1
|
Olivier JM, Srokova S, Hill PF, Rugg MD. Moderating effects of cortical thickness, volume, and memory performance on age differences in neural reinstatement of scene information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636759. [PMID: 39975164 PMCID: PMC11839063 DOI: 10.1101/2025.02.06.636759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The strength of neural reinstatement, a correlate of episodic memory retrieval, reportedly reflects the amount and fidelity of mnemonic content and is weaker in older than younger adults, especially for scene memoranda. Given evidence that age-related declines in cortical thickness and volume contribute to age-related cognitive decline, we analyzed fMRI data acquired from healthy young and older adults to examine relationships between cortical thickness, cortical volume, age, and scene- related reinstatement in the parahippocampal place area (PPA) and medial place area (MPA), two cortical regions implicated in scene processing. A 'reinstatement index' was estimated from fMRI data collected during tests of source memory for scene images, and multiple regression analyses were employed to examine the effects of the variables of interest on scene reinstatement. There were robust age differences in reinstatement, cortical thickness, and cortical volume. In both regions of interest, cortical volume fully mediated the effects of age on reinstatement. Additionally, PPA reinstatement strength predicted source memory performance independently of cortical volume or age. These findings suggest that age differences in scene reinstatement are mediated by cortical volume and that memory performance and cortical volume are associated with unique components of variance in reinstatement strength.
Collapse
|
2
|
Freelin A, Wolfe C, Lega B. Models of human hippocampal specialization: a look at the electrophysiological evidence. Trends Cogn Sci 2024:S1364-6613(24)00318-8. [PMID: 39668062 DOI: 10.1016/j.tics.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
From an anatomical perspective, the concept that the anterior and posterior hippocampus fulfill distinct cognitive roles may seem unsurprising. When compared with the posterior hippocampus, the anterior region is proportionally larger, with visible expansion of the CA1 subfield and intimate continuity with adjacent medial temporal lobe (MTL) structures such as the uncus and amygdala. However, the functional relevance emerging from these anatomical differences remains to be established in humans. Drawing on both rodent and human data, several models of hippocampal longitudinal specialization have been proposed. For the brevity and clarity of this review, we focus on human electrophysiological evidence supporting and contravening these models with limited inclusion of noninvasive data. We then synthesize these data to propose a novel longitudinal model based on the amount of contextual information, drawing on previous conceptions described within the past decade.
Collapse
Affiliation(s)
- Anne Freelin
- Department of Neuroscience, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Elward R, Limond J, Chareyron LJ, Ethapemi J, Vargha-Khadem F. Using recognition testing to support semantic learning in developmental amnesia. Neuropsychol Rehabil 2024; 34:1141-1160. [PMID: 37948582 PMCID: PMC11332405 DOI: 10.1080/09602011.2023.2275825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
ABSTRACTPatients with developmental amnesia (DA) have suffered hippocampal damage in infancy and subsequently shown poor episodic memory, but good semantic memory. It is not clear how patients with DA learn semantic information in the presence of episodic amnesia. However, patients with DA show good recognition memory and it is possible that semantic learning may be supported by recognition. Building on previous work, we compared two methods for supporting semantic learning in DA; recognition-learning and recall-learning. In each condition, a patient with DA (aged 8 years) was presented with semantic information in animated videos. After each presentation of a video, learning was supported by an immediate memory test. Two videos were paired with a cued recall test. Another two videos were paired with a multiple-choice test to enable recognition-based learning. The outcome measure was semantic recall performance after a short delay of 30 min and a long delay of one week. Results showed a benefit of recognition-learning compared to recall-learning on cued recall in the patient with DA (76% vs. 35%). This finding indicates that young people with severe hippocampal damage can utilize recognition to support semantic learning. This has implications for the support of school-aged children with episodic memory difficulties.
Collapse
Affiliation(s)
- Rachael Elward
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jennifer Limond
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Loïc J. Chareyron
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Janice Ethapemi
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Faraneh Vargha-Khadem
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust
| |
Collapse
|
4
|
Forbes E, Hassien A, Tan RJ, Wang D, Lega B. Modulation of hippocampal theta oscillations via deep brain stimulation of the parietal cortex depends on cognitive state. Cortex 2024; 175:28-40. [PMID: 38691923 PMCID: PMC11221570 DOI: 10.1016/j.cortex.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/07/2023] [Accepted: 03/24/2024] [Indexed: 05/03/2024]
Abstract
The angular gyrus (AG) and posterior cingulate cortex (PCC) demonstrate extensive structural and functional connectivity with the hippocampus and other core recollection network regions. Consequently, recent studies have explored neuromodulation targeting these and other regions as a potential strategy for restoring function in memory disorders such as Alzheimer's Disease. However, determining the optimal approach for neuromodulatory devices requires understanding how parameters like selected stimulation site, cognitive state during modulation, and stimulation duration influence the effects of deep brain stimulation (DBS) on electrophysiological features relevant to episodic memory. We report experimental data examining the effects of high-frequency stimulation delivered to the AG or PCC on hippocampal theta oscillations during the memory encoding (study) or retrieval (test) phases of an episodic memory task. Results showed selective enhancement of anterior hippocampal slow theta oscillations with stimulation of the AG preferentially during memory retrieval. Conversely, stimulation of the PCC attenuated slow theta oscillations. We did not observe significant behavioral effects in this (open-loop) stimulation experiment, suggesting that neuromodulation strategies targeting episodic memory performance may require more temporally precise stimulation approaches.
Collapse
Affiliation(s)
- Eugenio Forbes
- The University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Alexa Hassien
- The University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Ryan Joseph Tan
- The University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - David Wang
- The University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Bradley Lega
- The University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
5
|
Ehrlich I, Ortiz-Tudela J, Tan YY, Muckli L, Shing YL. Mnemonic But Not Contextual Feedback Signals Defy Dedifferentiation in the Aging Early Visual Cortex. J Neurosci 2024; 44:e0607232023. [PMID: 38395614 PMCID: PMC11026335 DOI: 10.1523/jneurosci.0607-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/18/2023] [Accepted: 12/18/2023] [Indexed: 02/25/2024] Open
Abstract
Perception is an intricate interplay between feedforward visual input and internally generated feedback signals that comprise concurrent contextual and time-distant mnemonic (episodic and semantic) information. Yet, an unresolved question is how the composition of feedback signals changes across the lifespan and to what extent feedback signals undergo age-related dedifferentiation, that is, a decline in neural specificity. Previous research on this topic has focused on feedforward perceptual representation and episodic memory reinstatement, suggesting reduced fidelity of neural representations at the item and category levels. In this fMRI study, we combined an occlusion paradigm that filters feedforward input to the visual cortex and multivariate analysis techniques to investigate the information content in cortical feedback, focusing on age-related differences in its composition. We further asked to what extent differentiation in feedback signals (in the occluded region) is correlated to differentiation in feedforward signals. Comparing younger (18-30 years) and older female and male adults (65-75 years), we found that contextual but not mnemonic feedback was prone to age-related dedifferentiation. Semantic feedback signals were even better differentiated in older adults, highlighting the growing importance of generalized knowledge across ages. We also found that differentiation in feedforward signals was correlated with differentiation in episodic but not semantic feedback signals. Our results provide evidence for age-related adjustments in the composition of feedback signals and underscore the importance of examining dedifferentiation in aging for both feedforward and feedback processing.
Collapse
Affiliation(s)
- Isabelle Ehrlich
- Department of Psychology, Goethe University Frankfurt, Frankfurt Am Main 60323, Germany
| | - Javier Ortiz-Tudela
- Department of Psychology, Goethe University Frankfurt, Frankfurt Am Main 60323, Germany
- Department of Experimental Psychology, Mind, Brain, and Behavior Research Center, University of Granada, Granada 18013, Spain
| | - Yi You Tan
- Department of Psychology, Goethe University Frankfurt, Frankfurt Am Main 60323, Germany
| | - Lars Muckli
- School of Psychology and of Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt, Frankfurt Am Main 60323, Germany
- IDeA Center for Individual Development and Adaptive Education, Frankfurt am Main 60323, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| |
Collapse
|
6
|
Steinkrauss A, Carpenter C, Tarkenton M, Overman A, Dennis N. Neural distinctiveness and discriminability underlying unitization and associative memory in aging. AGING BRAIN 2023; 4:100097. [PMID: 37711400 PMCID: PMC10498304 DOI: 10.1016/j.nbas.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/25/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Previous work has suggested unitized pairs behave as a single unit and more critically, are processed neurally different than those of associative memories. The current works examines the neural differences between unitization and non-unitized memory using fMRI and multivoxel analyses. Specifically, we examined the differences across face-occupation pairings as a function of whether the pairing was viewed as a person performing the given job (unitized binding) or a person saying they knew someone who had a particular job (non-unitized binding). The results show that at encoding and retrieval, the angular gyrus can discriminate between unitized and non-unitized target trials. Additionally, during encoding, the medial temporal lobe (hippocampus and perirhinal cortex), frontal parietal regions (angular gyrus and medial frontal gyrus) and visual regions (middle occipital cortex) exhibit distinct neural patterns to recollected unitized and non-unitized targets. Furthermore, the perirhinal cortex and medial frontal gyrus show greater neural similarity within subsequently recollected unitized trials compared to non-unitized trials. We conclude that an encoding based strategy to elicit unitization can produce greater associative memory compared to non-unitized trials in older adults. Additionally, when unitized trials are subsequently recollected in the perirhinal cortex older adults show greater neural similarity within unitized trials compared to non-unitized trials.
Collapse
Affiliation(s)
| | | | | | | | - N.A. Dennis
- The Pennsylvania State University, United States
| |
Collapse
|
7
|
Sanders DMW, Cowell RA. The locus of recognition memory signals in human cortex depends on the complexity of the memory representations. Cereb Cortex 2023; 33:9835-9849. [PMID: 37401000 DOI: 10.1093/cercor/bhad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
According to a "Swiss Army Knife" model of the brain, cognitive functions such as episodic memory and face perception map onto distinct neural substrates. In contrast, representational accounts propose that each brain region is best explained not by which specialized function it performs, but by the type of information it represents with its neural firing. In a functional magnetic resonance imaging study, we asked whether the neural signals supporting recognition memory fall mandatorily within the medial temporal lobes (MTL), traditionally thought the seat of declarative memory, or whether these signals shift within cortex according to the content of the memory. Participants studied objects and scenes that were unique conjunctions of pre-defined visual features. Next, we tested recognition memory in a task that required mnemonic discrimination of both simple features and complex conjunctions. Feature memory signals were strongest in posterior visual regions, declining with anterior progression toward the MTL, while conjunction memory signals followed the opposite pattern. Moreover, feature memory signals correlated with feature memory discrimination performance most strongly in posterior visual regions, whereas conjunction memory signals correlated with conjunction memory discrimination most strongly in anterior sites. Thus, recognition memory signals shifted with changes in memory content, in line with representational accounts.
Collapse
Affiliation(s)
- D Merika W Sanders
- Department of Psychology, Harvard University, Cambridge, MA 02138, United States
| | - Rosemary A Cowell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, United States
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States
| |
Collapse
|
8
|
Pauley C, Kobelt M, Werkle-Bergner M, Sander MC. Age differences in neural distinctiveness during memory encoding, retrieval, and reinstatement. Cereb Cortex 2023; 33:9489-9503. [PMID: 37365853 PMCID: PMC10431749 DOI: 10.1093/cercor/bhad219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Robust evidence points to mnemonic deficits in older adults related to dedifferentiated, i.e. less distinct, neural responses during memory encoding. However, less is known about retrieval-related dedifferentiation and its role in age-related memory decline. In this study, younger and older adults were scanned both while incidentally learning face and house stimuli and while completing a surprise recognition memory test. Using pattern similarity searchlight analyses, we looked for indicators of neural dedifferentiation during encoding, retrieval, and encoding-retrieval reinstatement. Our findings revealed age-related reductions in neural distinctiveness during all memory phases in visual processing regions. Interindividual differences in retrieval- and reinstatement-related distinctiveness were strongly associated with distinctiveness during memory encoding. Both item- and category-level distinctiveness predicted trial-wise mnemonic outcomes. We further demonstrated that the degree of neural distinctiveness during encoding tracked interindividual variability in memory performance better than both retrieval- and reinstatement-related distinctiveness. All in all, we contribute to meager existing evidence for age-related neural dedifferentiation during memory retrieval. We show that neural distinctiveness during retrieval is likely tied to recapitulation of encoding-related perceptual and mnemonic processes.
Collapse
Affiliation(s)
- Claire Pauley
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - Malte Kobelt
- Department of Neuropsychology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
9
|
Bray NW, Pieruccini-Faria F, Witt ST, Bartha R, Doherty TJ, Nagamatsu LS, Almeida QJ, Liu-Ambrose T, Middleton LE, Bherer L, Montero-Odasso M. Combining exercise with cognitive training and vitamin D 3 to improve functional brain connectivity (FBC) in older adults with mild cognitive impairment (MCI). Results from the SYNERGIC trial. GeroScience 2023:10.1007/s11357-023-00805-6. [PMID: 37162700 PMCID: PMC10170058 DOI: 10.1007/s11357-023-00805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Changes in functional brain connectivity (FBC) may indicate how lifestyle modifications can prevent the progression to dementia; FBC identifies areas that are spatially separate but temporally synchronized in their activation and is altered in those with mild cognitive impairment (MCI), a prodromal state between healthy cognitive aging and dementia. Participants with MCI were randomly assigned to one of five study arms. Three times per week for 20-weeks, participants performed 30-min of (control) cognitive training, followed by 60-min of (control) physical exercise. Additionally, a vitamin D3 (10,000 IU/pill) or a placebo capsule was ingested three times per week for 20-weeks. Using the CONN toolbox, we measured FBC change (Post-Pre) across four statistical models that collapsed for and/or included some or all study arms. We conducted Pearson correlations between FBC change and changes in physical and cognitive functioning. Our sample included 120 participants (mean age: 73.89 ± 6.50). Compared to the pure control, physical exercise (model one; p-False Discovery Rate (FDR) < 0.01 & < 0.05) with cognitive training (model two; p-FDR = < 0.001), and all three interventions combined (model four; p-FDR = < 0.01) demonstrated an increase in FBC between regions of the Default-Mode Network (i.e., hippocampus and angular gyrus). After controlling for false discovery rate, there were no significant correlations between change in connectivity and change in cognitive or physical function. Physical exercise alone appears to be as efficacious as combined interventional strategies in altering FBC, but implications for behavioral outcomes remain unclear.
Collapse
Affiliation(s)
- Nick W Bray
- Cumming School of Medicine, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, 550 Wellington Road, Room A3-116, London, ON, N6C-0A7, Canada.
| | - Frederico Pieruccini-Faria
- Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, 550 Wellington Road, Room A3-116, London, ON, N6C-0A7, Canada
- Department of Medicine, Division of Geriatric Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A-5C1, Canada
| | - Suzanne T Witt
- BrainsCAN, Western University, London, ON, N6A-3K7, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A-5C1, Canada
- Robarts Research Institute, Western University, London, ON, N6A-5B7, Canada
| | - Timothy J Doherty
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A-5C1, Canada
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A-5C1, Canada
| | - Lindsay S Nagamatsu
- Faculty of Health Sciences, School of Kinesiology, Western University, London, ON, N6G-2V4, Canada
| | - Quincy J Almeida
- Faculty of Science, Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, N2L-3C5, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T-1Z3, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Laura E Middleton
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, N2L-3G1, Canada
| | - Louis Bherer
- Department of Medicine, University of Montréal, Montréal, QC, H3T-1J4, Canada
- Research Centre, Montreal Heart Institute, Montréal, QC, H1T-1C8, Canada
| | - Manuel Montero-Odasso
- Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, 550 Wellington Road, Room A3-116, London, ON, N6C-0A7, Canada.
- Department of Medicine, Division of Geriatric Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A-5C1, Canada.
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A-5C1, Canada.
| |
Collapse
|
10
|
Bellana B, Ladyka-Wojcik N, Lahan S, Moscovitch M, Grady CL. Recollection and prior knowledge recruit the left angular gyrus during recognition. Brain Struct Funct 2023; 228:197-217. [PMID: 36441240 DOI: 10.1007/s00429-022-02597-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/09/2022] [Indexed: 11/29/2022]
Abstract
The human angular gyrus (AG) is implicated in recollection, or the ability to retrieve detailed memory content from a specific episode. A separate line of research examining the neural bases of more general mnemonic representations, extracted over multiple episodes, also highlights the AG as a core region of interest. To reconcile these separate views of AG function, the present fMRI experiment used a Remember-Know paradigm with famous (prior knowledge) and non-famous (no prior knowledge) faces to test whether AG activity could be modulated by both task-specific recollection and general prior knowledge within the same individuals. Increased BOLD activity in the left AG was observed during both recollection in the absence of prior knowledge (recollected > non-recollected or correctly rejected non-famous faces) and when prior knowledge was accessed in the absence of experiment-specific recollection (famous > non-famous correct rejections). This pattern was most prominent for the left AG as compared to the broader inferior parietal lobe. Recollection-related responses in the left AG increased with encoding duration and prior knowledge, despite prior knowledge being incidental to the recognition decision. Overall, the left AG appears sensitive to both task-specific recollection and the incidental access of general prior knowledge, thus broadening our notions of the kinds of mnemonic representations that drive activity in this region.
Collapse
Affiliation(s)
- Buddhika Bellana
- Department of Psychology, York University, Glendon Campus, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | | | - Shany Lahan
- Department of Human Biology, University of Toronto, Toronto, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada.
| | - Cheryl L Grady
- Department of Psychology, University of Toronto, Toronto, Canada. .,Rotman Research Institute, Baycrest, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Ricupero S, Carpenter CM, Steinkrauss AC, Gerver CR, Chamberlain JD, Monkman RG, Overman AA, Dennis NA. Neural distinctiveness and reinstatement of hippocampal representations support unitization for associations. Brain Res 2023; 1798:148143. [PMID: 36328066 PMCID: PMC10657642 DOI: 10.1016/j.brainres.2022.148143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/28/2022]
Abstract
The medial temporal lobe (MTL) is critical to associative memory success, yet not all types of associations may be processed in a similar manner within MTL subregions. In particular, previous work suggests intra- and inter-item associations not only exhibit differences in overall rates of recollection, but also recruit different MTL subregions. Whereas intra-item associations, akin to unitization, take advantage of associations between within-item features, inter-item associations form links across discrete items. The current work examines the neural differences between these two types of associations using fMRI and multivoxel analyses. Specifically, the current study examines differences across face-occupation as a function of whether the pairing was viewed as a person performing the given job (intra-item binding) or a person saying they knew someone who had a particular job (inter-item binding). The results show that at encoding, successfully recollected neural patterns related to intra- and inter-item associations are distinct from one another in the hippocampus, parahippocampal and perirhinal cortex. Additionally, the two trial types are reinstated distinctly such that inter-item trials have higher neural reinstatement from encoding to retrieval compared to intra-item trials in the hippocampus. We conclude that intra- and inter- associative pairs may utilize similar neural regions that represent patterns of activation differentially at encoding. However, to reinstate information to the same degree (i.e., subsequently successfully recollected) inter-item associations, that are all encoded in the same manner, may be reinstated more similarly compared to intra-item associations that are encoded by imagining pairs differently and occupation specific. This may indicate that intra-item associations promote more efficient reinstatement.
Collapse
Affiliation(s)
- S Ricupero
- The Pennsylvania State University, United States
| | | | | | - C R Gerver
- The Pennsylvania State University, United States
| | | | | | | | - N A Dennis
- The Pennsylvania State University, United States.
| |
Collapse
|
12
|
Humphreys GF, Tibon R. Dual-axes of functional organisation across lateral parietal cortex: the angular gyrus forms part of a multi-modal buffering system. Brain Struct Funct 2023; 228:341-352. [PMID: 35670844 PMCID: PMC9813060 DOI: 10.1007/s00429-022-02510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/08/2022] [Indexed: 01/09/2023]
Abstract
Decades of neuropsychological and neuroimaging evidence have implicated the lateral parietal cortex (LPC) in a myriad of cognitive domains, generating numerous influential theoretical models. However, these theories fail to explain why distinct cognitive activities appear to implicate common neural regions. Here we discuss a unifying model in which the angular gyrus forms part of a wider LPC system with a core underlying neurocomputational function; the multi-sensory buffering of spatio-temporally extended representations. We review the principles derived from computational modelling with neuroimaging task data and functional and structural connectivity measures that underpin the unified neurocomputational framework. We propose that although a variety of cognitive activities might draw on shared underlying machinery, variations in task preference across angular gyrus, and wider LPC, arise from graded changes in the underlying structural connectivity of the region to different input/output information sources. More specifically, we propose two primary axes of organisation: a dorsal-ventral axis and an anterior-posterior axis, with variations in task preference arising from underlying connectivity to different core cognitive networks (e.g. the executive, language, visual, or episodic memory networks).
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
- School of Psychology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
13
|
Grilli MD, Sheldon S. Autobiographical event memory and aging: older adults get the gist. Trends Cogn Sci 2022; 26:1079-1089. [PMID: 36195539 PMCID: PMC9669242 DOI: 10.1016/j.tics.2022.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
We propose that older adults' ability to retrieve episodic autobiographical events, although often viewed through a lens of decline, reveals much about what is preserved and prioritized in cognitive aging. Central to our proposal is the idea that the so-called gist of an autobiographical event is not only spared with normal aging but also well adapted to serve memory-guided behavior in older age. To support our proposal, we review cognitive and brain evidence indicating an age-related shift toward gist memory. We then discuss why this shift likely arises from more than age-related decline and instead partly reflects a natural, arguably adaptive, outcome of experience, motivation, and mode-of-thinking factors. Our proposal reveals an upside of age-related memory changes and identifies important research questions.
Collapse
Affiliation(s)
- Matthew D Grilli
- Department of Psychology, The University of Arizona, Tucson, AZ 85721, USA.
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
14
|
Thakral PP, Bottary R, Kensinger EA. Representing the Good and Bad: fMRI signatures during the encoding of multisensory positive, negative, and neutral events. Cortex 2022; 151:240-258. [PMID: 35462202 PMCID: PMC9124690 DOI: 10.1016/j.cortex.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/04/2022] [Accepted: 02/13/2022] [Indexed: 11/27/2022]
Abstract
Few studies have examined how multisensory emotional experiences are processed and encoded into memory. Here, we aimed to determine whether, at encoding, activity within functionally-defined visual- and auditory-processing brain regions discriminated the emotional category (i.e., positive, negative, or neutral) of the multisensory (audio-visual) events. Participants incidentally encoded positive, negative, and neutral multisensory stimuli during event-related functional magnetic resonance imaging (fMRI). Following a 3-h post-encoding delay, their memory for studied stimuli was tested, allowing us to identify emotion-category-specific subsequent-memory effects focusing on medial temporal lobe regions (i.e., amygdala, hippocampus) and visual- and auditory-processing regions. We used a combination of univariate and multivoxel pattern fMRI analyses (MVPA) to examine emotion-category-specificity in mean activity levels and neural patterning, respectively. Univariate analyses revealed many more visual regions that showed negative-category-specificity relative to positive-category-specificity, and auditory regions only showed negative-category-specificity. These results suggest that negative emotion is more closely tied to information contained within sensory regions, a conclusion that was supported by the MVPA analyses. Functional connectivity analyses further revealed that the visual amplification of category-selective processing is driven, in part, by mean signal from the amygdala. Interestingly, while stronger representations in visuo-auditory regions were related to subsequent-memory for neutral multisensory stimuli, they were related to subsequent-forgetting of positive and negative stimuli. Neural patterning in the hippocampus and amygdala were related to memory for negative multisensory stimuli. These results provide new evidence that negative emotional stimuli are processed with increased engagement of visuosensory regions, but that this sensory engagement-that generalizes across the entire emotion category-is not the type of sensory encoding that is most beneficial for later retrieval.
Collapse
Affiliation(s)
| | - Ryan Bottary
- Department of Psychology and Neuroscience, Boston College, MA, USA; Division of Sleep Medicine, Harvard Medical School, MA, USA
| | | |
Collapse
|
15
|
Martins-Klein B, Orlovsky I, Heideman K. Remembering past challenges to feel better today: Role of neural dedifferentiation and autobiographical integration in late-life reappraisal. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:599-619. [PMID: 35225156 PMCID: PMC9879066 DOI: 10.1080/13825585.2022.2044011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Socioemotional theories suggest that surviving a lifetime of life experiences enhances older adult emotional resilience, yet the role of past emotional challenges in current models of emotion regulation is overlooked. In this paper, we propose how integration of memories and hippocampal dedifferentiation may together benefit the reappraisal of novel stressors across the lifespan. First, we review mood benefits of generating positive narratives, and more integrated memories of adverse life events with age. Second, we review neural mechanisms of narrative integration and meaning-making. We propose a framework in which narrative integration and neural dedifferentiation of hippocampal memory representations may facilitate late-life reappraisal via shared positive meaning-making in ventromedial prefrontal cortex (vmPFC). While current evidence supporting this model is limited, we conclude by discussing future directions for testing its components in multivariate neuroimaging studies, and briefly review clinical implications of the proposed model.
Collapse
Affiliation(s)
- Bruna Martins-Klein
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Irina Orlovsky
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kristin Heideman
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
16
|
Sommer VR, Sander MC. Contributions of representational distinctiveness and stability to memory performance and age differences. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:443-462. [PMID: 34939904 DOI: 10.1080/13825585.2021.2019184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Long-standing theories of cognitive aging suggest that memory decline is associated with age-related differences in the way information is neurally represented. Multivariate pattern similarity analyses enabled researchers to take a representational perspective on brain and cognition, and allowed them to study the properties of neural representations that support successful episodic memory. Two representational properties have been identified as crucial for memory performance, namely the distinctiveness and the stability of neural representations. Here, we review studies that used multivariate analysis tools for different neuroimaging techniques to clarify how these representational properties relate to memory performance across adulthood. While most evidence on age differences in neural representations involved stimulus category information , recent studies demonstrated that particularly item-level stability and specificity of activity patterns are linked to memory success and decline during aging. Overall, multivariate methods offer a versatile tool for our understanding of age differences in the neural representations underlying memory.
Collapse
Affiliation(s)
- Verena R Sommer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
17
|
Neural reactivation and judgements of vividness reveal separable contributions to mnemonic representation. Neuroimage 2022; 255:119205. [PMID: 35427774 DOI: 10.1016/j.neuroimage.2022.119205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Mnemonic representations vary in fidelity, sharpness, and strength-qualities that can be examined using both introspective judgements of mental states and objective measures of brain activity. Subjective and objective measures are both valid ways of "reading out" the content of someone's internal mnemonic states, each with different strengths and weaknesses. St-Laurent and colleagues (2015) compared the neural correlates of memory vividness ratings with patterns of neural reactivation evoked during memory recall and found considerable overlap between the two, suggesting a common neural basis underlying these different markers of representational quality. Here we extended this work with meta-analytic methods by pooling together four neuroimaging datasets in order to contrast the neural substrates of neural reactivation and those of vividness judgements. While reactivation and vividness judgements correlated positively with one another and were associated with common univariate activity in the dorsal attention network and anterior hippocampus, some notable differences were also observed. Vividness judgments were tied to stronger activation in the striatum and dorsal attention network, together with activity suppression in default mode network nodes. We also observed a trend for reactivation to be more closely associated with early visual cortex activity. A mediation analysis found support for the hypothesis that neural reactivation is necessary for memory vividness, with activity in the anterior hippocampus associated with greater reactivation. Our results suggest that neural reactivation and vividness judgements reflect common mnemonic processes but differ in the extent to which they engage effortful, attentional processes. Additionally, the similarity between reactivation and vividness appears to arise, partly, through hippocampal engagement during memory retrieval.
Collapse
|
18
|
Jonin PY, Duché Q, Bannier E, Corouge I, Ferré JC, Belliard S, Barillot C, Barbeau EJ. Building memories on prior knowledge: behavioral and fMRI evidence of impairment in early Alzheimer's disease. Neurobiol Aging 2021; 110:1-12. [PMID: 34837869 DOI: 10.1016/j.neurobiolaging.2021.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/03/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Impaired memory is a hallmark of prodromal Alzheimer's disease (AD). Prior knowledge associated with the memoranda improves memory in healthy individuals, but we ignore whether the same occurs in early AD. We used functional MRI to investigate whether prior knowledge enhances memory encoding in early AD, and whether the nature of this prior knowledge matters. Patients with early AD and Controls underwent a task-based fMRI experiment where they learned face-scene associations. Famous faces carried pre-experimental knowledge (PEK), while unknown faces with which participants were familiarized prior to learning carried experimental knowledge (EK). Surprisingly, PEK strongly enhanced subsequent memory in healthy controls, but importantly not in patients. Partly nonoverlapping brain networks supported PEK vs. EK associative encoding in healthy controls. No such networks were identified in patients. In addition, patients displayed impaired activation in a right sub hippocampal region where activity predicted successful associative memory formation for PEK stimuli. Despite the limited sample sizes of this study, these findings suggest that the role prior knowledge in new learning might have been so far overlooked and underestimated in AD patients. Prior knowledge may drive critical differences in the way healthy elderly and early AD patients learn novel associations.
Collapse
Affiliation(s)
- Pierre-Yves Jonin
- Brain & Cognition Research Center (CerCo), CNRS-University of Toulouse Paul Sabatier, Toulouse, France; Empenn research team, INRIA, Rennes University-CNRS-INSERM-IRISA, Rennes, France; Neurology Department, Rennes University Hospital, Rennes, France.
| | - Quentin Duché
- Empenn research team, INRIA, Rennes University-CNRS-INSERM-IRISA, Rennes, France
| | - Elise Bannier
- Empenn research team, INRIA, Rennes University-CNRS-INSERM-IRISA, Rennes, France; Radiology Department, Rennes University Hospital, Rennes, France
| | - Isabelle Corouge
- Empenn research team, INRIA, Rennes University-CNRS-INSERM-IRISA, Rennes, France; Radiology Department, Rennes University Hospital, Rennes, France
| | - Jean-Christophe Ferré
- Empenn research team, INRIA, Rennes University-CNRS-INSERM-IRISA, Rennes, France; Radiology Department, Rennes University Hospital, Rennes, France
| | - Serge Belliard
- Neurology Department, Rennes University Hospital, Rennes, France
| | - Christian Barillot
- Empenn research team, INRIA, Rennes University-CNRS-INSERM-IRISA, Rennes, France
| | - Emmanuel J Barbeau
- Brain & Cognition Research Center (CerCo), CNRS-University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
19
|
Thakral PP, Madore KP, Addis DR, Schacter DL. Reinstatement of Event Details during Episodic Simulation in the Hippocampus. Cereb Cortex 2021; 30:2321-2337. [PMID: 31701122 DOI: 10.1093/cercor/bhz242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
According to the constructive episodic simulation hypothesis, episodic simulation (i.e., imagining specific novel future episodes) draws on some of the same neurocognitive processes that support episodic memory (i.e., recalling specific past episodes). Episodic retrieval supports the ability to simulate future experiences by providing access to episodic details (e.g., the people and locations that comprise memories) that can be recombined in new ways. In the current functional neuroimaging study, we test this hypothesis by examining whether the hippocampus, a region implicated in the reinstatement of episodic information during memory, supports reinstatement of episodic information during simulation. Employing a multivoxel pattern similarity analysis, we interrogated the similarity between hippocampal neural patterns during memory and simulation at the level of individual event details. Our findings indicate that the hippocampus supports the reinstatement of detail-specific information from episodic memory during simulation, with the level of reinstatement contributing to the subjective experience of simulated details.
Collapse
Affiliation(s)
- Preston P Thakral
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin P Madore
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Donna Rose Addis
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada.,School of Psychology, The University of Auckland, Auckland 1142, New Zealand
| | - Daniel L Schacter
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
Kragel JE, Ezzyat Y, Lega BC, Sperling MR, Worrell GA, Gross RE, Jobst BC, Sheth SA, Zaghloul KA, Stein JM, Kahana MJ. Distinct cortical systems reinstate the content and context of episodic memories. Nat Commun 2021; 12:4444. [PMID: 34290240 PMCID: PMC8295370 DOI: 10.1038/s41467-021-24393-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Episodic recall depends upon the reinstatement of cortical activity present during the formation of a memory. Evidence from functional neuroimaging and invasive recordings in humans suggest that reinstatement organizes our memories by time or content, yet the neural systems involved in reinstating these unique types of information remain unclear. Here, combining computational modeling and intracranial recordings from 69 epilepsy patients, we show that two cortical systems uniquely reinstate the semantic content and temporal context of previously studied items during free recall. Examining either the posterior medial or anterior temporal networks, we find that forward encoding models trained on the brain's response to the temporal and semantic attributes of items can predict the serial position and semantic category of unseen items. During memory recall, these models uniquely link reinstatement of temporal context and semantic content to these posterior and anterior networks, respectively. These findings demonstrate how specialized cortical systems enable the human brain to target specific memories.
Collapse
Affiliation(s)
- James E. Kragel
- grid.25879.310000 0004 1936 8972Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| | - Youssef Ezzyat
- grid.25879.310000 0004 1936 8972Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| | - Bradley C. Lega
- grid.267313.20000 0000 9482 7121Department of Neurosurgery, University of Texas Southwestern, Dallas, TX USA
| | - Michael R. Sperling
- grid.265008.90000 0001 2166 5843Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - Gregory A. Worrell
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN USA
| | - Robert E. Gross
- grid.189967.80000 0001 0941 6502Department of Neurosurgery, Emory School of Medicine, Atlanta, GA USA
| | - Barbara C. Jobst
- grid.413480.a0000 0004 0440 749XDepartment of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH USA
| | - Sameer A. Sheth
- grid.239585.00000 0001 2285 2675Department of Neurosurgery, Columbia University Medical Center, New York, NY USA
| | - Kareem A. Zaghloul
- grid.94365.3d0000 0001 2297 5165Surgical Neurology Branch, National Institutes of Health, Bethesda, MD USA
| | - Joel M. Stein
- grid.411115.10000 0004 0435 0884Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Michael J. Kahana
- grid.25879.310000 0004 1936 8972Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
21
|
Fritch HA, Thakral PP, Slotnick SD, Ross RS. Distinct patterns of hippocampal activity associated with color and spatial source memory. Hippocampus 2021; 31:1039-1047. [PMID: 34101292 DOI: 10.1002/hipo.23368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/08/2022]
Abstract
The hippocampus is known to be involved in source memory across a wide variety of stimuli and source types. Thus, source memory activity in the hippocampus is thought to be domain-general such that different types of source information are similarly processed in the hippocampus. However, there is some evidence of domain-specificity for spatial and temporal source information. The current fMRI study aimed to determine whether patterns of activity in the hippocampus differed for two types of visual source information: spatial location and background color. Participants completed three runs of a spatial memory task and three runs of a color memory task. During the study phase, 32 line drawings of common objects and animals were presented to either the left or right of fixation for the spatial memory task or on either a red or green background for the color memory task. During the test phase of both tasks, 48 object word labels were presented in the center of the screen and participants classified the corresponding item as old and previously on the "left"/on a "green" background, old and previously on the "right"/on a "red" background, or "new." Two analysis methods were employed to assess whether hippocampal activity differed between the two source types: a general linear model analysis and a classification-based searchlight multivoxel pattern analysis (MVPA). The searchlight MVPA revealed that activity associated with spatial memory and color memory could be classified with above-chance accuracy in a region of the right anterior hippocampus, and a follow-up analysis revealed that there was a significant effect of memory accuracy. These results indicate that different types of source memory are represented by distinct patterns of activity in the hippocampus.
Collapse
Affiliation(s)
- Haley A Fritch
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Preston P Thakral
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Robert S Ross
- Department of Psychology, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
22
|
Elward RL, Rugg MD, Vargha-Khadem F. When the brain, but not the person, remembers: Cortical reinstatement is modulated by retrieval goal in developmental amnesia. Neuropsychologia 2021; 154:107788. [PMID: 33587931 PMCID: PMC7967023 DOI: 10.1016/j.neuropsychologia.2021.107788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
Developmental amnesia (DA) is associated with early hippocampal damage and subsequent episodic amnesia emerging in childhood alongside age-appropriate development of semantic knowledge. We employed fMRI to assess whether patients with DA show evidence of 'cortical reinstatement', a neural correlate of episodic memory, despite their amnesia. At study, 23 participants (5 patients) were presented with words overlaid on a scene or a scrambled image for later recognition. Scene reinstatement was indexed by scene memory effects (greater activity for previously presented words paired with a scene rather than scrambled images) that overlapped with scene perception effects. Patients with DA demonstrated scene reinstatement effects in the parahippocampal and retrosplenial cortex that were equivalent to those shown by healthy controls. Behaviourally, however, patients with DA showed markedly impaired scene memory. The data indicate that reinstatement can occur despite hippocampal damage, but that cortical reinstatement is insufficient to support accurate memory performance. Furthermore, scene reinstatement effects were diminished during a retrieval task in which scene information was not relevant for accurate responding, indicating that strategic mnemonic processes operate normally in DA. The data suggest that cortical reinstatement of trial-specific contextual information is decoupled from the experience of recollection in the presence of severe hippocampal atrophy.
Collapse
Affiliation(s)
- Rachael L Elward
- UCL Great Ormond Street Institute for Child Health, London, UK; London South Bank University, London, UK
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, USA; School of Psychology, University of East Anglia, UK
| | | |
Collapse
|
23
|
Imaging recollection, familiarity, and novelty in the frontoparietal control and default mode networks and the anterior-posterior medial temporal lobe: An integrated view and meta-analysis. Neurosci Biobehav Rev 2021; 126:491-508. [PMID: 33857579 DOI: 10.1016/j.neubiorev.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022]
Abstract
A network-level model of recollection-based recognition (R), familiarity-based recognition (F), and novelty recognition (N) was constructed, and its validity was evaluated through meta-analyses to produce an integrated view of neuroimaging data. The model predicted the following: (a) the overall magnitude of the frontoparietal control network (FPCN) activity (which supports retrieval and decision effort) is in the order of F > R > N; (b) that of the posterior medial temporal network (MTL) activity (which plays a direct role in retrieval) is in the order of R > N > F; (c) that of the anterior MTL activity (which supports novelty-encoding) is in the order of N > R > F; (d) that of the default mode network (DMN) activity (which supports the subjective experience of remembering) is in the order of R > N > F. The meta-analyses results were consistent with these predictions. Subsystem analysis indicated a functional dissociation between the cingulo-opercular vs. frontoparietal components of the FPCN and between the core vs. medial temporal components of the DMN.
Collapse
|
24
|
Srokova S, Hill PF, Elward RL, Rugg MD. Effects of age on goal-dependent modulation of episodic memory retrieval. Neurobiol Aging 2021; 102:73-88. [PMID: 33765433 DOI: 10.1016/j.neurobiolaging.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Retrieval gating refers to the ability to modulate the retrieval of features of a single memory episode according to behavioral goals. Recent findings demonstrate that younger adults engage retrieval gating by attenuating the representation of task-irrelevant features of an episode. Here, we examine whether retrieval gating varies with age. Younger and older adults incidentally encoded words superimposed over scenes or scrambled backgrounds that were displayed in one of three spatial locations. Participants subsequently underwent fMRI as they completed two memory tasks: the background task, which tested memory for the word's background, and the location task, testing memory for the word's location. Employing univariate and multivariate approaches, we demonstrated that younger, but not older adults, exhibited attenuated reinstatement of scene information when it was goal-irrelevant (during the location task). Additionally, in younger adults only, the strength of scene reinstatement in the parahippocampal place area during the background task was related to item and source memory performance. Together, these findings point to an age-related decline in the ability to engage retrieval gating.
Collapse
Affiliation(s)
- Sabina Srokova
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| | - Paul F Hill
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Rachael L Elward
- School of Applied Sciences, Division of Psychology, London South Bank University, London, UK
| | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; School of Psychology, University of East Anglia, Norwich, UK; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
25
|
Bein O, Reggev N, Maril A. Prior knowledge promotes hippocampal separation but cortical assimilation in the left inferior frontal gyrus. Nat Commun 2020; 11:4590. [PMID: 32929067 PMCID: PMC7490707 DOI: 10.1038/s41467-020-18364-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
An adaptive memory system rarely learns information tabula rasa, but rather builds on prior knowledge to facilitate learning. How prior knowledge influences the neural representation of novel associations remains unknown. Here, participants associated pairs of faces in two conditions: a famous, highly familiar face with a novel face or two novel faces while undergoing fMRI. We examine multivoxel activity patterns corresponding to individual faces before and after learning. The activity patterns representing members of famous-novel pairs becomes separated in the hippocampus, that is, more distinct from one another through learning, in striking contrast to paired novel faces that become similar. In the left inferior frontal gyrus, however, prior knowledge leads to integration, and in a specific direction: the representation of the novel face becomes similar to that of the famous face after learning, suggesting assimilation of new into old memories. We propose that hippocampal separation might resolve interference between existing and newly learned information, allowing cortical assimilation. Thus, associative learning with versus without prior knowledge relies on radically different computations. Prior knowledge strongly impacts new learning, but its influence on the neural representation of novel information is unknown. Here, the authors show multiple neural codes for learning: prior knowledge leads to integrated cortical representations, while promoting hippocampal separation.
Collapse
Affiliation(s)
- Oded Bein
- Department of Psychology, New York University, 6 Washington Pl, New York, NY, 10003, USA
| | - Niv Reggev
- Psychology Department, Ben Gurion University of the Negev, 1 Shderot Ben Gurion, Be'er Sheva, 8410501, Israel
| | - Anat Maril
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, 91905, Israel. .,Department of Cognitive Science, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem, 91905, Israel.
| |
Collapse
|
26
|
Hill PF, King DR, Rugg MD. Age Differences In Retrieval-Related Reinstatement Reflect Age-Related Dedifferentiation At Encoding. Cereb Cortex 2020; 31:106-122. [PMID: 32829396 DOI: 10.1093/cercor/bhaa210] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Age-related reductions in neural selectivity have been linked to cognitive decline. We examined whether age differences in the strength of retrieval-related cortical reinstatement could be explained by analogous differences in neural selectivity at encoding, and whether reinstatement was associated with memory performance in an age-dependent or an age-independent manner. Young and older adults underwent fMRI as they encoded words paired with images of faces or scenes. During a subsequent scanned memory test participants judged whether test words were studied or unstudied and, for words judged studied, also made a source memory judgment about the associated image category. Using multi-voxel pattern similarity analyses, we identified robust evidence for reduced scene reinstatement in older relative to younger adults. This decline was however largely explained by age differences in neural differentiation at encoding; moreover, a similar relationship between neural selectivity at encoding and retrieval was evident in young participants. The results suggest that, regardless of age, the selectivity with which events are neurally processed at the time of encoding can determine the strength of retrieval-related cortical reinstatement.
Collapse
Affiliation(s)
- Paul F Hill
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX 75235.,School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Danielle R King
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX 75235.,School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX 75235.,School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080.,Department of Psychiatry, University of Texas Southwestern Medical Center, 6363 Forest Park Rd 7th floor suite 749, Dallas TX 75235.,School of Psychology, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
27
|
Ritchey M, Cooper RA. Deconstructing the Posterior Medial Episodic Network. Trends Cogn Sci 2020; 24:451-465. [PMID: 32340798 DOI: 10.1016/j.tics.2020.03.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/12/2023]
Abstract
Our ability to remember or imagine specific events involves the construction of complex mental representations, a process that engages cortical and hippocampal regions in a core posterior medial (PM) brain network. Existing theoretical approaches have described the overarching contributions of the PM network, but less is known about how episodic content is represented and transformed throughout this system. Here, we review evidence of key functional interactions among PM regions and their relation to the core cognitive operations and representations supporting episodic construction. Recent demonstrations of intranetwork functional diversity are integrated with existing accounts to inform a network-based model of episodic construction, in which PM regions flexibly share and manipulate event information to support the variable phenomenology of episodic memory and simulation.
Collapse
Affiliation(s)
- Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, 300 McGuinn Hall, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA.
| | - Rose A Cooper
- Department of Psychology and Neuroscience, Boston College, 300 McGuinn Hall, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
28
|
Cowell RA, Huber DE. Mechanisms of memory: An intermediate level of analysis and organization. Curr Opin Behav Sci 2020; 32:65-71. [PMID: 32851122 PMCID: PMC7444732 DOI: 10.1016/j.cobeha.2020.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Research in the last five years has made great strides toward mechanistic explanations of how the brain enables memory. This progress builds upon decades of research from two complementary strands: a Levels of Analysis approach and a Levels of Organization approach. We review how research in cognitive psychology and cognitive neuroscience under these two approaches has recently converged on mechanistic, brain-based theories, couched at the optimal level for explaining cognitive phenomena - the intermediate level. Furthermore, novel empirical and data analysis techniques are now providing ways to test these theories' predictions, a crucial step in unraveling the mechanisms of memory.
Collapse
Affiliation(s)
- Rosemary A. Cowell
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst
| | - David E. Huber
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst
| |
Collapse
|
29
|
Folville A, Bahri MA, Delhaye E, Salmon E, D’Argembeau A, Bastin C. Age-related differences in the neural correlates of vivid remembering. Neuroimage 2020; 206:116336. [DOI: 10.1016/j.neuroimage.2019.116336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
|
30
|
Neural correlates of retrieval-based enhancement of autobiographical memory in older adults. Sci Rep 2020; 10:1447. [PMID: 31996715 PMCID: PMC6989450 DOI: 10.1038/s41598-020-58076-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/08/2020] [Indexed: 11/08/2022] Open
Abstract
Lifelog photo review is considered to enhance the recall of personal events. While a sizable body of research has explored the neural basis of autobiographical memory (AM), there is limited neural evidence on the retrieval-based enhancement effect on event memory among older adults in the real-world environment. This study examined the neural processes of AM as was modulated by retrieval practice through lifelog photo review in older adults. In the experiment, blood-oxygen-level dependent response during subjects’ recall of recent events was recorded, where events were cued by photos that may or may not have been exposed to a priori retrieval practice (training). Subjects remembered more episodic details under the trained relative to non-trained condition. Importantly, the neural correlates of AM was exhibited by (1) dissociable cortical areas related to recollection and familiarity, and (2) a positive correlation between the amount of recollected episodic details and cortical activation within several lateral temporal and parietal regions. Further analysis of the brain activation pattern at a few regions of interest within the core remember network showed a training_condition × event_detail interaction effect, suggesting that the boosting effect of retrieval practice depended on the level of recollected event details.
Collapse
|
31
|
Ekstrom AD, Yonelinas AP. Precision, binding, and the hippocampus: Precisely what are we talking about? Neuropsychologia 2020; 138:107341. [PMID: 31945386 DOI: 10.1016/j.neuropsychologia.2020.107341] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/22/2019] [Accepted: 01/11/2020] [Indexed: 02/05/2023]
Abstract
Endel Tulving's proposal that episodic memory is distinct from other memory systems like semantic memory remains an extremely influential idea in cognitive neuroscience research. As originally suggested by Tulving, episodic memory involves three key components that differentiate it from all other memory systems: spatiotemporal binding, mental time travel, and autonoetic consciousness. Here, we focus on the idea of spatiotemporal binding in episodic memory and, in particular, how consideration of the precision of spatiotemporal context helps expand our understanding of episodic memory. Precision also helps shed light on another key issue in cognitive neuroscience, the role of the hippocampus outside of episodic memory in perception, attention, and working memory. By considering precision alongside item-context bindings, we attempt to shed new light on both the nature of how we represent context and what roles the hippocampus plays in episodic memory and beyond.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA.
| | - Andrew P Yonelinas
- Center for Neuroscience, University of California, Davis, 1 Shields Ave, Davis, CA, 95618, USA; Department of Psychology, University of California, Davis, 1 Shields Ave, Davis, CA, 95618, USA.
| |
Collapse
|
32
|
Buck S, Bastos F, Baldeweg T, Vargha-Khadem F. A Functional MRI Paradigm Suitable for Language and Memory Mapping in Pediatric Temporal Lobe Epilepsy. Front Neurol 2020; 10:1384. [PMID: 31998226 PMCID: PMC6966885 DOI: 10.3389/fneur.2019.01384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) is a technique frequently used to determine the territories of eloquent tissue that serve critical functions, such as language. This can be particularly useful as part of the pre-surgical assessment for temporal lobe epilepsy (TLE) in order to predict cognitive outcome and guide surgical decision-making. Whereas language fMRI is widely used, memory fMRI is less frequently employed in adult TLE, and lacking in childhood TLE. We have developed a combined language/memory fMRI paradigm that is suitable for children, to provide clinically useful information for surgical planning in pediatric TLE. We evaluated this paradigm in 28 healthy children, aged 8 to 18 years. The advantages of this paradigm are: (a) it examines the functional mapping of language and memory networks within one scanning session, (b) provides assessment of both memory encoding- and retrieval-related neural networks, (c) examines recall-based retrieval to engage hippocampal involvement compared to recognition-based retrieval, and (d) provides overt verbal responses to monitor in-scanner memory performance. This novel fMRI paradigm was designed for language and memory mapping in pediatric TLE and could provide clinically useful information for surgical planning. Finally, parallel versions of the paradigm allow the comparison of brain activations pre- and post-surgical intervention.
Collapse
Affiliation(s)
- Sarah Buck
- Cognitive Neuroscience and Neuropsychiatry Section, Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| | - Filipa Bastos
- Cognitive Neuroscience and Neuropsychiatry Section, Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
- Unit of Paediatric Neurology and Neurorehabilitation, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Torsten Baldeweg
- Cognitive Neuroscience and Neuropsychiatry Section, Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry Section, Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| |
Collapse
|
33
|
Renoult L, Irish M, Moscovitch M, Rugg MD. From Knowing to Remembering: The Semantic–Episodic Distinction. Trends Cogn Sci 2019; 23:1041-1057. [DOI: 10.1016/j.tics.2019.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023]
|
34
|
Harrington DL, Shen Q, Vincent Filoteo J, Litvan I, Huang M, Castillo GN, Lee RR, Bayram E. Abnormal distraction and load-specific connectivity during working memory in cognitively normal Parkinson's disease. Hum Brain Mapp 2019; 41:1195-1211. [PMID: 31737972 PMCID: PMC7058508 DOI: 10.1002/hbm.24868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023] Open
Abstract
Visuospatial working memory impairments are common in Parkinson's disease (PD), yet the underlying neural mechanisms are poorly understood. The present study investigated abnormalities in context‐dependent functional connectivity of working memory hubs in PD. Cognitively normal PD and control participants underwent fMRI while performing a visuospatial working memory task. To identify sources of dysfunction, distraction, and load‐modulated connectivity were disentangled for encoding and retrieval phases of the task. Despite normal working memory performance in PD, two features of abnormal connectivity were observed, one due to a loss in normal context‐related connectivity and another related to upregulated connectivity of hubs for which the controls did not exhibit context‐dependent connectivity. During encoding, striatal‐prefrontal coupling was lost in PD, both during distraction and high memory loads. However, long‐range connectivity of prefrontal, medial temporal and occipital hubs was upregulated in a context‐specific manner. Memory retrieval was characterized by different aberrant connectivity patterns, wherein precuneus connectivity was upregulated during distraction, whereas prefrontal couplings were lost as memory load approached capacity limits. Features of abnormal functional connectivity in PD had pathological and compensatory influences as they correlated with poorer working memory or better visuospatial skills. The results offer new insights into working memory‐related signatures of aberrant cortico–cortical and corticostriatal functional connections, which may portend future declines in different facets of working memory.
Collapse
Affiliation(s)
- Deborah L Harrington
- Research, Radiology, and Psychology Services, VA San Diego Healthcare System, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Qian Shen
- Department of Radiology, University of California, San Diego, California
| | - Julian Vincent Filoteo
- Research, Radiology, and Psychology Services, VA San Diego Healthcare System, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, California
| | - Mingxiong Huang
- Research, Radiology, and Psychology Services, VA San Diego Healthcare System, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Gabriel N Castillo
- Department of Radiology, University of California, San Diego, California
| | - Roland R Lee
- Research, Radiology, and Psychology Services, VA San Diego Healthcare System, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Ece Bayram
- Department of Neurosciences, University of California, San Diego, California
| |
Collapse
|
35
|
Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topogr 2019; 32:926-942. [PMID: 31707621 DOI: 10.1007/s10548-019-00744-6] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/02/2019] [Indexed: 12/25/2022]
Abstract
The past decade has witnessed a proliferation of studies aimed at characterizing the human connectome. These projects map the brain regions comprising large-scale systems underlying cognition using non-invasive neuroimaging approaches and advanced analytic techniques adopted from network science. While the idea that the human brain is composed of multiple macro-scale functional networks has been gaining traction in cognitive neuroscience, the field has yet to reach consensus on several key issues regarding terminology. What constitutes a functional brain network? Are there "core" functional networks, and if so, what are their spatial topographies? What naming conventions, if universally adopted, will provide the most utility and facilitate communication amongst researchers? Can a taxonomy of functional brain networks be delineated? Here we survey the current landscape to identify six common macro-scale brain network naming schemes and conventions utilized in the literature, highlighting inconsistencies and points of confusion where appropriate. As a minimum recommendation upon which to build, we propose that a scheme incorporating anatomical terminology should provide the foundation for a taxonomy of functional brain networks. A logical starting point in this endeavor might delineate systems that we refer to here as "occipital", "pericentral", "dorsal frontoparietal", "lateral frontoparietal", "midcingulo-insular", and "medial frontoparietal" networks. We posit that as the field of network neuroscience matures, it will become increasingly imperative to arrive at a taxonomy such as that proposed here, that can be consistently referenced across research groups.
Collapse
|
36
|
Woroch B, Konkel A, Gonsalves BD. Activation of stimulus-specific processing regions at retrieval tracks the strength of relational memory. AIMS Neurosci 2019; 6:250-265. [PMID: 32341981 PMCID: PMC7179353 DOI: 10.3934/neuroscience.2019.4.250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
Many theories of episodic memory posit that the subjective experience of recollection may be driven by the activation of stimulus-specific cortical regions during memory retrieval. This study examined cortical activation during associative memory retrieval to identify brain regions that support confidence judgments of source memory in stimulus-specific ways. Adjectives were encoded with either a picture of a face or a scene. During a source memory test, the word was presented alone and the participant was asked if the word had been previously paired with a face or a scene. We identified brain regions that were selectively active when viewing pictures of scenes or faces with a separate localizer scan. We then identified brain regions that were differentially activated to words during the source memory test that had been previously paired with faces or scenes, masked by the localizer activations, and examined how those regions were modulated by the strength of the source memory. Bilateral amygdala activation tracked source memory confidence for faces, while parahippocampal cortex tracked source memory confidence for scenes. The magnitude of the activation of these domain-specific perceptual-processing brain regions during memory retrieval may contribute to the subjective strength of episodic recollection.
Collapse
Affiliation(s)
- Brion Woroch
- Department of Psychology, University of Illinois, Champaign, IL, USA
| | - Alex Konkel
- Department of Psychology, University of Illinois, Champaign, IL, USA
| | - Brian D Gonsalves
- Department of Psychology, University of Illinois, Champaign, IL, USA.,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.,Department of Psychology, California State University, East Bay, Hayward, CA, USA
| |
Collapse
|
37
|
Larzabal C, Bacon-Macé N, Muratot S, Thorpe SJ. Tracking Your Mind's Eye during Recollection: Decoding the Long-Term Recall of Short Audiovisual Clips. J Cogn Neurosci 2019; 32:50-64. [PMID: 31560269 DOI: 10.1162/jocn_a_01468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Unlike familiarity, recollection involves the ability to reconstruct mentally previous events that results in a strong sense of reliving. According to the reinstatement hypothesis, this specific feature emerges from the reactivation of cortical patterns involved during information exposure. Over time, the retrieval of specific details becomes more difficult, and memories become increasingly supported by familiarity judgments. The multiple trace theory (MTT) explains the gradual loss of episodic details by a transformation in the memory representation, a view that is not shared by the standard consolidation model. In this study, we tested the MTT in light of the reinstatement hypothesis. The temporal dynamics of mental imagery from long-term memory were investigated and tracked over the passage of time. Participant EEG activity was recorded during the recall of short audiovisual clips that had been watched 3 weeks, 1 day, or a few hours beforehand. The recall of the audiovisual clips was assessed using a Remember/Know/New procedure, and snapshots of clips were used as recall cues. The decoding matrices obtained from the multivariate pattern analyses revealed sustained patterns that occurred at long latencies (>500 msec poststimulus onset) that faded away over the retention intervals and that emerged from the same neural processes. Overall, our data provide further evidence toward the MTT and give new insights into the exploration of our "mind's eye."
Collapse
|
38
|
Dong G, Wang L, Du X, Potenza MN. Gender-related differences in neural responses to gaming cues before and after gaming: implications for gender-specific vulnerabilities to Internet gaming disorder. Soc Cogn Affect Neurosci 2019; 13:1203-1214. [PMID: 30272247 PMCID: PMC6234325 DOI: 10.1093/scan/nsy084] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
Backgrounds More males than females play video games and develop problems with gaming. However, little is known regarding how males and females who game on the Internet may differ with respect to neural responses to gaming cues. Methods Behavioral and functional magnetic resonance imaging (fMRI) data were recorded from 40 female and 68 male Internet gamers. This study included three components including participation in a pre-gaming cue-craving task, 30 min of online gaming and a post-gaming cue-elicited-craving task. Group differences were examined at pre-gaming, post-gaming and post- vs pre-gaming times. Correlations between brain responses and behavioral performance were calculated. Results Gaming-related cues elicited higher cravings in male vs female subjects. Prior to gaming, males demonstrated greater activations in the striatum, orbitofrontal cortex (OFC), inferior frontal cortex and bilateral declive. Following gaming, male subjects demonstrated greater activations in the medial frontal gyrus and bilateral middle temporal gyri. In a post–pre comparison, male subjects demonstrated greater thalamic activation than did female subjects. Conclusions Short-term gaming elicited in males vs females more craving-related activations to gaming cues. These results suggest neural mechanisms for why males may be more vulnerable than females in developing Internet gaming disorder.
Collapse
Affiliation(s)
- Guangheng Dong
- School of Psychology, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Lingxiao Wang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Marc N Potenza
- Department of Psychiatry, Department of Neuroscience, Child Study Center, and National Center on Addiction and Substance Abuse, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
39
|
Thakral PP, Wang TH, Rugg MD. Effects of age on across-participant variability of cortical reinstatement effects. Neuroimage 2019; 191:162-175. [PMID: 30731244 DOI: 10.1016/j.neuroimage.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/03/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022] Open
Abstract
Using functional magnetic resonance imaging data, we assessed whether across-participant variability of content-selective retrieval-related neural activity differs with age. We addressed this question by employing across-participant multi-voxel pattern analysis (MVPA), predicting that increasing age would be associated with reduced variability of retrieval-related cortical reinstatement across participants. During study, 24 young and 24 older participants viewed objects and concrete words. Test items comprised studied words, names of studied objects, and unstudied words. Participants judged whether the items were recollected, familiar, or new by making 'Remember', 'Know' and 'New' responses, respectively. MVPA was conducted on each region belonging to the 'core recollection network', dorsolateral prefrontal cortex, and a previously identified content-selective voxel set. A leave-one-participant-out classification approach was employed whereby a classifier was trained on a subset of participants and tested on the data from a yoked pair of held-out participants. Classifiers were trained on the study phase data to discriminate the study trials as a function of content (picture or word). The classifiers were then applied to the test phase data to discriminate studied test words according to their study condition. In all of the examined regions, classifier performance demonstrated little or no sensitivity to age and, for the test data, was robustly above chance. Thus, there was little evidence to support the hypothesis that across-participant variability of retrieval-related cortical reinstatement differs with age. The findings extend prior evidence by demonstrating that content-selective cortical reinstatement is sufficiently invariant to support across-participant multi-voxel classification across the healthy adult lifespan.
Collapse
Affiliation(s)
| | - Tracy H Wang
- Department of Psychology, University of Texas at Austin, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, USA
| |
Collapse
|
40
|
Lee H, Samide R, Richter FR, Kuhl BA. Decomposing Parietal Memory Reactivation to Predict Consequences of Remembering. Cereb Cortex 2018; 29:3305-3318. [DOI: 10.1093/cercor/bhy200] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
Memory retrieval can strengthen, but also distort memories. Parietal cortex is a candidate region involved in retrieval-induced memory changes as it reflects retrieval success and represents retrieved content. Here, we conducted an fMRI experiment to test whether different forms of parietal reactivation predict distinct consequences of retrieval. Subjects studied associations between words and pictures of faces, scenes, or objects, and then repeatedly retrieved half of the pictures, reporting the vividness of the retrieved pictures (“retrieval practice”). On the following day, subjects completed a recognition memory test for individual pictures. Critically, the test included lures highly similar to studied pictures. Behaviorally, retrieval practice increased both hit and false alarm (FA) rates to similar lures, confirming a causal influence of retrieval on subsequent memory. Using pattern similarity analyses, we measured two different levels of reactivation during retrieval practice: generic “category-level” reactivation and idiosyncratic “item-level” reactivation. Vivid remembering during retrieval practice was associated with stronger category- and item-level reactivation in parietal cortex. However, these measures differentially predicted subsequent recognition memory performance: whereas higher category-level reactivation tended to predict FAs to lures, item-level reactivation predicted correct rejections. These findings indicate that parietal reactivation can be decomposed to tease apart distinct consequences of memory retrieval.
Collapse
Affiliation(s)
- Hongmi Lee
- Department of Psychology, New York University, New York, NY, USA
| | | | | | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
41
|
Wynn SC, Hendriks MPH, Daselaar SM, Kessels RPC, Schutter DJLG. The posterior parietal cortex and subjectively perceived confidence during memory retrieval. ACTA ACUST UNITED AC 2018; 25:382-389. [PMID: 30012883 PMCID: PMC6049393 DOI: 10.1101/lm.048033.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
Functional neuroimaging studies suggest a role for the left angular gyrus (AG) in processes related to memory recognition. However, results of neuropsychological and transcranial magnetic stimulation (TMS) studies have been inconclusive regarding the specific contribution of the AG in recollection, familiarity, and the subjective experience of memory. To obtain further insight into this issue, 20 healthy right-handed volunteers performed a memory task in a single-blind within-subject controlled TMS study. Neuronavigated inhibitory repetitive TMS (rTMS) was applied over the left AG and the vertex in a randomized and counterbalanced order. Prior to rTMS participants were presented with a list of words. After rTMS participants were shown a second list of words and instructed to indicate if the word was already shown prior to rTMS ("old") or was presented for the first time ("new"). In addition, subjectively perceived memory confidence was assessed. Results showed that recollection was unaffected following inhibitory left AG rTMS. In contrast, rTMS over the left AG improved both familiarity and the subjectively perceived confidence of participants that demonstrated low baseline memory recognition. Our study highlights the importance of taking into account individual differences in experimental designs involving noninvasive brain stimulation.
Collapse
Affiliation(s)
- Syanah C Wynn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HP Nijmegen, The Netherlands
| | - Marc P H Hendriks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HP Nijmegen, The Netherlands.,Academic Centre of Epileptology, Kempenhaeghe, 5590 AB Heeze, The Netherlands
| | - Sander M Daselaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HP Nijmegen, The Netherlands
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HP Nijmegen, The Netherlands
| | - Dennis J L G Schutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HP Nijmegen, The Netherlands
| |
Collapse
|
42
|
Kauttonen J, Hlushchuk Y, Jääskeläinen IP, Tikka P. Brain mechanisms underlying cue-based memorizing during free viewing of movie Memento. Neuroimage 2018; 172:313-325. [DOI: 10.1016/j.neuroimage.2018.01.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/19/2017] [Accepted: 01/28/2018] [Indexed: 10/18/2022] Open
|
43
|
Thakral PP, Benoit RG, Schacter DL. Characterizing the role of the hippocampus during episodic simulation and encoding. Hippocampus 2017; 27:1275-1284. [PMID: 28843046 DOI: 10.1002/hipo.22796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023]
Abstract
The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode). In a recent study, we identified an anterior-posterior temporal dissociation within the hippocampus during simulation. Specifically, transient simulation-related activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. In line with previous theoretical proposals of hippocampal function during simulation, the posterior hippocampal activity was interpreted as reflecting a transient retrieval process for the episodic details necessary to construct an episode. In contrast, the sustained anterior hippocampal activity was interpreted as reflecting the continual recruitment of encoding and/or relational processing associated with a simulation. In the present study, we provide a direct test of these interpretations by conducting a subsequent memory analysis of our previously published data to assess whether successful encoding during episodic simulation is associated with the anterior hippocampus. Analyses revealed a subsequent memory effect (i.e., later remembered > later forgotten simulations) in the anterior hippocampus. The subsequent memory effect was transient and not sustained. Taken together, the current findings provide further support for a component process model of hippocampal function during simulation. That is, unique regions of the hippocampus support dissociable processes during simulation, which include the transient retrieval of episodic information, the sustained binding of such information into a coherent episode, and the transient encoding of that episode for later retrieval.
Collapse
Affiliation(s)
- Preston P Thakral
- Department of Psychology, Harvard University, Cambridge, Massachusetts, 02138
| | - Roland G Benoit
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel L Schacter
- Department of Psychology, Harvard University, Cambridge, Massachusetts, 02138
| |
Collapse
|
44
|
Rugg MD, King DR. Ventral lateral parietal cortex and episodic memory retrieval. Cortex 2017; 107:238-250. [PMID: 28802589 DOI: 10.1016/j.cortex.2017.07.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/29/2017] [Accepted: 07/18/2017] [Indexed: 01/21/2023]
Abstract
With the advent of functional neuroimaging it quickly became apparent that successful episodic memory retrieval was consistently associated with enhanced activity in ventral lateral parietal cortex (VLPC), especially the left angular gyrus. Here, we selectively review recent neuropsychological and functional neuroimaging evidence relevant to the question of the functional significance of this activity. We argue that the balance of the evidence suggests that the angular gyrus supports the representation of retrieved episodic information, and that this likely reflects a more general role for the region in representing multi-modal and multi-domain information.
Collapse
Affiliation(s)
- Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy, Dallas, TX, USA.
| | - Danielle R King
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy, Dallas, TX, USA
| |
Collapse
|
45
|
Mitchell KJ, MacPherson SE. The cognitive neuroscience of source memory: Moving the ball forward. Cortex 2017; 91:1-8. [PMID: 28495025 DOI: 10.1016/j.cortex.2017.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Karen J Mitchell
- Department of Psychology, West Chester University of Pennsylvania, USA.
| | | |
Collapse
|