1
|
Cusinato R, Gross S, Bainier M, Janz P, Schoenenberger P, Redondo RL. Workflow for the unsupervised clustering of sleep stages identifies light and deep sleep in electrophysiological recordings in mice. J Neurosci Methods 2024; 408:110155. [PMID: 38710233 DOI: 10.1016/j.jneumeth.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Sleep physiology plays a critical role in brain development and aging. Accurate sleep staging, which categorizes different sleep states, is fundamental for sleep physiology studies. Traditional methods for sleep staging rely on manual, rule-based scoring techniques, which limit their accuracy and adaptability. NEW METHOD We describe, test and challenge a workflow for unsupervised clustering of sleep states (WUCSS) in rodents, which uses accelerometer and electrophysiological data to classify different sleep states. WUCSS utilizes unsupervised clustering to identify sleep states using six features, extracted from 4-second epochs. RESULTS We gathered high-quality EEG recordings combined with accelerometer data in diverse transgenic mouse lines (male ApoE3 versus ApoE4 knockin; male CNTNAP2 KO versus wildtype littermates). WUCSS showed high recall, precision, and F1-score against manual scoring on awake, NREM, and REM sleep states. Within NREM, WUCSS consistently identified two additional clusters that qualify as deep and light sleep states. COMPARISON WITH EXISTING METHODS The ability of WUCSS to discriminate between deep and light sleep enhanced the precision and comprehensiveness of the current mouse sleep physiology studies. This differentiation led to the discovery of an additional sleep phenotype, notably in CNTNAP2 KO mice, showcasing the method's superiority over traditional scoring methods. CONCLUSIONS WUCSS, with its unsupervised approach and classification of deep and light sleep states, provides an unbiased opportunity for researchers to enhance their understanding of sleep physiology. Its high accuracy, adaptability, and ability to save time and resources make it a valuable tool for improving sleep staging in both clinical and preclinical research.
Collapse
Affiliation(s)
- Riccardo Cusinato
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Simon Gross
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
2
|
Semenova EI, Rudenok MM, Rybolovlev IN, Shulskaya MV, Lukashevich MV, Partevian SA, Budko AI, Nesterov MS, Abaimov DA, Slominsky PA, Shadrina MI, Alieva AK. Effects of Age and MPTP-Induced Parkinson's Disease on the Expression of Genes Associated with the Regulation of the Sleep-Wake Cycle in Mice. Int J Mol Sci 2024; 25:7721. [PMID: 39062963 PMCID: PMC11276692 DOI: 10.3390/ijms25147721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a long prodromal period, during which patients often have sleep disturbances. The histaminergic system and circadian rhythms play an important role in the regulation of the sleep-wake cycle. Changes in the functioning of these systems may be involved in the pathogenesis of early stages of PD and may be age-dependent. Here, we have analyzed changes in the expression of genes associated with the regulation of the sleep-wake cycle (Hnmt, Hrh1, Hrh3, Per1, Per2, and Chrm3) in the substantia nigra (SN) and striatum of normal male mice of different ages, as well as in young and adult male mice with an MPTP-induced model of the early symptomatic stage (ESS) of PD. Age-dependent expression analysis in normal mouse brain tissue revealed changes in Hrh3, Per1, Per2, and Chrm3 genes in adult mice relative to young mice. When gene expression was examined in mice with the MPTP-induced model of the ESS of PD, changes in the expression of all studied genes were found only in the SN of adult mice with the ESS model of PD. These data suggest that age is a significant factor influencing changes in the expression of genes associated with sleep-wake cycle regulation in the development of PD.
Collapse
Affiliation(s)
- Ekaterina I. Semenova
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Margarita M. Rudenok
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Ivan N. Rybolovlev
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Marina V. Shulskaya
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria V. Lukashevich
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Suzanna A. Partevian
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Alexander I. Budko
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maxim S. Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, 119435 Krasnogorsk, Russia;
| | - Denis A. Abaimov
- Research Center of Neurology, Volokolamskoye Shosse 80, 125367 Moscow, Russia;
| | - Petr A. Slominsky
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria I. Shadrina
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Anelya Kh. Alieva
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| |
Collapse
|
3
|
ROBBERECHTS RUBEN, ALBOUY GENEVIÈVE, HESPEL PETER, POFFÉ CHIEL. Exogenous Ketosis Improves Sleep Efficiency and Counteracts the Decline in REM Sleep after Strenuous Exercise. Med Sci Sports Exerc 2023; 55:2064-2074. [PMID: 37259248 PMCID: PMC10581428 DOI: 10.1249/mss.0000000000003231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Available evidence indicates that ketone bodies may improve sleep quality. Therefore, we determined whether ketone ester (KE) intake could counteract sleep disruptions induced by strenuous exercise. METHODS Ten well-trained cyclists with good sleep quality participated in a randomized crossover design consisting of two experimental sessions each involving a morning endurance training and an evening high-intensity interval training ending 1 h before sleep, after which polysomnography was performed overnight. Postexercise and 30 min before sleeping time, subjects received either 25 g of KE (EX KE ) or a placebo drink (EX CON ). A third session without exercise but with placebo supplements (R CON ) was added to evaluate the effect of exercise per se on sleep. RESULTS Blood d -β-hydroxybutyrate concentrations transiently increased to ~3 mM postexercise and during the first part of the night in EX KE but not in EX CON or R CON . Exercise significantly reduced rapid eye movement sleep by 26% ( P = 0.001 vs R CON ) and increased wakefulness after sleep onset by 95% ( P = 0.004 vs R CON ). Interestingly, KE improved sleep efficiency by 3% ( P = 0.040 vs EX CON ) and counteracted the exercise-induced decrease in rapid eye movement sleep ( P = 0.011 vs EX CON ) and the increase in wakefulness after sleep onset ( P = 0.009 vs EX CON ). This was accompanied by a KE-induced increase in dopamine excretion ( P = 0.033 vs EX CON ), which plays a pivotal role in sleep regulation. In addition, exercise increased sleep spindle density by 36% ( P = 0.005 vs R CON ), suggesting an effect on neural plasticity processes during sleep. CONCLUSIONS These data indicate that KE ingestion improves sleep efficiency and quality after high-intensity exercise. We provide preliminary evidence that this might result from KE-induced increases in dopamine signaling.
Collapse
Affiliation(s)
- RUBEN ROBBERECHTS
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
| | - GENEVIÈVE ALBOUY
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
- Leuven Brain Institute (LBI), KU Leuven, Leuven, BELGIUM
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT
| | - PETER HESPEL
- Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
| | - CHIEL POFFÉ
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
| |
Collapse
|
4
|
Butelman ER, Goldstein RZ, Nwaneshiudu CA, Girdhar K, Roussos P, Russo SJ, Alia-Klein N. Neuroimmune Mechanisms of Opioid Use Disorder and Recovery: Translatability to Human Studies, and Future Research Directions. Neuroscience 2023; 528:102-116. [PMID: 37562536 PMCID: PMC10720374 DOI: 10.1016/j.neuroscience.2023.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Opioid use disorder (OUD) is a major current cause of morbidity and mortality. Long-term exposure to short-acting opioids (MOP-r agonists such as heroin or fentanyl) results in complex pathophysiological changes to neuroimmune and neuroinflammatory functions, affected in part by peripheral mechanisms (e.g., cytokines in blood), and by neuroendocrine systems such as the hypothalamic-pituitary-adrenal (HPA) stress axis. There are important findings from preclinical models, but their role in the trajectory and outcomes of OUD in humans is not well understood. The goal of this narrative review is to examine available data on immune and inflammatory functions in persons with OUD, and to identify major areas for future research. Peripheral blood biomarker studies revealed a pro-inflammatory state in persons with OUD in withdrawal or early abstinence, consistent with available postmortem brain studies (which show glial activation) and diffusion tensor imaging studies (indicating white matter disruptions), with gradual abstinence-associated recovery. The mechanistic roles of these neuroimmune and neuroinflammatory changes in the trajectory of OUD (including recovery and medication management) cannot be examined practically with postmortem data. Collection of longitudinal data in larger-scale human cohorts would allow examination of these mechanisms associated with OUD stage and progression. Given the heterogeneity in presentation of OUD, a precision medicine approach integrating multi-omic peripheral biomarkers and comprehensive phenotyping, including neuroimaging, can be beneficial in risk stratification, and individually optimized selection of interventions for individuals who will benefit, and assessments under refractory therapy.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Depts. of Psychiatry and Neuroscience, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Rita Z Goldstein
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Depts. of Psychiatry and Neuroscience, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chinwe A Nwaneshiudu
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA, Medical Center, Bronx, NY, USA
| | - Scott J Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelly Alia-Klein
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Icahn School of Medicine at Mount Sinai, Depts. of Psychiatry and Neuroscience, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Muacevic A, Adler JR, Dilibe A, Nriagu BN, Idowu AB, Eletta RY, Ohikhuai EE. Sleep Deprivation Is Associated With Increased Risk for Hypertensive Heart Disease: A Nationwide Population-Based Cohort Study. Cureus 2022; 14:e33005. [PMID: 36712752 PMCID: PMC9879308 DOI: 10.7759/cureus.33005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Literature documenting the in-hospital cardiovascular outcomes of sleep deprivation (SD) patients is scarce. We aimed to compare inpatient cardiovascular outcomes in patients with sleep deprivation and those without sleep deprivation. METHOD We queried the National Inpatient Sample (NIS) database from 2016 to 2019 to conduct a retrospective observational study. Using the International Classification of Diseases, Tenth Revision (ICD-10) codes, we identified patients with sleep deprivation (SD) diagnosis and compared them to their counterparts without sleep deprivation (NSD). The cardiovascular outcomes of interest were hypertensive heart disease (HHD), atrial fibrillation (AF), and ST-segment and non-ST-segment elevation myocardial infarction (STEMI and NSTEMI, respectively). We used multivariable regression analysis to unearth the relationship between sleep deprivation and cardiovascular disease. RESULTS There were 28,484,087 patients admitted during the study period, among which 2.1% (6,08,059) with a mean age of 59 (sd=19) years had a sleep deprivation diagnosis unrelated to medical or psychiatric illness. Of these, 75.7% were Caucasians, 11.5% were Blacks, and 8% were Hispanics. Individuals with sleep deprivation had a higher odds ratio (OR) of HHD, i.e., OR=1.3 (1.29-1.31), p<0.0001. The odds of heart failure with reduced ejection fraction (HFrEF) was 0.9 (0.9-1.92), p=0.45; heart failure with preserved ejection fraction (HFpEF) was 0.98 (0.97-1.01), p=0.31; and the odds of the SD population for AF was 0.9 (0.89-1.03), p=0.11. CONCLUSION Sleep deprivation seems to be more prevalent in the Caucasian population. Individuals with sleep deprivation have a higher risk of hypertensive heart disease but similar outcomes to the general population in terms of AF, HFrEF, and HFpEF.
Collapse
|
6
|
Liu H, Badawy M, Sun S, Cruz G, Ge S, Xiong Q. Microglial repopulation alleviates age-related decline of stable wakefulness in mice. Front Aging Neurosci 2022; 14:988166. [PMID: 36262885 PMCID: PMC9574185 DOI: 10.3389/fnagi.2022.988166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Changes in wake/sleep architecture have been observed in both aged human and animal models, presumably due to various functional decay throughout the aging body particularly in the brain. Microglia have emerged as a modulator for wake/sleep architecture in the adult brain, and displayed distinct morphology and activity in the aging brain. However, the link between microglia and age-related wake/sleep changes remains elusive. In this study, we systematically examined the brain vigilance and microglia morphology in aging mice (3, 6, 12, and 18 months old), and determined how microglia affect the aging-related wake/sleep alterations in mice. We found that from young adult to aged mice there was a clear decline in stable wakefulness at nighttime, and a decrease of microglial processes length in various brain regions involved in wake/sleep regulation. The decreased stable wakefulness can be restored following the time course of microglia depletion and repopulation in the adult brain. Microglia repopulation in the aging brain restored age-related decline in stable wakefulness. Taken together, our findings suggest a link between aged microglia and deteriorated stable wakefulness in aged brains.
Collapse
|
7
|
Tahanzadeh N, Knop M, Seidler Y, Dirndorfer S, Lürsen K, Bruchhaus I, Lang R, Rimbach G, Roeder T. An aqueous extract of the brown alga Eisenia bicyclis extends lifespan in a sex-specific manner by interfering with the Tor-FoxO axis. Aging (Albany NY) 2022; 14:6427-6448. [PMID: 35980274 PMCID: PMC9467403 DOI: 10.18632/aging.204218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 01/24/2023]
Abstract
Food has a decisive influence on our health, to the extent where even lifespan can be directly affected by it. In the present work, we have examined the effects of an aqueous extract of the marine brown alga Eisenia bicyclis in terms of its potential to extend lifespan. For this purpose, we used the fruit fly Drosophila melanogaster as a model. The experiments showed that small amounts of Eisenia extract can extend lifespan by up to 40%. This effect is not only related to the median but also to the maximum lifespan. Interestingly, this life-extending effect is sex-specific, i.e. it occurs exclusively in females. Even under stressful nutritional conditions such as a high sugar diet, this effect is detectable. Mechanistic studies showed that this life-prolonging effect depends on a functional Tor and a functional FoxO signaling pathway. It can be concluded that components of the Eisenia extract prolong lifespan by interacting with the Tor-FoxO axis. This study may serve to stimulate further investigations, which on the one hand show such a life-prolonging effect also in other organisms and on the other hand identify the substances responsible for this effect. Finally, it may also encourage the increased use of arame as a health-promoting food supplement.
Collapse
Affiliation(s)
- Navid Tahanzadeh
- Kiel University, Department Molecular Physiology, Zoology, Kiel, Germany
| | - Mirjam Knop
- Kiel University, Department Molecular Physiology, Zoology, Kiel, Germany
| | - Yvonne Seidler
- Kiel University, Institute of Human Nutrition and Food Science, Kiel, Germany
| | | | - Kai Lürsen
- Kiel University, Institute of Human Nutrition and Food Science, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, Department Parasitology, Hamburg, Germany
| | - Roman Lang
- Leibniz Institute for Food Systems Biology, TU Munich, Munich, Germany
| | - Gerald Rimbach
- Kiel University, Institute of Human Nutrition and Food Science, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Department Molecular Physiology, Zoology, Kiel, Germany
- DZL, German Center for Lung Research, ARCN, Airway Research Center North, Kiel, Germany
| |
Collapse
|
8
|
Reicher V, Bálint A, Újváry D, Gácsi M. Non-invasive sleep EEG measurement in hand raised wolves. Sci Rep 2022; 12:9792. [PMID: 35697910 PMCID: PMC9191399 DOI: 10.1038/s41598-022-13643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Sleep research greatly benefits from comparative studies to understand the underlying physiological and environmental factors affecting the different features of sleep, also informing us about the possible evolutionary changes shaping them. Recently, the domestic dog became an exceedingly valuable model species in sleep studies, as the use of non-invasive polysomnography methodologies enables direct comparison with human sleep data. In this study, we applied the same polysomnography protocol to record the sleep of dog’s closest wild relative, the wolf. We measured the sleep of seven captive (six young and one senior), extensively socialized wolves using a fully non-invasive sleep EEG methodology, originally developed for family dogs. We provide the first descriptive analysis of the sleep macrostructure and NREM spectral power density of wolves using a completely non-invasive methodology. For (non-statistical) comparison, we included the same sleep data of similarly aged dogs. Although our sample size was inadequate to perform statistical analyses, we suggest that it may form the basis of an international, multi-site collection of similar samples using our methodology, allowing for generalizable, unbiased conclusions. As we managed to register both macrostructural and spectral sleep data, our procedure appears to be suitable for collecting valid data in other species too, increasing the comparability of non-invasive sleep studies.
Collapse
Affiliation(s)
- Vivien Reicher
- Department of Ethology, Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary. .,MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.
| | - Anna Bálint
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Dóra Újváry
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Márta Gácsi
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.,Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
9
|
Oh JY, Walsh CM, Ranasinghe K, Mladinov M, Pereira FL, Petersen C, Falgàs N, Yack L, Lamore T, Nasar R, Lew C, Li S, Metzler T, Coppola Q, Pandher N, Le M, Heuer HW, Heinsen H, Spina S, Seeley WW, Kramer J, Rabinovici GD, Boxer AL, Miller BL, Vossel K, Neylan TC, Grinberg LT. Subcortical Neuronal Correlates of Sleep in Neurodegenerative Diseases. JAMA Neurol 2022; 79:498-508. [PMID: 35377391 PMCID: PMC8981071 DOI: 10.1001/jamaneurol.2022.0429] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Importance Sleep disturbance is common among patients with neurodegenerative diseases. Examining the subcortical neuronal correlates of sleep disturbances is important to understanding the early-stage sleep neurodegenerative phenomena. Objectives To examine the correlation between the number of important subcortical wake-promoting neurons and clinical sleep phenotypes in patients with Alzheimer disease (AD) or progressive supranuclear palsy (PSP). Design, Setting, and Participants This longitudinal cohort study enrolled 33 patients with AD, 20 patients with PSP, and 32 healthy individuals from the Memory and Aging Center of the University of California, San Francisco, between August 22, 2008, and December 31, 2020. Participants received electroencephalographic and polysomnographic sleep assessments. Postmortem neuronal analyses of brainstem hypothalamic wake-promoting neurons were performed and were included in the clinicopathological correlation analysis. No eligible participants were excluded from the study. Exposures Electroencephalographic and polysomnographic assessment of sleep and postmortem immunohistological stereological analysis of 3 wake-promoting nuclei (noradrenergic locus coeruleus [LC], orexinergic lateral hypothalamic area [LHA], and histaminergic tuberomammillary nucleus [TMN]). Main Outcomes and Measures Nocturnal sleep variables, including total sleep time, sleep maintenance, rapid eye movement (REM) latency, and time spent in REM sleep and stages 1, 2, and 3 of non-REM (NREM1, NREM2, and NREM3, respectively) sleep, and wake after sleep onset. Neurotransmitter, tau, and total neuronal counts of LC, LHA, and TMN. Results Among 19 patients included in the clinicopathological correlation analysis, the mean (SD) age at death was 70.53 (7.75) years; 10 patients (52.6%) were female; and all patients were White. After adjusting for primary diagnosis, age, sex, and time between sleep analyses and death, greater numbers of LHA and TMN neurons were correlated with decreased homeostatic sleep drive, as observed by less total sleep time (LHA: r = -0.63; P = .009; TMN: r = -0.62; P = .008), lower sleep maintenance (LHA: r = -0.85; P < .001; TMN: r = -0.78; P < .001), and greater percentage of wake after sleep onset (LHA: r = 0.85; P < .001; TMN: r = 0.78; P < .001). In addition, greater numbers of LHA and TMN neurons were correlated with less NREM2 sleep (LHA: r = -0.76; P < .001; TMN: r = -0.73; P < .001). A greater number of TMN neurons was also correlated with less REM sleep (r = -0.61; P = .01). A greater number of LC neurons was mainly correlated with less total sleep time (r = -0.68; P = .008) and greater REM latency (r = 0.71; P = .006). The AD-predominant group had significantly greater sleep drive, including higher total sleep time (mean [SD], 0.49 [1.18] vs -1.09 [1.37]; P = .03), higher sleep maintenance (mean [SD], 0.18 [1.22] vs -1.53 [1.78]; P = .02), and lower percentage of wake after sleep onset during sleep period time (mean [SD], -0.18 [1.20] vs 1.49 [1.72]; P = .02) than the PSP-predominant group based on unbiased k-means clustering and principal component analyses. Conclusions and Relevance In this cohort study, subcortical wake-promoting neurons were significantly correlated with sleep phenotypes in patients with AD and PSP, suggesting that the loss of wake-promoting neurons among patients with neurodegenerative conditions may disturb the control of sleep-wake homeostasis. These findings suggest that the subcortical system is a primary mechanism associated with sleep disturbances in the early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun Y. Oh
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- School of Medicine, University of California, San Francisco, San Francisco
| | - Christine M. Walsh
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Kamalini Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Mihovil Mladinov
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Felipe L. Pereira
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Cathrine Petersen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Neus Falgàs
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- Global Brain Health Institute, University of California, San Francisco, San Francisco
| | - Leslie Yack
- Stress and Health Research Program, Department of Mental Health, San Francisco VA Medical Center, San Francisco, California
| | - Tia Lamore
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Rakin Nasar
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Caroline Lew
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Song Li
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Thomas Metzler
- Stress and Health Research Program, Department of Mental Health, San Francisco VA Medical Center, San Francisco, California
| | - Quentin Coppola
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Natalie Pandher
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Michael Le
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Hilary W. Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Helmut Heinsen
- Department of Psychiatry, University of Wurzburg, Wurzburg, Germany
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Joel Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- Global Brain Health Institute, University of California, San Francisco, San Francisco
| | - Keith Vossel
- Department of Neurology, University of California, Los Angeles, Los Angeles
| | - Thomas C. Neylan
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- Stress and Health Research Program, Department of Mental Health, San Francisco VA Medical Center, San Francisco, California
- Department of Psychiatry, University of California, San Francisco, San Francisco
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
- Global Brain Health Institute, University of California, San Francisco, San Francisco
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Department of Pathology, University of California, San Francisco, San Francisco
| |
Collapse
|
10
|
Kuczyński W, Wibowo E, Hoshino T, Kudrycka A, Małolepsza A, Karwowska U, Pruszkowska M, Wasiak J, Kuczyńska A, Spałka J, Pruszkowska-Przybylska P, Mokros Ł, Białas A, Białasiewicz P, Sasanabe R, Blagrove M, Manning J. Understanding the Associations of Prenatal Androgen Exposure on Sleep Physiology, Circadian Proteins, Anthropometric Parameters, Hormonal Factors, Quality of Life, and Sex Among Healthy Young Adults: Protocol for an International, Multicenter Study. JMIR Res Protoc 2021; 10:e29199. [PMID: 34612837 PMCID: PMC8529469 DOI: 10.2196/29199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background The ratio of the second finger length to the fourth finger length (2D:4D ratio) is considered to be negatively correlated with prenatal androgen exposure (PAE) and positively correlated with prenatal estrogen. Coincidentally, various brain regions are sensitive to PAE, and their functions in adults may be influenced by the prenatal actions of sex hormones. Objective This study aims to assess the relationship between PAE (indicated by the 2D:4D ratio) and various physiological (sex hormone levels and sleep-wake parameters), psychological (mental health), and sexual parameters in healthy young adults. Methods This study consists of two phases. In phase 1, we will conduct a survey-based study and anthropometric assessments (including 2D:4D ratio and BMI) in healthy young adults. Using validated questionnaires, we will collect self-reported data on sleep quality, sexual function, sleep chronotype, anxiety, and depressive symptoms. In phase 2, a subsample of phase 1 will undergo polysomnography and physiological and genetic assessments. Sleep architecture data will be obtained using portable polysomnography. The levels of testosterone, estradiol, progesterone, luteinizing hormone, follicle-stimulating hormone, prolactin, melatonin, and circadian regulatory proteins (circadian locomotor output cycles kaput [CLOCK], timeless [TIM], and period [PER]) and the expression levels of some miRNAs will be measured using blood samples. The rest and activity cycle will be monitored using actigraphy for a 7-day period. Results In Poland, 720 participants were recruited for phase 1. Among these, 140 completed anthropometric measurements. In addition, 25 participants joined and completed phase 2 data collection. Recruitment from other sites will follow. Conclusions Findings from our study may help to better understand the plausible role of PAE in sleep physiology, mental health, and sexual quality of life in young adults. International Registered Report Identifier (IRRID) DERR1-10.2196/29199
Collapse
Affiliation(s)
- Wojciech Kuczyński
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Erik Wibowo
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tetsuro Hoshino
- Department of Sleep Medicine and Sleep Disorder Center, Aichi Medical University, Aichi, Japan
| | - Aleksandra Kudrycka
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Małolepsza
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Urszula Karwowska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Milena Pruszkowska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Jakub Wasiak
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Kuczyńska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland
| | - Jakub Spałka
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | | | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Adam Białas
- Department of Pathobiology of Respiratory Diseases, Medical University of Lodz, Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Ryujiro Sasanabe
- Department of Sleep Medicine and Sleep Disorder Center, Aichi Medical University, Aichi, Japan
| | - Mark Blagrove
- Department of Psychology, Swansea University, Swansea, United Kingdom
| | - John Manning
- Applied Sports, Technology, Exercise, and Medicine Research Centre, Swansea University, Swansea, United Kingdom
| |
Collapse
|
11
|
Bouchard M, Lina JM, Gaudreault PO, Lafrenière A, Dubé J, Gosselin N, Carrier J. Sleeping at the switch. eLife 2021; 10:64337. [PMID: 34448453 PMCID: PMC8452310 DOI: 10.7554/elife.64337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Sleep slow waves are studied for their role in brain plasticity, homeostatic regulation, and their changes during aging. Here, we address the possibility that two types of slow waves co-exist in humans. Thirty young and 29 older adults underwent a night of polysomnographic recordings. Using the transition frequency, slow waves with a slow transition (slow switchers) and those with a fast transition (fast switchers) were discovered. Slow switchers had a high electroencephalography (EEG) connectivity along their depolarization transition while fast switchers had a lower connectivity dynamics and dissipated faster during the night. Aging was associated with lower temporal dissipation of sleep pressure in slow and fast switchers and lower EEG connectivity at the microscale of the oscillations, suggesting a decreased flexibility in the connectivity network of older individuals. Our findings show that two different types of slow waves with possible distinct underlying functions coexist in the slow wave spectrum.
Collapse
Affiliation(s)
- Maude Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montreal, Canada
| | - Pierre-Olivier Gaudreault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - Jonathan Dubé
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| |
Collapse
|
12
|
Ricci A, He F, Fang J, Calhoun SL, Vgontzas AN, Liao D, Younes M, Bixler EO, Fernandez-Mendoza J. Maturational trajectories of non-rapid eye movement slow wave activity and odds ratio product in a population-based sample of youth. Sleep Med 2021; 83:271-279. [PMID: 34049047 DOI: 10.1016/j.sleep.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Brain maturation is reflected in the sleep electroencephalogram (EEG) by a decline in non-rapid eye movement (NREM) slow wave activity (SWA) throughout adolescence and a related decrease in sleep depth. However, this trajectory and its sex and pubertal differences lack replication in population-based samples. We tested age-related changes in SWA (0.4-4 Hz) power and odds ratio product (ORP), a standardized measure of sleep depth. METHODS We analyzed the sleep EEG of 572 subjects aged 6-21 y (48% female, 26% racial/ethnic minority) and 332 subjects 5-12 y followed-up at 12-22 y. Multivariable-adjusted analyses tested age-related cross-sectional and longitudinal trajectories of SWA and ORP. RESULTS SWA remained stable from age 6 to 10, decreased between ages 11 and 17, and plateaued from age 18 to 21 (p-cubic<0.001); females showed a longitudinal decline 23% greater than males by 13 y, while males experienced a steeper slope after 14 y and their longitudinal decline was 21% greater by 19 y. More mature adolescents (75% female) experienced a greater longitudinal decline in SWA than less mature adolescents by 14 y. ORP showed an age-related increasing trajectory (p-linear<0.001) with no sex or pubertal differences. CONCLUSIONS We provide population-level evidence for the maturational decline and sex and pubertal differences in SWA in the transition from childhood to adolescence, while introducing ORP as a novel metric in youth. Along with previous studies, the distinct trajectories observed suggest that age-related changes in SWA reflect brain maturation and local/synaptic processes during this developmental period, while those of ORP may reflect global/state control of NREM sleep depth.
Collapse
Affiliation(s)
- Anna Ricci
- Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033 USA
| | - Fan He
- Department of Public Health Sciences, Penn State College of Medicine, A210 Public Health Sciences, Hershey, PA, 17033 USA
| | - Jidong Fang
- Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033 USA
| | - Susan L Calhoun
- Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033 USA
| | - Alexandros N Vgontzas
- Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033 USA
| | - Duanping Liao
- Department of Public Health Sciences, Penn State College of Medicine, A210 Public Health Sciences, Hershey, PA, 17033 USA
| | - Magdy Younes
- Sleep Disorders Centre, University of Manitoba, 1001 Wellington Crescent, Winnipeg, MB, R3M 0A7, Canada
| | - Edward O Bixler
- Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033 USA
| | - Julio Fernandez-Mendoza
- Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State College of Medicine, 500 University Dr., Hershey, PA, 17033 USA.
| |
Collapse
|