1
|
Sun X, Yin L, Qiao Z, Younus M, Chen G, Wu X, Li J, Kang X, Xu H, Zhou L, Li Y, Gao M, Du X, Hang Y, Lin Z, Sun L, Wang Q, Jiao R, Wang L, Hu M, Wang Y, Huang R, Li Y, Wu Q, Shang S, Guo S, Lei Q, Shu H, Zheng L, Wang S, Zhu F, Zuo P, Liu B, Wang C, Zhang Q, Zhou Z. Action Potential Firing Patterns Regulate Dopamine Release via Voltage-Sensitive Dopamine D2 Autoreceptors in Mouse Striatum In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412229. [PMID: 39731325 DOI: 10.1002/advs.202412229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/09/2024] [Indexed: 12/29/2024]
Abstract
Dopamine (DA) in the striatum is vital for motor and cognitive behaviors. Midbrain dopaminergic neurons generate both tonic and phasic action potential (AP) firing patterns in behavior mice. Besides AP numbers, whether and how different AP firing patterns per se modulate DA release remain largely unknown. Here by using in vivo and ex vivo models, it is shown that the AP frequency per se modulates DA release through the D2 receptor (D2R), which contributes up to 50% of total DA release. D2R has a voltage-sensing site at D131 and can be deactivated in a frequency-dependent manner by membrane depolarization. This voltage-dependent D2R inhibition of DA release is mediated via the facilitation of voltage-gated Ca2+ channels (VGCCs). Collectively, this work establishes a novel mechanism that APs per se modulate DA overflow by disinhibiting the voltage-sensitive autoreceptor D2R and thus the facilitation of VGCCs, providing a pivotal pathway and insight into mammalian DA-dependent functions in vivo.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lili Yin
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Zhongjun Qiao
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Guoqing Chen
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Jie Li
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Xinjiang Kang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Huadong Xu
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Li Zhou
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yinglin Li
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Min Gao
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Xingyu Du
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yuqi Hang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Zhaohan Lin
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Liyuan Sun
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Qinglong Wang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Ruiying Jiao
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Lun Wang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Rong Huang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yiman Li
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Qihui Wu
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Shujiang Shang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Shu Guo
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Qian Lei
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Haifeng Shu
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Shirong Wang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Panli Zuo
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Bing Liu
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Quanfeng Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Boutonnet M, Bünemann M, Perroy J. The voltage sensitivity of G-protein coupled receptors: Unraveling molecular mechanisms and physiological implications. Pharmacol Ther 2024; 264:108741. [PMID: 39489434 DOI: 10.1016/j.pharmthera.2024.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
In the landscape of proteins controlled by membrane voltage (Vm), like voltage-gated ionotropic channels, the emergence of the voltage sensitivity within the vast family of G-protein coupled receptors (GPCRs) marked a significant milestone at the onset of the 21st century. Since its discovery, extensive research has been devoted to understanding the intricate relationship between Vm and GPCRs. Approximately 30 GPCRs out of a family comprising more than 800 receptors have been implicated in Vm-dependent positive and negative regulation. GPCRs stand out as the quintessential regulators of synaptic transmission in neurons, where they encounter substantial variations in Vm. However, the molecular mechanism underlying the Vm sensor of GPCRs remains enigmatic, hindered by the scarcity of mutant GPCRs insensitive to Vm yet functionally intact, impeding a comprehensive understanding of this unique property in physiology. Nevertheless, two decades of dedicated research have furnished numerous insights into the molecular aspects of GPCR Vm-sensing, accompanied by recently proposed physiological roles as well as pharmacological potential, which we encapsulate in this review. The Vm sensitivity of GPCRs emerges as a pivotal attribute, shedding light on previously unforeseen roles in synaptic transmission and extending beyond, underscoring its significance in cellular signaling and physiological processes.
Collapse
Affiliation(s)
- Marin Boutonnet
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Yakubovich D. Editorial: Direct modulation of ion channels by G-proteins. Front Physiol 2024; 15:1465766. [PMID: 39183974 PMCID: PMC11341489 DOI: 10.3389/fphys.2024.1465766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Affiliation(s)
- Daniel Yakubovich
- Department of Neonatology, Sanz Medical Center-Laniado Hospital, Netanya, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
4
|
Tauber M, Ben-Chaim Y. Voltage Sensors Embedded in G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:5295. [PMID: 38791333 PMCID: PMC11120775 DOI: 10.3390/ijms25105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Some signaling processes mediated by G protein-coupled receptors (GPCRs) are modulated by membrane potential. In recent years, increasing evidence that GPCRs are intrinsically voltage-dependent has accumulated. A recent publication challenged the view that voltage sensors are embedded in muscarinic receptors. Herein, we briefly discuss the evidence that supports the notion that GPCRs themselves are voltage-sensitive proteins and an alternative mechanism that suggests that voltage-gated sodium channels are the voltage-sensing molecules involved in such processes.
Collapse
Affiliation(s)
| | - Yair Ben-Chaim
- Department of Natural Sciences, The Open University of Israel, Ra’anana 4353701, Israel
| |
Collapse
|
5
|
Kirchhofer SB, Lim VJY, Ernst S, Karsai N, Ruland JG, Canals M, Kolb P, Bünemann M. Differential interaction patterns of opioid analgesics with µ opioid receptors correlate with ligand-specific voltage sensitivity. eLife 2023; 12:e91291. [PMID: 37983079 PMCID: PMC10849675 DOI: 10.7554/elife.91291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/19/2023] [Indexed: 11/21/2023] Open
Abstract
The µ opioid receptor (MOR) is the key target for analgesia, but the application of opioids is accompanied by several issues. There is a wide range of opioid analgesics, differing in their chemical structure and their properties of receptor activation and subsequent effects. A better understanding of ligand-receptor interactions and the resulting effects is important. Here, we calculated the respective binding poses for several opioids and analyzed interaction fingerprints between ligand and receptor. We further corroborated the interactions experimentally by cellular assays. As MOR was observed to display ligand-induced modulation of activity due to changes in membrane potential, we further analyzed the effects of voltage sensitivity on this receptor. Combining in silico and in vitro approaches, we defined discriminating interaction patterns responsible for ligand-specific voltage sensitivity and present new insights into their specific effects on activation of the MOR.
Collapse
Affiliation(s)
- Sina B Kirchhofer
- Department of Pharmacology and Clinical Pharmacy, University of MarburgMarburgGermany
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and NottinghamMidlandsUnited Kingdom
| | - Victor Jun Yu Lim
- Department of Pharmaceutical Chemistry, University of MarburgMarburgGermany
| | - Sebastian Ernst
- Department of Pharmacology and Clinical Pharmacy, University of MarburgMarburgGermany
| | - Noemi Karsai
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and NottinghamMidlandsUnited Kingdom
| | - Julia G Ruland
- Department of Pharmacology and Clinical Pharmacy, University of MarburgMarburgGermany
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and NottinghamMidlandsUnited Kingdom
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of MarburgMarburgGermany
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, University of MarburgMarburgGermany
| |
Collapse
|
6
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Li L, Ji J, Song F, Hu J. Intercellular Receptor-ligand Binding: Effect of Protein-membrane Interaction. J Mol Biol 2023; 435:167787. [PMID: 35952805 DOI: 10.1016/j.jmb.2022.167787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Gaining insights into the intercellular receptor-ligand binding is of great importance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. In contrast to the in vitro protein interaction in solution, the anchored receptor and ligand molecules interact with membrane in situ, which affects the intercellular receptor-ligand binding. Here, we review theoretical, simulation and experimental works regarding the regulatory effects of protein-membrane interactions on intercellular receptor-ligand binding mainly from the following aspects: membrane fluctuations, membrane curvature, glycocalyx, and lipid raft. In addition, we discuss biomedical significances and possible research directions to advance the field and highlight the importance of understanding of coupling effects of these factors in pharmaceutical development.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China; State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China.
| |
Collapse
|
8
|
David D, Bentulila Z, Tauber M, Ben-Chaim Y. G Protein-Coupled Receptors Regulated by Membrane Potential. Int J Mol Sci 2022; 23:ijms232213988. [PMID: 36430466 PMCID: PMC9696401 DOI: 10.3390/ijms232213988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in a vast majority of signal transduction processes. Although they span the cell membrane, they have not been considered to be regulated by the membrane potential. Numerous studies over the last two decades have demonstrated that several GPCRs, including muscarinic, adrenergic, dopaminergic, and glutamatergic receptors, are voltage regulated. Following these observations, an effort was made to elucidate the molecular basis for this regulatory effect. In this review, we will describe the advances in understanding the voltage dependence of GPCRs, the suggested molecular mechanisms that underlie this phenomenon, and the possible physiological roles that it may play.
Collapse
|
9
|
Goldberger E, Tauber M, Ben-Chaim Y. Voltage dependence of the cannabinoid CB1 receptor. Front Pharmacol 2022; 13:1022275. [PMID: 36304142 PMCID: PMC9592857 DOI: 10.3389/fphar.2022.1022275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabinoids produce their characteristic effects mainly by binding to two types of G-protein coupled receptors (GPCRs), the CB1 and CB2 cannabinoid receptors. The CB1 receptor is the main cannabinoid receptor in the central nervous system, and it participates in many brain functions. Recent studies showed that membrane potential may serve as a novel modulatory modality of many GPCRs. Here, we used Xenopus oocytes as an expression system to examine whether membrane potential modulates the activity of the CB1 receptor. We found that the potencies of the endocannabinoid 2-AG and the phytocannabinoid THC in activating the receptor are voltage dependent; depolarization enhanced the potency of these agonists and decreased their dissociation from the receptor. This voltage dependence appears to be agonist dependent as the potency of the endocannabinoid anandamide (AEA) was voltage independent. The finding of this agonist-specific modulatory factor for the CB1 receptor may contribute to our future understanding of various physiological functions mediated by the endocannabinoid system.
Collapse
|
10
|
An C, Wang X, Song F, Hu J, Li L. Insights into intercellular receptor-ligand binding kinetics in cell communication. Front Bioeng Biotechnol 2022; 10:953353. [PMID: 35837553 PMCID: PMC9273785 DOI: 10.3389/fbioe.2022.953353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is crucial for cells to sense, respond and adapt to environmental cues and stimuli. The intercellular communication process, which involves multiple length scales, is mediated by the specific binding of membrane-anchored receptors and ligands. Gaining insight into two-dimensional receptor-ligand binding kinetics is of great significance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. To this end, extensive studies have been performed to illuminate the underlying mechanisms that control intercellular receptor-ligand binding kinetics via experiment, theoretical analysis and numerical simulation. It has been well established that the cellular microenvironment where the receptor-ligand interaction occurs plays a vital role. In this review, we focus on the advances regarding the regulatory effects of three factors including 1) protein-membrane interaction, 2) biomechanical force, and 3) bioelectric microenvironment to summarize the relevant experimental observations, underlying mechanisms, as well as their biomedical significances and applications. Meanwhile, we introduce modeling methods together with experiment technologies developed for dealing with issues at different scales. We also outline future directions to advance the field and highlight that building up systematic understandings for the coupling effects of these regulatory factors can greatly help pharmaceutical development.
Collapse
Affiliation(s)
- Chenyi An
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Tauber M, Ben Chaim Y. The activity of the serotonergic 5-HT 1A receptor is modulated by voltage and sodium levels. J Biol Chem 2022; 298:101978. [PMID: 35469922 PMCID: PMC9136116 DOI: 10.1016/j.jbc.2022.101978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
G protein–coupled receptors are known to play a key role in many cellular signal transduction processes, including those mediating serotonergic signaling in the nervous system. Several factors have been shown to regulate the activity of these receptors, including membrane potential and the concentration of sodium ions. Whether voltage and sodium regulate the activity of serotonergic receptors is unknown. Here, we used Xenopus oocytes as an expression system to examine the effects of voltage and of sodium ions on the potency of one subtype of serotonin (5-hydroxytryptamine [5-HT]) receptor, the 5-HT1A receptor. We found that the potency of 5-HT in activating the receptor is voltage dependent and that it is higher at resting potential than under depolarized conditions. Furthermore, we found that removal of extracellular Na+ resulted in a decrease of 5-HT potency toward the 5-HT1A receptor and that a conserved aspartate in transmembrane domain 2 is crucial for this effect. Our results suggest that this allosteric effect of Na+ does not underlie the voltage dependence of this receptor. We propose that the characterization of modulatory factors that regulate this receptor may contribute to our future understanding of various physiological functions mediated by serotonergic transmission.
Collapse
Affiliation(s)
- Merav Tauber
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Yair Ben Chaim
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
12
|
Oduori OS, Murao N, Shimomura K, Takahashi H, Zhang Q, Dou H, Sakai S, Minami K, Chanclon B, Guida C, Kothegala L, Tolö J, Maejima Y, Yokoi N, Minami Y, Miki T, Rorsman P, Seino S. Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. J Clin Invest 2021; 130:6639-6655. [PMID: 33196462 DOI: 10.1172/jci140046] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
By restoring glucose-regulated insulin secretion, glucagon-like peptide-1-based (GLP-1-based) therapies are becoming increasingly important in diabetes care. Normally, the incretins GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) jointly maintain normal blood glucose levels by stimulation of insulin secretion in pancreatic β cells. However, the reason why only GLP-1-based drugs are effective in improving insulin secretion after presentation of diabetes has not been resolved. ATP-sensitive K+ (KATP) channels play a crucial role in coupling the systemic metabolic status to β cell electrical activity for insulin secretion. Here, we have shown that persistent membrane depolarization of β cells due to genetic (β cell-specific Kcnj11-/- mice) or pharmacological (long-term exposure to sulfonylureas) inhibition of the KATP channel led to a switch from Gs to Gq in a major amplifying pathway of insulin secretion. The switch determined the relative insulinotropic effectiveness of GLP-1 and GIP, as GLP-1 can activate both Gq and Gs, while GIP only activates Gs. The findings were corroborated in other models of persistent depolarization: a spontaneous diabetic KK-Ay mouse and nondiabetic human and mouse β cells of pancreatic islets chronically treated with high glucose. Thus, a Gs/Gq signaling switch in β cells exposed to chronic hyperglycemia underlies the differential insulinotropic potential of incretins in diabetes.
Collapse
Affiliation(s)
- Okechi S Oduori
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Murao
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Haiqiang Dou
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Shihomi Sakai
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohtaro Minami
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Belen Chanclon
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lakshmi Kothegala
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Johan Tolö
- Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Laboratory of Animal Breeding and Genetics, Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Miki
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.,Metabolic Research Unit, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Mishra RC, Kyle BD, Kendrick DJ, Svystonyuk D, Kieser TM, Fedak PWM, Wulff H, Braun AP. KCa channel activation normalizes endothelial function in Type 2 Diabetic resistance arteries by improving intracellular Ca 2+ mobilization. Metabolism 2021; 114:154390. [PMID: 33039407 PMCID: PMC7736096 DOI: 10.1016/j.metabol.2020.154390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Endothelial dysfunction is an early pathogenic event in the progression of cardiovascular disease in patients with Type 2 Diabetes (T2D). Endothelial KCa2.3 and KCa3.1 K+ channels are important regulators of arterial diameter, and we thus hypothesized that SKA-31, a small molecule activator of KCa2.3 and KCa3.1, would positively influence agonist-evoked dilation in myogenically active resistance arteries in T2D. METHODOLOGY Arterial pressure myography was utilized to investigate endothelium-dependent vasodilation in isolated cremaster skeletal muscle resistance arteries from 22 to 24 week old T2D Goto-Kakizaki rats, age-matched Wistar controls, and small human intra-thoracic resistance arteries from T2D subjects. Agonist stimulated changes in cytosolic free Ca2+ in acutely isolated, single endothelial cells from Wistar and T2D Goto-Kakizaki cremaster and cerebral arteries were examined using Fura-2 fluorescence imaging. MAIN FINDINGS Endothelium-dependent vasodilation in response to acetylcholine (ACh) or bradykinin (BK) was significantly impaired in isolated cremaster arteries from T2D Goto-Kakizaki rats compared with Wistar controls, and similar results were observed in human intra-thoracic arteries. In contrast, inhibition of myogenic tone by sodium nitroprusside, a direct smooth muscle relaxant, was unaltered in both rat and human T2D arteries. Treatment with a threshold concentration of SKA-31 (0.3 μM) significantly enhanced vasodilatory responses to ACh and BK in arteries from T2D Goto-Kakizaki rats and human subjects, whereas only modest effects were observed in non-diabetic arteries of both species. Mechanistically, SKA-31 enhancement of evoked dilation was independent of vascular NO synthase and COX activities. Remarkably, SKA-31 treatment improved agonist-stimulated Ca2+ elevation in acutely isolated endothelial cells from T2D Goto-Kakizaki cremaster and cerebral arteries, but not from Wistar control vessels. In contrast, SKA-31 treatment did not affect intracellular Ca2+ release by the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor cyclopiazonic acid. CONCLUSIONS Collectively, our data demonstrate that KCa channel modulation can acutely restore endothelium-dependent vasodilatory responses in T2D resistance arteries from rats and humans, which appears to involve improved endothelial Ca2+ mobilization.
Collapse
Affiliation(s)
- Ramesh C Mishra
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Barry D Kyle
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Dylan J Kendrick
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Daniyil Svystonyuk
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Teresa M Kieser
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Paul W M Fedak
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Heike Wulff
- Dept of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Andrew P Braun
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
14
|
Montes de Oca Balderas P, Matus Núñez M, Picones A, Hernández-Cruz A. NMDAR in cultured astrocytes: Flux-independent pH sensor and flux-dependent regulator of mitochondria and plasma membrane-mitochondria bridging. FASEB J 2020; 34:16622-16644. [PMID: 33131132 DOI: 10.1096/fj.202001300r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023]
Abstract
Glutamate N-methyl-D-aspartate (NMDA) receptor (NMDAR) is critical for neurotransmission as a Ca2+ channel. Nonetheless, flux-independent signaling has also been demonstrated. Astrocytes express NMDAR distinct from its neuronal counterpart, but cultured astrocytes have no electrophysiological response to NMDA. We recently demonstrated that in cultured astrocytes, NMDA at pH6 (NMDA/pH6) acting through the NMDAR elicits flux-independent Ca2+ release from the Endoplasmic Reticulum (ER) and depletes mitochondrial membrane potential (mΔΨ). Here we show that Ca2+ release is due to pH6 sensing by NMDAR, whereas mΔΨ depletion requires both: pH6 and flux-dependent NMDAR signaling. Plasma membrane (PM) NMDAR guard a non-random distribution relative to the ER and mitochondria. Also, NMDA/pH6 induces ER stress, endocytosis, PM electrical capacitance reduction, mitochondria-ER, and -nuclear contacts. Strikingly, it also produces the formation of PM invaginations near mitochondria along with structures referred to here as PM-mitochondrial bridges (PM-m-br). These and earlier data strongly suggest PM-mitochondria communication. As proof of the concept of mass transfer, we found that NMDA/pH6 provoked mitochondria labeling by the PM dye FM-4-64FX. NMDA/pH6 caused PM depolarization, cell acidification, and Ca2+ release from most mitochondria. Finally, the MCU and microtubules were not involved in mΔΨ depletion, while actin cytoskeleton was partially involved. These findings demonstrate that NMDAR has concomitant flux-independent and flux-dependent actions in cultured astrocytes.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Unidad de Neurobiología Dinámica, Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, México City, México.,Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Mauricio Matus Núñez
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Picones
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
15
|
Depolarization-Dependent C-Raf Signaling Promotes Hyperexcitability and Reduces Opioid Sensitivity of Isolated Nociceptors after Spinal Cord Injury. J Neurosci 2020; 40:6522-6535. [PMID: 32690613 DOI: 10.1523/jneurosci.0810-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic pain caused by spinal cord injury (SCI) is notoriously resistant to treatment, particularly by opioids. After SCI, DRG neurons show hyperactivity and chronic depolarization of resting membrane potential (RMP) that is maintained by cAMP signaling through PKA and EPAC. Importantly, SCI also reduces the negative regulation by Gαi of adenylyl cyclase and its production of cAMP, independent of alterations in G protein-coupled receptors and/or G proteins. Opioid reduction of pain depends on coupling of opioid receptors to Gαi/o family members. Combining high-content imaging and cluster analysis, we show that in male rats SCI decreases opioid responsiveness in vitro within a specific subset of small-diameter nociceptors that bind isolectin B4. This SCI effect is mimicked in nociceptors from naive animals by a modest 5 min depolarization of RMP (15 mm K+; -45 mV), reducing inhibition of cAMP signaling by μ-opioid receptor agonists DAMGO and morphine. Disinhibition and activation of C-Raf by depolarization-dependent phosphorylation are central to these effects. Expression of an activated C-Raf reduces sensitivity of adenylyl cyclase to opioids in nonexcitable HEK293 cells, whereas inhibition of C-Raf or treatment with the hyperpolarizing drug retigabine restores opioid responsiveness and blocks spontaneous activity of nociceptors after SCI. Inhibition of ERK downstream of C-Raf also blocks SCI-induced hyperexcitability and depolarization, without direct effects on opioid responsiveness. Thus, depolarization-dependent C-Raf and downstream ERK activity maintain a depolarized RMP and nociceptor hyperactivity after SCI, providing a self-reinforcing mechanism to persistently promote nociceptor hyperexcitability and limit the therapeutic effectiveness of opioids.SIGNIFICANCE STATEMENT Chronic pain induced by spinal cord injury (SCI) is often permanent and debilitating, and usually refractory to treatment with analgesics, including opioids. SCI-induced pain in a rat model has been shown to depend on persistent hyperactivity in primary nociceptors (injury-detecting sensory neurons), associated with a decrease in the sensitivity of adenylyl cyclase production of cAMP to inhibitory Gαi proteins in DRGs. This study shows that SCI and one consequence of SCI (chronic depolarization of resting membrane potential) decrease sensitivity to opioid-mediated inhibition of cAMP and promote hyperactivity of nociceptors by enhancing C-Raf activity. ERK activation downstream of C-Raf is necessary for maintaining ongoing depolarization and hyperactivity, demonstrating an unexpected positive feedback loop to persistently promote pain.
Collapse
|
16
|
Sodium ions allosterically modulate the M2 muscarinic receptor. Sci Rep 2020; 10:11177. [PMID: 32636499 PMCID: PMC7341750 DOI: 10.1038/s41598-020-68133-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/15/2020] [Indexed: 11/08/2022] Open
Abstract
G protein coupled receptors (GPCRs) play a key role in the vast majority of cellular signal transduction processes. Previous experimental evidence has shown that sodium ion (Na+) allosterically modulate several class A GPCRs and theoretical studies suggested that the same also holds true for muscarinic receptors. Here we examined, using Xenopus oocytes as an expression system, the effect of Na+ on a prototypical GPCR, the M2 muscarinic receptor (M2R). We found that removal of extracellular Na+ resulted in a decrease in the potency of ACh toward the M2R and that a conserved aspartate in transmembrane domain 2 is crucial for this effect. We further show that this allosteric effect of Na+ does not underlie the voltage-dependence of this receptor.
Collapse
|
17
|
Cervera J, Levin M, Mafe S. Bioelectrical Coupling of Single-Cell States in Multicellular Systems. J Phys Chem Lett 2020; 11:3234-3241. [PMID: 32243754 DOI: 10.1021/acs.jpclett.0c00641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The spatiotemporal distributions of signaling ions and molecules that modulate biochemical pathways in nonexcitable cells are influenced by multicellular electric potentials. These potentials act as distributed controllers encoding instructive spatial patterns in development and regeneration. We review experimental facts and discuss recent bioelectrical models that provide new physical insights and complement biochemical approaches. Single-cell states are modulated at the multicellular level because of the coupling between neighboring cells, thus allowing memories and multicellular patterns. The model is based on (i) two generic voltage-gated ion channels that promote the polarized and depolarized cell states, (ii) a feedback mechanism for the transcriptional and bioelectrical regulations, and (iii) voltage-gated intercellular conductances that allow a dynamic intercellular connectivity. The simulations provide steady-state and oscillatory multicellular states that help explain aspects of development and guide experimental procedures attempting to establish instructive bioelectrical patterns based on electric potentials and currents to regulate cell behavior and morphogenesis.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155-4243, United States
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
18
|
Gheorghiu M, Stănică L, Ghinia Tegla MG, Polonschii C, Bratu D, Popescu O, Badea T, Gheorghiu E. Cellular sensing platform with enhanced sensitivity based on optogenetic modulation of cell homeostasis. Biosens Bioelectron 2020; 154:112003. [PMID: 32056953 PMCID: PMC7685521 DOI: 10.1016/j.bios.2019.112003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/29/2022]
Abstract
We demonstrate a new biosensing concept with impact on the development of rapid, point of need cell based sensing with boosted sensitivity and wide relevance for bioanalysis. It involves optogenetic stimulation of cells stably transfected to express light sensitive protein channels for optical control of membrane potential and of ion homeostasis. Time-lapse impedance measurements are used to reveal cell dynamics changes encompassing cellular responses to bioactive stimuli and optically induced homeostasis disturbances. We prove that light driven perturbations of cell membrane potential induce homeostatic reactions and modulate transduction mechanisms that amplify cellular response to bioactive compounds. This allows cell based biosensors to respond more rapidly and sensitively to low concentrations of bioactive/toxic analytes: statistically relevant impedance changes are recorded in less than 30 min, in comparison with >8 h in the best alternative reported tests for the same low concentration (e.g. a concentration of 25 μM CdCl2, lower than the threshold concentration in classical cellular sensors). Comparative analysis of model bioactive/toxic compounds (ouabain and CdCl2) demonstrates that cellular reactivity can be boosted by light driven perturbations of cellular homeostasis and that this biosensing concept is able to discriminate analytes with different modes of action (i.e. CdCl2 toxicity versus ion pump inhibition by ouabain), a significant advance against state of the art cell based sensors.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- International Centre of Biodynamics, Intr. Portocalelor 1 B, 060101, Bucharest, Romania; Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania.
| | - Luciana Stănică
- International Centre of Biodynamics, Intr. Portocalelor 1 B, 060101, Bucharest, Romania; Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Miruna G Ghinia Tegla
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, 400084, Cluj-Napoca, Romania; Retinal Circuit Development & Genetics Unit N-NRL/NEI/NIH 6 Center Drive Bethesda, 20892, Maryland, United States
| | - Cristina Polonschii
- International Centre of Biodynamics, Intr. Portocalelor 1 B, 060101, Bucharest, Romania.
| | - Dumitru Bratu
- International Centre of Biodynamics, Intr. Portocalelor 1 B, 060101, Bucharest, Romania.
| | - Octavian Popescu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babes-Bolyai-University, 400084, Cluj-Napoca, Romania; Institute of Biology, Romanian Academy, 296 Splaiul Independentei, 060031, Bucharest, Romania
| | - Tudor Badea
- Retinal Circuit Development & Genetics Unit N-NRL/NEI/NIH 6 Center Drive Bethesda, 20892, Maryland, United States.
| | - Eugen Gheorghiu
- International Centre of Biodynamics, Intr. Portocalelor 1 B, 060101, Bucharest, Romania; Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania.
| |
Collapse
|
19
|
Kurz M, Krett AL, Bünemann M. Voltage Dependence of Prostanoid Receptors. Mol Pharmacol 2020; 97:267-277. [DOI: 10.1124/mol.119.118372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/25/2020] [Indexed: 12/16/2022] Open
|
20
|
Shalaeva DN, Cherepanov DA, Galperin MY, Vriend G, Mulkidjanian AY. G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183051. [PMID: 31449800 DOI: 10.1016/j.bbamem.2019.183051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/28/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
The human genome contains about 700 genes of G protein-coupled receptors (GPCRs) of class A; these seven-helical membrane proteins are the targets of almost half of all known drugs. In the middle of the helix bundle, crystal structures reveal a highly conserved sodium-binding site, which is connected with the extracellular side by a water-filled tunnel. This binding site contains a sodium ion in those GPCRs that are crystallized in their inactive conformations but does not in those GPCRs that are trapped in agonist-bound active conformations. The escape route of the sodium ion upon the inactive-to-active transition and its very direction have until now remained obscure. Here, by modeling the available experimental data, we show that the sodium gradient over the cell membrane increases the sensitivity of GPCRs if their activation is thermodynamically coupled to the sodium ion translocation into the cytoplasm but decreases it if the sodium ion retreats into the extracellular space upon receptor activation. The model quantitatively describes the available data on both activation and suppression of distinct GPCRs by membrane voltage. The model also predicts selective amplification of the signal from (endogenous) agonists if only they, but not their (partial) analogs, induce sodium translocation. Comparative structure and sequence analyses of sodium-binding GPCRs indicate a key role for the conserved leucine residue in the second transmembrane helix (Leu2.46) in coupling sodium translocation to receptor activation. Hence, class A GPCRs appear to harness the energy of the transmembrane sodium potential to increase their sensitivity and selectivity.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069 Osnabrück, Germany; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Dmitry A Cherepanov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 HP Nijmegen, the Netherlands.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069 Osnabrück, Germany; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
21
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
22
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
23
|
Sykes DA, Stoddart LA, Kilpatrick LE, Hill SJ. Binding kinetics of ligands acting at GPCRs. Mol Cell Endocrinol 2019; 485:9-19. [PMID: 30738950 PMCID: PMC6406023 DOI: 10.1016/j.mce.2019.01.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
The influence of drug-receptor binding kinetics has often been overlooked during the development of new therapeutics that target G protein-coupled receptors (GPCRs). Over the last decade there has been a growing understanding that an in-depth knowledge of binding kinetics at GPCRs is required to successfully target this class of proteins. Ligand binding to a GPCR is often not a simple single step process with ligand freely diffusing in solution. This review will discuss the experiments and equations that are commonly used to measure binding kinetics and how factors such as allosteric regulation, rebinding and ligand interaction with the plasma membrane may influence these measurements. We will then consider the molecular characteristics of a ligand and if these can be linked to association and dissociation rates.
Collapse
Affiliation(s)
- David A Sykes
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
24
|
Zheng YX, Ma LZ, Liu SJ, Zhang CT, Meng R, Chen YZ, Jiang ZL. Protective effects of trehalose on frozen-thawed ovarian granulosa cells of cattle. Anim Reprod Sci 2018; 200:14-21. [PMID: 30472065 DOI: 10.1016/j.anireprosci.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023]
Abstract
In this study, trehalose was investigated for its cryoprotective effects on ovarian granulosa cells (bGCs) of cattle. Five concentrations of trehalose at 0, 0.2, 0.4, 0.6 and 0.8 mol/L were added to the cryopreservation medium of bGCs, and the effects on the quality of frozen-thawed bGCs were assessed. The results indicate that the use of cryopreservation medium containing 0.2 and 0.4 mol/L of trehalose resulted in a greater rate of bGC viability compared to those of other groups (P<0.05). Culturing with trehalose at 0.2 and 0.4 mol/L increased 17β- estradiol (E2)and decreased progesterone (P4)production (P < 0.05) in post-thawed bGCs. Compared with the control group, the intracellular Ca2+ concentrations of frozen-thawed bGCs were less in all treatment groups (P<0.05), and the least Ca2+ concentration was observed in the group containing 0.4 mol/L trehalose. The plasma membrane potentials of frozen-thawed bGCs were greater in the groups with 0.2 and 0.4 mol/L trehalose, and the group treated with 0.4 mol/L trehalose had the greatest membrane potential in comparison to other groups (P < 0.05). The relative abundance of the CYP19 mRNA in frozen-thawed bGCs was greater in the groups containing 0.2, 0.4 and 0.6 mol/L trehalose, and relative abundances of FSHR and BCL2 mRNA were greater in the group of bGCs treated with 0.2 mol/L trehalose (P<0.05). Trehalose treatment at 0.4, 0.6 and 0.8 mol/L had an inhibitory effect on BAX gene transcription in frozen-thawed bGCs (P<0.05). In summary, trehalose exhibited a greater cryoprotective effect on bGCs than basic cryopreservation medium.
Collapse
Affiliation(s)
- Y X Zheng
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - L Z Ma
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - S J Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinhai University, Xining, Qinghai 810016, China
| | - C T Zhang
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai 810003, China
| | - R Meng
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai 810003, China
| | - Y Z Chen
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai 810003, China
| | - Z L Jiang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Kasimova MA, Lindahl E, Delemotte L. Determining the molecular basis of voltage sensitivity in membrane proteins. J Gen Physiol 2018; 150:1444-1458. [PMID: 30150239 PMCID: PMC6168238 DOI: 10.1085/jgp.201812086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
The identification of voltage-sensing elements in membrane proteins is challenging due to the diversity of voltage-sensing mechanisms. Kasimova et al. present a computational approach to predict the elements involved in voltage sensing, which they validate using voltage-gated ion channels. Voltage-sensitive membrane proteins are united by their ability to transform changes in membrane potential into mechanical work. They are responsible for a spectrum of physiological processes in living organisms, including electrical signaling and cell-cycle progression. Although the mechanism of voltage-sensing has been well characterized for some membrane proteins, including voltage-gated ion channels, even the location of the voltage-sensing elements remains unknown for others. Moreover, the detection of these elements by using experimental techniques is challenging because of the diversity of membrane proteins. Here, we provide a computational approach to predict voltage-sensing elements in any membrane protein, independent of its structure or function. It relies on an estimation of the propensity of a protein to respond to changes in membrane potential. We first show that this property correlates well with voltage sensitivity by applying our approach to a set of voltage-sensitive and voltage-insensitive membrane proteins. We further show that it correctly identifies authentic voltage-sensitive residues in the voltage-sensor domain of voltage-gated ion channels. Finally, we investigate six membrane proteins for which the voltage-sensing elements have not yet been characterized and identify residues and ions that might be involved in the response to voltage. The suggested approach is fast and simple and enables a characterization of voltage sensitivity that goes beyond mere identification of charges. We anticipate that its application before mutagenesis experiments will significantly reduce the number of potential voltage-sensitive elements to be tested.
Collapse
Affiliation(s)
- Marina A Kasimova
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
26
|
Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol 2018; 19:638-653. [DOI: 10.1038/s41580-018-0049-3] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Vickery ON, Carvalheda CA, Zaidi SA, Pisliakov AV, Katritch V, Zachariae U. Intracellular Transfer of Na + in an Active-State G-Protein-Coupled Receptor. Structure 2018; 26:171-180.e2. [PMID: 29249607 PMCID: PMC5805466 DOI: 10.1016/j.str.2017.11.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023]
Abstract
Playing a central role in cell signaling, G-protein-coupled receptors (GPCRs) are the largest superfamily of membrane proteins and form the majority of drug targets in humans. How extracellular agonist binding triggers the activation of GPCRs and associated intracellular effector proteins remains, however, poorly understood. Structural studies have revealed that inactive class A GPCRs harbor a conserved binding site for Na+ ions in the center of their transmembrane domain, accessible from the extracellular space. Here, we show that the opening of a conserved hydrated channel in the activated state receptors allows the Na+ ion to egress from its binding site into the cytosol. Coupled with protonation changes, this ion movement occurs without significant energy barriers, and can be driven by physiological transmembrane ion and voltage gradients. We propose that Na+ ion exchange with the cytosol is a key step in GPCR activation. Further, we hypothesize that this transition locks receptors in long-lived active-state conformations.
Collapse
Affiliation(s)
- Owen N Vickery
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; School of Science and Engineering, University of Dundee, Dundee DD1 4NH, UK
| | - Catarina A Carvalheda
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; School of Science and Engineering, University of Dundee, Dundee DD1 4NH, UK
| | - Saheem A Zaidi
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrei V Pisliakov
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; School of Science and Engineering, University of Dundee, Dundee DD1 4NH, UK
| | - Vsevolod Katritch
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Ulrich Zachariae
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; School of Science and Engineering, University of Dundee, Dundee DD1 4NH, UK.
| |
Collapse
|
28
|
Point mutation of a conserved aspartate, D69, in the muscarinic M 2 receptor does not modify voltage-sensitive agonist potency. Biochem Biophys Res Commun 2018; 496:101-104. [DOI: 10.1016/j.bbrc.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 12/30/2022]
|
29
|
Chen IS, Furutani K, Kurachi Y. Structural determinants at the M2 muscarinic receptor modulate the RGS4-GIRK response to pilocarpine by impairment of the receptor voltage sensitivity. Sci Rep 2017; 7:6110. [PMID: 28733581 PMCID: PMC5522400 DOI: 10.1038/s41598-017-05128-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/24/2017] [Indexed: 12/23/2022] Open
Abstract
Membrane potential controls the response of the M2 muscarinic receptor to its ligands. Membrane hyperpolarization increases response to the full agonist acetylcholine (ACh) while decreasing response to the partial agonist pilocarpine. We previously have demonstrated that the regulator of G-protein signaling (RGS) 4 protein discriminates between the voltage-dependent responses of ACh and pilocarpine; however, the underlying mechanism remains unclear. Here we show that RGS4 is involved in the voltage-dependent behavior of the M2 muscarinic receptor-mediated signaling in response to pilocarpine. Additionally we revealed structural determinants on the M2 muscarinic receptor underlying the voltage-dependent response. By electrophysiological recording in Xenopus oocytes expressing M2 muscarinic receptor and G-protein-gated inwardly rectifying K+ channels, we quantified voltage-dependent desensitization of pilocarpine-induced current in the presence or absence of RGS4. Hyperpolarization-induced desensitization of the current required for RGS4, also depended on pilocarpine concentration. Mutations of charged residues in the aspartic acid-arginine-tyrosine motif of the M2 muscarinic receptor, but not intracellular loop 3, significantly impaired the voltage-dependence of RGS4 function. Thus, our results demonstrated that voltage-dependence of RGS4 modulation is derived from the M2 muscarinic receptor. These results provide novel insights into how membrane potential impacts G-protein signaling by modulating GPCR communication with downstream effectors.
Collapse
Affiliation(s)
- I-Shan Chen
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuharu Furutani
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. .,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. .,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
30
|
Zhang H, Cohen AE. Optogenetic Approaches to Drug Discovery in Neuroscience and Beyond. Trends Biotechnol 2017; 35:625-639. [PMID: 28552428 PMCID: PMC5495001 DOI: 10.1016/j.tibtech.2017.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
Recent advances in optogenetics have opened new routes to drug discovery, particularly in neuroscience. Physiological cellular assays probe functional phenotypes that connect genomic data to patient health. Optogenetic tools, in particular tools for all-optical electrophysiology, now provide a means to probe cellular disease models with unprecedented throughput and information content. These techniques promise to identify functional phenotypes associated with disease states and to identify compounds that improve cellular function regardless of whether the compound acts directly on a target or through a bypass mechanism. This review discusses opportunities and unresolved challenges in applying optogenetic techniques throughout the discovery pipeline - from target identification and validation, to target-based and phenotypic screens, to clinical trials.
Collapse
Affiliation(s)
- Hongkang Zhang
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|