1
|
Han C, Wang J, Zhou X, Li W, Yang Y, Zhang C, Cao C. TFAP4 regulates the progression of liver fibrosis through the STING signaling pathway. Int Immunopharmacol 2025; 148:114094. [PMID: 39827671 DOI: 10.1016/j.intimp.2025.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
To investigate the mechanism by which the transcription factor TFAP4 promotes the progression of liver fibrosis through the STING signaling pathway. The expression of STING and TFAP4 in liver fibrosis mouse tissue was upregulated, AAV8-TFAP4 promoted the activation of the STING signaling pathway, and promoted the progression of liver fibrosis and tissue inflammation. In STING-KO mice, AAV8-TFAP4 could not further increase the level of liver fibrosis and tissue inflammation. Luciferase reporter gene experiments showed that there is an interactive relationship between TFAP4 and STING.TFAP4 can act as a transcription factor for STING, promote the activation of the STING signaling pathway, thereby exacerbating the progression of liver fibrosis and tissue inflammation in mice.
Collapse
Affiliation(s)
- Chenyang Han
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Jin Wang
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Xiaohong Zhou
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Wenyan Li
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Yi Yang
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Caiqun Zhang
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Chenxi Cao
- The Second Affiliated Hospital of Jiaxing University 314001 China.
| |
Collapse
|
2
|
Jonny J, Sitepu EC, Lister INE, Chiuman L, Putranto TA. The Potential of Anti-Inflammatory DC Immunotherapy in Improving Proteinuria in Type 2 Diabetes Mellitus. Vaccines (Basel) 2024; 12:972. [PMID: 39340004 PMCID: PMC11435532 DOI: 10.3390/vaccines12090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
A typical consequence of type 2 diabetes mellitus, diabetic kidney disease (DKD) is a significant risk factor for end-stage renal disease. The pathophysiology of diabetic kidney disease (DKD) is mainly associated with the immune system, which involves adhesion molecules and growth factors disruption, excessive expression of inflammatory mediators, decreased levels of anti-inflammatory mediators, and immune cell infiltration in the kidney. Dendritic cells are professional antigen-presenting cells acting as a bridge connecting innate and adaptive immune responses. The anti-inflammatory subset of DCs is also capable of modulating inflammation. Autologous anti-inflammatory dendritic cells can be made by in vitro differentiation of peripheral blood monocytes and utilized as a cell-based therapy. Treatment with anti-inflammatory cytokines, immunosuppressants, and substances derived from pathogens can induce tolerogenic or anti-inflammatory features in ex vivo-generated DCs. It has been established that targeting inflammation can alleviate the progression of DKD. Recent studies have focused on the potential of dendritic cell-based therapies to modulate immune responses favorably. By inducing a tolerogenic phenotype in dendritic cells, it is possible to decrease the inflammatory response and subsequent kidney damage. This article highlights the possibility of using anti-inflammatory DCs as a cell-based therapy for DKD through its role in controlling inflammation.
Collapse
Affiliation(s)
- Jonny Jonny
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
- Faculty of Military Medicine, Indonesia Defense University, Jakarta 16810, Indonesia
- Faculty of Medicine, University of Pembangunan Nasional “Veteran” Jakarta, Jakarta 12450, Indonesia
| | - Enda Cindylosa Sitepu
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| | - I Nyoman Ehrich Lister
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Linda Chiuman
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Terawan Agus Putranto
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| |
Collapse
|
3
|
Issa W, Njeim R, Carrazco A, Burke GW, Mitrofanova A. Role of the Innate Immune Response in Glomerular Disease Pathogenesis: Focus on Podocytes. Cells 2024; 13:1157. [PMID: 38995008 PMCID: PMC11240682 DOI: 10.3390/cells13131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Accumulating evidence indicates that inflammatory and immunologic processes play a significant role in the development and progression of glomerular diseases. Podocytes, the terminally differentiated epithelial cells, are crucial for maintaining the integrity of the glomerular filtration barrier. Once injured, podocytes cannot regenerate, leading to progressive proteinuric glomerular diseases. However, emerging evidence suggests that podocytes not only maintain the glomerular filtration barrier and are important targets of immune responses but also exhibit many features of immune-like cells, where they are involved in the modulation of the activity of innate and adaptive immunity. This dual role of podocytes may lead to the discovery and development of new therapeutic targets for treating glomerular diseases. This review aims to provide an overview of the innate immunity mechanisms involved in podocyte injury and the progression of proteinuric glomerular diseases.
Collapse
Affiliation(s)
- Wadih Issa
- Department of Internal Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Arianna Carrazco
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W. Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Lonardo A. Liver fibrosis: More than meets the eye. Ann Hepatol 2024; 29:101479. [PMID: 38346642 DOI: 10.1016/j.aohep.2024.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine - AOU Modena (-2023), Italy.
| |
Collapse
|
5
|
Han YZ, Du BX, Zhu XY, Wang YZY, Zheng HJ, Liu WJ. Lipid metabolism disorder in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1336402. [PMID: 38742197 PMCID: PMC11089115 DOI: 10.3389/fendo.2024.1336402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.
Collapse
Affiliation(s)
- Yi-Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang-Zhi-Yuan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
王 影, 周 明, 朱 倩, 张 翠, 王 林, 李 曙, 胡 泽. [HIF-1α activation induces cholesterol homeostasis dysfunction to accelerate progression of diabetic nephropathy in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1782-1788. [PMID: 37933655 PMCID: PMC10630203 DOI: 10.12122/j.issn.1673-4254.2023.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate the effect of hypoxia inducible factor-1α (HIF-1α) activation on cholesterol homeostasis dysfunction in diabetic nephropathy (DN). METHODS Rat models of type 1 diabetes established by intraperitoneal STZ injection were treated with intraperitoneal injection of Lificiguat (YC-1, a HIF-1α inhibitor). Human proximal tubular cell line HK-2 was incubated with cobalt chloride (CoCl2, 100 μmol/L) in the presence or absence of 30 mmol/L glucose for 24 h. Renal injury of the rats was assessed by measuring 24-h urinary total protein level and PAS staining of the renal tubules. Cholesterol deposition in rat kidneys and HK-2 cells were observed using a quantitative assay of total cholesterol and Filipin staining, and HIF-1α protein expression was detected using Western blotting, immunohistochemistry or immunofluorescence assay; the expressions of cholesterol metabolism-related proteins HMGCR, LDLr, CXCL16 and profibrogenic factors including TGF-β1 and CTGF were also analyzed. RESULTS The diabetic rats showed significantly increased 24-h urinary protein level (P<0.001), obvious renal tubular injury, and increased renal cholesterol content (P<0.05) with significantly increased HIF-1α expression in the renal tubular (P<0.01). YC-1 treatment significantly ameliorated tubulointerstitial injury in the diabetic rats as shown by decreased 24-h urinary total protein (P<0.05) and reduced damage area of the tubules, and effectively decreased renal cholesterol levels and renal expression of HIF-1α (P<0.05). In HK-2 cells, CoCl2 stimulation in the presence of high glucose effectively activated HIF-1α expression (P<0.0001), aggravated cholesterol accumulation (P<0.05), and increased the expressions of HMGCR, LDLr, CXCL16, TGF-β1, and CTGF (P<0.05 or 0.01). Consistent with the in vitro study, YC-1 treatment also significantly decreased the expressions of cholesterol metabolism-related proteins and the profibrogenic factors in the renal tubules of the diabetic rats. CONCLUSION HIF-1α activation induces cholesterol homeostasis dysregulation possibly by upregulating the de novo synthesis and uptake of cholesterol, thereby aggravating tubulointerstitial injury in DN.
Collapse
Affiliation(s)
- 影 王
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
- 皖南医学院临床医学院,安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 明俊 周
- 皖南医学院临床医学院,安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 倩文 朱
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 翠 张
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 林 王
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 曙 李
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 泽波 胡
- 皖南医学院基础医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
7
|
Su K, Zhao SL, Yang WX, Lo CS, Chenier I, Liao MC, Pang YC, Peng JZ, Miyata KN, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. NRF2 Deficiency Attenuates Diabetic Kidney Disease in Db/Db Mice via Down-Regulation of Angiotensinogen, SGLT2, CD36, and FABP4 Expression and Lipid Accumulation in Renal Proximal Tubular Cells. Antioxidants (Basel) 2023; 12:1715. [PMID: 37760019 PMCID: PMC10525648 DOI: 10.3390/antiox12091715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The role(s) of nuclear factor erythroid 2-related factor 2 (NRF2) in diabetic kidney disease (DKD) is/are controversial. We hypothesized that Nrf2 deficiency in type 2 diabetes (T2D) db/db mice (db/dbNrf2 knockout (KO)) attenuates DKD progression through the down-regulation of angiotensinogen (AGT), sodium-glucose cotransporter-2 (SGLT2), scavenger receptor CD36, and fatty -acid-binding protein 4 (FABP4), and lipid accumulation in renal proximal tubular cells (RPTCs). Db/dbNrf2 KO mice were studied at 16 weeks of age. Human RPTCs (HK2) with NRF2 KO via CRISPR-Cas9 genome editing and kidneys from patients with or without T2D were examined. Compared with db/db mice, db/dbNrf2 KO mice had lower systolic blood pressure, fasting blood glucose, kidney hypertrophy, glomerular filtration rate, urinary albumin/creatinine ratio, tubular lipid droplet accumulation, and decreased expression of AGT, SGLT2, CD36, and FABP4 in RPTCs. Male and female mice had similar results. NRF2 KO attenuated the stimulatory effect of the Nrf2 activator, oltipraz, on AGT, SGLT2, and CD36 expression and high-glucose/free fatty acid (FFA)-stimulated lipid accumulation in HK2. Kidneys from T2D patients exhibited markedly higher levels of CD36 and FABP4 in RPTCs than kidneys from non-diabetic patients. These data suggest that NRF2 exacerbates DKD through the stimulation of AGT, SGLT2, CD36, and FABP4 expression and lipid accumulation in RPTCs of T2D.
Collapse
Affiliation(s)
- Ke Su
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Shui-Ling Zhao
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Wen-Xia Yang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Chao-Sheng Lo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Isabelle Chenier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Min-Chun Liao
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Yu-Chao Pang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jun-Zheng Peng
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Kana N. Miyata
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean-Francois Cailhier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean Ethier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean-Baptiste Lattouf
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Janos G. Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Département de Pathologie et Biologie Cellulaire, Université de Montréal, 5415 Boul. de l’Assomption, Montréal, QC H1T 2M4, Canada;
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, WAC 709, Boston, MA 02114, USA;
| | - Shao-Ling Zhang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - John S. D. Chan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| |
Collapse
|
8
|
Zhao T, Xiang Q, Lie B, Chen D, Li M, Zhang X, Yang J, He B, Zhang W, Dong R, Liu Y, Gu J, Zhu Q, Yao Y, Duan T, Li Z, Xu Y. Yishen Huashi granule modulated lipid metabolism in diabetic nephropathy via PI3K/AKT/mTOR signaling pathways. Heliyon 2023; 9:e14171. [PMID: 36938470 PMCID: PMC10018483 DOI: 10.1016/j.heliyon.2023.e14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Aim Diabetic nephropathy (DN) is the primary cause of end-stage renal disease worldwide. Although etiology for DN is complex and still needs to be fully understood, lipid metabolism disorder is found to play a role in it. Previously, we found Yishen Huashi (YSHS) granule could inhibit diabetic damage and reduce level of microalbuminuria (mALB) in DN animals. To explore its role and mechanism in lipid metabolism under DN settings, this study was designed. Materials and methods DN rats were induced by streptozotocin (STZ), HepG2 and CaCO2 cells were applied for in vitro study. Hematoxylin-Eosin (HE), periodic acid-Schiff (PAS) staining, and Transmission Electron Microscopy (TEM) were applied for histological observation; 16s Sequencing was used for intestinal microbiota composition analysis; western blotting (WB) and immunofluorescence were carried out for molecular biological study, and enzyme-linked immunosorbent assay (ELISA) was used for lipid determination. Results YSHS administration significantly reduced levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL-C), while increased level of high-density lipoprotein (HDL-C); meanwhile, histological changes and steatosis of the liver was ameliorated, integrity of the intestinal barrier was enhanced, and dysbacteriosis within intestinal lumen was ameliorated. Mechanism study found that YSHS modulated mitophagy within hepatocytes and inhibited mTOR/AMPK/PI3K/AKT signaling pathway. Conclusion In conclusion, we found in the present study that YSHS administration could ameliorate lipid metabolism disorder in DN animals, and its modulation on intestinal-liver axis played a significant role in it.
Collapse
Affiliation(s)
- Tingting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Qian Xiang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Beifeng Lie
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Deqi Chen
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Minyi Li
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Xi Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Junzheng Yang
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Bao He
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Wei Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Ruixue Dong
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yadi Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Junling Gu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Quan Zhu
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
| | - Yijing Yao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Tingting Duan
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
- Corresponding author.
| | - Zhenghai Li
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, PR China
- Corresponding author.
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
- School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, PR China
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, PR China
- Corresponding author. Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China.
| |
Collapse
|
9
|
Li R, Li L, Zhang J, Wang D, Cui X, Bai L, Zhao L, Yang X. Alleviation of renal injury in rabbits by allisartan. J Investig Med 2023; 71:92-100. [PMID: 36733996 DOI: 10.1177/10815589221144850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to determine the relationship between renal injury and inflammatory response induced by high-fat diet in rabbits and the interventional effect of allisartan. Fifteen 6-week-old healthy male rabbits were randomly divided into three groups: normal control (NC) group, high-lipid diet (HLD) group, high-lipid diet and allisartan (HLD+ALST) group. After allisartan treatment for 12 weeks, changes in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum creatinine (Scr) and blood urea nitrogen (BUN) were measured enzymatically in the three groups. The left side of the kidney tissue was kept for paraffin section, and HE staining, periodic acid-Schiff (PAS) staining and Masson staining were used to observe the renal pathologic changes. TC, TG, LDL-C, Scr and BUN levels were all higher and HDL-C levels were lower in the HLD group compared with the NC group. Compared with the HLD group, Scr and BUN levels were significantly decreased in the HLD+ALST group. The results of HE staining showed that allisartan improved the changes of renal tissue morphology in rabbits on high-fat diet, reduced glomerular mesangial cell proliferation and improved glomerulosclerosis; PAS staining showed that glomerular glycogen deposition was reduced and glomerular red staining was significantly lighter; Masson staining showed that renal tubular blue-stained collagen fibers were reduced. In conclusion, hyperlipidemia can lead to aberrant expression of multiple cellular proteins and kidney tissue morphological damage in rabbits. On the other hand, allisartan attenuated renal injury and the mechanism may be related to the downregulation of the inflammatory response.
Collapse
Affiliation(s)
- Ruibin Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jidong Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dong Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoran Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Long Bai
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohong Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Wu J, Chen Y, Yang H, Gu L, Ni Z, Mou S, Shen J, Che X. Sodium glucose co-transporter 2 (SGLT2) inhibition via dapagliflozin improves diabetic kidney disease (DKD) over time associatied with increasing effect on the gut microbiota in db/db mice. Front Endocrinol (Lausanne) 2023; 14:1026040. [PMID: 36777358 PMCID: PMC9908601 DOI: 10.3389/fendo.2023.1026040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The intestinal microbiota disorder gradually aggravates during the progression of diabetes. Dapagliflozin (DAPA) can improve diabetes and diabetic kidney disease(DKD). However, whether the gut microbiota plays a role in the protection of DAPA for DKD remains unclear. METHODS To investigate the effects of DAPA on DKD and gut microbiota composition during disease progression, in our study, we performed 16S rRNA gene sequencing on fecal samples from db/m mice (control group), db/db mice (DKD model group), and those treated with DAPA (treat group) at three timepoints of 14weeks\18weeks\22weeks. RESULTS We found that DAPA remarkably prevented weight loss and lowered fasting blood glucose in db/db mice during disease progression, eventually delaying the progression of DKD. Intriguingly, the study strongly suggested that there is gradually aggravated dysbacteriosis and increased bile acid during the development of DKD. More importantly, comparisons of relative abundance at the phylum level and partial least squares-discriminant analysis (PLS-DA) plots roughly reflected that the effect of DAPA on modulating the flora of db/db mice increased with time. Specifically, the relative abundance of the dominant Firmicutes and Bacteroidetes was not meaningfully changed among groups at 14 weeks as previous studies described. Interestingly, they were gradually altered in the treat group compared to the model group with a more protracted intervention of 18 weeks and 22 weeks. Furthermore, the decrease of Lactobacillus and the increase of norank_f:Muribaculaceae could account for the differences at the phylum level observed between the treat group and the model group at 18 weeks and 22 weeks. CONCLUSION We firstly found that the protective effect of DAPA on DKD may be related to the dynamic improvement of the gut microbiota over time, possibly associated with the impact of DAPA on the bile acid pool and its antioxidation effect.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huinan Yang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shan Mou, ; Jianxiao Shen, ; Xiajing Che,
| | - Jianxiao Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shan Mou, ; Jianxiao Shen, ; Xiajing Che,
| | - Xiajing Che
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shan Mou, ; Jianxiao Shen, ; Xiajing Che,
| |
Collapse
|
11
|
Li J, Yang K, Guo Y, Cao L, Cheng F, Zhang N. Material basis and action mechanism of Euryale Ferox Salisb in preventing and treating diabetic kidney disease. J Food Biochem 2022; 46:e14409. [PMID: 36165567 DOI: 10.1111/jfbc.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
The aim of this study was to determine the chemical structure and mechanism of action of Euryale ferox Salisb (ES) in the prevention and treatment of diabetic kidney disease (DKD). The TCMSP, SymMap V2, CTD, DisGeNET, and GeneCards databases were searched for ES components, targets, and DKD targets using the network pharmacology method to identify common drug-disease targets. PPI analysis was used to identify hub genes, which were then followed by DKD clinical relevance, GO, KEGG analysis, and transcription factor prediction. Finally, molecular docking was performed. We discovered 24 components of ES and 72 objectives of ES, 9 of which were clinically relevant and primarily regulated by transcription factors such as HNF4A and PPARG. They are involved primarily in signal transduction, inflammatory responses, TNF regulation, apoptosis, MAPK, and other signaling pathways. The main components are oleic acid targeting the protein encoded by PPARA, LPL, FABP1, and vitamin E binding the protein encoded by MAPK1, TGFB1. In general, this approach provides an effective strategy in which ES acts primarily against DKD through oleic acid and vitamin E, targeting the protein encoded by PPARA, LPL, FABP1, MAPK1 to regulate TNF, apoptosis, MAPK, and other signaling pathways. PRACTICAL APPLICATIONS: Euryale ferox Salisb (ES) is well known for its use in medicine and food. Furthermore, ES contains many nutrients, whose pharmacological properties, including antidepressant, antioxidant, and anti-diabetic action, have been extensively demonstrated by numerous studies. In this article, through network pharmacology combined with clinical correlation analysis and molecular docking, the target and mechanism of ES in the treatment of diabetic kidney disease (DKD) were discussed, which clarified its mechanism at the molecular level. Provides a reference for the further development and utilization of ES.
Collapse
Affiliation(s)
- Jun Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kaiping Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yunhui Guo
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lukang Cao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Fangling Cheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Nannan Zhang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
12
|
Mitrofanova A, Fontanella AM, Burke GW, Merscher S, Fornoni A. Mitochondrial Contribution to Inflammation in Diabetic Kidney Disease. Cells 2022; 11:3635. [PMID: 36429063 PMCID: PMC9688941 DOI: 10.3390/cells11223635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is the leading cause of chronic kidney disease worldwide. Despite the burden, the factors contributing to the development and progression of diabetic kidney disease (DKD) remain to be fully elucidated. In recent years, increasing evidence suggests that mitochondrial dysfunction is a pathological mediator in DKD as the kidney is a highly metabolic organ rich in mitochondria. Furthermore, low grade chronic inflammation also contributes to the progression of DKD, and several inflammatory biomarkers have been reported as prognostic markers to risk-stratify patients for disease progression and all-cause mortality. Interestingly, the term "sterile inflammation" appears to be used in the context of DKD describing the development of intracellular inflammation in the absence of bacterial or viral pathogens. Therefore, a link between mitochondrial dysfunction and inflammation in DKD exists and is a hot topic in both basic research and clinical investigations. This review summarizes how mitochondria contribute to sterile inflammation in renal cells in DKD.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio M. Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W. Burke
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Li R, Li L, Zhang J, Wang D, Cui X, Bai L, Zhao L, Yang X. Alleviation of renal injury in rabbits by allisartan. J Investig Med 2022:jim-2022-002385. [DOI: 10.1136/jim-2022-002385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
The objective of this study was to determine the relationship between renal injury and inflammatory response induced by high-fat diet in rabbits and the interventional effect of allisartan. Fifteen 6-week-old healthy male rabbits were randomly divided into three groups: normal control (NC) group, high-lipid diet (HLD) group, high-lipid diet and allisartan (HLD+ALST) group. After allisartan treatment for 12 weeks, changes in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum creatinine (Scr) and blood urea nitrogen (BUN) were measured enzymatically in the three groups. The left side of the kidney tissue was kept for paraffin section, and HE staining, periodic acid-Schiff (PAS) staining and Masson staining were used to observe the renal pathologic changes. TC, TG, LDL-C, Scr and BUN levels were all higher and HDL-C levels were lower in the HLD group compared with the NC group. Compared with the HLD group, Scr and BUN levels were significantly decreased in the HLD+ALST group. The results of HE staining showed that allisartan improved the changes of renal tissue morphology in rabbits on high-fat diet, reduced glomerular mesangial cell proliferation and improved glomerulosclerosis; PAS staining showed that glomerular glycogen deposition was reduced and glomerular red staining was significantly lighter; Masson staining showed that renal tubular blue-stained collagen fibers were reduced. In conclusion, hyperlipidemia can lead to aberrant expression of multiple cellular proteins and kidney tissue morphological damage in rabbits. On the other hand, allisartan attenuated renal injury and the mechanism may be related to the downregulation of the inflammatory response.
Collapse
|
14
|
Zhao J, He K, Du H, Wei G, Wen Y, Wang J, Zhou X, Wang J. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice. PeerJ 2022; 10:e13932. [PMID: 36157062 PMCID: PMC9504448 DOI: 10.7717/peerj.13932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/31/2022] [Indexed: 01/19/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is the leading cause of death in people with type 2 diabetes mellitus (T2DM). The main objective of this study is to find the potential biomarkers for DKD. Materials and Methods Two datasets (GSE86300 and GSE184836) retrieved from Gene Expression Omnibus (GEO) database were used, combined with our RNA sequencing (RNA-seq) results of DKD mice (C57 BLKS-32w db/db) and non-diabetic (db/m) mice for further analysis. After processing the expression matrix of the three sets of data using R software "Limma", differential expression analysis was performed. The significantly differentially expressed genes (DEGs) (-logFC- > 1, p-value < 0.05) were visualized by heatmaps and volcano plots respectively. Next, the co-expression genes expressed in the three groups of DEGs were obtained by constructing a Venn diagram. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were further analyzed the related functions and enrichment pathways of these co-expression genes. Then, qRT-PCR was used to verify the expression levels of co-expression genes in the kidney of DKD and control mice. Finally, protein-protein interaction network (PPI), GO, KEGG analysis and Pearson correlation test were performed on the experimentally validated genes, in order to clarify the possible mechanism of them in DKD. Results Our RNA-seq results identified a total of 125 DEGs, including 59 up-regulated and 66 down-regulated DEGs. At the same time, 183 up-regulated and 153 down-regulated DEGs were obtained in GEO database GSE86300, and 76 up-regulated and 117 down-regulated DEGs were obtained in GSE184836. Venn diagram showed that 13 co-expression DEGs among the three groups of DEGs. GO analysis showed that biological processes (BP) were mainly enriched inresponse to stilbenoid, response to fatty acid, response to nutrient, positive regulation of macrophage derived foam cell differentiation, triglyceride metabolic process. KEGG pathway analysis showed that the three major enriched pathways were cholesterol metabolism, drug metabolism-cytochrome P450, PPAR signaling pathway. After qRT-PCR validation, we obtained 11 genes that were significant differentially expressed in the kidney tissues of DKD mice compared with control mice. (The mRNA expression levels of Aacs, Cpe, Cd36, Slc22a7, Slc1a4, Lpl, Cyp7b1, Akr1c14 and Apoh were declined, whereas Abcc4 and Gsta2 were elevated). Conclusion Our study, based on RNA-seq results, GEO databases and qRT-PCR, identified 11 significant dysregulated DEGs, which play an important role in lipid metabolism and the PPAR signaling pathway, which provide novel targets for diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Jing Zhao
- Lanzhou University, Lanzhou, China,Lanzhou University Second Hospital, Lanzhou, China
| | - Kaiying He
- Lanzhou University, Lanzhou, China,Lanzhou University Second Hospital, Lanzhou, China
| | - Hongxuan Du
- Lanzhou University, Lanzhou, China,Lanzhou University Second Hospital, Lanzhou, China
| | - Guohua Wei
- Lanzhou University Second Hospital, Lanzhou, China
| | - Yuejia Wen
- Lanzhou University, Lanzhou, China,Lanzhou University Second Hospital, Lanzhou, China
| | | | | | - Jianqin Wang
- Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
15
|
Huang S, Wang J, Zhang L, Tian S, Wang Y, Shao X, Zhou S, Yu P. Ras guanine nucleotide-releasing protein-4 promotes renal inflammatory injury in type 2 diabetes mellitus. Metabolism 2022; 131:155177. [PMID: 35218794 DOI: 10.1016/j.metabol.2022.155177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Ras guanine nucleotide-releasing protein-4 (RasGRP4) is an activator of Ras protein, which plays significant roles in both the inflammatory response and immune activation. This study determined the role of RasGRP4 in diabetic kidney disease (DKD) progression. METHODS CRISPR/Cas9 technology was used to establish RasGRP4 knockout (KO) mice. Diabetes was induced by a high-fat diet combined with five consecutive daily intraperitoneal injections of streptozotocin (60 mg/kg) in C57BL/6J wild-type (WT) mice and RasGRP4 KO mice. Hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining were used to observe the histology of pathological injury. Immunohistochemical staining was used to analyze inflammatory cell infiltration. Quantitative PCR and Western blotting were used to detect the expression of inflammatory mediators and the activation of signaling pathways in renal tissues. In vitro cell co-culture experiments were performed to explore the interactions between peripheral blood mononuclear cells (PBMCs) and glomerular endothelial cells (GEnCs). RESULTS RasGRP4 KO mice developed less severe diabetic kidney injury compared to WT mice, exhibiting lower proteinuria, reduced CD3+ T lymphocyte and F4/80+ macrophage infiltration, less inflammatory mediator expression including interleukin 6, tumor necrosis alpha, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, and lower expression levels of critical signal transduction molecules in the NLR family pyrin domain-containing 3 inflammasome and mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathways in the diabetic kidney. In vitro experiments showed that the adhesion function of PBMCs of RasGRP4 KO mice was reduced compared to that of WT mice. Moreover, the expression of adhesion molecules and critical signal transduction molecules in the NLRP3 inflammasome and MAPK/NF-κB signaling pathways in GEnCs was stimulated by the supernatant of PBMCs, which were derived from RasGRP4 KO mice treated with high glucose and were also significantly reduced compared to those derived from WT mice. CONCLUSION RasGRP4 promotes the inflammatory injury mediated by PBMCs in diabetes, probably by regulating the interaction between PBMCs and GEnCs and further activating the NLRP3 inflammasome and MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Shuai Huang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Junmei Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Li Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Shasha Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yao Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
16
|
Guo F, Abulati A, Wang JW, Jiang J, Zhang WX, Chen PD, Yao L, Mao XM. Flavonoids of Coreopsis tinctoria Nutt alleviate the oxidative stress and inflammation of glomerular mesangial cells in diabetic nephropathy via RhoA/ROCK signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Mitrofanova A, Burke G, Merscher S, Fornoni A. New insights into renal lipid dysmetabolism in diabetic kidney disease. World J Diabetes 2021; 12:524-540. [PMID: 33995842 PMCID: PMC8107981 DOI: 10.4239/wjd.v12.i5.524] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Lipid dysmetabolism is one of the main features of diabetes mellitus and manifests by dyslipidemia as well as the ectopic accumulation of lipids in various tissues and organs, including the kidney. Research suggests that impaired cholesterol metabolism, increased lipid uptake or synthesis, increased fatty acid oxidation, lipid droplet accumulation and an imbalance in biologically active sphingolipids (such as ceramide, ceramide-1-phosphate and sphingosine-1-phosphate) contribute to the development of diabetic kidney disease (DKD). Currently, the literature suggests that both quality and quantity of lipids are associated with DKD and contribute to increased reactive oxygen species production, oxidative stress, inflammation, or cell death. Therefore, control of renal lipid dysmetabolism is a very important therapeutic goal, which needs to be archived. This article will review some of the recent advances leading to a better understanding of the mechanisms of dyslipidemia and the role of particular lipids and sphingolipids in DKD.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - George Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
18
|
Ponticelli C, Campise MR. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int 2021; 100:536-545. [PMID: 33932457 DOI: 10.1016/j.kint.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Several factors, such as donor brain death, ischemia-reperfusion injury, rejection, infection, and chronic allograft dysfunction, may induce an inflammatory state in kidney transplantation. Furthermore, inflammatory cells, cytokines, growth factors, complement and coagulation cascade create an unbalanced interaction with innate and adaptive immunity, which are both heavily involved in atherogenesis. The crosstalk between inflammation and thrombosis may lead to a prothrombotic state and impaired fibrinolysis in kidney transplant recipients increasing the risk of cardiovascular disease. Inflammation is also associated with elevated levels of fibroblast growth factor 23 and low levels of Klotho, which contribute to major adverse cardiovascular events. Hyperuricemia, glucose intolerance, arterial hypertension, dyslipidemia, and physical inactivity may create a condition called metaflammation that concurs in atherogenesis. Another major consequence of the inflammatory state is the development of chronic hypoxia that through the mediation of interleukins 1 and 6, angiotensin II, and transforming growth factor beta can result in excessive accumulation of extracellular matrix, which can disrupt and replace functional parenchyma, leading to interstitial fibrosis and chronic allograft dysfunction. Lifestyle and regular physical activity may reduce inflammation. Several drugs have been proposed to control the graft inflammatory state, including low-dose aspirin, statins, renin-angiotensin inhibitors, xanthine-oxidase inhibitors, vitamin D supplements, and interleukin-6 blockade. However, no prospective controlled trial with these measures has been conducted in kidney transplantation.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Ospedale Maggiore Policlinico, Milano, Italy (retired).
| | - Maria Rosaria Campise
- Division of Nephrology and Dialysis, Ca' Granda Foundation, Scientific Institute Ospedale Maggiore Policlinico di Milano, Milano, Italy
| |
Collapse
|
19
|
Ravanidis S, Grundler F, de Toledo FW, Dimitriou E, Tekos F, Skaperda Z, Kouretas D, Doxakis E. Fasting-mediated metabolic and toxicity reprogramming impacts circulating microRNA levels in humans. Food Chem Toxicol 2021; 152:112187. [PMID: 33839215 DOI: 10.1016/j.fct.2021.112187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
It is well-established that long-term fasting improves metabolic health, enhances the total antioxidant capacity and increases well-being. MicroRNAs oversee energy homeostasis and metabolic processes and are widely used as circulating biomarkers to identify the metabolic state. This study investigated whether the expression levels of twenty-four metabolism-associated microRNAs are significantly altered following long-term fasting and if these changes correlate with biochemical and redox parameters in the plasma. Thirty-two participants with an average BMI of 28 kg/m2 underwent a 10-day fasting period with a daily intake of 250 kcal under medical supervision. RT-qPCR on plasma small-RNA extracts revealed that the levels of seven microRNAs (miR-19b-3p, miR-22-3p, miR-122-5p, miR-126-3p, miR-142-3p, miR-143-3p, and miR-145-5p) were significantly altered following fasting. Importantly, the expression levels of these microRNAs have been consistently shown to change in the exact opposite direction in pathological states including obesity, diabetes, nonalcoholic steatohepatitis, and cardiovascular disease. Linear regression analyses revealed that among the microRNAs analyzed, anti-inflammatory miR-146-5p expression displayed most correlations with the levels of different biochemical and redox parameters. In silico analysis of fasting-associated microRNAs demonstrated that they target pathways that are highly enriched for intracellular signaling such mTOR, FoxO and autophagy, as well as extracellular matrix (ECM) interactions and cell-senescence. Overall, these data are consistent with a model in which long-term fasting engages homeostatic mechanisms associated with specific microRNAs to improve metabolic signaling regardless of health status.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Franziska Grundler
- Buchinger Wilhelmi Clinic, 88662, Überlingen, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
| | | | - Evangelos Dimitriou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.
| |
Collapse
|