 5 min) as compared to previous reports (> 20 min for acrylates-based probes in aqueous solution). Based on this approach, our near-infrared probe 2F-RBX can sensitively and efficiently detect endogenous biothiols in living HepG2 cells and in vivo. These data suggest that ortho-activation is a simple and flexible approach to construct sensitive fluorescent probes for rapid imaging of biothiols, and perhaps other molecules in future, under biological circumstances.
Collapse
Affiliation(s)
- Lu Yu
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Huiru Yang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Liang Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Zhiyong Tian
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Roy K, Ghosh AK, Das PK. Naphthalene Diimide-Based Orange Emitting Luminogen: A Fluorometric Probe for Thiol Sensing through the Click Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15690-15704. [PMID: 37874762 DOI: 10.1021/acs.langmuir.3c02221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Fluorometric sensors have gained considerable attention in various fields, including environmental monitoring, biomedical research, and clinical diagnostics. This article delineates the fabrication of an orange emitting naphthalene diimide (NDI) derivative consisting of maleimide moiety (NDI-mal) for fluorometric sensing of thiols. Spherical shaped organic nanoparticles (∼100-150 nm) were constructed by NDI-mal in dimethyl sulfoxide (DMSO)/dimethylformamide (DMF)-water through J-type aggregation. NDI-mal displayed self-assembly driven aggregation-induced emission (AIE) through excimer formation at λem= 588 nm at fw = 99 vol % DMSO/DMF-water. Naphthyl residue at both terminals of NDI-mal facilitates intramolecular charge transfer (ICT) from the donor naphthyl residue to the acceptor NDI core. The fluorescence intensity of NDI-mal fluorescent organic nanoparticles (FONPs) got quenched in the presence of thiols due to thiol-maleimide adduct formation (Michael addition). NDI-mal FONPs selectively probed thiol functionalized small molecules (4-aminothiophenol), biomolecules (glutathione (GSH)), and proteins (reduced BSA) with high sensitivity having a limit of detection of 15.3 nM, 6.0 nM, and 9.2 ng/mL, respectively. Importantly, thiol sensing was selective against analogous small molecules, biomolecules, and proteins devoid of thiol moieties. Cellular imaging demonstrated selective diagnosis of cancer cells by NDI-mal FONPs through quenching of its emission upon interaction with thiols in B16F10 cells due to the high abundance of GSH in cancer cells compared to NIH3T3 cells. NDI-mal FONPs emitted their native fluorescence inside cells subjected to reactive oxygen species mediated thiol oxidation via Fenton's reaction. Notably, GSH-maleimide adduct formation by NDI-mal FONPs displayed notable therapeutic efficacy against cancer cells having ∼2.4-fold higher killing of B16F10 in comparison to NIH3T3 cells possibly through oxidative stress induced apoptosis owing to the depletion in the GSH level. Thus, NDI-mal AIE-gen successfully emerged as a selective and sensitive probe toward thiols through thiol-maleimide click chemistry with therapeutic ability against cancer cells in the absence of systematic intervention.
Collapse
Affiliation(s)
- Kathakoli Roy
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Campos JC, Campos PT, Pedra NS, Bona NP, Soares MS, Souza PO, Braganhol E, Cunico W, Siqueira GM. Synthesis and Biological Evaluation of Novel 2-imino-4-thiazolidinones as Potential Antitumor Agents for Glioblastoma. Med Chem 2021; 18:452-462. [PMID: 34365956 DOI: 10.2174/1573406417666210806094543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/11/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
AIMS The purpose of our study was to explore the molecular hybridization between 2-imino-4-thizolidione and piridinic scaffolds and its potential antitumor activity. BACKGROUND Glioblastoma is the most aggressive glioma tumor clinically diagnosed malignant and highly recurrent primary brain tumor type. The standard of treatment for a glioblastoma is surgery, followed by radiation and chemotherapy using temozolomide. However, the chemoresistance has become the main barrier to treatment success. 2-imino-4-thiazolidinones are an important class of heterocyclic compounds that feature anticancer activity; however the antiglioblastoma activity is yet to be explored. OBJECTIVE To synthesize and characterize a series of novel 2-imino-4-thiazolidinones and evaluate their antiglioblastoma activity. METHOD The 2-imino-4-thiazolidinone (5a-p) was synthesized according to the literature with modifications. Compounds were identified and characterized using spectroscopic analysis and X-ray diffraction. The antitumor activity was analyzed by 3-(4,5- dimethyl)-2,5-diphenyltetrazolium bromide (MTT) assay both in primary astrocyte and glioma (C6). Apoptosis and cell cycle phase were determined by flow cytometry analysis. The expression of caspase-3/7 was measured by luminescence assay. Oxidative stress parameters as: determination of reactive oxygen species (ROS), superoxide dismutase (SOD) activity, catalase (CAT) activity and total sulfhydryl content quantification were analyzed by colorimetric assays according to literature. RESULTS Among sixteen synthesized compounds, three displayed potent antitumor activities against tested glioblastoma cell line showed IC50 values well below the standard drug temozolomide. Therefore, compounds 5a, 5l and 5p were evaluated using cell cycle and death analysis, due to potent toxicity (2.17±1.17, 6.24±0.59, 2.93±1.12µM, respectively) in C6 cell line. The mechanism of action studies demonstrated that 5a and 5l induced apoptosis significantly increase the percentage of cells in Sub-G1 phase in the absence of necrosis. Consistent with these results, caspase-3/7 assay revealed that 5l presents pro-apoptotic activity due to the significant stimulation of caspases-3/7. Moreover, 5a, 5l and 5p increased antioxidant defense and decreased reactive oxygen species (ROS) production. CONCLUSION The compounds were synthesized with good yield and three of these presented (5a, 5l and 5p) good cytotoxicity against C6 cell line. Both affected cell cycle distribution via arresting more C6 cell line at Sub-G1 phase promoting apoptosis. Furthermore, 5a, 5l and 5p modulated redox status. These findings suggest that these compounds can be considered as promising lead molecules for further development of potential antitumor agents.
Collapse
Affiliation(s)
- José Coan Campos
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Patrick Teixeira Campos
- Laboratório de Química Orgânica Sintética, Estrutural e Computacional (LaQuiOSEC), Instituto Federal Sul-rio-grandense, Campus Pelotas, Pelotas, RS. Brazil
| | - Nathalia Stark Pedra
- Laboratório de Neuroquímica, Inflamação e Câncer (NEUROCAN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Natália Pontes Bona
- Laboratório de Neuroquímica, Inflamação e Câncer (NEUROCAN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Mayara Sandrielly Soares
- Laboratório de Neuroquímica, Inflamação e Câncer (NEUROCAN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Priscila Oliveira Souza
- Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS. Brazil
| | - Elizandra Braganhol
- Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS. Brazil
| | - Wilson Cunico
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| | - Geonir Machado Siqueira
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS. Brazil
| |
Collapse
|
5
|
Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS. Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxid Redox Signal 2020; 32:331-349. [PMID: 31617376 DOI: 10.1089/ars.2019.7904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: As one-electron reduced molecule of nitric oxide (NO), nitroxyl (HNO) has gained enormous attention because of its novel physiological or pharmacological properties, ranging from cardiovascular protective actions to antitumoricidal effects. Recent Advances: HNO is emerging as a new entity with therapeutic advantages over its redox sibling, NO. The interests in the chemical, pharmacological, and biological characteristics of HNO have broadened our current understanding of its role in physiology and pathophysiology. Critical Issues: In particular, the experimental evidence suggests the therapeutic potential of HNO in tumor pharmacology, such as neuroblastoma, gastrointestinal tumor, ovarian, lung, and breast cancers. Indeed, HNO donors have been demonstrated to attenuate tumor proliferation and angiogenesis. Future Directions: In this review, the generation and detection of HNO are outlined, and the roles of HNO in cancer progression are further discussed. We anticipate that the completion of this review might give novel insights into the roles of HNO in cancer pharmacology and open up a novel field of cancer therapy based on HNO.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Leng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
6
|
Satriano A, Franchini S, Lapergola G, Pluchinotta F, Anastasia L, Baryshnikova E, Livolti G, Gazzolo D. Glutathione Blood Concentrations: A Biomarker of Oxidative Damage Protection during Cardiopulmonary Bypass in Children. Diagnostics (Basel) 2019; 9:diagnostics9030118. [PMID: 31540197 PMCID: PMC6787732 DOI: 10.3390/diagnostics9030118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 01/18/2023] Open
Abstract
Background. Pediatric open-heart surgery with cardiopulmonary bypass (CPB) still remains a risky interventional procedure at high mortality/morbidity. To date, there are no clinical, laboratory, and/or monitoring parameters providing useful information on perioperative stress. We therefore investigated whether blood concentrations of glutathione (GSH), a powerful endogenous antioxidant, changed in the perioperative period. Methods. We conducted an observational study in 35 congenital heart disease (CHD) children in whom perioperative standard laboratory and monitoring parameters and GSH blood levels were assessed at five monitoring time points. Results. GSH showed a pattern characterized by a progressive increase from pre-surgery up to 24 h after surgery, reaching its highest peak at the end of CPB. GSH measured at the end of CPB correlated with CPB duration, cross-clamping, arterial oxygen partial pressure, and with body core temperature. Conclusions. The increase in GSH levels in the perioperative period suggests a compensatory mechanism to oxidative damage during surgical procedure. Caution is needed in controlling different CPB phases, especially systemic reoxygenation in a population that is per se more prone to oxidative stress/damage. The findings may point the way to detecting the optimal temperature and oxygenation target by biomarker monitoring.
Collapse
Affiliation(s)
- Angela Satriano
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, 20097 Milan, Italy
| | - Simone Franchini
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, 65100 Chieti, Italy
| | - Giuseppe Lapergola
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, 65100 Chieti, Italy
| | - Francesca Pluchinotta
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, 20097 Milan, Italy
| | - Ekaterina Baryshnikova
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, 20097 Milan, Italy
| | - Giovanni Livolti
- Department of Biomedical and Biotechnological Sciences Section of Biochemistry University of Catania, 95100 Catania, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, 65100 Chieti, Italy.
- AO SS Antonio, Biagio and C. Arrigo Hospital Alessandria, 15121 Alessandria, Italy.
| |
Collapse
|
7
|
Gào X, Wilsgaard T, Jansen EHJM, Xuan Y, Anusruti A, Brenner H, Schöttker B. Serum total thiol levels and the risk of lung, colorectal, breast and prostate cancer: A prospective case-cohort study. Int J Cancer 2019; 146:1261-1267. [PMID: 31125113 DOI: 10.1002/ijc.32428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/09/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022]
Abstract
Free thiol groups of intra and extracellular molecules are considered to be antioxidative and to protect cells from damage caused by free radicals. However, the associations of serum total thiol levels (TTL) with the incidences of the four most frequent cancer sites have not yet been investigated in a large population-based, prospective study. TTL was measured in case-cohort design in a sample from the population-based, Norwegian Tromsø 3 study (cancer cases: n = 941; random subcohort: n = 1,000) and was repeatedly measured at Tromsø 5. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were estimated by weighted multivariable-adjusted Cox regression with time-dependent modeling of TTL for incident lung, colorectal, breast and prostate cancer. High serum TTL were associated with a reduced risk of all four major cancers. The associations with lung (top vs. bottom tertile: HR, 0.64; 95% CI, 0.41, 0.99) and breast cancer (top vs. bottom tertile: HR, 0.64; 95% CI, 0.42, 0.96) were statistically significant, whereas associations with colorectal (top vs. bottom tertile: HR, 0.79; 95% CI, 0.54, 1.16) and prostate cancer (top vs. bottom tertile: HR, 0.79; 95% CI, 0.53, 1.17) were not statistically significant but pointed in the same protective direction. These findings from a large, prospective Norwegian cohort study suggest a preventive role of thiols against the development of the four most frequent cancers. Whereas associations with breast and lung cancer could be shown with statistical significance, larger studies are needed to corroborate potential associations of TTL with colorectal and prostate cancer.
Collapse
Affiliation(s)
- Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Tom Wilsgaard
- Department of Community Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Eugène H J M Jansen
- Centre for Health Protection, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Yang Xuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Ankita Anusruti
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, Heidelberg University, Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Tripathi R, Banji D, Tripathi P. Evaluation of mutagenic and anti-mutagenic potential of alpha-lipoic acid by chromosomal aberration assay in mice. Drug Chem Toxicol 2019; 43:378-382. [PMID: 31072146 DOI: 10.1080/01480545.2019.1606231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study investigated both the mutagenicity and anti-mutagenicity of alpha-lipoic acid (ALA) in the bone marrow cells of mice using a chromosomal aberration assay. Cyclophosphamide (CP) 40 mg/kg was used as a clastogen in the positive control, and a vehicle-treated negative control group was also included. Multiple dose levels (15, 30, and 100 mg/kg of ALA) were given by intraperitoneal injection (IP) alone and in combination with CP (CP was administered 1 h prior to ALA). Bone marrow samples were collected 12 and 24 h after drug administration. The results demonstrated a significant increase in the frequency of chromosomal aberrations (CA) in bone marrow cells with depressions in the mitotic index (MI) of the positive control group of mice. However, in the groups of mice treated with different doses of ALA in the presence of CP, the percentages of CA decreased significantly with increases in mitotic activity. The results also indicate that ALA given alone in different doses had no mutagenic effect on mouse bone marrow cells. ALA has a dose and time-dependent protective effect against the mutagenicity induced by CP.
Collapse
Affiliation(s)
- Rina Tripathi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA
| | - David Banji
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, KSA
| | - Pankaj Tripathi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, KSA
| |
Collapse
|
9
|
Anu Prathap MU, Kaur B, Srivastava R. Electrochemical Sensor Platforms Based on Nanostructured Metal Oxides, and Zeolite-Based Materials. CHEM REC 2018; 19:883-907. [DOI: 10.1002/tcr.201800068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Affiliation(s)
- M. U. Anu Prathap
- Department of Biological Systems Engineering; University of Wisconsin−Madison; 460 Henry Mall Madison, WI 53706 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Balwinder Kaur
- Department of Chemistry; University of Massachusetts Lowell; 256 Riverside Street,Olney Hall Lowell, MA 01845 USA
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| | - Rajendra Srivastava
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar Punjab 140001 India
| |
Collapse
|
10
|
Ortega-Ferrusola C, Martin Muñoz P, Ortiz-Rodriguez JM, Anel-López L, Balao da Silva C, Álvarez M, de Paz P, Tapia JA, Anel L, Silva- Rodríguez A, Aitken RJ, Gil MC, Gibb Z, Peña FJ. Depletion of thiols leads to redox deregulation, production of 4-hydroxinonenal and sperm senescence: a possible role for GSH regulation in spermatozoa†. Biol Reprod 2018; 100:1090-1107. [DOI: 10.1093/biolre/ioy241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/06/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Patricia Martin Muñoz
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Jose Manuel Ortiz-Rodriguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Luis Anel-López
- Reproduction and Obstetrics Department of Animal Medicine and Surgery, University of León, Spain
| | | | - Mercedes Álvarez
- Reproduction and Obstetrics Department of Animal Medicine and Surgery, University of León, Spain
| | - Paulino de Paz
- Reproduction and Obstetrics Department of Animal Medicine and Surgery, University of León, Spain
| | - Jose Antonio Tapia
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Luis Anel
- Reproduction and Obstetrics Department of Animal Medicine and Surgery, University of León, Spain
| | - Antonio Silva- Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Robert J Aitken
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - M Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Zamira Gibb
- Priority Research Center in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
11
|
Olivito F, Costanzo P, Di Gioia ML, Nardi M, M O, Procopio A. Efficient synthesis of organic thioacetates in water. Org Biomol Chem 2018; 16:7753-7759. [PMID: 30299446 DOI: 10.1039/c8ob01896k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thioacetates as precursors of thiols are interesting starting points for synthesizing other organosulfur compounds. Herein, we propose a simple, efficient and fast method to obtain organic thioacetates using water as a solvent. Taking into account the great attention that has been paid toward environmentally friendly synthetic procedures in the past decades, we prove the role and the strength of the thioacetate anion as a nucleophile for nucleophilic displacement reactions in an aqueous medium. The reactions were carried out under pH control, to prevent the decomposition of the mesylate starting materials, using potassium carbonate as a safe and mild base. A simple work up allows products to be obtained with excellent yield and acceptable purity.
Collapse
Affiliation(s)
- F Olivito
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, Germaneto, CZ, Italy. and Dipartimento di Chimica, Università della Calabria, Cubo 12C, Arcavacata di Rende, CS, Italy
| | - P Costanzo
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, Germaneto, CZ, Italy.
| | - M L Di Gioia
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Edificio Polifunzionale, Università della Calabria, 87030 Arcavacata di Rende, Cosenza, Italy
| | - M Nardi
- Dipartimento di Chimica, Università della Calabria, Cubo 12C, Arcavacata di Rende, CS, Italy and Dipartimento di Agraria, Università Telematica San Raffaele, Roma, Via di Val Cannuta, 247, 00166, Italy
| | - Oliverio M
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, Germaneto, CZ, Italy.
| | - A Procopio
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, Germaneto, CZ, Italy.
| |
Collapse
|
12
|
Zhang Q, Bergman J, Wiman KG, Bykov VJN. Role of Thiol Reactivity for Targeting Mutant p53. Cell Chem Biol 2018; 25:1219-1230.e3. [PMID: 30057300 DOI: 10.1016/j.chembiol.2018.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Reactivation of mutant p53 has emerged as a promising approach for cancer therapy. Recent studies have identified several mutant p53-reactivating compounds that target thiol groups in mutant p53. Here we have investigated the relationship between thiol reactivity, p53 thermostabilization, mutant p53 refolding, mutant p53-dependent growth suppression, and induction of cell death. Analysis of the National Cancer Institute database revealed that Michael acceptors show the highest selectivity for mutant p53-expressing cells among analyzed thiol-reactive compounds. Further experimental testing demonstrated that Michael acceptors, aldehydes, imines, and primary alcohols can promote thermodynamic stabilization of mutant p53. Moreover, mild thiol reactivity, often coupled with combined chemical functional groups, such as in imines, aldehydes, and primary alcohols, can stimulate mutant p53 refolding. However, strong electrophile activity was associated with cellular toxicity. Our findings may open possibilities for rational design of novel potent and selective mutant p53-reactivating compounds.
Collapse
Affiliation(s)
- Qiang Zhang
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Stockholm SE-17176, Sweden
| | - Jan Bergman
- Karolinska Institutet, Department of Bioscience and Nutrition, Huddinge SE-14157, Sweden
| | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Stockholm SE-17176, Sweden.
| | - Vladimir J N Bykov
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Stockholm SE-17176, Sweden
| |
Collapse
|
13
|
Kumar S, Liu X, Borondics F, Xiao Q, Feng R, Goormaghtigh E, Nikolajeff F. Insights into Biochemical Alteration in Cancer-Associated Fibroblasts by using Novel Correlative Spectroscopy. ChemistryOpen 2017; 6:149-157. [PMID: 28168160 PMCID: PMC5288759 DOI: 10.1002/open.201600102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/01/2016] [Indexed: 01/11/2023] Open
Abstract
The microenvironment of a tumor changes chemically and morphologically during cancer progression. Cancer‐stimulated fibroblasts promote tumor growth, however, the mechanism of the transition to a cancer‐stimulated fibroblast remains elusive. Here, the multi‐modal spectroscopic methods Fourier transform infrared imaging (FTIRI), X‐ray absorption spectroscopy (XAS) and X‐ray fluorescence imaging (XFI) are used to characterize molecular and atomic alterations that occur in cancer‐stimulated fibroblasts. In addition to chemical changes in lipids (olefinic and acyl chain) and protein aggregation observed with FTIRI, a new infrared biomarker for oxidative stress in stimulated fibroblasts is reported. Oxidative stress is observed to cause lipid peroxidation, which leads to the appearance of a new band at 1721 cm−1, assigned to 4‐hydroxynonenal. Complementary to FTIRI, XFI is well suited to determining atom concentrations and XAS can reveal the speciation of individual elements. XFI reveals increased concentrations of P, S, K, Ca within stimulated fibroblasts. Furthermore, XAS studies reveal alterations in the speciation of S and Ca in stimulated fibroblasts, which might provide insight into the mechanisms of cancer progression. Using XFI, not only is the concentration change of individual elements observed, but also the subcellular localization. This study demonstrates the wealth of biochemical information provided by a multi‐modal imaging approach and highlights new avenues for future research into the microenvironment of breast tumors.
Collapse
Affiliation(s)
- Saroj Kumar
- Berzelii Technology Centre for Neurodiagnostics Department of Engineering Science Uppsala University Uppsala 75105 Sweden; Department of Biophysics All India Institute of Medical Sciences New Delhi 110029 India; Canadian Light Source Saskatoon SK S7N 2V3 Canada
| | - Xia Liu
- Canadian Light Source Saskatoon SK S7N 2V3 Canada
| | | | - Qunfeng Xiao
- Canadian Light Source Saskatoon SK S7N 2V3 Canada
| | - Renfei Feng
- Canadian Light Source Saskatoon SK S7N 2V3 Canada
| | - Erik Goormaghtigh
- Structure and Function of Biological Membranes (SFMB) Université Libre de Bruxelles Belgium
| | - Fredrik Nikolajeff
- Berzelii Technology Centre for Neurodiagnostics Department of Engineering Science Uppsala University Uppsala 75105 Sweden
| |
Collapse
|
14
|
Rahman MM, Hussein MA, Abdel Salam M, Asiri AM. Fabrication of anl-glutathione sensor based on PEG-conjugated functionalized CNT nanocomposites: a real sample analysis. NEW J CHEM 2017. [DOI: 10.1039/c7nj01704a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three series of polyethylene glycol–carbon nanotube nanocomposites in the form of PEG/CNTa–e, PEG/f-CNT.Oxia–e, and PEG/CNT.C18a–ehave been fabricated using a dissolution stirring ultra-sonication method.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohamed Abdel Salam
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
15
|
A glutathione biosensor based on a glassy carbon electrode modified with CdO nanoparticle-decorated carbon nanotubes in a nafion matrix. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1987-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Childs S, Haroune N, Williams L, Gronow M. Determination of cellular glutathione:glutathione disulfide ratio in prostate cancer cells by high performance liquid chromatography with electrochemical detection. J Chromatogr A 2016; 1437:67-73. [DOI: 10.1016/j.chroma.2016.01.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/11/2022]
|
17
|
Kang YF, Qiao HX, Meng YL, Cui SJ, Han YJ, Wu ZY, Wu J, Jia XH, Zhang XL, Dai MY. Rapid and selective detection of cysteine over homocysteine and glutathione by a simple and effective coumarin-based fluorescent probe. RSC Adv 2016. [DOI: 10.1039/c6ra19267j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fluorescent probe, with coumarin as the fluorophore, is capable of detecting cysteine over other biothiols, such as homocysteine and glutathione.
Collapse
Affiliation(s)
- Yan-Fei Kang
- College of Laboratory Medicine
- Hebei North University
- Zhangjiakou
- China
| | - Hai-Xia Qiao
- College of Laboratory Medicine
- Hebei North University
- Zhangjiakou
- China
| | - Ya-Li Meng
- College of Laboratory Medicine
- Hebei North University
- Zhangjiakou
- China
| | - Sai-Jin Cui
- College of Laboratory Medicine
- Hebei North University
- Zhangjiakou
- China
| | - Ya-Jun Han
- College of Laboratory Medicine
- Hebei North University
- Zhangjiakou
- China
| | - Zhi-Yong Wu
- College of Science
- Hebei North University
- Zhangjiakou
- China
| | - Jie Wu
- College of Laboratory Medicine
- Hebei North University
- Zhangjiakou
- China
| | - Xiao-Hui Jia
- College of Laboratory Medicine
- Hebei North University
- Zhangjiakou
- China
| | - Xiao-Lei Zhang
- College of Laboratory Medicine
- Hebei North University
- Zhangjiakou
- China
| | - Ming-Yan Dai
- College of Laboratory Medicine
- Hebei North University
- Zhangjiakou
- China
| |
Collapse
|
18
|
Martin Muñoz P, Ortega Ferrusola C, Vizuete G, Plaza Dávila M, Rodriguez Martinez H, Peña FJ. Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death. Biol Reprod 2015; 93:143. [PMID: 26536905 DOI: 10.1095/biolreprod.115.132878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/30/2015] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P < 0.001) postthaw. Interestingly, very high and positive correlations were observed among thiol levels with sperm functionality postthaw: total motility (r = 0.931, P < 0.001), progressive motility (r = 0.904, P < 0.001), and percentage of live spermatozoa without active caspase 3 (r = 0.996, P < 0.001). In contrast, negative correlations were detected between active caspase 3 and thiol content both in living (r = -0.896) and dead (r = -0.940) spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted.
Collapse
Affiliation(s)
- Patricia Martin Muñoz
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Guillermo Vizuete
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Maria Plaza Dávila
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Heriberto Rodriguez Martinez
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
19
|
Wang W, He Y, Yu G, Li B, Sexton DW, Wileman T, Roberts AA, Hamilton CJ, Liu R, Chao Y, Shan Y, Bao Y. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity. PLoS One 2015; 10:e0138771. [PMID: 26402917 PMCID: PMC4581733 DOI: 10.1371/journal.pone.0138771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/10/2015] [Indexed: 12/28/2022] Open
Abstract
The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.
Collapse
Affiliation(s)
- Wei Wang
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Guodong Yu
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Baolong Li
- Center of Safety Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, P. R. China
| | - Darren W Sexton
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Alexandra A Roberts
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Chris J Hamilton
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Ruoxi Liu
- School of Chemistry, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yimin Chao
- School of Chemistry, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Yujuan Shan
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
20
|
Kaur B, Srivastava R, Satpati B. A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione. RSC Adv 2015. [DOI: 10.1039/c5ra19249h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High electrocatalytic activity of the sensor can be attributed to the highly dispersed gold nanoparticles on the nanocrystalline zeolite matrix.
Collapse
Affiliation(s)
- Balwinder Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Rajendra Srivastava
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Biswarup Satpati
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| |
Collapse
|
21
|
El Sayed S, Giménez C, Aznar E, Martínez-Máñez R, Sancenón F, Licchelli M. Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Org Biomol Chem 2014; 13:1017-21. [PMID: 25482517 DOI: 10.1039/c4ob02083a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesoporous silica nanoparticles loaded with safranin O and capped with disulfide-containing oligo(ethylene glycol) chains were used for the selective and sensitive fluorimetric detection of glutathione.
Collapse
Affiliation(s)
- Sameh El Sayed
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Murale DP, Kim H, Choi WS, Churchill DG. Rapid and selective detection of Cys in living neuronal cells utilizing a novel fluorescein with chloropropionate–ester functionalities. RSC Adv 2014. [DOI: 10.1039/c3ra47280a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Murale DP, Kim H, Choi WS, Kim Y, Churchill DG. Extremely selective fluorescence detection of cysteine or superoxide with aliphatic ester hydrolysis. RSC Adv 2014. [DOI: 10.1039/c4ra06891b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel fluorescence probe modality demonstrated with fluorescein affords a highly selective aqueous-based detection of cysteine over other biothiols,e.g.homocysteine, with a limit of detection of 11.3 μM.
Collapse
Affiliation(s)
| | - Hwajin Kim
- Department of Anatomy and Neurobiology
- Gyeongsang National University
- Jinju, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Neurobiology
- Gyeongsang National University
- Jinju, Republic of Korea
| | - Youngsam Kim
- Department of Chemistry
- KAIST
- Daejeon, Republic of Korea
| | | |
Collapse
|
24
|
Choudhari SK, Chaudhary M, Gadbail AR, Sharma A, Tekade S. Oxidative and antioxidative mechanisms in oral cancer and precancer: a review. Oral Oncol 2013; 50:10-8. [PMID: 24126222 DOI: 10.1016/j.oraloncology.2013.09.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022]
Abstract
Development of cancer in humans is a multistep process. Complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli and important amongst this is generation of reactive oxygen species (ROS). Reactive radicals and non-radicals are collectively known as ROS. These can produce oxidative damage to the tissues and hence are known as oxidants in biological system. Many researchers have documented the role of ROS in both initiation and promotion of multistep carcinogenesis. To mitigate the harmful effects of free radicals, all aerobic cells are endowed with extensive antioxidant defence mechanisms. Lowered antioxidant capacity or the oxidant-antioxidant imbalance can lead to oxidative damage to cellular macromolecules leading to cancer. Oral cavity cancer is an important cancer globally and tobacco is the primary etiological factor in its development. Tobacco consumption exposes the oral epithelium to toxic oxygen and nitrogen free radicals that can affect host antioxidant defence mechanisms. Elevated levels of ROS and Reactive Nitrogen Species (RNS) and lowered antioxidants are found in oral precancer and cancer. Protection can be provided by various antioxidants against deleterious action of these free radicals. Treatment with antioxidants has the potential to prevent, inhibit and reverse the multiple steps involved in oral carcinogenesis. This review is an attempt to understand the interesting correlation between ROS and RNS mediated cell damage and enzymatic and non-enzymatic defence mechanisms involved in oral cancer development and its progression and the use of antioxidants in oral cancer prevention and treatment.
Collapse
Affiliation(s)
- Sheetal Korde Choudhari
- Dept of Oral Pathology & Microbiology, Yerala Dental College and Hospital, Kharghar, Mumbai 410 210, India.
| | - Minal Chaudhary
- Dept of Oral Pathology & Microbiology, Sharad Pawar Dental College, Sawangi, Wardha, Maharashtra 442 001, India.
| | - Amol R Gadbail
- Dept of Oral Pathology & Microbiology, Sharad Pawar Dental College, Sawangi, Wardha, Maharashtra 442 001, India.
| | - Aparna Sharma
- Dept of Oral Pathology, VSPM Dental College and Hospital, Nagpur, Maharashtra 440 019, India.
| | - Satyajit Tekade
- Dept of Oral Pathology & Microbiology, Modern Dental College & Research Centre, Gandhi Nagar, Indore, Madhya Pradesh 453112, India.
| |
Collapse
|
25
|
Murale DP, Kim H, Choi WS, Churchill DG. Highly Fluorescent and Specific Molecular Probing of (Homo)Cysteine or Superoxide: Biothiol Detection Confirmed in Living Neuronal Cells. Org Lett 2013; 15:3630-3. [DOI: 10.1021/ol401480w] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dhiraj P. Murale
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373−1 Guseong−dong, Yuseong−gu, Daejeon, 305−701, Republic of Korea, and Department of Anatomy and Neurobiology, Medical Research,Center for Neural Dysfunction, Institute of Health Science, School of Medicine, Gyeongsang National University, 92 Chilam−dong, Jinju, Gyeongnam 660−751, Republic of Korea
| | - Hwajin Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373−1 Guseong−dong, Yuseong−gu, Daejeon, 305−701, Republic of Korea, and Department of Anatomy and Neurobiology, Medical Research,Center for Neural Dysfunction, Institute of Health Science, School of Medicine, Gyeongsang National University, 92 Chilam−dong, Jinju, Gyeongnam 660−751, Republic of Korea
| | - Wan Sung Choi
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373−1 Guseong−dong, Yuseong−gu, Daejeon, 305−701, Republic of Korea, and Department of Anatomy and Neurobiology, Medical Research,Center for Neural Dysfunction, Institute of Health Science, School of Medicine, Gyeongsang National University, 92 Chilam−dong, Jinju, Gyeongnam 660−751, Republic of Korea
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373−1 Guseong−dong, Yuseong−gu, Daejeon, 305−701, Republic of Korea, and Department of Anatomy and Neurobiology, Medical Research,Center for Neural Dysfunction, Institute of Health Science, School of Medicine, Gyeongsang National University, 92 Chilam−dong, Jinju, Gyeongnam 660−751, Republic of Korea
| |
Collapse
|
26
|
D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett 2013; 337:8-21. [PMID: 23727371 DOI: 10.1016/j.canlet.2013.05.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/13/2023]
Abstract
Low molecular weight thiols (LMWTs) like N-acetyl cysteine, D-penicillamine, captopril, Disulfiram and Amifostine, etc. have been used as chemo-preventive agents. Recent studies have reported cell growth inhibition and cytotoxicity in several different types of cancer cells following treatment with several LMWTs. Cytotoxic and cytostatic effects of LMWTs may involve interaction of the thiol group with cellular lipids, proteins, intermediates or enzymes. Some of the mechanisms that have been proposed include a p53 mediated apoptosis, thiyl radical induced DNA damage, membrane damage through lipid peroxidation, anti-angiogenic effects induced by inhibition of matrix metalloproteinase enzymes and angiostatin generation. LMWTs are strong chelators of transition metals like copper, nickel, zinc, iron and cobalt and may cause metal co-factor depletion resulting in cytotoxicity. Oxidation of thiol group can also generate cytotoxic reactive oxygen species (ROS).
Collapse
|
27
|
Emmert SW, El-Bayoumy K, Das A, Sun YW, Amin S, Desai D, Aliaga C, Richie JP. Induction of lung glutathione and glutamylcysteine ligase by 1,4-phenylenebis(methylene)selenocyanate and its glutathione conjugate: role of nuclear factor-erythroid 2-related factor 2. Free Radic Biol Med 2012; 52:2064-71. [PMID: 22542796 PMCID: PMC3475320 DOI: 10.1016/j.freeradbiomed.2012.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 03/07/2012] [Accepted: 03/24/2012] [Indexed: 01/22/2023]
Abstract
The synthetic organoselenium agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC) and its glutathione (GSH) conjugate (p-XSeSG) are potent chemopreventive agents in several preclinical models. p-XSC is also an effective inducer of GSH in mouse lung. Our objectives were to test the hypothesis that GSH induction by p-XSC occurs through upregulation of the rate-limiting GSH biosynthetic enzyme glutamylcysteine ligase (GCL), through activation of antioxidant response elements (AREs) in GCL genes via activation of nuclear factor-erythroid 2-related factor 2 (Nrf2). p-XSC feeding (10 ppm Se) increased GSH (230%) and upregulated the catalytic subunit of GCL (GCLc) (55%), extracellular-related kinase (220%), and nuclear Nrf2 (610%) in lung but not liver after 14 days in the rat (P<0.05). Similarly, p-XSeSG feeding (10 ppm) induced lung GCLc (88%) and GSH (200%) (P<0.05), whereas the naturally occurring selenomethionine had no effect. Both p-XSC and p-XSeSG activated a luciferase reporter in HepG2 ARE-reporter cells up to threefold for p-XSC and greater than or equal to fivefold for p-XSeSG. Luciferase activation by p-XSeSG was associated with enhanced levels of GSH, GCLc, and nuclear Nrf2, which were significantly reduced by co-incubation with short interfering RNA targeting Nrf2. The dependence of GCL induction on Nrf2 was confirmed in Nrf2-deficient mouse embryonic fibroblasts, in which p-XSeSG induced GCL subunits in wild-type but not in Nrf2-deficient cells (P<0.05). These results indicate that p-XSC may act through the Nrf2 pathway in vivo and that p-XSeSG is the putative metabolite responsible for such activation, thus offering p-XSeSG as a less toxic, yet highly efficacious, inducer of GSH.
Collapse
Affiliation(s)
- Sans W. Emmert
- Graduate Program in Molecular Medicine, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Arunangshu Das
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Yuan-Wan Sun
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Shantu Amin
- Department of Pharmacology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Dhimant Desai
- Department of Pharmacology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - Cesar Aliaga
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
| | - John P. Richie
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State University College of Medicine, Hershey PA 17033
- Correspondence should be directed to: John P. Richie, Jr., Department of Public Health Sciences, Penn State University College of Medicine H069, 500 University Dr., P.O. Box 850, Hershey PA, 17033, Tel: 717-531-5381, Fax: 717-531-0480,
| |
Collapse
|
28
|
Tsay OG, Lee KM, Churchill DG. Selective and competitive cysteine chemosensing: resettable fluorescent “turn on” aqueous detection via Cu2+ displacement and salicylaldimine hydrolysis. NEW J CHEM 2012. [DOI: 10.1039/c2nj40387k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Potential immunoregulatory role of heme oxygenase-1 in human milk: a combined biochemical and molecular modeling approach. J Nutr Biochem 2010; 21:865-71. [PMID: 19879747 DOI: 10.1016/j.jnutbio.2009.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/15/2009] [Accepted: 06/22/2009] [Indexed: 12/22/2022]
|
30
|
Park HJ, Davis SR, Liang HY, Rosenberg DW, Bruno RS. Chlorogenic acid differentially alters hepatic and small intestinal thiol redox status without protecting against azoxymethane-induced colon carcinogenesis in mice. Nutr Cancer 2010; 62:362-70. [PMID: 20358474 DOI: 10.1080/01635580903407239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths in the United States. Epidemiological data have suggested that coffee consumption is inversely related to CRC risk, which may be attributed to chlorogenic acid (CGA), an ester of caffeic acid (CA) and quinic acid. This study was conducted to determine whether chronic dietary CGA supplementation would attenuate tumorigenesis and oxidative stress in a mouse model of azoxymethane (AOM)-induced colon cancer. Mice (4-wk old; n = 15/group) were fed CGA (0%, 0.01%, or 0.1%) for 20 wk and received 6 weekly intraperitoneal AOM injections (10 mg/kg). CGA and CA dose-dependently accumulated in the small intestinal mucosa. AOM induced (P < 0.05) colonic aberrant crypt foci (14.2 +/- 1.9/field) and tumors (14.6 +/- 1.1/colon), which were correlated (r = .677; P < 0.05), and CGA at either dose did not reduce tumorigenesis. Hepatic GSH/GSSG and Cys/CySS ratios were unaffected by AOM, but CGA at 0.1% increased these ratios by decreasing GSSG and CySS. CGA did not affect the ratios of small intestinal GSH/GSSG or Cys/CySS, which were decreased in response to AOM treatment. Collectively, these data indicated that CGA did not protect against AOM-induced tumorigenesis but affected hepatic thiol redox status in this colon cancer model.
Collapse
Affiliation(s)
- Hea Jin Park
- University of Connecticut, Storrs, Connecticut 06269-4017, USA
| | | | | | | | | |
Collapse
|
31
|
p22phox-dependent NADPH oxidase activity is required for megakaryocytic differentiation. Cell Death Differ 2010; 17:1842-54. [PMID: 20523355 DOI: 10.1038/cdd.2010.67] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Transient reactive oxygen species (ROS) production is currently proving to be an important mechanism in the regulation of intracellular signalling, but reports showing the involvement of ROS in important biological processes, such as cell differentiation, are scarce. In this study, we show for the first time that ROS production is required for megakaryocytic differentiation in K562 and HEL cell lines and also in human CD34(+) cells. ROS production is transiently activated during megakaryocytic differentiation, and such production is abolished by the addition of different antioxidants (such as N-acetyl cysteine, trolox, quercetin) or the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenylene iodonium. The inhibition of ROS formation hinders differentiation. RNA interference experiments have shown that a p22(phox)-dependent NADPH oxidase activity is responsible for ROS production. In addition, the activation of ERK, AKT and JAK2 is required for differentiation, but the activation of phosphatidylinositol 3-kinase and c-Jun N-terminal kinase seems to be less important. When ROS production is prevented, the activation of these signalling pathways is partly inhibited. Taken together, these results show that NADPH oxidase ROS production is essential for complete activation of the main signalling pathways involved in megakaryocytopoiesis to occur. We suggest that this might also be important for in vivo megakaryocytopoiesis.
Collapse
|
32
|
Emmert SW, Desai D, Amin S, Richie JP. Enhanced Nrf2-dependent induction of glutathione in mouse embryonic fibroblasts by isoselenocyanate analog of sulforaphane. Bioorg Med Chem Lett 2010; 20:2675-9. [PMID: 20304643 PMCID: PMC2929643 DOI: 10.1016/j.bmcl.2010.01.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Epidemiological and laboratory studies have highlighted the potent chemopreventive effectiveness of both dietary selenium and cruciferous vegetables, particularly broccoli. Sulforaphane (SFN), an isothiocyanate, was identified as the major metabolite of broccoli responsible for its anti-cancer properties. An important mechanism for SFN chemoprevention is through the enhancement of glutathione (GSH), the most abundant antioxidant in animals and an important target in chemoprevention. Enhancement of GSH biosynthetic enzymes including the rate-limiting glutamate cysteine ligase (GCL), as well as other Phase II detoxification enzymes results from SFN-mediated induction of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway. While isothiocyanate compounds such as SFN are among the most potent Nrf2 inducers known, we hypothesized that substitution of sulfur with selenium in the isothiocyanate functional group of SFN would result in an isoselenocyanate compound (SFN-isoSe) with enhanced Nrf2 induction capability. Here we report that SFN-isoSe activated an ARE-luciferase reporter in HepG2 cells more potently than SFN. It was also found that SFN-isoSe induced GCL and GSH in MEF cells in an Nrf2-dependent manner. Finally, we provide evidence that SFN-isoSe was more effective in killing HepG2 cancer cells, yet was less toxic to non-cancer MEF cells, than SFN. These data support our hypothesis, and suggest that SFN-isoSe and potentially other isoselenocyanates may be highly effective chemoprotective agents in vivo due to their ability to induce Nrf2 with low toxicity in normal cells and high efficiency at killing cancer cells.
Collapse
Affiliation(s)
- Sans W. Emmert
- Department of Public Health Sciences, Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - John P. Richie
- Department of Public Health Sciences, Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| |
Collapse
|
33
|
Wiegand H, Boesch-Saadatmandi C, Regos I, Treutter D, Wolffram S, Rimbach G. Effects of Quercetin and Catechin on Hepatic Glutathione-S Transferase (GST), NAD(P)H Quinone Oxidoreductase 1 (NQO1), and Antioxidant Enzyme Activity Levels in Rats. Nutr Cancer 2009; 61:717-22. [DOI: 10.1080/01635580902825621] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol Cell Biol 2009; 29:2704-15. [PMID: 19273594 PMCID: PMC2682033 DOI: 10.1128/mcb.01811-08] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transcription factor SKN-1 protects Caenorhabditis elegans from stress and promotes longevity. SKN-1 is regulated by diverse signals that control metabolism, development, and stress responses, but the mechanisms of regulation and signal integration are unknown. We screened the C. elegans genome for regulators of cytoprotective gene expression and identified a new SKN-1 regulatory pathway. SKN-1 protein levels, nuclear accumulation, and activity are repressed by the WD40 repeat protein WDR-23, which interacts with the CUL-4/DDB-1 ubiquitin ligase to presumably target the transcription factor for proteasomal degradation. WDR-23 regulates SKN-1 target genes downstream from p38 mitogen-activated protein kinase, glycogen synthase kinase 3, and insulin-like receptor pathways, suggesting that phosphorylation of SKN-1 may function to modify its interaction with WDR-23 and/or CUL-4/DDB-1. These findings define the mechanism of SKN-1 accumulation in the cell nucleus and provide a new mechanistic framework for understanding how phosphorylation signals are integrated to regulate stress resistance and longevity.
Collapse
|
35
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
36
|
Ghibu S, Richard C, Delemasure S, Vergely C, Mogosan C, Muresan A. [An endogenous dithiol with antioxidant properties: alpha-lipoic acid, potential uses in cardiovascular diseases]. Ann Cardiol Angeiol (Paris) 2008; 57:161-165. [PMID: 18571145 DOI: 10.1016/j.ancard.2008.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 02/28/2008] [Indexed: 05/26/2023]
Abstract
Alpha-Lipoic acid (ALA) is a natural compound, chemically named 1,2-dithiolane-3-pentanoic acid, also referred to as thioctic acid. In humans, ALA is synthetized by the liver and other tissues with high metabolic activity: heart, kidney. ALA is both water and fat soluble and therefore, is widely distributed in both cellular membranes and cytosol. Recently, a greater deal of attention has been given to antioxidant function for ALA and its reduced formed: dihydrolipoic acid (DHLA). ALA scavenges hydroxyl radicals, hypochlorous acid and singlet oxygen. It may also exert antioxidant effects in biological systems through transitional metal chelation. Dihydrolipoic acid has been shown to have antioxidant but also pro-oxidant properties in systems in which hydroxyl radical was generated. ALA/DHLA ratio has the capacity to recycle endogenous antioxidants such as vitamin E. A number of experimental as well as clinical studies point to the usefulness of ALA as a therapeutic agent for such diverse conditions as diabetes, atherosclerosis, insulin resistance, neuropathy, neurodegenerative diseases and ischemia-reperfusion injury. ALA represents a potential agent on the vascular endothelium, recording to ALA/DHLA redox couple is one of the most powerful biological antioxidant systems.
Collapse
Affiliation(s)
- S Ghibu
- Département de pharmacologie, physiologie et physiopathologie, faculté de pharmacie, université de médecine et pharmacie Iuliu Hatieganu, 41, Victor-Babes, Cluj-Napoca, Roumanie.
| | | | | | | | | | | |
Collapse
|