1
|
Lou C, Cross AM, Peters L, Ansari D, Joanisse MF. Patterns of the left thalamus embedding into the connectome associated with reading skills in children with reading disabilities. Netw Neurosci 2024; 8:1507-1528. [PMID: 39735512 PMCID: PMC11675173 DOI: 10.1162/netn_a_00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/12/2024] [Indexed: 12/31/2024] Open
Abstract
We examined how thalamocortical connectivity structure reflects children's reading performance. Diffusion-weighted MRI at 3 T and a series of reading measures were collected from 64 children (33 girls) ages 8-14 years with and without dyslexia. The topological properties of the left and right thalamus were computed based on the whole-brain white matter network and a hub-attached reading network, and were correlated with scores on several tests of children's reading and reading-related abilities. Significant correlations between topological metrics of the left thalamus and reading scores were observed only in the hub-attached reading network. Local efficiency was negatively correlated with rapid automatized naming. Transmission cost was positively correlated with phonemic decoding, and this correlation was independent of network efficiency scores; follow-up analyses further demonstrated that this effect was specific to the pulvinar and mediodorsal nuclei of the left thalamus. We validated these results using an independent dataset and demonstrated that that the relationship between thalamic connectivity and phonemic decoding was specifically robust. Overall, the results highlight the role of the left thalamus and thalamocortical network in understanding the neurocognitive bases of skilled reading and dyslexia in children.
Collapse
Affiliation(s)
- Chenglin Lou
- Department of Special Education, Peabody College of Education, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
| | - Alexandra M. Cross
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Canada
| | - Lien Peters
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Faculty of Psychology and Educational Science, Department of Experimental Clinical and Health Psychology, Research in Developmental Disorder Lab, Ghent University, Ghent, Belgium
| | - Daniel Ansari
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Faculty of Education, The University of Western Ontario, London, Canada
| | - Marc F. Joanisse
- Department of Psychology, The University of Western Ontario, London, Canada
- Centre for Brain and Mind, The University of Western Ontario, London, Canada
- Haskins Laboratories, New Haven CT, USA
| |
Collapse
|
2
|
Lee MM, Stoodley CJ. Neural bases of reading fluency: A systematic review and meta-analysis. Neuropsychologia 2024; 202:108947. [PMID: 38964441 DOI: 10.1016/j.neuropsychologia.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Reading fluency, the ability to read quickly and accurately, is a critical marker of successful reading and is notoriously difficult to improve in reading disabled populations. Despite its importance to functional literacy, fluency is a relatively under-studied aspect of reading, and the neural correlates of reading fluency are not well understood. Here, we review the literature of the neural correlates of reading fluency as well as rapid automatized naming (RAN), a task that is robustly related to reading fluency. In a qualitative review of the neuroimaging literature, we evaluated structural and functional MRI studies of reading fluency in readers from a range of skill levels. This was followed by a quantitative activation likelihood estimate (ALE) meta-analysis of fMRI studies of reading speed and RAN measures. We anticipated that reading speed, relative to untimed reading and reading-related tasks, would harness ventral reading pathways that are thought to enable the fast, visual recognition of words. The qualitative review showed that speeded reading taps the entire canonical reading network. The meta-analysis indicated a stronger role of the ventral reading pathway in rapid reading and rapid naming. Both reviews identified regions outside the canonical reading network that contribute to reading fluency, such as the bilateral insula and superior parietal lobule. We suggest that fluent reading engages both domain-specific reading pathways as well as domain-general regions that support overall task performance and discuss future avenues of research to expand our understanding of the neural bases of fluent reading.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Neuroscience, American University, USA; Center for Applied Brain and Cognitive Sciences, Tufts University, USA
| | - Catherine J Stoodley
- Department of Neuroscience, American University, USA; Developing Brain Institute, Children's National Hospital, USA; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, USA.
| |
Collapse
|
3
|
Pickren SE, Torelli JN, Miller AH, Chow JC. The relation between reading and externalizing behavior: a correlational meta-analysis. ANNALS OF DYSLEXIA 2024; 74:158-186. [PMID: 38949745 PMCID: PMC11249710 DOI: 10.1007/s11881-024-00307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/06/2024] [Indexed: 07/02/2024]
Abstract
Reading proficiency is important because it has life-long consequences and influences success in other academic areas. Many students with behavior problems are poor readers and many students with learning disabilities have more behavior problems than their typical peers. We conducted a correlational meta-analysis to examine the association between reading and externalizing behavior in students ages 5-12. We identified 33 studies that reported 88 effect sizes. Using a random-effects linear regression model with robust variance estimation, we found a significant, negative correlation (r= -0.1698, SE = 0.01, p < 0.0001) between reading and externalizing behavior. We tested several moderators related to measurement and sample characteristics. We found that rater type, behavior dimension (e.g., aggression), time between longitudinal measurement points, age of the sample, and percentage male of the sample moderated the relation between reading and behavior. Whether the reading assessment measured comprehension or word reading and socioeconomic status of the sample did not moderate the relation. Understanding the association between reading and externalizing behavior has implications for disability identification and intervention practices for children in elementary school. Future research should examine shared cognitive factors and environmental influences that explain the relation between the constructs.
Collapse
Affiliation(s)
- Sage E Pickren
- Department of Special Education, Vanderbilt University, Nashville, TN, USA.
| | - Jessica N Torelli
- Department of Communication Sciences and Special Education, University of Georgia, Athens, GA, USA
| | - Anna H Miller
- Department of Special Education, Vanderbilt University, Nashville, TN, USA
| | - Jason C Chow
- Department of Special Education, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Lasnick OHM, Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia. Front Hum Neurosci 2024; 17:1294941. [PMID: 38234592 PMCID: PMC10792016 DOI: 10.3389/fnhum.2023.1294941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Much progress has been made in research on the causal mechanisms of developmental dyslexia. In recent years, the "temporal sampling" account of dyslexia has evolved considerably, with contributions from neurogenetics and novel imaging methods resulting in a much more complex etiological view of the disorder. The original temporal sampling framework implicates disrupted neural entrainment to speech as a causal factor for atypical phonological representations. Yet, empirical findings have not provided clear evidence of a low-level etiology for this endophenotype. In contrast, the neural noise hypothesis presents a theoretical view of the manifestation of dyslexia from the level of genes to behavior. However, its relative novelty (published in 2017) means that empirical research focused on specific predictions is sparse. The current paper reviews dyslexia research using a dual framework from the temporal sampling and neural noise hypotheses and discusses the complementary nature of these two views of dyslexia. We present an argument for an integrated model of sensory temporal sampling as an etiological pathway for dyslexia. Finally, we conclude with a brief discussion of outstanding questions.
Collapse
Affiliation(s)
- Oliver H. M. Lasnick
- brainLENS Laboratory, Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
5
|
Jones SK, McCarthy DM, Stanwood GD, Schatschneider C, Bhide PG. Learning and memory deficits produced by aspartame are heritable via the paternal lineage. Sci Rep 2023; 13:14326. [PMID: 37652922 PMCID: PMC10471780 DOI: 10.1038/s41598-023-41213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Environmental exposures produce heritable traits that can linger in the population for one or two generations. Millions of individuals consume substances such as artificial sweeteners daily that are declared safe by regulatory agencies without evaluation of their potential heritable effects. We show that consumption of aspartame, an FDA-approved artificial sweetener, daily for up to 16-weeks at doses equivalent to only 7-15% of the FDA recommended maximum daily intake value (equivalent to 2-4 small, 8 oz diet soda drinks per day) produces significant spatial learning and memory deficits in mice. Moreover, the cognitive deficits are transmitted to male and female descendants along the paternal lineage suggesting that aspartame's adverse cognitive effects are heritable, and that they are more pervasive than current estimates, which consider effects in the directly exposed individuals only. Traditionally, deleterious environmental exposures of pregnant and nursing women are viewed as risk factors for the health of future generations. Environmental exposures of men are not considered to pose similar risks. Our findings suggest that environmental exposures of men can produce adverse impact on cognitive function in future generations and demonstrate the need for considering heritable effects via the paternal lineage as part of the regulatory evaluations of artificial sweeteners.
Collapse
Affiliation(s)
- Sara K Jones
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
| | - Deirdre M McCarthy
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA.
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
| |
Collapse
|
6
|
Cross AM, Lammert JM, Peters L, Frijters JC, Ansari D, Steinbach KA, Lovett MW, Archibald LMD, Joanisse MF. White matter correlates of reading subskills in children with and without reading disability. BRAIN AND LANGUAGE 2023; 241:105270. [PMID: 37141728 DOI: 10.1016/j.bandl.2023.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Individual differences in reading ability are associated with characteristics of white matter microstructure in the brain. However, previous studies have largely measured reading as a single construct, resulting in difficulty characterizing the role of structural connectivity in discrete subskills of reading. The present study used diffusion tensor imaging to examine how white matter microstructure, measured by fractional anisotropy (FA), relates to individual differences in reading subskills in children aged 8 to 14 (n = 65). Findings showed positive correlations between FA of the left arcuate fasciculus and measures of single word reading and rapid naming abilities. Negative correlations were observed between FA of the right inferior longitudinal fasciculus and bilateral uncinate fasciculi, and reading subskills, particularly reading comprehension. The results suggest that although reading subskills rely to some extent on shared tracts, there are also distinct characteristics of white matter microstructure supporting different components of reading ability in children.
Collapse
Affiliation(s)
- Alexandra M Cross
- Brain and Mind Institute, The University of Western Ontario, London, Canada; Health and Rehabilitation Sciences, The University of Western Ontario, London, Canada; School of Communication Sciences and Disorders, University of Western Ontario, London, Canada.
| | - Jessica M Lammert
- Brain and Mind Institute, The University of Western Ontario, London, Canada; Department of Psychology, The University of Western Ontario, London, Canada
| | - Lien Peters
- Brain and Mind Institute, The University of Western Ontario, London, Canada; Department of Psychology, The University of Western Ontario, London, Canada
| | - Jan C Frijters
- Child and Youth Studies, Brock University, St. Catharines, Canada
| | - Daniel Ansari
- Brain and Mind Institute, The University of Western Ontario, London, Canada; Department of Psychology, The University of Western Ontario, London, Canada
| | | | - Maureen W Lovett
- The Hospital for Sick Children (SickKids), Toronto, Canada; Paediatrics and Medical Sciences, University of Toronto, Toronto, Canada
| | - Lisa M D Archibald
- Brain and Mind Institute, The University of Western Ontario, London, Canada; Health and Rehabilitation Sciences, The University of Western Ontario, London, Canada; School of Communication Sciences and Disorders, University of Western Ontario, London, Canada; Department of Psychology, The University of Western Ontario, London, Canada
| | - Marc F Joanisse
- Brain and Mind Institute, The University of Western Ontario, London, Canada; Department of Psychology, The University of Western Ontario, London, Canada; Haskins Laboratories, New Haven CT, USA
| |
Collapse
|
7
|
Pellegrino M, Ben-Soussan TD, Paoletti P. A Scoping Review on Movement, Neurobiology and Functional Deficits in Dyslexia: Suggestions for a Three-Fold Integrated Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3315. [PMID: 36834011 PMCID: PMC9966639 DOI: 10.3390/ijerph20043315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Developmental dyslexia is a common complex neurodevelopmental disorder. Many theories and models tried to explain its symptomatology and find ways to improve poor reading abilities. The aim of this scoping review is to summarize current findings and several approaches and theories, focusing on the interconnectedness between motion, emotion and cognition and their connection to dyslexia. Consequently, we present first a brief overview of the main theories and models regarding dyslexia and its proposed neural correlates, with a particular focus on cerebellar regions and their involvement in this disorder. After examining different types of intervention programs and remedial training, we highlight the effects of a specific structured sensorimotor intervention named Quadrato Motor Training (QMT). QMT utilizes several cognitive and motor functions known to be relevant in developmental dyslexia. We introduce its potential beneficial effects on reading skills, including working memory, coordination and attention. We sum its effects ranging from behavioral to functional, structural and neuroplastic, especially in relation to dyslexia. We report several recent studies that employed this training technique with dyslexic participants, discussing the specific features that distinguish it from other training within the specific framework of the Sphere Model of Consciousness. Finally, we advocate for a new perspective on developmental dyslexia integrating motion, emotion and cognition to fully encompass this complex disorder.
Collapse
Affiliation(s)
- Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | | |
Collapse
|
8
|
Zhao J, Song Z, Zhao Y, Thiebaut de Schotten M, Altarelli I, Ramus F. White matter connectivity in uncinate fasciculus accounts for visual attention span in developmental dyslexia. Neuropsychologia 2022; 177:108414. [PMID: 36343707 DOI: 10.1016/j.neuropsychologia.2022.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The present study aimed to investigate the role of connectivity disruptions in two fiber pathways, the uncinate fasciculus (UF) and the frontal aslant tract (FAT), in developmental dyslexia and determine the relationship between the connectivity of these pathways and behavioral performance in children with dyslexia. A total of 26 French children with dyslexia and 31 age-matched control children were included. Spherical deconvolution tractography was used to reconstruct the two fiber pathways. Hindrance-modulated oriented anisotropy (HMOA) was used to measure the connectivity of each fiber pathway in both hemispheres. Only boys with dyslexia showed reduced HMOA in the UF compared to control boys. Furthermore, HMOA of the UF correlated with individual differences in the visual attention span in participants with dyslexia. All significant results found in HMOA of the UF were verified in fractional anisotropy (FA) of the UF using standard diffusion imaging model. This study suggests a differential sex effect on the connectivity disruption in the UF in developmental dyslexia. It also indicates that the UF may play an essential role in the visual attention span deficit in developmental dyslexia.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Psychology, Shaanxi Normal University, Xi'an, China.
| | - Zujun Song
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Yueye Zhao
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Michel Thiebaut de Schotten
- Institut des Maladies Neurodégénératives-UMR5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Brain Connectivity and Behavior Laboratory, Sorbonne Universities, Paris, France
| | - Irene Altarelli
- LaPsyDÉ Laboratory (UMR 8240), Université Paris Cité, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département D'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France.
| |
Collapse
|
9
|
Palser ER, Miller ZA, Licata AE, Yabut NA, Sudarsan SP, Tee BL, Deleon JA, Mandelli ML, Caverzasi E, Sturm VE, Hendren R, Possin KL, Miller BL, Tempini MLG, Pereira CW. Visual and social differences in dyslexia: deep phenotyping of four cases with spared phonology. Neurocase 2022; 28:419-431. [PMID: 36450280 PMCID: PMC9957930 DOI: 10.1080/13554794.2022.2145905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022]
Abstract
Diagnostic criteria for dyslexia describe specific reading difficulties, and single-deficit models, including the phonological deficit theory, have prevailed. Children seeking diagnosis, however, do not always show phonological deficits, and may present with strengths and challenges beyond reading. Through extensive neurological, neuropsychological, and academic evaluation, we describe four children with visuospatial, socio-emotional, and attention impairments and spared phonology, alongside long-standing reading difficulties. Diffusion tensor imaging revealed white matter alterations in inferior longitudinal, uncinate, and superior longitudinal fasciculi versus neurotypical children. Findings emphasize that difficulties may extend beyond reading in dyslexia and underscore the value of deep phenotyping in learning disabilities.
Collapse
Affiliation(s)
- Eleanor R. Palser
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Zachary A. Miller
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Abigail E. Licata
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Nicole A. Yabut
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Swati P Sudarsan
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Boon Lead Tee
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Jessica A. Deleon
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Mandelli
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Eduardo Caverzasi
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| | - Virginia E. Sturm
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
- Department of Psychiatry, University of California, San Francisco, CA 94131, USA
| | - Robert Hendren
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
- Department of Psychiatry, University of California, San Francisco, CA 94131, USA
| | - Katherine L. Possin
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Bruce L. Miller
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Gorno Tempini
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
- Department of Psychiatry, University of California, San Francisco, CA 94131, USA
| | - Christa Watson Pereira
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
10
|
Boissonneau S, Lemaître AL, Herbet G, Ng S, Duffau H, Moritz-Gasser S. Evidence for a critical role of the left inferior parietal lobule and underlying white matter connectivity in proficient text reading. J Neurosurg 2022; 138:1433-1442. [PMID: 36057115 DOI: 10.3171/2022.7.jns22236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/15/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Reading proficiency is an important skill for personal and socio-professional daily life. Neurocognitive models underlie a dual-route organization for word reading, in which information is processed by both a dorsal phonological "assembled phonology route" and a ventral lexical-semantic "addressed phonology route." Because proficient reading should not be reduced to the ability to read words one after another, the current study was designed to shed light on the neural bases specifically underpinning text reading and the relative contributions of each route to this skill. METHODS Twenty-two patients with left-sided, diffuse, low-grade glioma who underwent operations while awake were included. They were divided into 3 groups on the basis of tumor location: the inferior parietal lobule (IPL) group (n = 6), inferior temporal gyrus (Tinf) group (n = 6), and fronto-insular (control) group (n = 10). Spoken language and reading abilities were tested in all patients the day before surgery, during surgery, and 3 months after surgery, and cognitive functioning was evaluated before and 3 months after surgery. Text-reading scores obtained before and 3 months after surgery were compared within each group and between groups, correlations between reading scores and both spoken language and cognitive scores were calculated, postoperative cortical-subcortical resection location was estimated, and multiple regression analysis was conducted to examine the relationship between reading proficiency and lesion location. RESULTS The results indicated that only the patients in the IPL group showed a significant decrease in text-reading scores between periods, which was not associated with lower scores in naming or verbal fluency; patients in the Tinf group showed a slight nonsignificant decrease in text reading between periods, which was associated with a clear decrease in naming and semantic verbal fluency; and patients in the control group showed no differences between preoperative and postoperative reading and spoken language scores. The results of the analysis of these behavioral results and anatomical data (resection cavities and white matter damage) suggest critical roles for the left inferior parietal lobule and underlying white matter connectivity, especially the posterior segment of the arcuate fasciculus, in proficient text reading. CONCLUSIONS Text-reading proficiency may depend on not only the integrity of both processing routes but also their capacity for interaction, with critical roles for the left inferior parietal lobule and posterior arcuate fasciculus. These findings have fundamental as well as clinical implications.
Collapse
Affiliation(s)
- Sébastien Boissonneau
- 1Department of Neurosurgery, APHM, CHU Timone, Marseille, France.,2Inserm, INS, Institute of Neurosciences of Systems, Aix Marseille University, Marseille, France
| | - Anne-Laure Lemaître
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and
| | - Guillaume Herbet
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and.,5Department of Speech-Language Therapy, Faculty of Medicine, University of Montpellier, France
| | - Sam Ng
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and
| | - Hugues Duffau
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and.,5Department of Speech-Language Therapy, Faculty of Medicine, University of Montpellier, France
| | - Sylvie Moritz-Gasser
- 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,4National Institute for Health and Medical Research (INSERM), U1191, Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," Institute of Functional Genomics, University of Montpellier, France; and.,5Department of Speech-Language Therapy, Faculty of Medicine, University of Montpellier, France
| |
Collapse
|
11
|
Farah R, Glukhovsky N, Rosch K, Horowitz-Kraus T. Structural white matter characteristics for working memory and switching/inhibition in children with reading difficulties: The role of the left superior longitudinal fasciculus. Netw Neurosci 2022; 6:897-915. [PMID: 36605413 PMCID: PMC9810373 DOI: 10.1162/netn_a_00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/02/2022] [Indexed: 01/18/2023] Open
Abstract
Reading difficulties (RDs) are characterized by slow and inaccurate reading as well as additional challenges in cognitive control (i.e., executive functions, especially in working memory, inhibition, and visual attention). Despite evidence demonstrating differences in these readers' language and visual processing abilities, white matter differences associated with executive functions (EFs) difficulties in children with RDs are scarce. Structural correlates for reading and EFs in 8- to 12-year-old children with RDs versus typical readers (TRs) were examined using diffusion tensor imaging (DTI) data. Results suggest that children with RDs showed significantly lower reading and EF abilities versus TRs. Lower fractional anisotropy (FA) in left temporo-parietal tracts was found in children with RDs, who also showed positive correlations between reading and working memory and switching/inhibition scores and FA in the left superior longitudinal fasciculus (SLF). FA in the left SLF predicted working memory performance mediated by reading ability in children with RDs but not TRs. Our findings support alterations in white matter tracts related to working memory, switching/inhibition, and overall EF challenges in children with RDs and the linkage between working memory difficulties and FA alterations in the left SLF in children with RDs via reading.
Collapse
Affiliation(s)
- Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Noam Glukhovsky
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Keri Rosch
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Romanovska L, Bonte M. How Learning to Read Changes the Listening Brain. Front Psychol 2021; 12:726882. [PMID: 34987442 PMCID: PMC8721231 DOI: 10.3389/fpsyg.2021.726882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023] Open
Abstract
Reading acquisition reorganizes existing brain networks for speech and visual processing to form novel audio-visual language representations. This requires substantial cortical plasticity that is reflected in changes in brain activation and functional as well as structural connectivity between brain areas. The extent to which a child's brain can accommodate these changes may underlie the high variability in reading outcome in both typical and dyslexic readers. In this review, we focus on reading-induced functional changes of the dorsal speech network in particular and discuss how its reciprocal interactions with the ventral reading network contributes to reading outcome. We discuss how the dynamic and intertwined development of both reading networks may be best captured by approaching reading from a skill learning perspective, using audio-visual learning paradigms and longitudinal designs to follow neuro-behavioral changes while children's reading skills unfold.
Collapse
Affiliation(s)
| | - Milene Bonte
- *Correspondence: Linda Romanovska, ; Milene Bonte,
| |
Collapse
|
13
|
Barkus E, de Leede-Smith S, Roodenrys S, Horsley L, Matrini S, Mison E. Dyslexia: Links with schizotypy and neurological soft signs. Psych J 2021; 11:163-170. [PMID: 34743416 DOI: 10.1002/pchj.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/08/2022]
Abstract
Abnormalities in language processing, psychological distress, and subtle neurodevelopmental features called neurological soft signs (NSS) are expressed by people with dyslexia and those scoring highly on schizotypy. We investigated whether the expression of NSS, distress, and schizotypy predicted dyslexia status. Participants (N = 96, 48 dyslexic) selected to be age and sex matched, completed the Schizotypal Personality Questionnaire, General Health Questionnaire, Neurological Evaluation Scale, and the National Adult Reading Test (NART; a measure of verbal intelligence). Dyslexia status was predicted by higher total NSS and disorganized schizotypy scores in the absence of NART. However, even with the inclusion of NART, disorganized schizotypy remained a significant predictor. The findings suggest that disorganized features of schizotypy could be a significant factor for those with dyslexia. Conversely, more attention needs to be given to developmental language disorders in those who score highly on schizotypy.
Collapse
Affiliation(s)
- Emma Barkus
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK.,School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Saskia de Leede-Smith
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Steven Roodenrys
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Lauren Horsley
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Shannen Matrini
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Erin Mison
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
14
|
Liu T, Thiebaut de Schotten M, Altarelli I, Ramus F, Zhao J. Maladaptive compensation of right fusiform gyrus in developmental dyslexia: A hub-based white matter network analysis. Cortex 2021; 145:57-66. [PMID: 34689032 DOI: 10.1016/j.cortex.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/19/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Cognitive theories have been proposed to clarify the causes and symptoms of dyslexia. However, correlations between local network parameters of white matter connectivity and literacy skills remain poorly known. An unbiased hypothesis-free approach was adopted to examine the correlations between literacy symptoms (reading and spelling) and hub-based white matter networks' connectivity parameters [nodal degree fractional anisotropy (FA) values] of 90 brain regions based on Anatomical Atlas Labels (AAL) in a group of French children with dyslexia aged 9-14 years. Results revealed that the higher the right fusiform gyrus's (FFG) nodal degree FA values, the lower the reading accuracy for words and pseudowords in dyslexic children. The results indicate that the severity of word/pseudoword reading symptoms in dyslexia relates to a white matter network centered around the right FFG. The negative correlation between right FFG network connectivity and reading accuracy, in particular pseudoword reading accuracy, suggests that right FFG represents a maladaptive compensation towards a general orthography-to-phonology decoding ability in developmental dyslexia.
Collapse
Affiliation(s)
- Tianqiang Liu
- School of Psychology, Shaanxi Normal University, Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Irene Altarelli
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and, Education (LaPsyDE), University Paris Descartes, Université de Paris, Paris, France; Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, France.
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University, Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Xi'an, China.
| |
Collapse
|
15
|
Farah R, Ionta S, Horowitz-Kraus T. Neuro-Behavioral Correlates of Executive Dysfunctions in Dyslexia Over Development From Childhood to Adulthood. Front Psychol 2021; 12:708863. [PMID: 34497563 PMCID: PMC8419422 DOI: 10.3389/fpsyg.2021.708863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Dyslexia is a neurobiological learning disability in the reading domain that has symptoms in early childhood and persists throughout life. Individuals with dyslexia experience difficulties in academia and cognitive and emotional challenges that can affect wellbeing. Early intervention is critical to minimize the long-term difficulties of these individuals. However, the behavioral and neural correlates which predict dyslexia are challenging to depict before reading is acquired. One of the precursors for language and reading acquisition is executive functions (EF). The present review aims to highlight the current atypicality found in individuals with dyslexia in the domain of EF using behavioral measures, brain mapping, functional connectivity, and diffusion tensor imaging along development. Individuals with dyslexia show EF abnormalities in both behavioral and neurobiological domains, starting in early childhood that persist into adulthood. EF impairment precedes reading disability, therefore adding an EF assessment to the neuropsychological testing is recommended for early intervention. EF training should also be considered for the most comprehensive outcomes.
Collapse
Affiliation(s)
- Rola Farah
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion, Haifa, Israel
- Reading and Literacy Discovery Center and the Pediatric Neuroimaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- Jules Gonin Eye Hospital-Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion, Haifa, Israel
- Reading and Literacy Discovery Center and the Pediatric Neuroimaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
16
|
Sihvonen AJ, Virtala P, Thiede A, Laasonen M, Kujala T. Structural white matter connectometry of reading and dyslexia. Neuroimage 2021; 241:118411. [PMID: 34293464 DOI: 10.1016/j.neuroimage.2021.118411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023] Open
Abstract
Current views on the neural network subserving reading and its deficits in dyslexia rely largely on evidence derived from functional neuroimaging studies. However, understanding the structural organization of reading and its aberrations in dyslexia requires a hodological approach, studies of which have not provided consistent findings. Here, we adopted a whole brain hodological approach and investigated relationships between structural white matter connectivity and reading skills and phonological processing in a cross-sectional study of 44 adults using individual local connectome matrix from diffusion MRI data. Moreover, we performed quantitative anisotropy aided differential tractography to uncover structural white matter anomalies in dyslexia (23 dyslexics and 21 matched controls) and their correlation to reading-related skills. The connectometry analyses indicated that reading skills and phonological processing were both associated with corpus callosum (tapetum), forceps major and minor, as well as cerebellum bilaterally. Furthermore, the left dorsal and right thalamic pathways were associated with phonological processing. Differential tractography analyses revealed structural white matter anomalies in dyslexics in the left ventral route and bilaterally in the dorsal route compared to the controls. Connectivity deficits were also observed in the corpus callosum, forceps major, vertical occipital fasciculus and corticostriatal and thalamic pathways. Altered structural connectivity in the observed differential tractography results correlated with poor reading skills and phonological processing. Using a hodological approach, the current study provides novel evidence for the extent of the reading-related connectome and its aberrations in dyslexia. The results conform current functional neuroanatomical models of reading and developmental dyslexia but provide novel network-level and tract-level evidence on structural connectivity anomalies in dyslexia, including the vertical occipital fasciculus.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; School of Health and Rehabilitation Sciences, Queensland Aphasia Research Centre and UQ Centre for Clinical Research, The University of Queensland, Australia.
| | - Paula Virtala
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Anja Thiede
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Marja Laasonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Department of Otorhinolaryngology and Phoniatrics, Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Finland; Logopedics, School of Humanities, Philosophical Faculty, University of Eastern Finland
| | - Teija Kujala
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
17
|
Partanen M, Kim DHC, Rauscher A, Siegel LS, Giaschi DE. White matter but not grey matter predicts change in reading skills after intervention. DYSLEXIA (CHICHESTER, ENGLAND) 2021; 27:224-244. [PMID: 32959479 DOI: 10.1002/dys.1668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/28/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
This study examined changes in white matter microstructure and grey matter volume, cortical thickness, and cortical surface area before and after reading intervention. Participants included 22 average readers and 13 dyslexic readers (8-9 years old in third grade); the dyslexic readers were enrolled in reading intervention programs at their elementary school. Participants completed scans of diffusion tensor imaging and T1-weighted MRI before and after 3 months of instruction. An a priori region of interest (ROI) analysis was used. Dyslexic readers, compared to average readers, showed higher mean diffusivity in white matter ROIs including bilateral inferior frontal, bilateral insula, left superior temporal, and right supramarginal gyri across time points. Dyslexic readers also had thicker cortex in left fusiform and bilateral supramarginal gyri; whereas, average readers had greater surface area in right fusiform across time. There were no significant changes in white or grey matter following intervention; however, mean diffusivity in the right hemisphere was associated with reading gains over time. White matter organization in the right hemisphere predicts reading changes, and dyslexic readers may have persistent differences in white and grey matter due to ongoing reading deficits.
Collapse
Affiliation(s)
- Marita Partanen
- Department of Educational & Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Danny H C Kim
- B.C. Children's Hospital MRI Research Facility, B.C. Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Alexander Rauscher
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda S Siegel
- Department of Educational & Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah E Giaschi
- B.C. Children's Hospital MRI Research Facility, B.C. Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Lou C, Cross AM, Peters L, Ansari D, Joanisse MF. Rich-club structure contributes to individual variance of reading skills via feeder connections in children with reading disabilities. Dev Cogn Neurosci 2021; 49:100957. [PMID: 33894677 PMCID: PMC8093404 DOI: 10.1016/j.dcn.2021.100957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023] Open
Abstract
The present work considers how connectome-wide differences in brain organization might distinguish good and poor readers. The connectome comprises a ‘rich-club’ organization in which a small number of hub regions play a focal role in assisting global communication across the whole brain. Prior work indicates that this rich-club structure is associated with typical and impaired cognitive function although no work so far has examined how this relates to skilled reading or its disorders. Here we investigated the rich-club structure of brain’s white matter connectome and its relationship to reading subskills in 64 children with and without reading disabilities. Among three types of white matter connections, the strength of feeder connections that connect hub and non-hub nodes was significantly correlated with word reading efficiency and phonemic decoding. Phonemic decoding was also positively correlated with connectivity between connectome-wide hubs and nodes within the left-hemisphere reading network, as well as the local efficiency of the reading network. Exploratory analyses also identified sex differences indicating these effects were stronger in girls. This work highlights the independent roles of connectome-wide structure and the more narrowly-defined reading network in understanding the neural bases of skilled and impaired reading in children.
Collapse
Affiliation(s)
- Chenglin Lou
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada.
| | - Alexandra M Cross
- Brain and Mind Institute, The University of Western Ontario, London, Canada; Health and Rehabilitation Sciences, The University of Western Ontario, London, Canada
| | - Lien Peters
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada
| | - Daniel Ansari
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada; Faculty of Education, The University of Western Ontario, London, Canada
| | - Marc F Joanisse
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada; Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|
19
|
Chutko LS, Surushkina SY, Yakovenko EA, I Anisimova T, Didur MD, Chekalova SA. [Executive functions disorders in children with dyslexia]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:38-45. [PMID: 33728849 DOI: 10.17116/jnevro202112102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the severity of disorders of executive functions in children with dyslexia and to assess the effectiveness of treatment of this pathology with cortexin. MATERIAL AND METHODS The main study group included 60 children, aged 8-11 years, with a specific reading disorder (F.81.0). Reading skills were assessed using methods of T.A. Fotekova, T.V. Akhutina. Diagnostic examination included neurological examination with dyspraxia test, electroencephalography with visual and quantitative analysis. To objectify the severity of memory impairments, the «Working memory» technique was used. Attention and impulsivity disorders were quantified using SNAP-IY and the Test of Variables of Attention (TOVA). The control group consisted of 60 children of the same age without symptoms of dyslexia. Cortexin was used to treat 30 patients from the study group, 30 patients received encephabol. A control study to analyze the effectiveness of the therapy was carried out one month after the end of therapy. RESULTS AND CONCLUSION Children with dyslexia are characterized by a higher level of inattention and impulsivity, as well as significantly lower indicators of working memory compared to children from the control group. The decrease in attention and working memory as well as an increased level of impulsivity are manifestations of impaired executive functions in children with dyslexia. The results of the control study after treatment showed a significant increase in reading skills in both groups. In addition, there was an improvement in indicators of attention and working memory. However, the effectiveness of treatment with cortexin was slightly higher compared to encephabol (improvement was noted in 73.3% and 60.0%of patients, respectively). According to a comparative analysis of EEG results, after a course of treatment with cortexin, children with dyslexia have significant neurophysiological changes that indicate the activation of the brain regulatory systems.
Collapse
Affiliation(s)
- L S Chutko
- N. Bekhtereva Institute of Human Brain of the Russian Academy of Sciences, St. Petersburg, Russia
| | - S Yu Surushkina
- N. Bekhtereva Institute of Human Brain of the Russian Academy of Sciences, St. Petersburg, Russia
| | - E A Yakovenko
- N. Bekhtereva Institute of Human Brain of the Russian Academy of Sciences, St. Petersburg, Russia
| | - T I Anisimova
- N. Bekhtereva Institute of Human Brain of the Russian Academy of Sciences, St. Petersburg, Russia
| | - M D Didur
- N. Bekhtereva Institute of Human Brain of the Russian Academy of Sciences, St. Petersburg, Russia
| | - S A Chekalova
- Privolzhsky Research Medical University, Nizhniy Novgorod, Russia
| |
Collapse
|
20
|
Elsherif MM, Wheeldon LR, Frisson S. Do dyslexia and stuttering share a processing deficit? JOURNAL OF FLUENCY DISORDERS 2021; 67:105827. [PMID: 33444937 DOI: 10.1016/j.jfludis.2020.105827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/24/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
This study assessed the prevalence of childhood stuttering in adults with dyslexia (AWD) and the prevalence of dyslexia in adults who stutter (AWS). In addition, the linguistic profiles of 50 AWD, 30 AWS and 84 neurotypical adults were measured. We found that 17 out of 50 AWD (34 %) reported stuttering during childhood compared to 1 % of the neurotypical population. This was moderated by the severity of dyslexia: People with mild dyslexia showed a lower prevalence rate (15 %) of childhood stuttering than those with severe dyslexia (47 %). In addition, we observed that 50 % of the AWS (n = 30) fulfilled the diagnostic criteria of dyslexia, even though they had never been diagnosed as dyslexic. Compared to neurotypical adults, phonological working memory, awareness, and retrieval were similarly reduced in AWS and AWD. The findings supports the view that stuttering and dyslexia may share a phonological deficit.
Collapse
Affiliation(s)
- Mahmoud M Elsherif
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Linda R Wheeldon
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT, UK; Department of Foreign Languages and Translation, University of Agder, 4604 Kristiansand, Norway
| | - Steven Frisson
- Department of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
21
|
The relation between neurofunctional and neurostructural determinants of phonological processing in pre-readers. Dev Cogn Neurosci 2020; 46:100874. [PMID: 33130464 PMCID: PMC7606842 DOI: 10.1016/j.dcn.2020.100874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
Phonological processing skills are known as the most robust cognitive predictor of reading ability. Therefore, the neural determinants of phonological processing have been extensively investigated by means of either neurofunctional or neurostructural techniques. However, to fully understand how the brain represents and processes phonological information, there is need for studies that combine both methods. The present study applies such a multimodal approach with the aim of investigating the pre-reading relation between neural measures of auditory temporal processing, white matter properties of the reading network and phonological processing skills. We administered auditory steady-state responses, diffusion-weighted MRI scans and phonological awareness tasks in 59 pre-readers. Our results demonstrate that a stronger rightward lateralization of syllable-rate (4 Hz) processing coheres with higher fractional anisotropy in the left fronto-temporoparietal arcuate fasciculus. Both neural features each in turn relate to better phonological processing skills. As such, the current study provides novel evidence for the existence of a pre-reading relation between functional measures of syllable-rate processing, structural organization of the arcuate fasciculus and cognitive precursors of reading development. Moreover, our findings demonstrate the value of combining different neural techniques to gain insight in the underlying neural systems for reading (dis)ability.
Collapse
|
22
|
Vander Stappen C, Dricot L, Van Reybroeck M. RAN training in dyslexia: Behavioral and brain correlates. Neuropsychologia 2020; 146:107566. [DOI: 10.1016/j.neuropsychologia.2020.107566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/18/2023]
|
23
|
Nir A, Barak B. White matter alterations in Williams syndrome related to behavioral and motor impairments. Glia 2020; 69:5-19. [PMID: 32589817 DOI: 10.1002/glia.23868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Myelin is the electrical insulator surrounding the neuronal axon that makes up the white matter (WM) of the brain. It helps increase axonal conduction velocity (CV) by inducing saltatory conduction. Damage to the myelin sheath and WM is associated with many neurological and psychiatric disorders. Decreasing myelin deficits, and thus improving axonal conduction, has the potential to serve as a therapeutic mechanism for reducing the severity of some of these disorders. Myelin deficits have been previously linked to abnormalities in social behavior, suggesting an interplay between brain connectivity and sociability. This review focuses on Williams syndrome (WS), a genetic disorder characterized by neurocognitive characteristics and motor abnormalities, mainly known for its hypersociability characteristic. We discuss fundamental aspects of WM in WS and how its alterations can affect motor abilities and social behavior. Overall, findings regarding changes in myelin genes and alterations in WM structure in WS suggest new targets for drug therapy aimed at improving conduction properties and altering brain-activity synchronization in this disorder.
Collapse
Affiliation(s)
- Ariel Nir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Cummine J, Villarena M, Onysyk T, Devlin JT. A Study of Null Effects for the Use of Transcranial Direct Current Stimulation (tDCS) in Adults With and Without Reading Impairment. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:434-451. [PMID: 36793290 PMCID: PMC9923690 DOI: 10.1162/nol_a_00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 07/19/2020] [Indexed: 05/09/2023]
Abstract
UNLABELLED There is evidence to support the hypothesis that the delivery of anodal transcranial direct current stimulation (tDCS) to the left temporoparietal junction can enhance performance on reading speed and reading accuracy (Costanzo et al., 2016b; Heth & Lavidor, 2015). Here, we explored whether we could demonstrate similar effects in adults with and without reading impairments. METHOD Adults with (N = 33) and without (N = 29) reading impairment were randomly assigned to anodal or sham stimulation conditions. All individuals underwent a battery of reading assessments pre and post stimulation. The stimulation session involved 15 min of anodal/sham stimulation over the left temporoparietal junction while concurrently completing a computerized nonword segmentation task known to activate the temporoparietal junction. RESULTS There were no conclusive findings that anodal stimulation impacted reading performance for skilled or impaired readers. CONCLUSIONS While tDCS may provide useful gains on reading performance in the paediatric population, much more work is needed to establish the parameters under which such findings would transfer to adult populations. The documentation, reporting, and interpreting of null effects of tDCS are immensely important to a field that is growing exponentially with much uncertainty.
Collapse
Affiliation(s)
| | - Miya Villarena
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Taylor Onysyk
- Communication Sciences and Disorders, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
25
|
Hutton JS, Dudley J, Horowitz-Kraus T, DeWitt T, Holland SK. Associations Between Screen-Based Media Use and Brain White Matter Integrity in Preschool-Aged Children. JAMA Pediatr 2020; 174:e193869. [PMID: 31682712 PMCID: PMC6830442 DOI: 10.1001/jamapediatrics.2019.3869] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE The American Academy of Pediatrics (AAP) recommends limits on screen-based media use, citing its cognitive-behavioral risks. Screen use by young children is prevalent and increasing, although its implications for brain development are unknown. OBJECTIVE To explore the associations between screen-based media use and integrity of brain white matter tracts supporting language and literacy skills in preschool-aged children. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study of healthy children aged 3 to 5 years (n = 47) was conducted from August 2017 to November 2018. Participants were recruited at a US children's hospital and community primary care clinics. EXPOSURES Children completed cognitive testing followed by diffusion tensor imaging (DTI), and their parent completed a ScreenQ survey. MAIN OUTCOMES AND MEASURES ScreenQ is a 15-item measure of screen-based media use reflecting the domains in the AAP recommendations: access to screens, frequency of use, content viewed, and coviewing. Higher scores reflect greater use. ScreenQ scores were applied as the independent variable in 3 multiple linear regression models, with scores in 3 standardized assessments as the dependent variable, controlling for child age and household income: Comprehensive Test of Phonological Processing, Second Edition (CTOPP-2; Rapid Object Naming subtest); Expressive Vocabulary Test, Second Edition (EVT-2; expressive language); and Get Ready to Read! (GRTR; emergent literacy skills). The DTI measures included fractional anisotropy (FA) and radial diffusivity (RD), which estimated microstructural organization and myelination of white matter tracts. ScreenQ was applied as a factor associated with FA and RD in whole-brain regression analyses, which were then narrowed to 3 left-sided tracts supporting language and emergent literacy abilities. RESULTS Of the 69 children recruited, 47 (among whom 27 [57%] were girls, and the mean [SD] age was 54.3 [7.5] months) completed DTI. Mean (SD; range) ScreenQ score was 8.6 (4.8; 1-19) points. Mean (SD; range) CTOPP-2 score was 9.4 (3.3; 2-15) points, EVT-2 score was 113.1 (16.6; 88-144) points, and GRTR score was 19.0 (5.9; 5-25) points. ScreenQ scores were negatively correlated with EVT-2 (F2,43 = 5.14; R2 = 0.19; P < .01), CTOPP-2 (F2,35 = 6.64; R2 = 0.28; P < .01), and GRTR (F2,44 = 17.08; R2 = 0.44; P < .01) scores, controlling for child age. Higher ScreenQ scores were correlated with lower FA and higher RD in tracts involved with language, executive function, and emergent literacy abilities (P < .05, familywise error-corrected), controlling for child age and household income. CONCLUSIONS AND RELEVANCE This study found an association between increased screen-based media use, compared with the AAP guidelines, and lower microstructural integrity of brain white matter tracts supporting language and emergent literacy skills in prekindergarten children. The findings suggest further study is needed, particularly during the rapid early stages of brain development.
Collapse
Affiliation(s)
- John S. Hutton
- Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Reading and Literacy Discovery Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jonathan Dudley
- Reading and Literacy Discovery Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tzipi Horowitz-Kraus
- Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Reading and Literacy Discovery Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio,Educational Neuroimaging Center, Biomedical Engineering, Technion, Israel
| | - Tom DeWitt
- Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Reading and Literacy Discovery Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Scott K. Holland
- Reading and Literacy Discovery Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio,Medpace Inc, Cincinnati, Ohio
| |
Collapse
|
26
|
Tarui T, Madan N, Farhat N, Kitano R, Ceren Tanritanir A, Graham G, Gagoski B, Craig A, Rollins CK, Ortinau C, Iyer V, Pienaar R, Bianchi DW, Grant PE, Im K. Disorganized Patterns of Sulcal Position in Fetal Brains with Agenesis of Corpus Callosum. Cereb Cortex 2019; 28:3192-3203. [PMID: 30124828 DOI: 10.1093/cercor/bhx191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Fetuses with isolated agenesis of the corpus callosum (ACC) are associated with a broad spectrum of neurodevelopmental disability that cannot be specifically predicted in prenatal neuroimaging. We hypothesized that ACC may be associated with aberrant cortical folding. In this study, we determined altered patterning of early primary sulci development in fetuses with isolated ACC using novel quantitative sulcal pattern analysis which measures deviations of regional sulcal features (position, depth, and area) and their intersulcal relationships in 7 fetuses with isolated ACC (27.1 ± 3.8 weeks of gestation, mean ± SD) and 17 typically developing (TD) fetuses (25.7 ± 2.0 weeks) from normal templates. Fetuses with ACC showed significant alterations in absolute sulcal positions and relative intersulcal positional relationship compared to TD fetuses, which were not detected by traditional gyrification index. Our results reveal altered sulcal positional development even in isolated ACC that is present as early as the second trimester and continues throughout the fetal period. It might originate from altered white matter connections and portend functional variances in later life.
Collapse
Affiliation(s)
- Tomo Tarui
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital,Harvard Medical School, Boston, MA, USA.,Mother Infant Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.,Department of Pediatrics, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Neel Madan
- Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Nabgha Farhat
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital,Harvard Medical School, Boston, MA, USA
| | - Rie Kitano
- Mother Infant Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Asye Ceren Tanritanir
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital,Harvard Medical School, Boston, MA, USA
| | - George Graham
- Department of Obstetrics and Gynecology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexa Craig
- Department of Pediatrics, Maine Medical Center, ME, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia Ortinau
- Department of Pediatrics Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Vidya Iyer
- Mother Infant Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Rudolph Pienaar
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Diana W Bianchi
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital,Harvard Medical School, Boston, MA, USA.,Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
O'Brien GE, McCloy DR, Yeatman JD. Categorical phoneme labeling in children with dyslexia does not depend on stimulus duration. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:245. [PMID: 31370631 PMCID: PMC6639114 DOI: 10.1121/1.5116568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
It is established that individuals with dyslexia are less consistent at auditory phoneme categorization than typical readers. One hypothesis attributes these differences in phoneme labeling to differences in auditory cue integration over time, suggesting that the performance of individuals with dyslexia would improve with longer exposure to informative phonetic cues. Here, the relationship between phoneme labeling and reading ability was investigated while manipulating the duration of steady-state auditory information available in a consonant-vowel syllable. Children with dyslexia obtained no more benefit from longer cues than did children with typical reading skills, suggesting that poor task performance is not explained by deficits in temporal integration or temporal sampling.
Collapse
Affiliation(s)
- Gabrielle E O'Brien
- Institute for Learning and Brain Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Daniel R McCloy
- Institute for Learning and Brain Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Jason D Yeatman
- Institute for Learning and Brain Sciences, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
28
|
Boltzmann M, Münte T, Mohammadi B, Rüsseler J. Functional and structural neural plasticity effects of literacy acquisition in adulthood. ZEITSCHRIFT FÜR NEUROPSYCHOLOGIE 2019. [DOI: 10.1024/1016-264x/a000254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract. In Germany, 7.5 Million individuals between 18 and 64 years are considered to be functionally illiterate (Grotlüschen & Riekmann, 2012). Functional illiterates have only rudimentary literacy skills despite attending school for several years. Although they can use written language to a very limited extent, only few functional illiterates attend literacy courses for adults. In addition, most adult literacy courses primarily aim at promoting basic reading and writing skills. Offers specific to workplace literacy are scarce. This review gives an overview of the definition of functional illiteracy. Afterwards, a specific literacy program (AlphaPlus) and its effectiveness will be presented. The reviewed studies indicate that learning to read in adulthood is associated with structural and functional brain changes.
Collapse
Affiliation(s)
- Melanie Boltzmann
- Institute for Neurorehabilitation Research, BDH-Clinic Hessisch Oldendorf, Hessisch Oldendorf
| | - Thomas Münte
- Department of Neurology, University of Lübeck, Lübeck
- Institute of Psychology 2, University of Lübeck, Lübeck
| | - Bahram Mohammadi
- Department of Neurology, University of Lübeck, Lübeck
- CNS-LAB, International Neuroscience Institute, (INI), Hannover
| | - Jascha Rüsseler
- Department of Psychology, Otto-Friedrich University of Bamberg, Bamberg
| |
Collapse
|
29
|
Moreau D, Stonyer JE, McKay NS, Waldie KE. No evidence for systematic white matter correlates of dyslexia: An Activation Likelihood Estimation meta-analysis. Brain Res 2019; 1683:36-47. [PMID: 29456133 DOI: 10.1016/j.brainres.2018.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/18/2023]
Abstract
Dyslexia is a prevalent neurodevelopmental disorder, characterized by reading and spelling difficulties. Beyond the behavioral and functional correlates of this condition, a growing number of studies have explored structural differences between individuals with dyslexia and typically developing individuals. To date, findings remain disparate - some studies suggest differences in fractional anisotropy (FA), an indirect measure of white matter integrity, whereas others do not identify significant disparities. Here, we synthesized the existing literature on this topic by conducting a meta-analysis of Diffusion Tensor Imaging (DTI) studies investigating white matter correlates of dyslexia via voxel-based analyses (VBA) of FA. Our results showed no reliable clusters underlying differences between dyslexics and typical individuals, after correcting for multiple comparisons (false discovery rate correction). Because group comparisons might be too coarse to yield subtle differences, we further explored differences in FA as a function of reading ability, measured on a continuous scale. Consistent with our initial findings, reading ability was not associated with reliable differences in white matter integrity. These findings nuance the current view of profound, structural differences underlying reading ability and its associated disorders, and suggest that their neural correlates might be more subtle than previously thought.
Collapse
Affiliation(s)
- David Moreau
- Centre for Brain Research, School of Psychology, University of Auckland, New Zealand.
| | - Josephine E Stonyer
- Centre for Brain Research, School of Psychology, University of Auckland, New Zealand
| | - Nicole S McKay
- Centre for Brain Research, School of Psychology, University of Auckland, New Zealand
| | - Karen E Waldie
- Centre for Brain Research, School of Psychology, University of Auckland, New Zealand
| |
Collapse
|
30
|
Moulton E, Bouhali F, Monzalvo K, Poupon C, Zhang H, Dehaene S, Dehaene-Lambertz G, Dubois J. Connectivity between the visual word form area and the parietal lobe improves after the first year of reading instruction: a longitudinal MRI study in children. Brain Struct Funct 2019; 224:1519-1536. [PMID: 30840149 DOI: 10.1007/s00429-019-01855-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Abstract
Shortly after reading instruction, a region in the ventral occipital temporal cortex (vOTC) of the left hemisphere, the Visual Word Form Area (VWFA), becomes specialized for written words. Its reproducible location across scripts suggests important anatomical constraints, such as specific patterns of connectivity, notably to spoken language areas. Here, we explored the structural connectivity of the emerging VWFA in terms of its specificity relative to other ventral visual regions and its stability throughout the process of reading instruction in ten children studied longitudinally over 2 years. Category-specific regions for words, houses, faces, and tools were identified in the left vOTC of each subject with functional MRI. With diffusion MRI and tractography, we reconstructed the connections of these regions at two time points (mean age ± standard deviation: 6.2 ± 0.3, 7.2 ± 0.4 years). We first showed that the regions for each visual category harbor their own specific connectivity, all of which precede reading instruction and remain stable throughout development. The most specific connections of the VWFA were to the dorsal posterior parietal cortex. We then showed that microstructural changes in these connections correlated with improvements in reading scores over the first year of instruction but not 1 year later in a subsample of eight children (age: 8.4 ± 0.3 years). These results suggest that the VWFA location depends on its connectivity to distant regions, in particular, the left inferior parietal region which may play a crucial role in visual field maps and eye movement dynamics in addition to attentional control in letter-by-letter reading and disambiguation of mirror-letters during the first stages of learning to read.
Collapse
Affiliation(s)
- Eric Moulton
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France. .,Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013, Paris, France.
| | - Florence Bouhali
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013, Paris, France
| | - Karla Monzalvo
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France
| | - Cyril Poupon
- CEA DRF/Institut-Joliot/NeuroSpin, UNIRS, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France.,Collège de France, Paris, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France
| | - Jessica Dubois
- Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut-Joliot/NeuroSpin, Université Paris-Saclay, Université Paris-Sud, 91191, Gif/Yvette, France
| |
Collapse
|
31
|
The Early Language Environment and the Neuroanatomical Foundations for Reading. J Neurosci 2019; 39:1136-1138. [PMID: 30760628 DOI: 10.1523/jneurosci.2895-18.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
|
32
|
Williamson BJ, Altaye M, Kadis DS. Detrended connectometry analysis to assess white matter correlates of performance in childhood. Neuroimage 2019; 186:637-646. [DOI: 10.1016/j.neuroimage.2018.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/23/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
|
33
|
Perception of musical pitch in developmental prosopagnosia. Neuropsychologia 2019; 124:87-97. [PMID: 30625291 DOI: 10.1016/j.neuropsychologia.2018.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 11/21/2022]
Abstract
Studies of developmental prosopagnosia have often shown that developmental prosopagnosia differentially affects human face processing over non-face object processing. However, little consideration has been given to whether this condition is associated with perceptual or sensorimotor impairments in other modalities. Comorbidities have played a role in theories of other developmental disorders such as dyslexia, but studies of developmental prosopagnosia have often focused on the nature of the visual recognition impairment despite evidence for widespread neural anomalies that might affect other sensorimotor systems. We studied 12 subjects with developmental prosopagnosia with a battery of auditory tests evaluating pitch and rhythm processing as well as voice perception and recognition. Overall, three subjects were impaired in fine pitch discrimination, a prevalence of 25% that is higher than the estimated 4% prevalence of congenital amusia in the general population. This was a selective deficit, as rhythm perception was unaffected in all 12 subjects. Furthermore, two of the three prosopagnosic subjects who were impaired in pitch discrimination had intact voice perception and recognition, while two of the remaining nine subjects had impaired voice recognition but intact pitch perception. These results indicate that, in some subjects with developmental prosopagnosia, the face recognition deficit is not an isolated impairment but is associated with deficits in other domains, such as auditory perception. These deficits may form part of a broader syndrome which could be due to distributed microstructural anomalies in various brain networks, possibly with a common theme of right hemispheric predominance.
Collapse
|
34
|
Legault M, Bourdon JN, Poirier P. Neurocognitive Variety in Neurotypical Environments: The Source of “Deficit” in Autism. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jbbs.2019.96019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Bornstein MH, Hahn CS, Putnick DL, Pearson RM. Stability of core language skill from infancy to adolescence in typical and atypical development. SCIENCE ADVANCES 2018; 4:eaat7422. [PMID: 30474055 PMCID: PMC6248911 DOI: 10.1126/sciadv.aat7422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/24/2018] [Indexed: 05/15/2023]
Abstract
Command of language is a fundamental life skill, a cornerstone of cognitive and socioemotional development, and a necessary ingredient for successful functioning in society. We used 15-year prospective longitudinal data from the Avon Longitudinal Study of Parents and Children to evaluate two types of stability of core language skill in 5036 typically developing and 1056 atypically developing (preterm, dyslexic, autistic, and hearing impaired) children in a multiage, multidomain, multimeasure, multireporter framework. A single core language skill was extracted from multiple measures at multiple ages, and this skill proved stable from infancy to adolescence in all groups, even accounting for child nonverbal intelligence and sociability and maternal age and education. Language skill is a highly conserved and robust individual-differences characteristic. Lagging language skills, a risk factor in child development, would profitably be addressed early in life.
Collapse
Affiliation(s)
- Marc H. Bornstein
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Institute for Fiscal Studies, London, UK
| | - Chun-Shin Hahn
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Diane L. Putnick
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca M. Pearson
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
36
|
Banfi C, Koschutnig K, Moll K, Schulte-Körne G, Fink A, Landerl K. White matter alterations and tract lateralization in children with dyslexia and isolated spelling deficits. Hum Brain Mapp 2018; 40:765-776. [PMID: 30267634 PMCID: PMC6492145 DOI: 10.1002/hbm.24410] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023] Open
Abstract
The present study investigated whether children with a typical dyslexia profile and children with isolated spelling deficits show a distinct pattern of white matter alteration compared with typically developing peers. Relevant studies on the topic are scarce, rely on small samples, and often suffer from the limitations of conventional tensor-based methods. The present Constrained Spherical Deconvolution study includes 27 children with typical reading and spelling skills, 21 children with dyslexia and 21 children with isolated spelling deficits. Group differences along major white matter tracts were quantified utilizing the Automated Fiber Quantification software and a lateralization index was calculated in order to investigate the structural asymmetry of the tracts. The two deficit groups mostly displayed different patterns of white matter alterations, located in the bilateral inferior longitudinal fasciculi, right superior longitudinal fasciculus, and cingulum for the group with dyslexia and in the left arcuate fasciculus for the group with isolated spelling deficits. The two deficit groups differed also with respect to structural asymmetry. Children with dyslexia did not show the typical leftward asymmetry of the arcuate fasciculus, whereas the group with isolated spelling deficits showed absent rightward asymmetry of the inferior fronto-occipital fasciculus. This study adds evidence to the notion that different profiles of combined or isolated reading and spelling deficits are associated with different neural signatures.
Collapse
Affiliation(s)
- Chiara Banfi
- University of Graz, Institute of Psychology, Graz, Austria
| | | | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-University, Munich, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Fink
- University of Graz, Institute of Psychology, Graz, Austria
| | - Karin Landerl
- University of Graz, Institute of Psychology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
37
|
Astle DE, Bathelt J, Holmes J. Remapping the cognitive and neural profiles of children who struggle at school. Dev Sci 2018; 22:e12747. [PMID: 30171790 PMCID: PMC6808180 DOI: 10.1111/desc.12747] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/23/2018] [Indexed: 11/29/2022]
Abstract
Our understanding of learning difficulties largely comes from children with specific diagnoses or individuals selected from community/clinical samples according to strict inclusion criteria. Applying strict exclusionary criteria overemphasizes within group homogeneity and between group differences, and fails to capture comorbidity. Here, we identify cognitive profiles in a large heterogeneous sample of struggling learners, using unsupervised machine learning in the form of an artificial neural network. Children were referred to the Centre for Attention Learning and Memory (CALM) by health and education professionals, irrespective of diagnosis or comorbidity, for problems in attention, memory, language, or poor school progress (n = 530). Children completed a battery of cognitive and learning assessments, underwent a structural MRI scan, and their parents completed behavior questionnaires. Within the network we could identify four groups of children: (a) children with broad cognitive difficulties, and severe reading, spelling and maths problems; (b) children with age-typical cognitive abilities and learning profiles; (c) children with working memory problems; and (d) children with phonological difficulties. Despite their contrasting cognitive profiles, the learning profiles for the latter two groups did not differ: both were around 1 SD below age-expected levels on all learning measures. Importantly a child’s cognitive profile was not predicted by diagnosis or referral reason. We also constructed whole-brain structural connectomes for children from these four groupings (n = 184), alongside an additional group of typically developing children (n = 36), and identified distinct patterns of brain organization for each group. This study represents a novel move toward identifying data-driven neurocognitive dimensions underlying learning-related difficulties in a representative sample of poor learners.
Collapse
Affiliation(s)
- Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Joe Bathelt
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Joni Holmes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Cabana J, Gilbert G, Létourneau‐Guillon L, Safi D, Rouleau I, Cossette P, Nguyen DK. Effects of SYN1 Q555X mutation on cortical gray matter microstructure. Hum Brain Mapp 2018; 39:3428-3448. [PMID: 29671924 PMCID: PMC6866302 DOI: 10.1002/hbm.24186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
A new Q555X mutation on the SYN1 gene was recently found in several members of a family segregating dyslexia, epilepsy, and autism spectrum disorder. To describe the effects of this mutation on cortical gray matter microstructure, we performed a surface-based group study using novel diffusion and quantitative multiparametric imaging on 13 SYN1Q555X mutation carriers and 13 age- and sex-matched controls. Specifically, diffusion kurtosis imaging (DKI) and neurite orientation and dispersion and density imaging (NODDI) were used to analyze multi-shell diffusion data and obtain parametric maps sensitive to tissue structure, while quantitative metrics sensitive to tissue composition (T1, T2* and relative proton density [PD]) were obtained from a multi-echo variable flip angle FLASH acquisition. Results showed significant microstructural alterations in several regions usually involved in oral and written language as well as dyslexia. The most significant changes in these regions were lowered mean diffusivity and increased fractional anisotropy. This study is, to our knowledge, the first to successfully use diffusion imaging and multiparametric mapping to detect cortical anomalies in a group of subjects with a well-defined genotype linked to language impairments, epilepsy and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Jean‐François Cabana
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
| | - Guillaume Gilbert
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Philips Healthcare CanadaMarkhamQuébec
| | - Laurent Létourneau‐Guillon
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| | - Dima Safi
- Université du Québec à Trois‐Rivières (UQTR), Trois‐RivièresQuébec
- Groupe de recherche CogNAC (UQTR), Trois‐RivièresQuébec
| | - Isabelle Rouleau
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
- Université du Québec à Montréal (UQAM), MontréalQuébec
| | - Patrick Cossette
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| | - Dang Khoa Nguyen
- Centre Hospitalier de l'Université de Montréal (CHUM)MontréalQuébec
- Université de Montréal
- Centre de Recherche du CHUM (CRCHUM)MontréalQuébec
| |
Collapse
|
39
|
Žarić G, Timmers I, Gerretsen P, Fraga González G, Tijms J, van der Molen MW, Blomert L, Bonte M. Atypical White Matter Connectivity in Dyslexic Readers of a Fairly Transparent Orthography. Front Psychol 2018; 9:1147. [PMID: 30042708 PMCID: PMC6049043 DOI: 10.3389/fpsyg.2018.01147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/14/2018] [Indexed: 01/18/2023] Open
Abstract
Atypical structural properties of the brain's white matter bundles have been associated with failing reading acquisition in developmental dyslexia. Because these white matter properties may show dynamic changes with age and orthographic depth, we examined fractional anisotropy (FA) along 16 white matter tracts in 8- to 11-year-old dyslexic (DR) and typically reading (TR) children learning to read in a fairly transparent orthography (Dutch). Our results showed higher FA values in the bilateral anterior thalamic radiations of DRs and FA values of the left thalamic radiation scaled with behavioral reading-related scores. Furthermore, DRs tended to have atypical FA values in the bilateral arcuate fasciculi. Children's age additionally predicted FA values along the tracts. Together, our findings suggest differential contributions of cortical and thalamo-cortical pathways to the developing reading network in dyslexic and typical readers, possibly indicating prolonged letter-by-letter reading or increased attentional and/or working memory demands in dyslexic children during reading.
Collapse
Affiliation(s)
- Gojko Žarić
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| | - Inge Timmers
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Gorka Fraga González
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Jurgen Tijms
- IWAL Instituut Voor Leerproblemen, Amsterdam, Netherlands
| | | | - Leo Blomert
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| |
Collapse
|
40
|
Rapid and widespread white matter plasticity during an intensive reading intervention. Nat Commun 2018; 9:2260. [PMID: 29884784 PMCID: PMC5993742 DOI: 10.1038/s41467-018-04627-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/11/2018] [Indexed: 12/31/2022] Open
Abstract
White matter tissue properties are known to correlate with performance across domains ranging from reading to math, to executive function. Here, we use a longitudinal intervention design to examine experience-dependent growth in reading skills and white matter in grade school-aged, struggling readers. Diffusion MRI data were collected at regular intervals during an 8-week, intensive reading intervention. These measurements reveal large-scale changes throughout a collection of white matter tracts, in concert with growth in reading skill. Additionally, we identify tracts whose properties predict reading skill but remain fixed throughout the intervention, suggesting that some anatomical properties stably predict the ease with which a child learns to read, while others dynamically reflect the effects of experience. These results underscore the importance of considering recent experience when interpreting cross-sectional anatomy–behavior correlations. Widespread changes throughout the white matter may be a hallmark of rapid plasticity associated with an intensive learning experience. White matter properties correlate with cognitive performance in a number of domains. Here the authors show that altering a child’s educational environment though a targeted intervention program induces rapid, large-scale changes in the white matter, and that these changes track the learning process.
Collapse
|
41
|
Su M, Zhao J, Thiebaut de Schotten M, Zhou W, Gong G, Ramus F, Shu H. Alterations in white matter pathways underlying phonological and morphological processing in Chinese developmental dyslexia. Dev Cogn Neurosci 2018; 31:11-19. [PMID: 29727819 PMCID: PMC6969203 DOI: 10.1016/j.dcn.2018.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/18/2023] Open
Abstract
Chinese is a logographic language that is different from alphabetic languages in visual and semantic complexity. Thus far, it is still unclear whether Chinese children with dyslexia show similar disruption of white matter pathways as in alphabetic languages. The present study focused on the alteration of white matter pathways in Chinese children with dyslexia. Using diffusion tensor imaging tractography, the bilateral arcuate fasciculus (AF-anterior, AF-posterior and AF-direct segments), inferior fronto-occipital fasciculus (IFOF) and inferior longitudinal fasciculus (ILF) were delineated in each individual’s native space. Compared with age-matched controls, Chinese children with dyslexia showed reduced fractional anisotropy in the left AF-direct and the left ILF. Further regression analyses revealed a functional dissociation between the left AF-direct and the left ILF. The AF-direct tract integrity was associated with phonological processing skill, an ability important for reading in all writing systems, while the ILF integrity was associated with morphological processing skill, an ability more strongly recruited for Chinese reading. In conclusion, the double disruption locus in Chinese children with dyslexia, and the functional dissociation between dorsal and ventral pathways reflect both universal and specific properties of reading in Chinese.
Collapse
Affiliation(s)
- Mengmeng Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France; College of Elementary Education, Capital Normal University, Beijing, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Brain and Spine Institute (ICM), CNRS UMR 7225, INSERM-UPMC UMRS 1127, Paris, France
| | - Wei Zhou
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France.
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
42
|
Langer N, Peysakhovich B, Zuk J, Drottar M, Sliva DD, Smith S, Becker BLC, Grant PE, Gaab N. White Matter Alterations in Infants at Risk for Developmental Dyslexia. Cereb Cortex 2018; 27:1027-1036. [PMID: 26643353 DOI: 10.1093/cercor/bhv281] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a heritable condition characterized by persistent difficulties in learning to read. White matter alterations in left-lateralized language areas, particularly in the arcuate fasciculus (AF), have been observed in DD, and diffusion properties within the AF correlate with (pre-)reading skills as early as kindergarten. However, it is unclear how early these alterations can be observed. We investigated white matter structure in 14 infants with (FHD+; ages 6.6-17.6 months) and 18 without (FHD-; ages 5.1-17.6 months) familial risk for DD. Diffusion scans were acquired during natural sleep, and early language skills were assessed. Tractography for bilateral AF was reconstructed using manual and automated methods, allowing for independent validation of results. Fractional anisotropy (FA) was calculated at multiple nodes along the tracts for more precise localization of group differences. The analyses revealed significantly lower FA in the left AF for FHD+ compared with FHD- infants, particularly in the central portion of the tract. Moreover, expressive language positively correlated with FA across groups. Our results demonstrate that atypical brain development associated with DD is already present within the first 18 months of life, suggesting that the deficits associated with DD may result from altered structural connectivity in left-hemispheric regions.
Collapse
Affiliation(s)
- Nicolas Langer
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, Boston, MA, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Barbara Peysakhovich
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Jennifer Zuk
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, Boston, MA, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Marie Drottar
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Danielle D Sliva
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, Boston, MA, USA.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sara Smith
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Bryce L C Becker
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, Boston, MA, USA
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, Boston, MA, USA.,Harvard Medical School, Boston, MA 02115, USA.,Harvard Graduate School of Education, Cambridge, MA 02138, USA
| |
Collapse
|
43
|
Moreau D, Wilson AJ, McKay NS, Nihill K, Waldie KE. No evidence for systematic white matter correlates of dyslexia and dyscalculia. NEUROIMAGE-CLINICAL 2018; 18:356-366. [PMID: 29487792 PMCID: PMC5814378 DOI: 10.1016/j.nicl.2018.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/14/2018] [Accepted: 02/03/2018] [Indexed: 12/29/2022]
Abstract
Learning disabilities such as dyslexia, dyscalculia and their comorbid manifestation are prevalent, affecting as much as 15% of the population. Structural neuroimaging studies have indicated that these disorders can be related to differences in white matter integrity, although findings remain disparate. In this study, we used a unique design composed of individuals with dyslexia, dyscalculia, both disorders and controls, to systematically explore differences in fractional anisotropy across groups using diffusion tensor imaging. Specifically, we focused on the corona radiata and the arcuate fasciculus, two tracts associated with reading and mathematics in a number of previous studies. Using Bayesian hypothesis testing, we show that the present data favor the null model of no differences between groups for these particular tracts—a finding that seems to go against the current view but might be representative of the disparities within this field of research. Together, these findings suggest that structural differences associated with dyslexia and dyscalculia might not be as reliable as previously thought, with potential ramifications in terms of remediation. Previous literature indicates important discrepancies in structural differences associated with dyslexia and dyscalculia We explore the relationship between these disorders and fractional anisotropy, a measure of white matter integrity We show support for the null model in the corona radiata and the arcuate fasciculus This suggests that structural differences associated with these disorders are not as reliable as previously thought
Collapse
Affiliation(s)
- David Moreau
- Centre for Brain Research, School of Psychology, University of Auckland, New Zealand.
| | - Anna J Wilson
- Department of Psychology, University of Canterbury, New Zealand
| | - Nicole S McKay
- Centre for Brain Research, School of Psychology, University of Auckland, New Zealand
| | - Kasey Nihill
- School of Psychology, University of Auckland, New Zealand
| | - Karen E Waldie
- Centre for Brain Research, School of Psychology, University of Auckland, New Zealand
| |
Collapse
|
44
|
Walton M, Dewey D, Lebel C. Brain white matter structure and language ability in preschool-aged children. BRAIN AND LANGUAGE 2018; 176:19-25. [PMID: 29132048 DOI: 10.1016/j.bandl.2017.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Brain alterations are associated with reading and language difficulties in older children, but little research has investigated relationships between early language skills and brain white matter structure during the preschool period. We studied 68 children aged 3.0-5.6 years who underwent diffusion tensor imaging and participated in assessments of Phonological Processing and Speeded Naming. Tract-based spatial statistics and tractography revealed relationships between Phonological Processing and diffusion parameters in bilateral ventral white matter pathways and the corpus callosum. Phonological Processing was positively correlated with fractional anisotropy and negatively correlated with mean diffusivity. The relationships observed in left ventral pathways are consistent with studies in older children, and demonstrate that structural markers for language performance are apparent as young as 3 years of age. Our findings in right hemisphere areas that are not as commonly found in adult studies suggest that young children rely on a widespread network for language processing that becomes more specialized with age.
Collapse
Affiliation(s)
- Matthew Walton
- Child & Adolescent Imaging Research (CAIR) Program, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Child & Adolescent Imaging Research (CAIR) Program, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
45
|
Nikki Arrington C, Kulesz PA, Juranek J, Cirino PT, Fletcher JM. White matter microstructure integrity in relation to reading proficiency☆. BRAIN AND LANGUAGE 2017; 174:103-111. [PMID: 28818624 PMCID: PMC5617339 DOI: 10.1016/j.bandl.2017.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/12/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Components of reading proficiency such asaccuracy, fluency, and comprehension require the successful coordination of numerous, yet distinct, cortical regions. Underlying white matter tracts allow for communication among these regions. This study utilized unique residualized tract - based spatial statistics methodology to identify the relations of white matter microstructure integrity to three components of reading proficiency in 49 school - aged children with typically developing phonological decoding skills and 27 readers with poor decoders. Results indicated that measures of white matter integrity were differentially associated with components of reading proficiency. In both typical and poor decoders, reading comprehension correlated with measures of integrity of the right uncinate fasciculus; reading comprehension was also related to the left inferior longitudinal fasciculus in poor decoders. Also in poor decoders, word reading fluency was related to the right uncinate and left inferior fronto - occipital fasciculi. Word reading was unrelated to white matter integrity in either group. These findings expand our knowledge of the association between white matter integrity and different elements of reading proficiency.
Collapse
Affiliation(s)
- C Nikki Arrington
- Texas Institute for Measurement, Evaluation and Statistics (TIMES), and Department of Psychology, University of Houston, 4849 Calhoun Rd., Houston, TX 77204, USA.
| | - Paulina A Kulesz
- Texas Institute for Measurement, Evaluation and Statistics (TIMES), and Department of Psychology, University of Houston, 4849 Calhoun Rd., Houston, TX 77204, USA
| | - Jenifer Juranek
- Department of Pediatrics, Division of Developmental Pediatrics, The University of Texas Medical School at Houston, 6655 Travis St. Suite 1000, Houston, TX 77030, USA
| | - Paul T Cirino
- Texas Institute for Measurement, Evaluation and Statistics (TIMES), and Department of Psychology, University of Houston, 4849 Calhoun Rd., Houston, TX 77204, USA
| | - Jack M Fletcher
- Texas Institute for Measurement, Evaluation and Statistics (TIMES), and Department of Psychology, University of Houston, 4849 Calhoun Rd., Houston, TX 77204, USA
| |
Collapse
|
46
|
Waldie KE, Wilson AJ, Roberts RP, Moreau D. Reading network in dyslexia: Similar, yet different. BRAIN AND LANGUAGE 2017; 174:29-41. [PMID: 28715717 DOI: 10.1016/j.bandl.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 06/06/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Dyslexia is a developmental disorder characterized by reading and phonological difficulties, yet important questions remain regarding its underlying neural correlates. In this study, we used partial least squares (PLS), a multivariate analytic technique, to investigate the neural networks used by dyslexics while performing a word-rhyming task. Although the overall reading network was largely similar in dyslexics and typical readers, it did not correlate with behavior in the same way in the two groups. In particular, there was a positive association between reading performance and both right superior temporal gyrus and bilateral insula activation in dyslexic readers but a negative correlation in typical readers. Together with differences in lateralization unique to dyslexics, this suggests that the combination of poor reading performance with high insula activity and atypical laterality is a consistent marker of dyslexia. These findings emphasize the importance of understanding right-hemisphere activation in dyslexia and provide promising directions for the remediation of reading disorders.
Collapse
Affiliation(s)
- Karen E Waldie
- Centre for Brain Research, School of Psychology, The University of Auckland, New Zealand
| | - Anna J Wilson
- Department of Psychology, University of Canterbury, New Zealand
| | - Reece P Roberts
- Centre for Brain Research, School of Psychology, The University of Auckland, New Zealand
| | - David Moreau
- Centre for Brain Research, School of Psychology, The University of Auckland, New Zealand.
| |
Collapse
|
47
|
Vandermosten M, Cuynen L, Vanderauwera J, Wouters J, Ghesquière P. White matter pathways mediate parental effects on children's reading precursors. BRAIN AND LANGUAGE 2017; 173:10-19. [PMID: 28558269 DOI: 10.1016/j.bandl.2017.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
Previous studies have shown that the link between parental and offspring's reading is mediated by the cognitive system of the offspring, yet information about the mediating role of the neurobiological system is missing. This family study includes cognitive and diffusion MRI (dMRI) data collected in 71 pre-readers as well as parental reading and environmental data. Using sequential path analyses, which take into account the interrelationships between the different components, we observed mediating effects of the neurobiological system. More specifically, fathers' reading skills predicted reading of the child by operating through a child's left ventral white matter pathway. For mothers no clear mediating role of the neural system was observed. Given that our study involves children who have not yet learned to read and that environmental measures were taken into account, the paternal effect on a child's white matter pathway is unlikely to be only driven by environmental factors. Future intergenerational studies focusing on the genetic, neurobiological and cognitive level of parents and offspring will provide more insight in the relative contribution of parental environment and genes.
Collapse
Affiliation(s)
- Maaike Vandermosten
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium; Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium.
| | - Lieselore Cuynen
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Jolijn Vanderauwera
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium; Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| |
Collapse
|
48
|
Rollans C, Cheema K, Georgiou GK, Cummine J. Pathways of the inferior frontal occipital fasciculus in overt speech and reading. Neuroscience 2017; 364:93-106. [PMID: 28918257 DOI: 10.1016/j.neuroscience.2017.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/18/2023]
Abstract
In this study, we examined the relationship between tractography-based measures of white matter integrity (ex. fractional anisotropy [FA]) from diffusion tensor imaging (DTI) and five reading-related tasks, including rapid automatized naming (RAN) of letters, digits, and objects, and reading of real words and nonwords. Twenty university students with no reported history of reading difficulties were tested on all five tasks and their performance was correlated with diffusion measures extracted through DTI tractography. A secondary analysis using whole-brain Tract-Based Spatial Statistics (TBSS) was also used to find clusters showing significant negative correlations between reaction time and FA. Results showed a significant relationship between the left inferior fronto-occipital fasciculus FA and performance on the RAN of objects task, as well as a strong relationship to nonword reading, which suggests a role for this tract in slower, non-automatic and/or resource-demanding speech tasks. There were no significant relationships between FA and the faster, more automatic speech tasks (RAN of letters and digits, and real word reading). These findings provide evidence for the role of the inferior fronto-occipital fasciculus in tasks that are highly demanding of orthography-phonology translation (e.g., nonword reading) and semantic processing (e.g., RAN object). This demonstrates the importance of the inferior fronto-occipital fasciculus in basic naming and suggests that this tract may be a sensitive predictor of rapid naming performance within the typical population. We discuss the findings in the context of current models of reading and speech production to further characterize the white matter pathways associated with basic reading processes.
Collapse
Affiliation(s)
- Claire Rollans
- Faculty of Rehabilitation Medicine, 8205 114 St, 3-48 Corbett Hall, University of Alberta, Edmonton, AB T6G 2G4, Canada.
| | - Kulpreet Cheema
- Faculty of Rehabilitation Medicine, 8205 114 St, 3-48 Corbett Hall, University of Alberta, Edmonton, AB T6G 2G4, Canada
| | - George K Georgiou
- Department of Educational Psychology, 116 St & 85 Ave, 6-102 Education North, University of Alberta, Edmonton, AB T6G 2G5, Canada.
| | - Jacqueline Cummine
- Department of Communication Sciences and Disorders, 8205 114 St, 2-70 Corbett Hall, University of Alberta, Edmonton, AB T6G 2G4, Canada; Neuroscience and Mental Health Institute, 114 St & 87 Ave, 4-142 Katz Group Centre, University of Alberta, Edmonton, AB T6 G 2E1, Canada.
| |
Collapse
|
49
|
Ramus F, Altarelli I, Jednoróg K, Zhao J, Scotto di Covella L. Neuroanatomy of developmental dyslexia: Pitfalls and promise. Neurosci Biobehav Rev 2017; 84:434-452. [PMID: 28797557 DOI: 10.1016/j.neubiorev.2017.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/18/2023]
Abstract
Investigations into the neuroanatomical bases of developmental dyslexia have now spanned more than 40 years, starting with the post-mortem examination of a few individual brains in the 60s and 70s, and exploding in the 90s with the widespread use of MRI. The time is now ripe to reappraise the considerable amount of data gathered with MRI using different types of sequences (T1, diffusion, spectroscopy) and analysed using different methods (manual, voxel-based or surface-based morphometry, fractional anisotropy and tractography, multivariate analyses…). While selective reviews of mostly small-scale studies seem to provide a coherent view of the brain disruptions that are typical of dyslexia, involving left perisylvian and occipito-temporal regions, we argue that this view may be deceptive and that meta-analyses and large-scale studies rather highlight many inconsistencies and limitations. We discuss problems inherent to small sample size as well as methodological difficulties that still undermine the discovery of reliable neuroanatomical bases of dyslexia, and we outline some recommendations to further improve this research area.
Collapse
Affiliation(s)
- Franck Ramus
- Laboratoire de sciences cognitives et psycholinguistique (CNRS, ENS, EHESS, PSL Research University), Ecole Normale Supérieure, 29 rue d'Ulm, 75005 Paris, France.
| | - Irene Altarelli
- Brain and Learning Lab, Campus Biotech, University of Geneva, 9 Chemin des Mines, 1205 Geneva, Switzerland
| | - Katarzyna Jednoróg
- Laboratory of Psychophysiology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, Shaanxi, 710062, China
| | - Lou Scotto di Covella
- Laboratoire de sciences cognitives et psycholinguistique (CNRS, ENS, EHESS, PSL Research University), Ecole Normale Supérieure, 29 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
50
|
Aging-Resilient Associations between the Arcuate Fasciculus and Vocabulary Knowledge: Microstructure or Morphology? J Neurosci 2017; 36:7210-22. [PMID: 27383595 DOI: 10.1523/jneurosci.4342-15.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/27/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Vocabulary knowledge is one of the few cognitive functions that is relatively preserved in older adults, but the reasons for this relative preservation have not been well delineated. We tested the hypothesis that individual differences in vocabulary knowledge are influenced by arcuate fasciculus macrostructure (i.e., shape and volume) properties that remain stable during the aging process, rather than white matter microstructure that demonstrates age-related declines. Vocabulary was not associated with age compared to pronounced age-related declines in cognitive processing speed across 106 healthy adults (19.92-88.29 years) who participated in this neuroimaging experiment. Fractional anisotropy in the left arcuate fasciculus was significantly related to individual variability in vocabulary. This effect was present despite marked age-related differences in a T1-weighted/T2-weighted ratio (T1w/T2w) estimate of myelin that were observed throughout the left arcuate fasciculus and associated with age-related differences in cognitive processing speed. However, atypical patterns of arcuate fasciculus morphology or macrostructure were associated with decreased vocabulary knowledge. These results suggest that deterioration of tissue in the arcuate fasciculus occurs with normal aging, while having limited impact on tract organization that underlies individual differences in the acquisition and retrieval of lexical and semantic information. SIGNIFICANCE STATEMENT Vocabulary knowledge is resilient to widespread age-related declines in brain structure that limit other cognitive functions. We tested the hypothesis that arcuate fasciculus morphology, which supports the development of reading skills that bolster vocabulary, could explain this relative preservation. We disentangled (1) the effects of age-related declines in arcuate microstructure (mean diffusivity; myelin content estimate) that predicted cognitive processing speed but not vocabulary, from (2) relatively stable arcuate macrostructure (shape/volume) that explained significant variance in an age-independent association between fractional anisotropy and vocabulary. This latter result may reflect differences in fiber trajectory and organization that are resilient to aging. We propose that developmental sculpting of the arcuate fasciculus determines acquisition, storage, and access of lexical information across the adult lifespan.
Collapse
|