1
|
Aalhate M, Mahajan S, Dhuri A, Singh PK. Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective. Adv Colloid Interface Sci 2025; 335:103331. [PMID: 39522420 DOI: 10.1016/j.cis.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology-based delivery systems have brought a paradigm shift in the management of cancer. However, the main obstacles to nanocarrier-based delivery are their limited circulation duration, excessive immune clearance, inefficiency in interacting effectively in a biological context and overcoming biological barriers. This demands effective engineering of nanocarriers to achieve maximum efficacy. Nanocarriers can be maneuvered with biological components to acquire biological identity for further regulating their biodistribution and cell-to-cell cross-talk. Thus, the integration of synthetic and biological components to deliver therapeutic cargo is called a biohybrid delivery system. These delivery systems possess the advantage of synthetic nanocarriers, such as high drug loading, engineerable surface, reproducibility, adequate communication and immune evasion ability of biological constituents. The biohybrid delivery vectors offer an excellent opportunity to harness the synergistic properties of the best entities of the two worlds for improved therapeutic outputs. The major spotlights of this review are different biological components, synthetic counterparts of biohybrid nanocarriers, recent advances in hybridization techniques, and the design of biohybrid delivery systems for cancer therapy. Moreover, this review provides an overview of biohybrid systems with therapeutic and diagnostic applications. In a nutshell, this article summarizes the advantages and limitations of various biohybrid nano-platforms, their clinical potential and future directions for successful translation in cancer management.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
2
|
Rugiel M, Janik-Olchawa N, Kowalczyk J, Pomorska K, Sitarz M, Bik E, Horak D, Babic M, Setkowicz Z, Chwiej J. Raman microscopy allows to follow internalization, subcellular accumulation and fate of iron oxide nanoparticles in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124888. [PMID: 39116589 DOI: 10.1016/j.saa.2024.124888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
An important issue in the context of both potenial toxicity of iron oxide nanoparticles (IONP) and their medical applications is tracking of the internalization process of these nanomaterials into living cells, as well as their localization and fate within them. The typical methods used for this purpose are transmission electron microscopy, confocal fluorescence microscopy as well as light-scattering techniques including dark-field microscopy and flow cytometry. All the techniques mentioned have their advantages and disadvantages. Among the problems it is necessary to mention complicated sample preparation, difficult interpretation of experimental data requiring qualified and experienced personnel, different behavior of fluorescently labeled IONP comparing to those label-free or finally the lack of possibility of chemical composition characteristics of nanomaterials. The purpose of the present investigation was the assessment of the usefulness of Raman microscopy for the tracking of the internalization of IONP into cells, as well as the optimization of this process. Moreover, the study focused on identification of the potential differences in the cellular fate of superparamagnetic nanoparticles having magnetite and maghemite core. The Raman spectra of U87MG cells which internalized IONP presented additional bands which position depended on the used laser wavelength. They occurred at the wavenumber range 1700-2400 cm-1 for laser 488 nm and below the wavenumber of 800 cm-1 in case of laser 532 nm. The intensity of the mentioned Raman bands was higher for the green laser (532 nm) and their position, was independent and not characteristic on the primary core material of IONP (magnetite, maghemite). The obtained results showed that Raman microscopy is an excellent, non-destructive and objective technique that allows monitoring the process of internalization of IONP into cells and visualizing such nanoparticles and/or their metabolism products within them at low exposure levels. What is more, the process of tracking IONP using the technique may be further improved by using appropriate wavelength and power of the laser source.
Collapse
Affiliation(s)
- Marzena Rugiel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Julia Kowalczyk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Karolina Pomorska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Maciej Sitarz
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland
| | - Ewelina Bik
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Daniel Horak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského 2, 162 00, Prague 6, Czech Republic
| | - Michal Babic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského 2, 162 00, Prague 6, Czech Republic
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
3
|
Văduva M, Nila A, Udrescu A, Cramariuc O, Baibarac M. Nanocomposites Based on Iron Oxide and Carbonaceous Nanoparticles: From Synthesis to Their Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6127. [PMID: 39769728 PMCID: PMC11676432 DOI: 10.3390/ma17246127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Nanocomposites based on Fe3O4 and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as Fe3O4@GO, Fe3O4@RGO, and Fe3O4@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on Fe3O4. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration. Hence, a solid foundation has been established for the integration of various synthesis techniques for these nanocomposites, with the wet co-precipitation method being the most prevalent. Moreover, the dimensions and morphology of the composite nanoparticles are directly correlated with the value of magnetic saturation, thus influencing the efficiency of the composite in drug delivery and other significant biomedical applications. The current demand for this type of material is related to the loading of a larger quantity of drugs within the hybrid structure of the carrier, with the objective of releasing this amount into the tumor cells. A second demand refers to the biocompatibility of the drug carrier and its capacity to permeate cell membranes, as well as the processes occurring within the drug carriers. The main objective of this paper is to review the synthesis methods used to prepare hybrids based on Fe3O4 and CNPs, such as GO, RGO, and CNTs, and to examinate their role in the formation of hybrid nanoparticles and the correlation between their morphology, the dimensions, and optical/magnetic properties.
Collapse
Affiliation(s)
- Mirela Văduva
- National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania; (A.U.); (M.B.)
| | - Andreea Nila
- National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania; (A.U.); (M.B.)
| | - Adelina Udrescu
- National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania; (A.U.); (M.B.)
| | - Oana Cramariuc
- IT Center for Science and Technology, 25 No. Av. Radu Beller Str., 011702 Bucharest, Romania;
| | - Mihaela Baibarac
- National Institute of Materials Physics, Atomistilor Street, No 405 A, 077125 Magurele, Romania; (A.U.); (M.B.)
| |
Collapse
|
4
|
Ning Y, Yuwen Zhou I, Caravan P. Quantitative in Vivo Molecular MRI. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407262. [PMID: 39279542 PMCID: PMC11530320 DOI: 10.1002/adma.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Molecular magnetic resonance imaging (MRI) combines chemistry, chemical biology, and imaging techniques to track molecular events non-invasively. Quantitative molecular MRI aims to provide meaningful, reproducible numerical measurements of molecular processes or biochemical targets within the body. In this review, the classifications of molecular MRI probes based on their signal-generating mechanism and functionality are first described. From there, the primary considerations for in vitro characterization and in vivo validation of molecular MRI probes, including how to avoid pitfalls and biases are discussed. Then, recommendations on imaging acquisition protocols and analysis methods to establish quantitative relationships between MRI signal change induced by the probes and the molecular processes of interest are provided. Finally, several representative case studies are highlighted that incorporate these features. Quantitative molecular MRI is a multidisciplinary research area incorporating expertise in chemical biology, inorganic chemistry, molecular probes, imaging physics, drug development, pathobiology, and medicine. The purpose of this review is to provide guidance to chemists developing MR imaging probes and methods in terms of in vitro and in vivo validation to accelerate the translation of these new quantitative tools for non-invasive imaging of biological processes.
Collapse
Affiliation(s)
- Yingying Ning
- Spin-X Institute, School of Chemistry and Chemical Engineering, School of Biomedical Sciences and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
5
|
Ölçücü G, Wollenhaupt B, Kohlheyer D, Jaeger KE, Krauss U. Magnetic protein aggregates generated by supramolecular assembly of ferritin cages - a modular strategy for the immobilization of enzymes. Front Bioeng Biotechnol 2024; 12:1478198. [PMID: 39512655 PMCID: PMC11541948 DOI: 10.3389/fbioe.2024.1478198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Efficient and cost-effective immobilization methods are crucial for advancing the utilization of enzymes in industrial biocatalysis. To this end, in vivo immobilization methods relying on the completely biological production of immobilizates represent an interesting alternative to conventional carrier-based immobilization methods. This study aimed to introduce a novel immobilization strategy using in vivo-produced magnetic protein aggregates (MPAs). Methods MPA production was achieved by expressing gene fusions of the yellow fluorescent protein variant citrine and ferritin variants, including a magnetically enhanced Escherichia coli ferritin mutant. Cellular production of the gene fusions allows supramolecular assembly of the fusion proteins in vivo, driven by citrine-dependent dimerization of ferritin cages. Magnetic properties were confirmed using neodymium magnets. A bait/prey strategy was used to attach alcohol dehydrogenase (ADH) to the MPAs, creating catalytically active MPAs (CatMPAs). These CatMPAs were purified via magnetic columns or centrifugation. Results The fusion of the mutant E. coli ferritin to citrine yielded fluorescent, insoluble protein aggregates, which are released upon cell lysis and coalesce into MPAs. MPAs display magnetic properties, as verified by their attraction to neodymium magnets. We further show that these fully in vivo-produced protein aggregates can be magnetically purified without ex vivo iron loading. Using a bait/prey strategy, MPAs were functionalized by attaching alcohol dehydrogenase post-translationally, creating catalytically active magnetic protein aggregates (CatMPAs). These CatMPAs were easily purified from crude extracts via centrifugation or magnetic columns and showed enhanced stability. Discussion This study presents a modular strategy for the in vivo production of MPAs as scaffold for enzyme immobilization. The approach eliminates the need for traditional, expensive carriers and simplifies the purification process by leveraging the insoluble nature and the magnetic properties of the aggregates, opening up the potential for novel, streamlined applications in biocatalysis.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bastian Wollenhaupt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Krauss
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
6
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
7
|
Li Y, Vulpe C, Lammers T, Pallares RM. Assessing inorganic nanoparticle toxicity through omics approaches. NANOSCALE 2024; 16:15928-15945. [PMID: 39145718 DOI: 10.1039/d4nr02328e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the last two decades, the development of nanotechnology has resulted in inorganic nanoparticles playing crucial roles in key industries, ranging from healthcare to energy technologies. For instance, gold and silver nanoparticles are widely used in rapid COVID-19 and flu tests, titania and zinc oxide nanoparticles are commonly found in cosmetic products, and superparamagnetic iron oxide nanoparticles have been clinically exploited as contrast agents and anti-anemia medicines. As a result, human exposure to nanomaterials is continuously increasing, raising concerns about their potential adverse health effects. Historically, the study of nanoparticle toxicity has largely relied on macroscopic observations obtained in different in vitro and in vivo models, resulting in readouts such as median lethal dose, biodistribution profile, and/or histopathological assessment. In recent years, omics methodologies, including transcriptomics, epigenomics, proteomics, metabolomics, and lipidomics, are increasingly used to characterize the biological interactions of nanomaterials, providing a better and broader understanding of their impact and mechanisms of toxicity. These approaches have been able to identify important genes and gene products that mediate toxicological effects, as well as endogenous functions and pathways dysregulated by nanoparticles. Omics methods improve our understanding of nanoparticle biology, and unravel mechanistic insights into nanomedicine-based therapies. This review aims to provide a deeper understanding and new perspectives of omics approaches to characterize the toxicity and biological interactions of inorganic nanoparticles, and improve the safety of nanoparticle applications.
Collapse
Affiliation(s)
- Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
8
|
Li Y, Zhang R, Barmin R, Rama E, Schoenen M, Schrank F, Schulz V, Slabu I, Kiessling F, Lammers T, Pallares RM. Improving MPI and hyperthermia performance of superparamagnetic iron oxide nanoparticles through fractional factorial design of experiments. NANOSCALE ADVANCES 2024; 6:4352-4359. [PMID: 39170971 PMCID: PMC11334983 DOI: 10.1039/d4na00378k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used for biomedical applications, including magnetic particle imaging (MPI) and magnetic hyperthermia. The co-precipitation method is one of the most common synthetic routes to obtain SPIONs, since it is simple and does not require extreme conditions, such as high temperatures. Despite its prevalence, however, the co-precipitation synthesis presents some challenges, most notably the high batch-to-batch variability, as multiple factors can influence nanoparticle growth. In this study, we utilized a fractional factorial design of experiments to identify key factors influencing SPION growth, properties, and performance in MPI and magnetic hyperthermia, namely Fe3+ content, pH, temperature, stirring, and atmosphere. Notably, our study unveiled secondary interactions, particularly between temperature and Fe3+ content, as well as pH and Fe3+ content, for which simultaneous changes of both parameters promoted greater effects than the sum of each factor effect alone, emphasizing the impact of synergistic effects on SPION growth and performance. These findings provide a deeper understanding of the growth mechanism of SPIONs, reconcile discrepancies in the existing literature, and underscore the importance of characterizing secondary interactions to improve the performance of SPIONs for biomedical applications.
Collapse
Affiliation(s)
- Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Rui Zhang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Roman Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Max Schoenen
- Institute for Applied Medical Engineering, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Franziska Schrank
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Ioana Slabu
- Institute for Applied Medical Engineering, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| |
Collapse
|
9
|
Li L, Yue T, Feng J, Zhang Y, Hou J, Wang Y. Recent progress in lactate oxidase-based drug delivery systems for enhanced cancer therapy. NANOSCALE 2024; 16:8739-8758. [PMID: 38602362 DOI: 10.1039/d3nr05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lactate oxidase (LOX) is a natural enzyme that efficiently consumes lactate. In the presence of oxygen, LOX can catalyse the formation of pyruvate and hydrogen peroxide (H2O2) from lactate. This process led to acidity alleviation, hypoxia, and a further increase in oxidative stress, alleviating the immunosuppressive state of the tumour microenvironment (TME). However, the high cost of LOX preparation and purification, poor stability, and systemic toxicity limited its application in tumour therapy. Therefore, the rational application of drug delivery systems can protect LOX from the organism's environment and maintain its catalytic activity. This paper reviews various LOX-based drug-carrying systems, including inorganic nanocarriers, organic nanocarriers, and inorganic-organic hybrid nanocarriers, as well as other non-nanocarriers, which have been used for tumour therapy in recent years. In addition, this area's challenges and potential for the future are highlighted.
Collapse
Affiliation(s)
- Lu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Feng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yujun Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
10
|
Wang S, He H, Mao Y, Zhang Y, Gu N. Advances in Atherosclerosis Theranostics Harnessing Iron Oxide-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308298. [PMID: 38368274 PMCID: PMC11077671 DOI: 10.1002/advs.202308298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Atherosclerosis, a multifaceted chronic inflammatory disease, has a profound impact on cardiovascular health. However, the critical limitations of atherosclerosis management include the delayed detection of advanced stages, the intricate assessment of plaque stability, and the absence of efficacious therapeutic strategies. Nanotheranostic based on nanotechnology offers a novel paradigm for addressing these challenges by amalgamating advanced imaging capabilities with targeted therapeutic interventions. Meanwhile, iron oxide nanoparticles have emerged as compelling candidates for theranostic applications in atherosclerosis due to their magnetic resonance imaging capability and biosafety. This review delineates the current state and prospects of iron oxide nanoparticle-based nanotheranostics in the realm of atherosclerosis, including pivotal aspects of atherosclerosis development, the pertinent targeting strategies involved in disease pathogenesis, and the diagnostic and therapeutic roles of iron oxide nanoparticles. Furthermore, this review provides a comprehensive overview of theranostic nanomedicine approaches employing iron oxide nanoparticles, encompassing chemical therapy, physical stimulation therapy, and biological therapy. Finally, this review proposes and discusses the challenges and prospects associated with translating these innovative strategies into clinically viable anti-atherosclerosis interventions. In conclusion, this review offers new insights into the future of atherosclerosis theranostic, showcasing the remarkable potential of iron oxide-based nanoparticles as versatile tools in the battle against atherosclerosis.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Hongliang He
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Yu Mao
- School of MedicineNanjing UniversityNanjing210093P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Ning Gu
- School of MedicineNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
11
|
Lapusan R, Borlan R, Focsan M. Advancing MRI with magnetic nanoparticles: a comprehensive review of translational research and clinical trials. NANOSCALE ADVANCES 2024; 6:2234-2259. [PMID: 38694462 PMCID: PMC11059564 DOI: 10.1039/d3na01064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
The nexus of advanced technology and medical therapeutics has ushered in a transformative epoch in contemporary medicine. Within this arena, Magnetic Resonance Imaging (MRI) emerges as a paramount tool, intertwining the advancements of technology with the art of healing. MRI's pivotal role is evident in its broad applicability, spanning from neurological diseases, soft-tissue and tumour characterization, to many more applications. Though already foundational, aspirations remain to further enhance MRI's capabilities. A significant avenue under exploration is the incorporation of innovative nanotechnological contrast agents. Forefront among these are Superparamagnetic Iron Oxide Nanoparticles (SPIONs), recognized for their adaptability and safety profile. SPION's intrinsic malleability allows them to be tailored for improved biocompatibility, while their functionality is further broadened when equipped with specific targeting molecules. Yet, the path to optimization is not devoid of challenges, from renal clearance concerns to potential side effects stemming from iron overload. This review endeavors to map the intricate journey of SPIONs as MRI contrast agents, offering a chronological perspective of their evolution and deployment. We provide an in-depth current outline of the most representative and impactful pre-clinical and clinical studies centered on the integration of SPIONs in MRI, tracing their trajectory from foundational research to contemporary applications.
Collapse
Affiliation(s)
- Radu Lapusan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University Cluj-Napoca Romania
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University Cluj-Napoca Romania
| |
Collapse
|
12
|
Mi Y, Zhang MN, Ma C, Zheng W, Teng F. Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe 3O 4 Particles for Killing A375 Melanoma Cells. Biomolecules 2024; 14:521. [PMID: 38785928 PMCID: PMC11117552 DOI: 10.3390/biom14050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Meng-Nan Zhang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China;
| |
Collapse
|
13
|
Maumela P, Khwathisi A, Madala NE, Serepa-Dlamini MH. In silico biotechnological potential of Bacillus sp. strain MHSD_37 bacterial endophyte. BMC Genomics 2024; 25:399. [PMID: 38658836 PMCID: PMC11040839 DOI: 10.1186/s12864-024-10305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Endophytic bacteria possess a range of unique characteristics that enable them to successfully interact with their host and survive in adverse environments. This study employed in silico analysis to identify genes, from Bacillus sp. strain MHSD_37, with potential biotechnological applications. RESULTS The strain presented several endophytic lifestyle genes which encode for motility, quorum sensing, stress response, desiccation tolerance and root colonisation. The presence of plant growth promoting genes such as those involved in nitrogen fixation, nitrate assimilation, siderophores synthesis, seed germination and promotion of root nodule symbionts, was detected. Strain MHSD_37 also possessed genes involved in insect virulence and evasion of defence system. The genome analysis also identified the presence of genes involved in heavy metal tolerance, xenobiotic resistance, and the synthesis of siderophores involved in heavy metal tolerance. Furthermore, LC-MS analysis of the excretome identified secondary metabolites with biological activities such as anti-cancer, antimicrobial and applications as surfactants. CONCLUSIONS Strain MHSD_37 thereby demonstrated potential biotechnological application in bioremediation, biofertilisation and biocontrol. Moreover, the strain presented genes encoding products with potential novel application in bio-nanotechnology and pharmaceuticals.
Collapse
Affiliation(s)
- Pfariso Maumela
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box 17011, South Africa
| | - Adivhaho Khwathisi
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, 0950, Thohoyandou, South Africa
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, 0950, Thohoyandou, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box 17011, South Africa.
| |
Collapse
|
14
|
Wang X, Pu J. Recent Advances in Cardiac Magnetic Resonance for Imaging of Acute Myocardial Infarction. SMALL METHODS 2024; 8:e2301170. [PMID: 37992241 DOI: 10.1002/smtd.202301170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Indexed: 11/24/2023]
Abstract
Acute myocardial infarction (AMI) is one of the primary causes of death worldwide, with a high incidence and mortality rate. Assessment of the infarcted and surviving myocardium, along with microvascular obstruction, is crucial for risk stratification, treatment, and prognosis in patients with AMI. Nonionizing radiation, excellent soft tissue contrast resolution, a large field of view, and multiplane imaging make cardiac magnetic resonance (CMR) a "one-stop" method for assessing cardiac structure, function, perfusion, and metabolism. Hence, this imaging technology is considered the "gold standard" for evaluating myocardial function and viability in AMI. This review critically compares the advantages and disadvantages of CMR with other cardiac imaging technologies, and relates the imaging findings to the underlying pathophysiological processes in AMI. A more thorough understanding of CMR technology will clarify their advanced clinical diagnosis and prognostic assessment applications, and assess the future approaches and challenges of CMR in the setting of AMI.
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Jiao Tong University, School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Jun Pu
- Shanghai Jiao Tong University, School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| |
Collapse
|
15
|
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomater Sci 2024; 12:863-895. [PMID: 38230669 DOI: 10.1039/d3bm01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
16
|
Arshad I, Kanwal A, Zafar I, Unar A, Mouada H, Razia IT, Arif S, Ahsan M, Kamal MA, Rashid S, Khan KA, Sharma R. Multifunctional role of nanoparticles for the diagnosis and therapeutics of cardiovascular diseases. ENVIRONMENTAL RESEARCH 2024; 242:117795. [PMID: 38043894 DOI: 10.1016/j.envres.2023.117795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
The increasing burden of cardiovascular disease (CVD) remains responsible for morbidity and mortality worldwide; their effective diagnostic or treatment methods are of great interest to researchers. The use of NPs and nanocarriers in cardiology has drawn much interest. The present comprehensive review provides deep insights into the use of current and innovative approaches in CVD diagnostics to offer practical ways to utilize nanotechnological interventions and the critical elements in the CVD diagnosis, associated risk factors, and management strategies of patients with chronic CVDs. We proposed a decision tree-based solution by discussing the emerging applications of NPs for the higher number of rules to increase efficiency in treating CVDs. This review-based study explores the screening methods, tests, and toxicity to provide a unique way of creating a multi-parametric feature that includes cutting-edge techniques for identifying cardiovascular problems and their treatments. We discussed the benefits and drawbacks of various NPs in the context of cost, space, time and complexity that have been previously suggested in the literature for the diagnosis of CVDs risk factors. Also, we highlighted the advances in using NPs for targeted and improved drug delivery and discussed the evolution toward the nano-cardiovascular potential for medical science. Finally, we also examined the mixed-based diagnostic approaches crucial for treating cardiovascular disorders, broad applications and the potential future applications of nanotechnology in medical sciences.
Collapse
Affiliation(s)
- Ihtesham Arshad
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Ayesha Kanwal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Ahsanullah Unar
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy.
| | - Hanane Mouada
- Department of Process Engineering, Institute of science University Center of Tipaza, Tipaza, Algeria.
| | | | - Safina Arif
- Medical Lab Technology, University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam BinAbdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
17
|
Huang C, Huang W, Meng Y, Zhou C, Wang X, Zhang C, Tian Y, Wei W, Li Y, Zhou Q, Chen W, Tang Y. T1-weighted MRI of targeting atherosclerotic plaque based on CD40 expression on engulfed USPIO's cell surface. Biomed Mater 2024; 19:025019. [PMID: 38215489 DOI: 10.1088/1748-605x/ad1df6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of cholesterol within the arterial wall. Its progression can be monitored via magnetic resonance imaging (MRI). Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) (<5 nm) have been employed as T1 contrast agents for MRI applications. In this study, we synthesized USPIO with an average surface carboxylation of approximately 5.28 nm and a zeta potential of -47.8 mV. These particles were phagocytosed by mouse aortic endothelial cells (USPIO-MAECs) and endothelial progenitor cells (USPIO-EPCs), suggesting that they can be utilized as potential contrast agent and delivery vehicle for the early detection of atherosclerosis. However, the mechanism by which this contrast agent is delivered to the plaque remains undetermined. Our results demonstrated that with increasing USPIO concentration during 10-100 μg ml-1, consistent change appeared in signal enhancement on T1-weighted MRI. Similarly, T1-weighted MRI of MAECs and EPCs treated with these concentrations exhibited a regular change in signal enhancement. Prussian blue staining of USPIO revealed substantial absorption into MAECs and EPCs after treatment with 50 μg ml-1USPIO for 24 h. The iron content in USPIO-EPCs was much higher (5 pg Fe/cell) than in USPIO-MAECs (0.8 pg Fe/cell). In order to substantiate our hypothesis that CD40 protein on the cell surface facilitates migration towards inflammatory cells, we utilized AuNPs-PEI (gold nanoparticles-polyethylenimine) carrying siRNACD40to knockout CD40 expression in MAECs. It has been documented that gold nanoparticle-oligonucleotide complexes could be employed as intracellular gene regulation agents for the control of protein level in cells. Our results confirmed that macrophages are more likely to bind to MAECs treated with AuNPs-PEI-siRNANC(control) for 72 h than to MAECs treated with AuNPs-PEI-siRNACD40(reduced CD40 expression), thus confirming CD40 targeting at the cellular level. When USPIO-MAECs and MAECs (control) were delivered to mice (high-fat-fed) via tail vein injection respectively, we observed a higher iron accumulation in plaques on blood vessels in high-fat-fed mice treated with USPIO-MAECs. We also demonstrated that USPIO-EPCs, when delivered to high-fat-fed mice via tail vein injection, could indeed label plaques by generating higher T1-weighted MRI signals 72 h post injection compared to controls (PBS, USPIO and EPCs alone). In conclusion, we synthesized a USPIO suitable for T1-weighted MRI. Our results have confirmed separately at the cellular and tissue andin vivolevel, that USPIO-MAECs or USPIO-EPCs are more accessible to atherosclerotic plaques in a mouse model. Furthermore, the high expression of CD40 on the cell surface is a key factor for targeting and USPIO-EPCs may have potential therapeutic effects.
Collapse
Affiliation(s)
- Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Medical Imaging Institute of Panyu District, Guangzhou 511400, People's Republic of China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Chengqian Zhou
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| | - Xiaozhuan Wang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, People's Republic of China
| | - Chunyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, People's Republic of China
| | - Yongsheng Li
- Guangdong Cord Blood Bank, Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou 510663, People's Republic of China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, People's Republic of China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Medical Imaging Institute of Panyu District, Guangzhou 511400, People's Republic of China
| |
Collapse
|
18
|
Dasi A, Kring DN, Selvaraj B, Morgan P, Gerity C, Morgan EE, Krishnamurthy R, Krishnamurthy R. Brand ferumoxytol vs. generic ferumoxytol comparison across two dosing regimens: a cardiac MRI image quality study. Pediatr Radiol 2023; 53:2622-2632. [PMID: 37837456 DOI: 10.1007/s00247-023-05778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Ferumoxytol is becoming more widely used as an off-label blood-pool contrast agent for MR angiography (MRA) and four-dimensional (4D) flow imaging in pediatric cardiovascular disease. Brand and generic versions of ferumoxytol are available with no information on relative efficacy as a contrast agent and safety profiles. OBJECTIVE This study evaluates patient safety and image quality of comparable dosages of generic ferumoxytol (GF) versus brand ferumoxytol (BF) with the following hypotheses: (1) Reducing the contrast dosage from 3 to 2 mg/kg will not affect imaging quality and diagnostic accuracy of MRA and four-dimensional 4D flow. (2) GF and BF have similar image quality. (3) GF and BF have similar patient safety profiles. MATERIALS AND METHODS In an IRB-approved retrospective study, changes in vitals/clinical status between baseline, during infusion, and 30 min post-infusion were analyzed in 3 groups: group 1 (3 mg/kg BF, 216 patients, age: 19.29 ± 11.71 years ranging from 2 months to 62 years), group 2 (2 mg/kg BF, 47 patients, age: 15.35 ± 8.56 years ranging from 10 days to 41 years), and group 3 (2 mg/kg GF, 127 patients, age: 17.16 ± 12.18 years ranging from 6 days to 58 years). Both pediatric and adult patients with congenital heart disease (CHD) indications were included within the study. Adverse reactions were classified as mild, moderate, or severe. Quantitative analysis of MR image quality was performed with signal-to-noise ratio (SNR) on MRA and velocity-to-noise ratio (VNR) on 4D flow. Qualitative grading of imaging features was performed by 2 experienced observers. Two-way analysis of variance (ANOVA) and chi-square tests were used for comparison with a P value of ≤ 0.05 used for significance. RESULTS No statistical difference was found in clinical status and vital signs (P>0.05). No severe reactions were reported. 7.9% of GF patients experienced an adverse reaction compared to 2.3% with 3 mg/kg BF and 8.4% with 2 mg/kg BF. There was no statistical difference in SNR between the 3 groups (P>0.05). For 4D flow, 2 mg/kg GF demonstrated an increase in VNR compared to 2 mg/kg BF (P = 0.005). The qualitative scores for MRA and 4D flow were high (≥ 3) across all 3 groups. CONCLUSIONS No significant difference was identified between 2 mg/kg GF and BF in terms of safety profile and image quality. Given the small sample size of this study, further studies are required to confirm these results.
Collapse
Affiliation(s)
- Anoushka Dasi
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
- The Ohio State University, Columbus, OH, USA
| | - Donna N Kring
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bhavani Selvaraj
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Patricia Morgan
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher Gerity
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Eric E Morgan
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Rajesh Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA.
- The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Ansari JA, Malik JA, Ahmed S, Bhat FA, Khanam A, Mir SA, Abouzied AS, Ahemad N, Anwar S. Targeting Breast Cancer Signaling via Phytomedicine and Nanomedicine. Pharmacology 2023; 108:504-520. [PMID: 37748454 DOI: 10.1159/000531802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sakeel Ahmed
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | | | - Afreen Khanam
- Department of Pharmacology, Jamia Hamdard, New Delhi, India
| | - Suhail Ahmad Mir
- Department of Pharmacy, University of Kashmir, Jammu and Kashmir, India
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Nafees Ahemad
- School of Pharmacy, MONASH University Malaysia, Bandar Sunway, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
20
|
Bajad NG, Kumar A, Singh SK. Recent Advances in the Development of Near-Infrared Fluorescent Probes for the in Vivo Brain Imaging of Amyloid-β Species in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2955-2967. [PMID: 37574911 DOI: 10.1021/acschemneuro.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical regions of the brain of Alzheimer's disease (AD) patients is considered the foremost pathological hallmark of the disease. The early diagnosis of AD is paramount in order to effective management and treatment of the disease. Developing near-infrared fluorescence (NIRF) probes targeting Aβ species is a potential and attractive approach suitable for the early and timely diagnosis of AD. The advantages of the NIRF probes over other tools include real-time detection, higher sensitivity, resolution, comparatively inexpensive experimental setup, and noninvasive nature. Currently, enormous progress is being observed in the development of NIRF probes for the in vivo imaging of Aβ species. Several strategies, i.e., the classical push-pull approach, "turn-on" effect, aggregation-induced emission (AIE), and resonance energy transfer (RET), have been exploited for development. We have outlined and discussed the recently emerged NIRF probes with different design strategies targeting Aβ species for ex vivo and in vivo imaging. We believe that understanding the recent development enables the prospect of the rational design of probes and will pave the way for developing future novel probes for early diagnosis of AD.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
21
|
Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. Nanoparticle-mediated cancer cell therapy: basic science to clinical applications. Cancer Metastasis Rev 2023; 42:601-627. [PMID: 36826760 PMCID: PMC10584728 DOI: 10.1007/s10555-023-10086-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023]
Abstract
Every sixth person in the world dies due to cancer, making it the second leading severe cause of death after cardiovascular diseases. According to WHO, cancer claimed nearly 10 million deaths in 2020. The most common types of cancers reported have been breast (lung, colon and rectum, prostate cases), skin (non-melanoma) and stomach. In addition to surgery, the most widely used traditional types of anti-cancer treatment are radio- and chemotherapy. However, these do not distinguish between normal and malignant cells. Additional treatment methods have evolved over time for early detection and targeted therapy of cancer. However, each method has its limitations and the associated treatment costs are quite high with adverse effects on the quality of life of patients. Use of individual atoms or a cluster of atoms (nanoparticles) can cause a paradigm shift by virtue of providing point of sight sensing and diagnosis of cancer. Nanoparticles (1-100 nm in size) are 1000 times smaller in size than the human cell and endowed with safer relocation capability to attack mechanically and chemically at a precise location which is one avenue that can be used to destroy cancer cells precisely. This review summarises the extant understanding and the work done in this area to pave the way for physicians to accelerate the use of hybrid mode of treatments by leveraging the use of various nanoparticles.
Collapse
Affiliation(s)
- Jaya Verma
- School of Engineering, London South Bank University, London, SE10AA UK
| | - Caaisha Warsame
- School of Engineering, London South Bank University, London, SE10AA UK
| | | | | | - Eiman Aleem
- School of Applied Sciences, Division of Human Sciences, Cancer Biology and Therapy Research Group, London South Bank University, London, SE10AA UK
| | - Saurav Goel
- School of Engineering, London South Bank University, London, SE10AA UK
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007 India
| |
Collapse
|
22
|
Kawassaki R, Romano M, Klimuk Uchiyama M, Cardoso RM, Baptista M, Farsky SHP, Chaim KT, Guimarães RR, Araki K. Novel Gadolinium-Free Ultrasmall Nanostructured Positive Contrast for Magnetic Resonance Angiography and Imaging. NANO LETTERS 2023; 23:5497-5505. [PMID: 37300521 PMCID: PMC10312191 DOI: 10.1021/acs.nanolett.3c00665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Nanostructured contrast agents are promising alternatives to Gd3+-based chelates in magnetic resonance (MR) imaging techniques. A novel ultrasmall paramagnetic nanoparticle (UPN) was strategically designed to maximize the number of exposed paramagnetic sites and r1 while minimizing r2, by decorating 3 nm titanium dioxide nanoparticles with suitable amounts of iron oxide. Its relaxometric parameters are comparable to those of gadoteric acid (GA) in agar phantoms, and the r2/r1 ratio of 1.38 at 3 T is close to the ideal unitary value. The strong and prolonged contrast enhancement of UPN before renal excretion was confirmed by T1-weighted MR images of Wistar rats after intravenous bolus injection. Those results associated with good biocompatibility indicate its high potential as an alternative blood-pool contrast agent to the GA gold standard for MR angiography, especially for patients with severe renal impairment.
Collapse
Affiliation(s)
- Rodrigo
Ken Kawassaki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mariana Romano
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayara Klimuk Uchiyama
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Roberta Mansini Cardoso
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Maurício
S. Baptista
- Laboratory
of Interfaces and Photoinduced Processes, Department of Biochemistry,
Institute of Chemistry, University of Sao
Paulo, Sao Paulo 05508-000, Brazil
| | - Sandra H. P. Farsky
- Laboratory
of Inflammation and Immunotoxicology, Department of Clinical and Toxicological
Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Khallil Taverna Chaim
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
- Imaging
Platform (PISA), Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Robson Raphael Guimarães
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Koiti Araki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
23
|
Zhang B, Jiang X. Magnetic Nanoparticles Mediated Thrombolysis-A Review. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2023; 4:109-132. [PMID: 38111792 PMCID: PMC10727495 DOI: 10.1109/ojnano.2023.3273921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Nanoparticles containing thrombolytic medicines have been developed for thrombolysis applications in response to the increasing demand for effective, targeted treatment of thrombosis disease. In recent years, there has been a great deal of interest in nanoparticles that can be navigated and driven by a magnetic field. However, there are few review publications concerning the application of magnetic nanoparticles in thrombolysis. In this study, we examine the current state of magnetic nanoparticles in the application of in vitro and in vivo thrombolysis under a static or dynamic magnetic field, as well as the combination of magnetic nanoparticles with an acoustic field for dual-mode thrombolysis. We also discuss four primary processes of magnetic nanoparticles mediated thrombolysis, including magnetic nanoparticle targeting, magnetic nanoparticle trapping, magnetic drug release, and magnetic rupture of blood clot fibrin networks. This review will offer unique insights for the future study and clinical development of magnetic nanoparticles mediated thrombolysis approaches.
Collapse
Affiliation(s)
- Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
24
|
Zhang J, Ning Y, Zhu H, Rotile NJ, Wei H, Diyabalanage H, Hansen EC, Zhou IY, Barrett SC, Sojoodi M, Tanabe KK, Humblet V, Jasanoff A, Caravan P, Bawendi MG. Fast detection of liver fibrosis with collagen-binding single-nanometer iron oxide nanoparticles via T1-weighted MRI. Proc Natl Acad Sci U S A 2023; 120:e2220036120. [PMID: 37094132 PMCID: PMC10161015 DOI: 10.1073/pnas.2220036120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 04/26/2023] Open
Abstract
SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7 T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7 min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15 min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.
Collapse
Affiliation(s)
- Juanye Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Yingying Ning
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - He Wei
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | | | - Eric C. Hansen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Stephen C. Barrett
- Division of Gastrointestinal and Oncological Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncological Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncological Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Moungi G. Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
25
|
Vasil’kov A, Voronova A, Batsalova T, Moten D, Naumkin A, Shtykova E, Volkov V, Teneva I, Dzhambazov B. Evolution of Gold and Iron Oxide Nanoparticles in Conjugates with Methotrexate: Synthesis and Anticancer Effects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3238. [PMID: 37110074 PMCID: PMC10146258 DOI: 10.3390/ma16083238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Au and Fe nanoparticles and their conjugates with the drug methotrexate were obtained by an environmentally safe method of metal-vapor synthesis (MVS). The materials were characterized by transmission and scanning electron microscopy (TEM, SEM), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering using synchrotron radiation (SAXS). The use of acetone as an organic reagent in the MVS makes it possible to obtain Au and Fe particles with an average size of 8.3 and 1.8 nm, respectively, which was established by TEM. It was found that Au, both in the NPs and the composite with methotrexate, was in the Au0, Au+ and Au3+ states. The Au 4f spectra for Au-containing systems are very close. The effect of methotrexate was manifested in a slight decrease in the proportion of the Au0 state-from 0.81 to 0.76. In the Fe NPs, the main state is the Fe3+ state, and the Fe2+ state is also present in a small amount. The analysis of samples by SAXS registered highly heterogeneous populations of metal nanoparticles coexisting with a wide proportion of large aggregates, the number of which increased significantly in the presence of methotrexate. For Au conjugates with methotrexate, a very wide asymmetric fraction with sizes up to 60 nm and a maximum of ~4 nm has been registered. In the case of Fe, the main fraction consists of particles with a radius of 4.6 nm. The main fraction consists of aggregates up to 10 nm. The size of the aggregates varies in the range of 20-50 nm. In the presence of methotrexate, the number of aggregates increases. The cytotoxicity and anticancer activity of the obtained nanomaterials were determined by MTT and NR assays. Fe conjugates with methotrexate showed the highest toxicity against the lung adenocarcinoma cell line and Au nanoparticles loaded with methotrexate affected the human colon adenocarcinoma cell line. Both conjugates displayed lysosome-specific toxicity against the A549 cancer cell line after 120 h of culture. The obtained materials may be promising for the creation of improved agents for cancer treatment.
Collapse
Affiliation(s)
- Alexander Vasil’kov
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Anastasiia Voronova
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Tsvetelina Batsalova
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Dzhemal Moten
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Alexander Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia; (A.V.)
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia; (E.S.); (V.V.)
| | - Vladimir Volkov
- Shubnikov Institute of Crystallography, FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia; (E.S.); (V.V.)
| | - Ivanka Teneva
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 4000 Plovdiv, Bulgaria; (T.B.); (D.M.)
| |
Collapse
|
26
|
Yan X, Li S, Yan H, Yu C, Liu F. IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment. Int J Nanomedicine 2023; 18:1741-1763. [PMID: 37034271 PMCID: PMC10075272 DOI: 10.2147/ijn.s399047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer-related burden of morbidity and mortality is rapidly rising worldwide. Medical imaging plays an important role in every phase of cancer management, including diagnosis, staging, treatment planning and evaluation. Iron oxide nanoparticles (IONPs) could serve as contrast agents or labeling agents to enhance the identification and visualization of pathological tissues as well as target cells. Multimodal or multifunctional imaging can be easily acquired by modifying IONPs with other imaging agents or functional groups, allowing the accessibility of combined imaging techniques and providing more comprehensive information for cancer care. To date, IONPs-enhanced medical imaging has gained intensive application in early diagnosis, monitoring treatment as well as guiding radio-frequency ablation, sentinel lymph node dissection, radiotherapy and hyperthermia therapy. Besides, IONPs mediated imaging is also capable of promoting the development of anti-cancer nanomedicines through identifying patients potentially sensitive to nanotherapeutics. Based on versatile imaging modes and application fields, this review highlights and summarizes recent research advances of IONPs-based medical imaging in cancer management. Besides, currently existing challenges are also discussed to provide perspectives and advices for the future development of IONPs-based imaging in cancer management.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Shanshan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Haiyin Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Chungang Yu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Fengxi Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
- Correspondence: Fengxi Liu, Tel +86 0531-89269594, Email
| |
Collapse
|
27
|
Luo Q, Shao N, Zhang AC, Chen CF, Wang D, Luo LP, Xiao ZY. Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals (Basel) 2023; 16:249. [PMID: 37259396 PMCID: PMC9965384 DOI: 10.3390/ph16020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 04/06/2024] Open
Abstract
New nanotechnologies for imaging molecules are widely being applied to visualize the expression of specific molecules (e.g., ions, biomarkers) for disease diagnosis. Among various nanoplatforms, nanozymes, which exhibit enzyme-like catalytic activities in vivo, have gained tremendously increasing attention in molecular imaging due to their unique properties such as diverse enzyme-mimicking activities, excellent biocompatibility, ease of surface tenability, and low cost. In addition, by integrating different nanoparticles with superparamagnetic, photoacoustic, fluorescence, and photothermal properties, the nanoenzymes are able to increase the imaging sensitivity and accuracy for better understanding the complexity and the biological process of disease. Moreover, these functions encourage the utilization of nanozymes as therapeutic agents to assist in treatment. In this review, we focus on the applications of nanozymes in molecular imaging and discuss the use of peroxidase (POD), oxidase (OXD), catalase (CAT), and superoxide dismutase (SOD) with different imaging modalities. Further, the applications of nanozymes for cancer treatment, bacterial infection, and inflammation image-guided therapy are discussed. Overall, this review aims to provide a complete reference for research in the interdisciplinary fields of nanotechnology and molecular imaging to promote the advancement and clinical translation of novel biomimetic nanozymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang-Ping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ze-Yu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
28
|
In Vitro Studies of Pegylated Magnetite Nanoparticles in a Cellular Model of Viral Oncogenesis: Initial Studies to Evaluate Their Potential as a Future Theranostic Tool. Pharmaceutics 2023; 15:pharmaceutics15020488. [PMID: 36839809 PMCID: PMC9967771 DOI: 10.3390/pharmaceutics15020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Magnetic nanosystems represent promising alternatives to the traditional diagnostic and treatment procedures available for different pathologies. In this work, a series of biological tests are proposed, aiming to validate a magnetic nanoplatform for Kaposi's sarcoma treatment. The selected nanosystems were polyethylene glycol-coated iron oxide nanoparticles (MAG.PEG), which were prepared by the hydrothermal method. Physicochemical characterization was performed to verify their suitable physicochemical properties to be administered in vivo. Exhaustive biological assays were conducted, aiming to validate this platform in a specific biomedical field related to viral oncogenesis diseases. As a first step, the MAG.PEG cytotoxicity was evaluated in a cellular model of Kaposi's sarcoma. By phase contrast microscopy, it was found that cell morphology remained unchanged regardless of the nanoparticles' concentration (1-150 µg mL-1). The results, arising from the crystal violet technique, revealed that the proliferation was also unaffected. In addition, cell viability analysis by MTS and neutral red assays revealed a significant increase in metabolic and lysosomal activity at high concentrations of MAG.PEG (100-150 µg mL-1). Moreover, an increase in ROS levels was observed at the highest concentration of MAG.PEG. Second, the iron quantification assays performed by Prussian blue staining showed that MAG.PEG cellular accumulation is dose dependent. Furthermore, the presence of vesicles containing MAG.PEG inside the cells was confirmed by TEM. Finally, the MAG.PEG steering was achieved using a static magnetic field generated by a moderate power magnet. In conclusion, MAG.PEG at a moderate concentration would be a suitable drug carrier for Kaposi's sarcoma treatment, avoiding adverse effects on normal tissues. The data included in this contribution appear as the first stage in proposing this platform as a suitable future theranostic to improve Kaposi's sarcoma therapy.
Collapse
|
29
|
Gd(OH)3 as Modifier of Iron Oxide Nanoparticles—Insights on the Synthesis, Characterization and Stability. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Magnetic resonance imaging is one of the most widely used diagnostic techniques, since it is non-invasive and provides high spatial resolution. Contrast agents (CAs) are usually required to improve the contrast capability. CAs can be classified as T1 (or positive) or T2 (or negative) contrast agents. Nowadays, gadolinium chelates (which generate T1 contrast) are the most used in clinical settings. However, the use of these chelates presents some drawbacks associated with their toxicity. Iron oxide magnetic nanoparticles (MNPs) have been extensively investigated as CA for MRI, especially for their capacity to generate negative contrast. The need for more efficient and safer contrast agents has focused investigations on the development of dual CAs, i.e., CAs that can generate both positive and negative contrast with a single administration. In this sense, nanotechnology appears as an attractive tool to achieve this goal. Nanoparticles can be modified not only to improve the contrast ability of the current CAs but also to enhance their biocompatibility, resolving toxicity issues. With the aim of contributing to the field of development of dual T1/T2 contrast agents for MRI, here, we present the obtained results of the synthesis of hybrid nanoparticles composed of magnetite/maghemite and gadolinium hydroxide. Exhaustive characterization work was conducted in order to understand how the hybrid nanoparticles were formed. The nanoparticles were extensively characterized through FTIR and UV–Vis spectroscopy, TEM and SEM microscopy, X-ray diffraction (XRD) analysis, dynamic light scattering, zeta potential, thermogravimetric analysis, energy-dispersive X-ray and vibrating-sample magnetometry. Stabilization studies were carried out to get an idea of the behavior of nanohybrids in physiological media. Special interest was given to the evaluation of Gd3+ leaching. It was found that carbohydrate coating as well as the adsorption of proteins on the surface may improve the stabilization of hybrid nanoparticles.
Collapse
|
30
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
31
|
Metallic Nanoparticles as promising tools to eradicate H. pylori: A comprehensive review on recent advancements. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Jin R, Fu X, Pu Y, Fu S, Liang H, Yang L, Nie Y, Ai H. Clinical translational barriers against nanoparticle-based imaging agents. Adv Drug Deliv Rev 2022; 191:114587. [PMID: 36309148 DOI: 10.1016/j.addr.2022.114587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Nanoparticle based imaging agents (NIAs) have been intensively explored in bench studies. Unfortunately, only a few cases have made their ways to clinical translation. In this review, clinical trials of NIAs were investigated for understanding possible barriers behind that. First, the complexity of multifunctional NIAs is considered a main barrier because it brings uncertainty to batch-to-batch fabrication, and results in sophisticated in vivo behaviors. Second, inadequate biosafety studies slow down the translational work. Third, NIA uptake at disease sites is highly heterogeneous, and often exhibits poor targeting efficiency. Focusing on the aforementioned problems, key design parameters were analyzed including NIAs' size, composition, surface characteristics, dosage, administration route, toxicity, whole-body distribution and clearance in clinical trials. Possible strategies were suggested to overcome these barriers. Besides, regulatory guidelines as well as scale-up and reproducibility during manufacturing process were covered as they are also key factors to consider during clinical translation of NIAs.
Collapse
Affiliation(s)
- Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
34
|
Haghighattalab M, Kajbafzadeh A, Baghani M, Gharehnazifam Z, Jobani BM, Baniassadi M. Silk Fibroin Hydrogel Reinforced With Magnetic Nanoparticles as an Intelligent Drug Delivery System for Sustained Drug Release. Front Bioeng Biotechnol 2022; 10:891166. [PMID: 35910019 PMCID: PMC9334656 DOI: 10.3389/fbioe.2022.891166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the well-known biocompatibility, tunable biodegradability, and mechanical properties, silk fibroin hydrogel is an exciting material for localized drug delivery systems to decrease the therapy cost, decrease the negative side effects, and increase the efficiency of chemotherapy. However, the lack of remote stimuli response and active drug release behavior has yet to be analyzed comparatively. In this study, we developed magnetic silk fibroin (SF) hydrogel samples through the facile blending method, loaded with doxorubicin hydrochloride (DOX) and incorporated with different concentrations of iron oxide nanoparticles (IONPs), to investigate the presumable ability of controlled and sustained drug release under the various external magnetic field (EMF). The morphology and rheological properties of SF hydrogel and magnetic SF hydrogel were compared through FESEM images and rheometer analysis. Here, we demonstrated that adding magnetic nanoparticles (MNPs) into SFH decreased the complex viscosity and provided a denser porosity with a bigger pore size matrix structure, which allowed the drug to be released faster in the absence of an EMF. Release kinetic studies show that magnetic SF hydrogel could achieve controlled release of DOX in the presence of an EMF. Furthermore, the drug release from magnetic SF hydrogel decreased in the presence of a static magnetic field (SMF) and an alternating magnetic field (AMF), and the release rate decreased even more with the higher MNPs concentration and magnetic field strength. Subsequently, Wilms’ tumor and human fibroblast cells were cultured with almost the same concentration of DOX released in different periods, and cell viability was investigated using MTT assay. MTT results indicated that the Wilms’ tumor cells were more resistant to DOX than the human fibroblasts, and the IC50 values were calculated at 1.82 ± 0.001 and 2.73 ± 0.004 (μg/ml) for human fibroblasts and Wilms’ tumor cells, respectively. Wilms’ tumor cells showed drug resistance in a higher DOX concentration, indicating the importance of controlled drug delivery. These findings suggest that the developed magnetic SFH loaded with DOX holds excellent potential for intelligent drug delivery systems with noninvasive injection and remotely controlled abilities.
Collapse
Affiliation(s)
- Mahsa Haghighattalab
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Abdolmohammad Kajbafzadeh
- Department of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Urology Research Center, Children’s Medical Center, Tehran, Iran
- *Correspondence: Abdolmohammad Kajbafzadeh, ; Majid Baniassadi,
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ziba Gharehnazifam
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
- *Correspondence: Abdolmohammad Kajbafzadeh, ; Majid Baniassadi,
| |
Collapse
|
35
|
Liu X, Wang N, Liu X, Deng R, Kang R, Xie L. Vascular Repair by Grafting Based on Magnetic Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071433. [PMID: 35890328 PMCID: PMC9320478 DOI: 10.3390/pharmaceutics14071433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Magnetic nanoparticles (MNPs) have attracted much attention in the past few decades because of their unique magnetic responsiveness. Especially in the diagnosis and treatment of diseases, they are mostly involved in non-invasive ways and have achieved good results. The magnetic responsiveness of MNPs is strictly controlled by the size, crystallinity, uniformity, and surface properties of the synthesized particles. In this review, we summarized the classification of MNPs and their application in vascular repair. MNPs mainly use their unique magnetic properties to participate in vascular repair, including magnetic stimulation, magnetic drive, magnetic resonance imaging, magnetic hyperthermia, magnetic assembly scaffolds, and magnetic targeted drug delivery, which can significantly affect scaffold performance, cell behavior, factor secretion, drug release, etc. Although there are still challenges in the large-scale clinical application of MNPs, its good non-invasive way to participate in vascular repair and the establishment of a continuous detection process is still the future development direction.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Xie
- Correspondence: (R.K.); (L.X.)
| |
Collapse
|
36
|
Wang T, Zhang X, Xu Y, Xu Y, Zhang Y, Zhang K. Emerging nanobiotechnology-encoded relaxation tuning establishes new MRI modes to localize, monitor and predict diseases. J Mater Chem B 2022; 10:7361-7383. [PMID: 35770674 DOI: 10.1039/d2tb00600f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most important techniques in the diagnosis of many diseases including cancers, where contrast agents (CAs) are usually necessary to improve its precision and sensitivity. Previous MRI CAs are confined to the signal-to-noise ratio (SNR) elevation of lesions for precisely localizing lesions. As nanobiotechnology advances, some new MRI CAs or nanobiotechnology-enabled MRI modes have been established to vary the longitudinal or transverse relaxation of CAs, which are harnessed to detect lesion targets, monitor disease evolution, predict or evaluate curative effect, etc. These distinct cases provide unexpected insights into the correlation of the design principles of these nanobiotechnologies and corresponding MRI CAs with their potential applications. In this review, first, we briefly present the principles, classifications and applications of conventional MRI CAs, and then elucidate the recent advances in relaxation tuning via the development of various nanobiotechnologies with emphasis on the design strategies of nanobiotechnology and the corresponding MRI CAs to target the tumor microenvironment (TME) and biological targets or activities in tumors or other diseases. In addition, we exemplified the advantages of these strategies in disease theranostics and explored their potential application fields. Finally, we analyzed the present limitations, potential solutions and future development direction of MRI after its combination with nanobiotechnology.
Collapse
Affiliation(s)
- Taixia Wang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Xueni Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yuan Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yingchun Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yifeng Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Kun Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| |
Collapse
|
37
|
Deng D, Fu S, Cai Z, Fu X, Jin R, Ai H. Surface carboxylation of iron oxide nanoparticles brings reduced macrophage inflammatory response through inhibiting macrophage autophagy. Regen Biomater 2022; 9:rbac018. [PMID: 35668925 PMCID: PMC9164630 DOI: 10.1093/rb/rbac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Macrophage autophagy is a common biological response triggered by nanomaterials, which is closely related to the regulation of inflammation. Superparamagnetic iron oxide (SPIO) nanoparticles have been used for study of autophagy response due to their broad biomedical applications. However, few reports have focused on how to regulate the macrophage autophagy response induced by SPIO nanoparticles. In this study, SPIO nanoparticles grafted with carboxyl groups were synthesized and for the comparison of macrophage autophagy with unmodified nanoparticles. The study on the correlation between autophagy and inflammation induced by the two kinds of SPIO nanoparticles was also included, and the one that grafted with carboxyl groups shows a reduction of autophagy and thereby caused a milder inflammatory response. We proposed that the increased amount of albumin adsorption on the surface of carboxylated SPIO nanoparticles, a protein previously proven to attenuate autophagy, can be considered an important reason for reducing autophagy and inflammation. In general, the carboxyl modification of SPIO nanoparticles has been demonstrated to reduce inflammation by inhibiting macrophage autophagy, which may provide some insights for the design of nanomaterials in the future.
Collapse
Affiliation(s)
- Di Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
38
|
Rama E, Mohapatra SR, Melcher C, Nolte T, Dadfar SM, Brueck R, Pathak V, Rix A, Gries T, Schulz V, Lammers T, Apel C, Jockenhoevel S, Kiessling F. Monitoring the Remodeling of Biohybrid Tissue-Engineered Vascular Grafts by Multimodal Molecular Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105783. [PMID: 35119216 PMCID: PMC8981893 DOI: 10.1002/advs.202105783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/10/2023]
Abstract
Tissue-engineered vascular grafts (TEVGs) with the ability to grow and remodel open new perspectives for cardiovascular surgery. Equipping TEVGs with synthetic polymers and biological components provides a good compromise between high structural stability and biological adaptability. However, imaging approaches to control grafts' structural integrity, physiological function, and remodeling during the entire transition between late in vitro maturation and early in vivo engraftment are mandatory for clinical implementation. Thus, a comprehensive molecular imaging concept using magnetic resonance imaging (MRI) and ultrasound (US) to monitor textile scaffold resorption, extracellular matrix (ECM) remodeling, and endothelial integrity in TEVGs is presented here. Superparamagnetic iron-oxide nanoparticles (SPION) incorporated in biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers of the TEVGs allow to quantitatively monitor scaffold resorption via MRI both in vitro and in vivo. Additionally, ECM formation can be depicted by molecular MRI using elastin- and collagen-targeted probes. Finally, molecular US of αv β3 integrins confirms the absence of endothelial dysfunction; the latter is provocable by TNF-α. In conclusion, the successful employment of noninvasive molecular imaging to longitudinally evaluate TEVGs remodeling is demonstrated. This approach may foster its translation from in vitro quality control assessment to in vivo applications to ensure proper prostheses engraftment.
Collapse
Affiliation(s)
- Elena Rama
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Saurav Ranjan Mohapatra
- Department of Biohybrid & Medical TextilesInstitute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Christoph Melcher
- Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Teresa Nolte
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Seyed Mohammadali Dadfar
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Ramona Brueck
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Vertika Pathak
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Anne Rix
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Thomas Gries
- Institute for Textile Technology RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Christian Apel
- Department of Biohybrid & Medical TextilesInstitute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical TextilesInstitute of Applied Medical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging University Clinic and Helmholtz Institute for Biomedical Engineering RWTH – Aachen University Forckenbeckstrasse 5552074AachenGermany
| |
Collapse
|
39
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
40
|
Hillion A, Hallali N, Clerc P, Lopez S, Lalatonne Y, Noûs C, Motte L, Gigoux V, Carrey J. Real-Time Observation and Analysis of Magnetomechanical Actuation of Magnetic Nanoparticles in Cells. NANO LETTERS 2022; 22:1986-1991. [PMID: 35191311 DOI: 10.1021/acs.nanolett.1c04738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The origin of cell death in the magnetomechanical actuation of cells induced by magnetic nanoparticle motion under low-frequency magnetic fields is still elusive. Here, a miniaturized electromagnet fitted under a confocal microscope is used to observe in real time cells specifically targeted by superparamagnetic nanoparticles and exposed to a low-frequency rotating magnetic field. Our analysis reveals that the lysosome membrane is permeabilized in only a few minutes after the start of magnetic field application, concomitant with lysosome movements toward the nucleus. Those events are associated with disorganization of the tubulin microtubule network and a change in cell morphology. This miniaturized electromagnet will allow a deeper insight into the physical, molecular, and biological process occurring during the magnetomechanical actuation of magnetic nanoparticles.
Collapse
Affiliation(s)
- Arnaud Hillion
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
| | - Nicolas Hallali
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
| | - Pascal Clerc
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers, 31432 Toulouse, France
| | - Sara Lopez
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers, 31432 Toulouse, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord and Université de Paris, INSERM, LVTS, F-75018 Paris, France
| | - Camille Noûs
- Laboratoire Cogitamus, Université de Toulouse III, 31000 Toulouse, France
| | - Laurence Motte
- Université Sorbonne Paris Nord and Université de Paris, INSERM, LVTS, F-75018 Paris, France
| | - Véronique Gigoux
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
- INSERM ERL1226, Receptology and Targeted Therapy of Cancers, 31432 Toulouse, France
| | - Julian Carrey
- Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, 31077 Toulouse, France
| |
Collapse
|
41
|
Zhou J, Meli VS, Yu-Tin Chen E, Kapre R, Nagalla R, Xiao W, Borowsky AD, Lam KS, Liu WF, Louie AY. Magnetic resonance imaging of tumor-associated-macrophages (TAMs) with a nanoparticle contrast agent. RSC Adv 2022; 12:7742-7756. [PMID: 35424752 PMCID: PMC8982161 DOI: 10.1039/d1ra08061j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/21/2022] [Indexed: 01/26/2023] Open
Abstract
In the tumor micro-environment, tumor associated macrophages (TAMs) represent a predominant component of the total tumor mass, and TAMs play a complex and diverse role in cancer pathogenesis with potential for either tumor suppressive, or tumor promoting biology. Thus, understanding macrophage localization and function are essential for cancer diagnosis and treatment. Typically, tissue biopsy is used to evaluate the density and polarization of TAMs, but provides a limited "snapshot" in time of a dynamic and potentially heterogeneous tumor immune microenvironment. Imaging has the potential for three-dimensional mapping; however, there is a paucity of macrophage-targeted contrast agents to specifically detect TAM subtypes. We have previously found that sulfated-dextran coated iron oxide nanoparticles (SDIO) can target macrophage scavenger receptor A (SR-A, also known as CD204). Since CD204 (SR-A) is considered a biomarker for the M2 macrophage polarization, these SDIO might provide M2-specific imaging probes for MRI. In this work, we investigate whether SDIO can label M2-polarized cells in vitro. We evaluate the effect of degree of sulfation on uptake by primary cultured bone marrow derived macrophages (BMDM) and found that a higher degree of sulfation led to higher uptake, but there were no differences across the subtypes. Further analysis of the BMDM showed similar SR-A expression across stimulation conditions, suggesting that this classic model for macrophage subtypes may not be ideal for definitive M2 subtype marker expression, especially SR-A. We further examine the localization of SDIO in TAMs in vivo, in the mammary fat pad mouse model of breast cancer. We demonstrate that uptake by TAMs expressing SR-A scales with degree of sulfation, consistent with the in vitro studies. The TAMs demonstrate M2-like function and secrete Arg-1 but not iNOS. Uptake by these M2-like TAMs is validated by immunohistochemistry. SDIO show promise as a valuable addition to the toolkit of imaging probes targeted to different biomarkers for TAMs.
Collapse
Affiliation(s)
- Junhan Zhou
- Chemistry Graduate Group, University of CaliforniaDavisCA95616USA
| | - Vijaykumar S. Meli
- Department of Biomedical Engineering, University of CaliforniaIrvineCA92697USA
| | - Esther Yu-Tin Chen
- Department of Biomedical Engineering, University of CaliforniaIrvineCA92697USA
| | - Rohan Kapre
- Department of Biomedical Engineering, University of CaliforniaDavisCA95616USA,Biostatistics Graduate Group, University of CaliforniaDavisCA95616USA
| | - Raji Nagalla
- Department of Biomedical Engineering, University of CaliforniaIrvineCA92697USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of CaliforniaDavisCA95616USA,Comprehensive Cancer Center, University of CaliforniaDavisCA95616USA
| | - Alexander D. Borowsky
- Comprehensive Cancer Center, University of CaliforniaDavisCA95616USA,Department of Pathology and Laboratory Medicine, University of CaliforniaDavisCA95616USA,Center for Immunology and Infectious Diseases, University of CaliforniaDavisCA95616USA
| | - Kit S. Lam
- Chemistry Graduate Group, University of CaliforniaDavisCA95616USA,Department of Biochemistry and Molecular Medicine, University of CaliforniaDavisCA95616USA,Comprehensive Cancer Center, University of CaliforniaDavisCA95616USA,Division of Hematology &Oncology, Department of Internal Medicine, University of CaliforniaDavisCA95616USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of CaliforniaIrvineCA92697USA
| | - Angelique Y. Louie
- Chemistry Graduate Group, University of CaliforniaDavisCA95616USA,Department of Biomedical Engineering, University of CaliforniaDavisCA95616USA
| |
Collapse
|
42
|
Zhu L, Zhong Y, Wu S, Yan M, Cao Y, Mou N, Wang G, Sun D, Wu W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater Today Bio 2022; 14:100228. [PMID: 35265826 PMCID: PMC8898969 DOI: 10.1016/j.mtbio.2022.100228] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Nanoparticles (NPs) modified by cell membranes represent an emerging biomimetic platform that can mimic the innate biological functions resulting from the various cell membranes in biological systems. researchers focus on constructing the cell membrane camouflaged NPs using a wide variety of cells, such as red blood cell membranes (RBC), macrophages and cancer cells. Cell membrane camouflaged NPs (CMNPs) inherit the composition of cell membranes, including specific receptors, antigens, proteins, for target delivering to the tumor, escaping immune from clearance, and prolonging the blood circulation time, etc. Combining cell membrane-derived biological functions and the NP cores acted cargo carriers to encapsulate the imaging agents, CMNPs are widely developed to apply in tumor imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), fluorescence imaging (FL) and photoacoustic imaging (PA). Herein, in this review, we systematically summarize the superior functions of various CMNPs in tumor imaging, especially highlighting the advanced applications in different imaging techniques, which is to provide the theoretical supports for the development of precise guided imaging and tumor treatment.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
43
|
Zhang J, Zhang M, Lin R, Du Y, Wang L, Yao Q, Zannettino A, Zhang H. Chondrogenic preconditioning of mesenchymal stem/stromal cells within a magnetic scaffold for osteochondral repair. Biofabrication 2022; 14. [PMID: 35226893 DOI: 10.1088/1758-5090/ac5935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
Abstract
Stem cell therapy using mesenchymal stromal/stem cells (MSCs) represents a novel approach to treating severe diseases, including osteoarthritis (OA). However, the therapeutic benefit of MSCs is highly dependent on their differentiation state, which can be regulated by many factors. Herein, three-dimensional (3D) magnetic scaffolds were successfully fabricated by incorporating magnetic nanoparticles (MNPs) into electrospun gelatin nanofibers. When positioned near a rotating magnet (f= 0.5 Hz), the magnetic scaffolds with the embedded MSCs were driven upward/downward in the culture container to induce mechanical stimulation to MSCs due to spatial confinement and fluid flow. The extracellular matrix-mimicking scaffold and the alternating magnetic field significantly enhanced chondrogenesis instead of osteogenesis. Furthermore, the fibre topography could be tuned with different compositions of the coating layer on MNPs, and the topography had a significant impact on MSC differentiation. Selective up-regulation of chondrogenesis-related genes (COL2A1andACAN) was found for the magnetic scaffolds with citric acid-coated MNPs (CAG). In contrast, osteogenesis-related genes (RUNX2andSPARC) were selectively and significantly up-regulated for the magnetic scaffolds with polyvinylpyrrolidone-coated MNPs (PVPG). Prior to implantation in vivo, chondrogenic preconditioning of MSCs within the CAG scaffolds under a dynamic magnetic field resulted in superior osteochondral repair. Hence, the magnetic scaffolds together with an in-house rotating magnet device could be a novel platform to initiate multiple stimuli on stem cell differentiation for effective repair of osteochondral defects.
Collapse
Affiliation(s)
- Jiabin Zhang
- Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510275, CHINA
| | - Ming Zhang
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu Province, China, Nangjing, Jiangsu, 210009, CHINA
| | - Rongcai Lin
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing, 210006, CHINA
| | - Yuguang Du
- Institute of Process Engineering Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China, Beijing, Beijing, 100190, CHINA
| | - Liming Wang
- Department of Orthopaedic Surgery Nanjing First Hospital, Nanjing Medical University, Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing, Jiangsu Province, 210006, CHINA
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing, 210006, CHINA
| | - Andrew Zannettino
- Adelaide Medical School Research, The University of Adelaide, Adelaide, Australia, Adelaide, South Australia, 5005, AUSTRALIA
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA 91711, USA, 535 Watson Drive, Claremont, CA, USA, Claremont, California, 91711, UNITED STATES
| |
Collapse
|
44
|
Fahmi MZ, Machmudah N, Indrawasih P, Wibrianto A, Ahmad MA, Sakti SCW, Chang JY. Naproxen release from carbon dot coated magnetite nanohybrid as versatile theranostics for HeLa cancer cells. RSC Adv 2022; 12:32328-32337. [PMID: 36425684 PMCID: PMC9650478 DOI: 10.1039/d2ra05673a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nanohybrid magnetite carbon dots (Fe3O4@CDs) were successfully synthesized to improve their applicability in multi-response bioimaging. The nanohybrid was prepared via pyrolysis and further loaded with naproxen (NAP) to promote drug delivery features. The characterization of the synthesized Fe3O4@CDs demonstrated the existence of Fe3O4 crystals by matching with JCPDS 75-0033 and its narrow size distribution at 11.30 nm; further, FTIR spectra confirmed the presence of Fe–O groups, C–O stretching, C–H sp2, and C–O bending, along with dual-active fluorescence and magnetic responses. The nanohybrids also exhibit particular properties such as a maximum wavelength of 230.5 nm, maximum emission in the 320–420 nm range, and slight superparamagnetic reduction (Fe3O4: 0.93620 emu per g; Fe3O4@CDs: 0.64784 emu per g). The cytotoxicity assessment of the nanohybrid revealed an excellent half-maximal inhibitory concentration (IC50) of 17 671.5 ± 1742.6 μg mL−1. Then, the incorporation of NAP decreased the cell viability to below 10%. The kinetic release properties of NAP are also confirmed as pH-dependent, and they follow the Korsmeyer–Peppas kinetics model. These results indicated that the proposed Fe3O4@CDs can be used as a new model for theranostic treatment. Nanohybrid magnetite carbon dots (Fe3O4@CDs) were successfully synthesized to improve their applicability in multi-response bioimaging.![]()
Collapse
Affiliation(s)
- Mochamad Z. Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Putri Indrawasih
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
| | - Aswandi Wibrianto
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Musbahu A. Ahmad
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
| | - Satya C. W. Sakti
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jia-yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| |
Collapse
|
45
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
46
|
Yang L, Fu S, Cai Z, Liu L, Xia C, Gong Q, Song B, Ai H. Integration of PEG-conjugated gadolinium complex and superparamagnetic iron oxide nanoparticles as T 1- T 2 dual-mode magnetic resonance imaging probes. Regen Biomater 2021; 8:rbab064. [PMID: 34881046 PMCID: PMC8648151 DOI: 10.1093/rb/rbab064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 02/05/2023] Open
Abstract
The T 1-T 2 dual-mode probes for magnetic resonance imaging (MRI) can non-invasively acquire comprehensive information of different tissues or generate self-complementary information of the same tissue at the same time, making MRI a more flexible imaging modality for complicated applications. In this work, three Gadolinium-diethylene-triaminepentaaceticacid (Gd-DTPA) complex conjugated superparamagnetic iron oxide (SPIO) nanoparticles with different Gd/Fe molar ratio (0.94, 1.28 and 1.67) were prepared as T 1-T 2 dual-mode MRI probes, named as SPIO@PEG-GdDTPA0.94, SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67, respectively. All SPIO@PEG-GdDTPA nanocomposites with 8 nm spherical SPIO nanocrystals showed good Gd3+ chelate stability. SPIO@PEG-GdDTPA0.94 nanocomposites with lowest Gd/Fe molar ratio show no cytotoxicity to Raw 264.7 cells as compared to SPIO@PEG-GdDTPA1.28 and SPIO@PEG-GdDTPA1.67. SPIO@PEG-GdDTPA0.94 nanocomposites with r 1 (8.4 mM-1s-1), r 2 (83.2 mM-1s-1) and relatively ideal r 2/r 1 ratio (9.9) were selected for T 1-T 2 dual-mode MRI of blood vessels and liver tissue in vivo. Good contrast images were obtained for both cardiovascular system and liver in animal studies under a clinical 3 T scanner. Importantly, one can get high-quality contrast-enhanced blood vessel images within the first 2 h after contrast agent administration and acquire liver tissue anatomy information up to 24 h. Overall, the strategy of one shot of the dual mode MRI agent could bring numerous benefits not only for patients but also to the radiologists and clinicians, e.g. saving time, lowering side effects and collecting data of different organs sequentially.
Collapse
Affiliation(s)
- Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Li Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China and
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, PR China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
47
|
Zhang Z, Wells CJR, Davies GL, Williams GR. The effect of formulation morphology on stimuli-triggered co-delivery of chemotherapeutic and MRI contrast agents. Int J Pharm 2021; 609:121155. [PMID: 34624442 DOI: 10.1016/j.ijpharm.2021.121155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Most conventional chemotherapeutics have narrow therapeutic windows, and thus their delivery remains challenging and often raises safety and efficacy concerns. Theranostic platforms, with simultaneous encapsulation of therapeutic and diagnostic agents, have been proposed as next-generation formulations which can overcome this issue. In this work, we used electrohydrodynamic approaches to fabricate core@shell formulations comprising a pH responsive Eudragit L100 shell embedded with superparamagnetic iron oxide nanoparticles (SPIONs), and a thermo-responsive poly(N-isopropylacrylamide) (PNIPAM)/ethyl cellulose core loaded with the model drug carmofur. By varying the weight ratio of core polymer to shell polymer, the morphology of PNIPAM/ethyl cellulose@Eudragit L100 microparticles could be changed from concave to spherical. Smooth cylindrical fibres could also be generated. All the formulations exist as amorphous solid dispersions of drug-in-polymer, with distinct core@shell architectures. The fibres have clear thermo-responsive drug release profiles, while no thermo-responsive properties can be seen with the particles. All the formulations can protect SPIONs from degradation in gastric fluids (pH ∼ 1.5), and around the physiological pH range the materials offer effective and pH-responsive relaxivity. The r2 values also display clear linear relationships with drug release data, suggesting the potential of using MRI signals to track drug release in vivo. Mathematical equations were established to track drug release in vitro, with very similar experimental and predicted release profiles obtained.
Collapse
Affiliation(s)
- Ziwei Zhang
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK; UCL Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK
| | - Connor J R Wells
- UCL Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK
| | - Gemma-Louise Davies
- UCL Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
48
|
Zivarpour P, Hallajzadeh J, Asemi Z, Sadoughi F, Sharifi M. Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell Int 2021; 21:544. [PMID: 34663339 PMCID: PMC8524827 DOI: 10.1186/s12935-021-02243-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
Leukemia is a lethal cancer in which white blood cells undergo proliferation and immature white blood cells are seen in the bloodstream. Without diagnosis and management in early stages, this type of cancer can be fatal. Changes in protooncogenic genes and microRNA genes are the most important factors involved in development of leukemia. At present, leukemia risk factors are not accurately identified, but some studies have pointed out factors that predispose to leukemia. Studies show that in the absence of genetic risk factors, leukemia can be prevented by reducing the exposure to risk factors of leukemia, including smoking, exposure to benzene compounds and high-dose radioactive or ionizing radiation. One of the most important treatments for leukemia is chemotherapy which has devastating side effects. Chemotherapy and medications used during treatment do not have a specific effect and destroy healthy cells besides leukemia cells. Despite the suppressing effect of chemotherapy against leukemia, patients undergoing chemotherapy have poor quality of life. So today, researchers are focusing on finding more safe and effective natural compounds and treatments for cancer, especially leukemia. Chitosan is a valuable natural compound that is biocompatible and non-toxic to healthy cells. Anticancer, antibacterial, antifungal and antioxidant effects are examples of chitosan biopolymer properties. The US Food and Drug Administration has approved the use of this compound in medical treatments and the pharmaceutical industry. In this article, we take a look at the latest advances in the use of chitosan in the treatment and improvement of leukemia.
Collapse
Affiliation(s)
- Parinaz Zivarpour
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
49
|
Makela AV, Gaudet JM, Murrell DH, Mansfield JR, Wintermark M, Contag CH. Mind Over Magnets - How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience. Neuroscience 2021; 474:100-109. [PMID: 33197498 DOI: 10.1016/j.neuroscience.2020.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022]
Abstract
Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jeffrey M Gaudet
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Magnetic Insight Inc, Alameda, CA, USA
| | - Donna H Murrell
- London Regional Cancer Program, Western University, London, ON, Canada
| | | | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
50
|
Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|