1
|
Schirmer A, Croy I, Liebal K, Schweinberger SR. Non-verbal effecting - animal research sheds light on human emotion communication. Biol Rev Camb Philos Soc 2024. [PMID: 39262120 DOI: 10.1111/brv.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Cracking the non-verbal "code" of human emotions has been a chief interest of generations of scientists. Yet, despite much effort, a dictionary that clearly maps non-verbal behaviours onto meaning remains elusive. We suggest this is due to an over-reliance on language-related concepts and an under-appreciation of the evolutionary context in which a given non-verbal behaviour emerged. Indeed, work in other species emphasizes non-verbal effects (e.g. affiliation) rather than meaning (e.g. happiness) and differentiates between signals, for which communication benefits both sender and receiver, and cues, for which communication does not benefit senders. Against this backdrop, we develop a "non-verbal effecting" perspective for human research. This perspective extends the typical focus on facial expressions to a broadcasting of multisensory signals and cues that emerge from both social and non-social emotions. Moreover, it emphasizes the consequences or effects that signals and cues have for individuals and their social interactions. We believe that re-directing our attention from verbal emotion labels to non-verbal effects is a necessary step to comprehend scientifically how humans share what they feel.
Collapse
Affiliation(s)
- Annett Schirmer
- Department of Psychology, Innsbruck University, Universitaetsstrasse 5-7, Innsbruck, 6020, Austria
| | - Ilona Croy
- Department of Psychology, Friedrich Schiller University Jena, Am Steiger 3, Jena, 07743, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Virchowweg 23, Berlin, 10117, Germany
| | - Katja Liebal
- Institute of Biology, Leipzig University, Talstraße 33, Leipzig, 04103, Germany
| | - Stefan R Schweinberger
- Department of Psychology, Friedrich Schiller University Jena, Am Steiger 3, Jena, 07743, Germany
| |
Collapse
|
2
|
Feldman MJ, Bliss-Moreau E, Lindquist KA. The neurobiology of interoception and affect. Trends Cogn Sci 2024; 28:643-661. [PMID: 38395706 PMCID: PMC11222051 DOI: 10.1016/j.tics.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Scholars have argued for centuries that affective states involve interoception, or representations of the state of the body. Yet, we lack a mechanistic understanding of how signals from the body are transduced, transmitted, compressed, and integrated by the brains of humans to produce affective states. We suggest that to understand how the body contributes to affect, we first need to understand information flow through the nervous system's interoceptive pathways. We outline such a model and discuss how unique anatomical and physiological aspects of interoceptive pathways may give rise to the qualities of affective experiences in general and valence and arousal in particular. We conclude by considering implications and future directions for research on interoception, affect, emotions, and human mental experiences.
Collapse
Affiliation(s)
- M J Feldman
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - E Bliss-Moreau
- Department of Psychology, University of California Davis, Davis, CA, USA; California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - K A Lindquist
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
van Heijst K, Kret ME, Ploeger A. Basic Emotions or Constructed Emotions: Insights From Taking an Evolutionary Perspective. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023:17456916231205186. [PMID: 37916982 DOI: 10.1177/17456916231205186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The ongoing debate between basic emotion theories (BETs) and the theory of constructed emotion (TCE) hampers progress in the field of emotion research. Providing a new perspective, here we aim to bring the theories closer together by dissecting them according to Tinbergen's four questions to clarify a focus on their evolutionary basis. On the basis of our review of the literature, we conclude that whereas BETs focus on the evolution question of Tinbergen, the TCE is more concerned with the causation of emotion. On the survival value of emotions both theories largely agree: to provide the best reaction in specific situations. Evidence is converging on the evolutionary history of emotions but is still limited for both theories-research within both frameworks focuses heavily on the causation. We conclude that BETs and the TCE explain two different phenomena: emotion and feeling. Therefore, they seem irreconcilable but possibly supplementary for explaining and investigating the evolution of emotion-especially considering their similar answer to the question of survival value. Last, this article further highlights the importance of carefully describing what aspect of emotion is being discussed or studied. Only then can evidence be interpreted to converge toward explaining emotion.
Collapse
Affiliation(s)
| | - Mariska E Kret
- Cognitive Psychology Unit, Faculty of Social and Behavioral Sciences, Leiden University
- Comparative Psychology and Affective Neuroscience Lab, Cognitive Psychology Department, Leiden University
- Leiden Institute for Brain and Cognition (LIBC), Leiden University
| | | |
Collapse
|
4
|
Rothwell ES, Carp SB, Bliss-Moreau E. The importance of social behavior in nonhuman primate studies of aging: A mini-review. Neurosci Biobehav Rev 2023; 154:105422. [PMID: 37806369 DOI: 10.1016/j.neubiorev.2023.105422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Social behavior plays an important role in supporting both psychological and physical health across the lifespan. People's social lives change as they age, and the nature of these changes differ based on whether people are on healthy aging trajectories or are experiencing neurodegenerative diseases that cause dementia, such as Alzheimer's disease and Parkinson's disease. Nonhuman primate models of aging have provided a base of knowledge comparing aging trajectories in health and disease, but these studies rarely emphasize social behavior changes as a consequence of the aging process. What data exist hold particular value, as negative effects of disease and aging on social behavior are likely to have disproportionate impacts on quality of life. In this mini review, we examine the literature on nonhuman primate models of aging with a focus on social behavior, in the context of both health and disease. We propose that adopting a greater focus on social behavior outcomes in nonhuman primates will improve our understanding of the intersection of health, aging and sociality in humans.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Neurobiology, School of Medicine University of Pittsburgh, 3501 Fifth Avenue, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Sarah B Carp
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| | - Eliza Bliss-Moreau
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA; Department of Psychology, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| |
Collapse
|
5
|
Tee LF, Young JJ, Maruyama K, Kimura S, Suzuki R, Endo Y, Kimura KD. Electric shock causes a fleeing-like persistent behavioral response in the nematode Caenorhabditis elegans. Genetics 2023; 225:iyad148. [PMID: 37595066 PMCID: PMC10550322 DOI: 10.1093/genetics/iyad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023] Open
Abstract
Behavioral persistency reflects internal brain states, which are the foundations of multiple brain functions. However, experimental paradigms enabling genetic analyses of behavioral persistency and its associated brain functions have been limited. Here, we report novel persistent behavioral responses caused by electric stimuli in the nematode Caenorhabditis elegans. When the animals on bacterial food are stimulated by alternating current, their movement speed suddenly increases 2- to 3-fold, persisting for more than 1 minute even after a 5-second stimulation. Genetic analyses reveal that voltage-gated channels in the neurons are required for the response, possibly as the sensors, and neuropeptide signaling regulates the duration of the persistent response. Additional behavioral analyses implicate that the animal's response to electric shock is scalable and has a negative valence. These properties, along with persistence, have been recently regarded as essential features of emotion, suggesting that C. elegans response to electric shock may reflect a form of emotion, akin to fear.
Collapse
Affiliation(s)
- Ling Fei Tee
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Jared J Young
- Mills College at Northeastern University, Oakland, CA 94613, USA
| | - Keisuke Maruyama
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Sota Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Ryoga Suzuki
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Yuto Endo
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Grogans SE, Bliss-Moreau E, Buss KA, Clark LA, Fox AS, Keltner D, Cowen AS, Kim JJ, Kragel PA, MacLeod C, Mobbs D, Naragon-Gainey K, Fullana MA, Shackman AJ. The nature and neurobiology of fear and anxiety: State of the science and opportunities for accelerating discovery. Neurosci Biobehav Rev 2023; 151:105237. [PMID: 37209932 PMCID: PMC10330657 DOI: 10.1016/j.neubiorev.2023.105237] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Fear and anxiety play a central role in mammalian life, and there is considerable interest in clarifying their nature, identifying their biological underpinnings, and determining their consequences for health and disease. Here we provide a roundtable discussion on the nature and biological bases of fear- and anxiety-related states, traits, and disorders. The discussants include scientists familiar with a wide variety of populations and a broad spectrum of techniques. The goal of the roundtable was to take stock of the state of the science and provide a roadmap to the next generation of fear and anxiety research. Much of the discussion centered on the key challenges facing the field, the most fruitful avenues for future research, and emerging opportunities for accelerating discovery, with implications for scientists, funders, and other stakeholders. Understanding fear and anxiety is a matter of practical importance. Anxiety disorders are a leading burden on public health and existing treatments are far from curative, underscoring the urgency of developing a deeper understanding of the factors governing threat-related emotions.
Collapse
Affiliation(s)
- Shannon E Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Kristin A Buss
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lee Anna Clark
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Dacher Keltner
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Colin MacLeod
- Centre for the Advancement of Research on Emotion, School of Psychological Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Dean Mobbs
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125, USA; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kristin Naragon-Gainey
- School of Psychological Science, University of Western Australia, Perth, WA 6009, Australia
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Imaging of Mood, and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
Rogers FD, Bales KL. Introduction to Special Issue on Affective Science in Animals: Toward a Greater Understanding of Affective Processes in Non-Human Animals. AFFECTIVE SCIENCE 2022; 3:697-702. [PMID: 36514490 PMCID: PMC9734565 DOI: 10.1007/s42761-022-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
How should we characterize the affective lives of non-human animals? There is a large body of work studying affective processes in non-human animals, yet this work is frequently overlooked. Ideas about the affective lives of animals have varied across culture and time and are reflected in literature, theology, and philosophy. Our contemporary ideas about animal affect are philosophically important within the discipline of affective science, and these ideas have consequences in several domains, including animal husbandry, conservation, and human and veterinary medicine. The articles contained within this special volume cover several levels of analysis and broad representation of species, from the non-mammalian, to rodents, to primates; but together, these articles are collectively concerned with the topic of affective processes in non-human animals.
Collapse
Affiliation(s)
- Forrest D. Rogers
- Princeton Neuroscience Institute, Princeton, NJ USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis, CA USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616 USA
- California National Primate Research Center, Davis, CA USA
| |
Collapse
|
8
|
Mendl M, Neville V, Paul ES. Bridging the Gap: Human Emotions and Animal Emotions. AFFECTIVE SCIENCE 2022; 3:703-712. [PMID: 36519148 PMCID: PMC9743877 DOI: 10.1007/s42761-022-00125-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/24/2022] [Indexed: 06/01/2023]
Abstract
Our experiences of the conscious mental states that we call emotions drive our interest in whether such states also exist in other animals. Because linguistic report can be used as a gold standard (albeit indirect) indicator of subjective emotional feelings in humans but not other species, how can we investigate animal emotions and what exactly do we mean when we use this term? Linguistic reports of human emotion give rise to emotion concepts (discrete emotions; dimensional models), associated objectively measurable behavioral and bodily emotion indicators, and understanding of the emotion contexts that generate specific states. We argue that many animal studies implicitly translate human emotion concepts, indicators and contexts, but that explicit consideration of the underlying pathways of inference, their theoretical basis, assumptions, and pitfalls, and how they relate to conscious emotional feelings, is needed to provide greater clarity and less confusion in the conceptualization and scientific study of animal emotion.
Collapse
Affiliation(s)
- Michael Mendl
- Animal Welfare and Behaviour Research Group, Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU UK
| | - Vikki Neville
- Animal Welfare and Behaviour Research Group, Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU UK
| | - Elizabeth S. Paul
- Animal Welfare and Behaviour Research Group, Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU UK
| |
Collapse
|
9
|
Taubert J, Japee S, Patterson A, Wild H, Goyal S, Yu D, Ungerleider LG. A broadly tuned network for affective body language in the macaque brain. SCIENCE ADVANCES 2022; 8:eadd6865. [PMID: 36427322 PMCID: PMC9699662 DOI: 10.1126/sciadv.add6865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Body language is a powerful tool that we use to communicate how we feel, but it is unclear whether other primates also communicate in this way. Here, we use functional magnetic resonance imaging to show that the body-selective patches in macaques are activated by affective body language. Unexpectedly, we found these regions to be tolerant of naturalistic variation in posture as well as species; the bodies of macaques, humans, and domestic cats all evoked a stronger response when they conveyed fear than when they conveyed no affect. Multivariate analyses confirmed that the neural representation of fear-related body expressions was species-invariant. Collectively, these findings demonstrate that, like humans, macaques have body-selective brain regions in the ventral visual pathway for processing affective body language. These data also indicate that representations of body stimuli in these regions are built on the basis of emergent properties, such as socio-affective meaning, and not just putative image properties.
Collapse
Affiliation(s)
- Jessica Taubert
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
- School of Psychology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shruti Japee
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Amanda Patterson
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Hannah Wild
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Shivani Goyal
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - David Yu
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Leslie G. Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Zablocki-Thomas PB, Rogers FD, Bales KL. Neuroimaging of human and non-human animal emotion and affect in the context of social relationships. Front Behav Neurosci 2022; 16:994504. [PMID: 36338883 PMCID: PMC9633678 DOI: 10.3389/fnbeh.2022.994504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Long-term relationships are essential for the psychological wellbeing of humans and many animals. Positive emotions and affective experiences (e.g., romantic or platonic love) seem to be closely related to the creation and maintenance of social bonds. When relationships are threatened or terminated, other emotions generally considered to be negative can arise (e.g., jealousy or loneliness). Because humans and animals share (to varying degrees) common evolutionary histories, researchers have attempted to explain the evolution of affect and emotion through the comparative approach. Now brain imaging techniques allow the comparison of the neurobiological substrates of affective states and emotion in human and animal brains using a common methodology. Here, we review brain imaging studies that feature emotions characterized by the context of social bonding. We compare imaging findings associated with affective and emotional states elicited by similar social situations between humans and animal models. We also highlight the role of key neurohormones (i.e., oxytocin, vasopressin, and dopamine) that jointly support the occurrence of socially contextualized emotions and affect across species. In doing so, we seek to explore and clarify if and how humans and animals might similarly experience social emotion and affect in the context of social relationships.
Collapse
Affiliation(s)
| | - Forrest D. Rogers
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Psychology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Karen L. Bales
- California National Primate Research Center, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Arndt SS, Goerlich VC, van der Staay FJ. A dynamic concept of animal welfare: The role of appetitive and adverse internal and external factors and the animal’s ability to adapt to them. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.908513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal welfare is a multifaceted issue that can be approached from different viewpoints, depending on human interests, ethical assumptions, and culture. To properly assess, safeguard and promote animal welfare, concepts are needed to serve as guidelines in any context the animal is kept in. Several different welfare concepts have been developed during the last half decade. The Five Freedoms concept has provided the basis for developing animal welfare assessment to date, and the Five Domains concept has guided those responsible for safeguarding animal welfare, while the Quality of Life concept focuses on how the individual perceives its own welfare state. This study proposes a modified and extended version of an earlier animal welfare concept - the Dynamic Animal Welfare Concept (DAWCon). Based on the adaptability of the animal, and taking the importance of positive emotional states and the dynamic nature of animal welfare into account, an individual animal is likely in a positive welfare state when it is mentally and physically capable and possesses the ability and opportunity to react adequately to sporadic or lasting appetitive and adverse internal and external stimuli, events, and conditions. Adequate reactions are elements of an animal’s normal behavior. They allow the animal to cope with and adapt to the demands of the (prevailing) environmental circumstances, enabling it to reach a state that it perceives as positive, i.e., that evokes positive emotions. This paper describes the role of internal as well as external factors in influencing welfare, each of which exerts their effects in a sporadic or lasting manner. Behavior is highlighted as a crucial read-out parameter. As most animals under human care are selected for certain traits that may affect their behavioral repertoire it is crucial to have thorough ethograms, i.e., a catalogue of specific behaviors of the species/strain/breed under study. DAWCon highlights aspects that need to be addressed when assessing welfare and may stimulate future research questions.
Collapse
|
12
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
13
|
Rosinger ZJ, Mayer HS, Geyfen JI, Orser MK, Stolzenberg DS. Ethologically relevant repeated acute social stress induces maternal neglect in the lactating female mouse. Dev Psychobiol 2021; 63:e22173. [PMID: 34674243 PMCID: PMC10631567 DOI: 10.1002/dev.22173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Psychosocial stress is a top predictor of peripartum mood disorders in human mothers. In the present study, we developed a novel paradigm testing the effects of direct and vicarious social stress on maternal and mood-related behaviors in B6 mice. Using a novel housing paradigm, we examined the extent to which postpartum dams withdrew from litters following psychosocial stress. Repeated acute direct social stress involved exposing dams to a virgin male mouse for 7 min/day on postpartum days 5-7 during a brief (15-min) mother-pup separation. To remove the effects of direct stress, the vicarious social stress dams were housed in the same vivarium as direct social stressed dams, but without direct exposure to intruders. Control dams were given mock intruder exposure and housed in a separate vivarium room containing breeding mice. All dams experienced pup separation, and maternal care was investigated upon reunion. Direct and vicarious social stress induced significant deficits in maternal care and increased maternal anxiety relative to controls. Although vicarious stress effects were more likely to occur on days when there was acute stress exposure, direct stress sustained maternal deficits 24 h after the final stressor. Together, these data suggest psychosocial stress induces aberrant maternal phenotypes in mice.
Collapse
Affiliation(s)
- Zachary J Rosinger
- Department of Psychology, University of California, Davis, California, USA
| | - Heather S Mayer
- Department of Psychology, University of California, Davis, California, USA
| | | | - Mable K Orser
- Department of Psychology, University of California, Davis, California, USA
| | | |
Collapse
|
14
|
Lindquist KA. Language and Emotion: Introduction to the Special Issue. AFFECTIVE SCIENCE 2021; 2:91-98. [PMID: 34056621 PMCID: PMC8144866 DOI: 10.1007/s42761-021-00049-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
What is the relationship between language and emotion? The work that fills the pages of this special issue draws from interdisciplinary domains to weigh in on the relationship between language and emotion in semantics, cross-linguistic experience, development, emotion perception, emotion experience and regulation, and neural representation. These important new findings chart an exciting path forward for future basic and translational work in affective science.
Collapse
|
15
|
Hopper LM, Allritz M, Egelkamp CL, Huskisson SM, Jacobson SL, Leinwand JG, Ross SR. A Comparative Perspective on Three Primate Species' Responses to a Pictorial Emotional Stroop Task. Animals (Basel) 2021; 11:ani11030588. [PMID: 33668170 PMCID: PMC7995981 DOI: 10.3390/ani11030588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
The Stroop effect describes interference in cognitive processing due to competing cognitive demands. Presenting emotionally laden stimuli creates similar Stroop-like effects that result from participants' attention being drawn to distractor stimuli. Here, we adapted the methods of a pictorial Stroop study for use with chimpanzees (N = 6), gorillas (N = 7), and Japanese macaques (N = 6). We tested all subjects via touchscreens following the same protocol. Ten of the 19 subjects passed pre-test training. Subjects who reached criterion were then tested on a standard color-interference Stroop test, which revealed differential accuracy in the primates' responses across conditions. Next, to test for an emotional Stroop effect, we presented subjects with photographs that were either positively valenced (a preferred food) or negatively valenced (snakes). In the emotional Stroop task, as predicted, the primates were less accurate in trials which presented emotionally laden stimuli as compared to control trials, but there were differences in the apes' and monkeys' response patterns. Furthermore, for both Stroop tests, while we found that subjects' accuracy rates were reduced by test stimuli, in contrast to previous research, we found no difference across trial types in the subjects' response latencies across conditions.
Collapse
Affiliation(s)
- Lydia M. Hopper
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614, USA; (C.L.E.); (S.M.H.); (S.L.J.); (J.G.L.); (S.R.R.)
- Correspondence:
| | - Matthias Allritz
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9AJ, UK;
| | - Crystal L. Egelkamp
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614, USA; (C.L.E.); (S.M.H.); (S.L.J.); (J.G.L.); (S.R.R.)
| | - Sarah M. Huskisson
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614, USA; (C.L.E.); (S.M.H.); (S.L.J.); (J.G.L.); (S.R.R.)
| | - Sarah L. Jacobson
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614, USA; (C.L.E.); (S.M.H.); (S.L.J.); (J.G.L.); (S.R.R.)
- Psychology, Graduate School and University Center, City University of New York, New York, NY 10016, USA
| | - Jesse G. Leinwand
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614, USA; (C.L.E.); (S.M.H.); (S.L.J.); (J.G.L.); (S.R.R.)
| | - Stephen R. Ross
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614, USA; (C.L.E.); (S.M.H.); (S.L.J.); (J.G.L.); (S.R.R.)
| |
Collapse
|
16
|
Bliss-Moreau E, Rudebeck PH. Animal models of human mood. Neurosci Biobehav Rev 2021; 120:574-582. [PMID: 33007355 PMCID: PMC10474843 DOI: 10.1016/j.neubiorev.2020.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/28/2022]
Abstract
Humans' everyday experience of the world is influenced by our moods. Moods are consciously accessible affective states that extend over time that are characterized by their valence and arousal. They also likely have a long evolutionary heritage and serve as an important adaptive affective mechanism. When they become maladaptive or overly biased, pathological affective states such as depression can emerge. Despite the importance of moods for human experience, little is known about their causal neurobiological mechanisms. In humans, limitations related to methods and interpretations of the data prevent causal investigations into the origins of mood, highlighting the importance of animal models. Nonhuman primates that share key neuroanatomical, affective, and social features with humans will be essential to uncovering their foundation. Identifying and validating mood-like states in animals is, however, challenging not least because mood is a human construct requiring verbal communication. Here we outline a theoretical framework for animal models of human mood, drawing upon established psychological literature where it exists before reviewing the extant studies of non-human primate models of mood-like states.
Collapse
Affiliation(s)
- Eliza Bliss-Moreau
- Department of Psychology, California National Primate Research Center, University of California, Davis, CA, 95616, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Westgate EC, Steidle B. Lost by definition: Why boredom matters for psychology and society. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2020. [DOI: 10.1111/spc3.12562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Erin C. Westgate
- University of Florida Department of Psychology Gainesville Florida USA
| | - Brianna Steidle
- University of Florida Department of Psychology Gainesville Florida USA
| |
Collapse
|
18
|
Anderson JA, Kinnally EL. Behavioral mimicry predicts social favor in adolescent rhesus macaques (Macaca mulatta). Primates 2020; 62:123-131. [PMID: 32949317 DOI: 10.1007/s10329-020-00861-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022]
Abstract
Non-conscious mimicry is a highly conserved component of animal behavior with multifaceted connections to sociality across taxa. One intriguing consequence of this mimicry in primates is that it promotes positive social feedback from the recipient toward the mimicker. This suggests that mimicry in primates may be an important aspect of positive social interaction, but few studies have tracked the consequences of mimicry in naturally occurring complex social conditions. Here, we designed a novel ethogram to characterize mimicry between conspecifics, to better understand whether mimicry is associated with affiliation between primates in a semi-naturalistic captive setting. In this study, 15 juvenile (aged 2-4 years) rhesus macaques (Macaca mulatta) were observed at the California National Primate Research Center. Frequencies of mimicry defined a priori (e.g. following, postural mimicry) were observed over a course of 12 weeks. In separate observations during the same period, focal social behavior (e.g. aggression, play, affiliation) with group members was also observed. Subjects that exhibited higher degrees of mimicry were not more prosocial, but they received significantly more play overtures from social partners (p < 0.01). Additionally, rates of mimicry were higher in 2- and 3-year-olds than 4-year-olds. These results provide proof of principle in a small sample of monkeys that mimicry is associated with social advantages in a complex, semi-naturalistic setting in primates.
Collapse
Affiliation(s)
- Jordan A Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, USA
| | - Erin L Kinnally
- Department of Psychology and Animal Behavior Graduate Group, University of California Davis, Davis, CA, 95616, USA. .,California National Primate Research Center, Davis, CA, USA.
| |
Collapse
|
19
|
Talbot CF, Garner JP, Maness AC, McCowan B, Capitanio JP, Parker KJ. A Psychometrically Robust Screening Tool To Rapidly Identify Socially Impaired Monkeys In The General Population. Autism Res 2020; 13:1465-1475. [PMID: 32677285 DOI: 10.1002/aur.2335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
Naturally low-social rhesus macaques exhibit social impairments with direct relevance to autism spectrum disorder (ASD). To more efficiently identify low-social individuals in a large colony, we exploited, refined, and psychometrically assessed the macaque Social Responsiveness Scale (mSRS), an instrument previously derived from the human ASD screening tool. We performed quantitative social behavior assessments and mSRS ratings on a total of N = 349 rhesus macaques (Macaca mulatta) housed in large, outdoor corrals. In one cohort (N = 116), we conducted inter-rater and test-retest reliabilities, and in a second cohort (N = 233), we evaluated the convergent construct and predictive validity of the mSRS-Revised (mSRS-R). Only 17 of the original 36 items demonstrated inter-rater and test-retest reliability, resulting in the 17-item mSRS-R. The mSRS-R showed strong validity: mSRS-R scores robustly predicted monkeys' social behavior frequencies in home corrals. Monkeys that scored 1.5 standard deviations from the mean on nonsocial behavior likewise exhibited significantly more autistic-like traits, and mSRS-R scores predicted individuals' social classification (low-social vs. high-social) with 96% accuracy (likelihood ratio chi-square = 25.07; P < 0.0001). These findings indicate that the mSRS-R is a reliable, valid, and sensitive measure of social functioning, and like the human SRS, can be used as a high-throughput screening tool to identify socially impaired individuals in the general population. LAY SUMMARY: Variation in autistic traits can be measured in humans using the Social Responsiveness Scale (SRS). Here, we revised this scale for rhesus macaques (i.e., the mSRS-R), and showed that macaques exhibit individual differences in mSRS-R scores, and at the behavioral extremes, low-social vs. high-social monkeys exhibit more autistic-like traits. These results suggest that the mSRS-R can be used as a screening tool to rapidly and accurately identify low-social monkeys in the general population. Autism Res 2020, 13: 1465-1475. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Catherine F Talbot
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Joseph P Garner
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Alyssa C Maness
- California National Primate Research Center, University of California, Davis, Davis, California, USA
- Department of Psychology, University of California, Davis, Davis, California, USA
| | - Brenda McCowan
- California National Primate Research Center, University of California, Davis, Davis, California, USA
- Animal Behavior Graduate Group, University of California, Davis, Davis, California, USA
- Department of Population Health and Reproduction, University of California, Davis, Davis, California, USA
| | - John P Capitanio
- California National Primate Research Center, University of California, Davis, Davis, California, USA
- Department of Psychology, University of California, Davis, Davis, California, USA
| | - Karen J Parker
- California National Primate Research Center, University of California, Davis, Davis, California, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
20
|
Lonsdorf EV, Wilson ML, Boehm E, Delaney-Soesman J, Grebey T, Murray C, Wellens K, Pusey AE. Why chimpanzees carry dead infants: an empirical assessment of existing hypotheses. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200931. [PMID: 32874665 PMCID: PMC7428235 DOI: 10.1098/rsos.200931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The study of non-human primate thanatology has expanded dramatically in recent years as scientists seek to understand the evolutionary roots of human death concepts and practices. However, observations of how conspecifics respond to dead individuals are rare and highly variable. Mothers of several species of primate have been reported to carry and continue to interact with dead infants. Such interactions have been proposed to be related to maternal condition, attachment, environmental conditions or reflect a lack of awareness that the infant has died. Here, we tested these hypotheses using a dataset of cases of infant corpse carrying by chimpanzees in Gombe National Park, Tanzania (n = 33), the largest dataset of such cases in chimpanzees. We found that mothers carried infant corpses at high rates, despite behavioural evidence that they recognize that death has occurred. Median duration of carriage was 1.83 days (interquartile range = 1.03-3.59). Using an information theoretic approach, we found no support for any of the leading hypotheses for duration of continued carriage. We interpret these data in the context of recent discussions regarding what non-human primates understand about death.
Collapse
Affiliation(s)
- Elizabeth V. Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, USA
- Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA, USA
| | - Michael L. Wilson
- Departments of Anthropology and Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Emily Boehm
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | - Tessa Grebey
- Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA, USA
| | - Carson Murray
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Kaitlin Wellens
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
The nuts and bolts of animal emotion. Neurosci Biobehav Rev 2020; 113:273-286. [DOI: 10.1016/j.neubiorev.2020.01.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/28/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
22
|
Mendl M, Paul ES. Animal affect and decision-making. Neurosci Biobehav Rev 2020; 112:144-163. [PMID: 31991192 DOI: 10.1016/j.neubiorev.2020.01.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/11/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
The scientific study of animal affect (emotion) is an area of growing interest. Whilst research on mechanism and causation has predominated, the study of function is less advanced. This is not due to a lack of hypotheses; in both humans and animals, affective states are frequently proposed to play a pivotal role in coordinating adaptive responses and decisions. However, exactly how they might do this (what processes might implement this function) is often left rather vague. Here we propose a framework for integrating animal affect and decision-making that is couched in modern decision theory and employs an operational definition that aligns with dimensional concepts of core affect and renders animal affect empirically tractable. We develop a model of how core affect, including short-term (emotion-like) and longer-term (mood-like) states, influence decision-making via processes that we label affective options, affective predictions, and affective outcomes and which correspond to similar concepts in schema of the links between human emotion and decision-making. Our framework is generalisable across species and generates questions for future research.
Collapse
Affiliation(s)
- Michael Mendl
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, UK.
| | - Elizabeth S Paul
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, UK
| |
Collapse
|
23
|
Paul ES, Sher S, Tamietto M, Winkielman P, Mendl MT. Towards a comparative science of emotion: Affect and consciousness in humans and animals. Neurosci Biobehav Rev 2020; 108:749-770. [PMID: 31778680 PMCID: PMC6966324 DOI: 10.1016/j.neubiorev.2019.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
The componential view of human emotion recognises that affective states comprise conscious, behavioural, physiological, neural and cognitive elements. Although many animals display bodily and behavioural changes consistent with the occurrence of affective states similar to those seen in humans, the question of whether and in which species these are accompanied by conscious experiences remains controversial. Finding scientifically valid methods for investigating markers for the subjective component of affect in both humans and animals is central to developing a comparative understanding of the processes and mechanisms of affect and its evolution and distribution across taxonomic groups, to our understanding of animal welfare, and to the development of animal models of affective disorders. Here, contemporary evidence indicating potential markers of conscious processing in animals is reviewed, with a view to extending this search to include markers of conscious affective processing. We do this by combining animal-focused approaches with investigations of the components of conscious and non-conscious emotional processing in humans, and neuropsychological research into the structure and functions of conscious emotions.
Collapse
Affiliation(s)
- Elizabeth S Paul
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK.
| | - Shlomi Sher
- Department of Psychology, Pomona College, Claremont, CA, USA
| | - Marco Tamietto
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands; Department of Psychology, University of Torino, Torino, Italy
| | - Piotr Winkielman
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA; Faculty of Psychology, SWPS University of Social Sciences and Humanities, 03-815, Warsaw, Poland
| | - Michael T Mendl
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| |
Collapse
|
24
|
Massen JJ, Behrens F, Martin JS, Stocker M, Brosnan SF. A comparative approach to affect and cooperation. Neurosci Biobehav Rev 2019; 107:370-387. [DOI: 10.1016/j.neubiorev.2019.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022]
|
25
|
Satpute AB, Lindquist KA. The Default Mode Network's Role in Discrete Emotion. Trends Cogn Sci 2019; 23:851-864. [PMID: 31427147 PMCID: PMC7281778 DOI: 10.1016/j.tics.2019.07.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
Emotions are often assumed to manifest in subcortical limbic and brainstem structures. While these areas are clearly important for representing affect (e.g., valence and arousal), we propose that the default mode network (DMN) is additionally important for constructing discrete emotional experiences (of anger, fear, disgust, etc.). Findings from neuroimaging studies, invasive electrical stimulation studies, and lesion studies support this proposal. Importantly, our framework builds on a constructionist theory of emotion to explain how instances involving diverse physiological and behavioral patterns can be conceptualized as belonging to the same emotion category. We argue that this ability requires abstraction (from concrete features to broad mental categories), which the DMN is well positioned to support, and we make novel predictions from our proposed framework.
Collapse
Affiliation(s)
- Ajay B Satpute
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Murphy AM, Ross CN, Bliss-Moreau E. Noninvasive cardiac psychophysiology as a tool for translational science with marmosets. Am J Primatol 2019; 81:e23037. [PMID: 31515850 DOI: 10.1002/ajp.23037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/14/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2022]
Abstract
The importance of marmosets for comparative and translational science has grown in recent years because of their relatively rapid development, birth cohorts of twins, family social structure, and genetic tractability. Despite this, they remain understudied in investigations of affective processes. In this methodological note, we establish the validity of using noninvasive commercially available equipment to record cardiac physiology and compute indices of autonomic nervous system activity-a major component of affective processes. Specifically, we recorded electrocardiogram and impedance cardiogram, from which we derived heart rate, respiration rate, measures of high-frequency heart rate variability (indices of parasympathetic autonomic nervous system activity), and ventricular contractility (an index of sympathetic autonomic nervous system activity). Our methods produced physiologically plausible data, and further, animals with increased heart rates during testing were also more reactive to isolation from their social partner and presentation of novel objects, though no relationship was observed between reactivity and specific indices of parasympathetic or sympathetic nervous system activity.
Collapse
Affiliation(s)
- Ashley M Murphy
- California National Primate Research Center, University of California, Davis, California.,Department of Psychology, University of California, Davis, California
| | - Corinna N Ross
- Department of Science and Mathematics, Texas A&M University, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas.,Barshop Institute for Longevity and Aging Studies, UT Health, San Antonio, Texas
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California, Davis, California.,Department of Psychology, University of California, Davis, California
| |
Collapse
|
27
|
|
28
|
Paul ES, Edgar JL, Caplen G, Nicol CJ. Examining affective structure in chickens: valence, intensity, persistence and generalization measured using a Conditioned Place Preference Test. Appl Anim Behav Sci 2018; 207:39-48. [PMID: 30283162 PMCID: PMC6131270 DOI: 10.1016/j.applanim.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
When measuring animals' valenced behavioural responses to stimuli, the Conditioned Place Preference (CPP) test goes a step further than many approach-based and avoidance-based tests by establishing whether a learned preference for, or aversion to, the location in which the stimulus was encountered can be generated. We designed a novel, four-chambered CPP test to extend the capability of the usual CPP paradigm to provide information on four key features of animals' affective responses: valence, scale, persistence and generalization. Using this test, we investigated the affective responses of domestic chickens (Gallus gallus domesticus) to four potentially aversive stimuli: 1. Puffs of air; 2. Sight of (robotic) snake; 3. Sprays of water; 4. Sound of conspecific alarm calls. We found conditioned avoidance of locations associated with the air puffs and water sprays (Friedman's χ2 (3) = 13.323 p > .005; χ2 (3) = 14.235 p > .005), but not with the snake and alarm calls. The scale of the learned avoidance was similar for the air puff and water spray stimuli, but persistence and generalization differed. We conclude that the four chambered CPP test can have a valuable role to play in making multi-feature measurements of stimulus-generated affective responses, and we highlight the value of such measurements for improving our understanding of the structure of affect in chickens and other animals.
Collapse
Affiliation(s)
- Elizabeth S. Paul
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | | | | | | |
Collapse
|
29
|
Viola M. Commentary: Constructing nonhuman animal emotion. Front Psychol 2017; 8:2070. [PMID: 29234297 PMCID: PMC5712372 DOI: 10.3389/fpsyg.2017.02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/14/2017] [Indexed: 12/04/2022] Open
Affiliation(s)
- Marco Viola
- Center for Neurocognition, Epistemology and Theoretical Syntax, Istituto Universitario di Studi Superiori di Pavia (IUSS), Pavia, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Marco Viola
| |
Collapse
|