1
|
Guo LL, Niemeier M. Phase-Dependent Visual and Sensorimotor Integration of Features for Grasp Computations before and after Effector Specification. J Neurosci 2024; 44:e2208232024. [PMID: 39019614 PMCID: PMC11326866 DOI: 10.1523/jneurosci.2208-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The simple act of viewing and grasping an object involves complex sensorimotor control mechanisms that have been shown to vary as a function of multiple object and other task features such as object size, shape, weight, and wrist orientation. However, these features have been mostly studied in isolation. In contrast, given the nonlinearity of motor control, its computations require multiple features to be incorporated concurrently. Therefore, the present study tested the hypothesis that grasp computations integrate multiple task features superadditively in particular when these features are relevant for the same action phase. We asked male and female human participants to reach-to-grasp objects of different shapes and sizes with different wrist orientations. Also, we delayed the movement onset using auditory signals to specify which effector to use. Using electroencephalography and representative dissimilarity analysis to map the time course of cortical activity, we found that grasp computations formed superadditive integrated representations of grasp features during different planning phases of grasping. Shape-by-size representations and size-by-orientation representations occurred before and after effector specification, respectively, and could not be explained by single-feature models. These observations are consistent with the brain performing different preparatory, phase-specific computations; visual object analysis to identify grasp points at abstract visual levels; and downstream sensorimotor preparatory computations for reach-to-grasp trajectories. Our results suggest the brain adheres to the needs of nonlinear motor control for integration. Furthermore, they show that examining the superadditive influence of integrated representations can serve as a novel lens to map the computations underlying sensorimotor control.
Collapse
Affiliation(s)
- Lin Lawrence Guo
- Department of Psychology Scarborough, University of Toronto, Toronto, Ontario M1C1A4, Canada
| | - Matthias Niemeier
- Department of Psychology Scarborough, University of Toronto, Toronto, Ontario M1C1A4, Canada
- Centre for Vision Research, York University, Toronto, Ontario M4N3M6, Canada
| |
Collapse
|
2
|
Wong WW, Peel H, Cabeen R, Diaz-Fong JP, Feusner JD. Visual system structural and functional connections during face viewing in body dysmorphic disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603273. [PMID: 39071433 PMCID: PMC11275846 DOI: 10.1101/2024.07.12.603273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Individuals with body dysmorphic disorder (BDD) perceive distortions in their appearance, which could be due to imbalances in global and local visual processing. The vertical occipital fasciculus connects dorsal and ventral visual stream regions, integrating global and local information, yet the role of this structural connection in BDD has not been explored. Here, we investigated the vertical occipital fasciculus's white matter microstructure in those with BDD and healthy controls and tested associations with psychometric measures and effective connectivity while viewing their face during fMRI. Methods We analyzed diffusion MRI and fMRI data in 17 unmedicated adults with BDD and 21 healthy controls. For diffusion MRI, bundle-specific analysis was performed, enabling quantitative estimation of neurite density and orientation dispersion of the vertical occipital fasciculus. For task fMRI, participants naturalistically viewed photos of their own face, from which we computed effective connectivity from dorsal to ventral visual regions. Results In BDD, neurite density was negatively correlated with appearance dissatisfaction and negatively correlated with effective connectivity. Further, those with weaker effective connectivity while viewing their face had worse BDD symptoms and worse insight. In controls, no significant relationships were found between any of the measures. There were no significant group differences in neurite density or orientation dispersion. Conclusion Those with BDD with worse appearance dissatisfaction have a lower fraction of tissue having axons or dendrites along the vertical occipital fasciculus bundle, possibly reflecting impacting the degree of integration of global and local visual information between the dorsal and ventral visual streams. These results provide early insights into how the vertical occipital fasciculus's microstructure relates to the subjective experience of one's appearance, as well as the possibility of distinct functional-structural relationships in BDD.
Collapse
Affiliation(s)
- Wan-wa Wong
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Hayden Peel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- La Trobe University, Melbourne, VIC, Australia
| | - Ryan Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | | | - Jamie D. Feusner
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry, Division of Neurosciences & Clinical Translation, University of Toronto, Toronto, ON, Canada
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Wang Y, Xie J, Yu X, Liu Y, Wang Z, Guo A, Ding Y, Zhou X, Liu S, Li J, Zhou C, Li Y, Liu Z, Li X, Ding L. Influence of short-term hypoxia exposure on dynamic visual acuity. Front Neurosci 2024; 18:1428987. [PMID: 39050671 PMCID: PMC11266189 DOI: 10.3389/fnins.2024.1428987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Background To quantify the changes in dynamic visual acuity (DVA) and explain the hidden reasons after acute exposure to hypobaric hypoxia status. Methods The study group comprised 18 healthy male and 15 healthy female participants aged 20-24 years old. DVA was measured with the self-developed software of Meidixin (Tianjin) Co., Ltd. Measurements were taken at eight altitudes. Data analysis was performed using the Kolmogorov-Smirnov test, paired sample T-test, and two-way repeated measures analysis of variance (ANOVA) for repeated measurements. Results At constant altitude, DVA showed an overall decreasing trend with increasing angular velocity and a fluctuating decrease at the vast majority of altitudes. At constant angular velocities, DVA gradually increased with altitude, with the most pronounced increase in DVA at altitude 5, and thereafter a gradual decrease in DVA as altitude increased. Finally, as altitude decreased, DVA increased again and reached a higher level at the end of the experiment, which was superior to the DVA in the initial state. Conclusion Under a hypobaric hypoxic environment at high altitude, DVA was affected by the angular velocity and the degree of hypoxia, manifesting as an increase or decrease in DVA, which affects the pilot's observation of the display and control interfaces during the driving process, acquisition of information, and decision-making ability, which in turn may potentially jeopardize the safety of the flight.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jiaxing Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xinli Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yihe Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zesong Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Anqi Guo
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yi Ding
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xinzuo Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Siru Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jiaxi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chengkai Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yuanhong Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Ziyuan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Li Ding
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
4
|
Zhang H, Liu Y, Jiang M, Shen F, Zhu T, Xia D, Li J, Fang S, Li Y, Sun J, Song X, Zhou H, Fan X. Immune-related visual dysfunction in thyroid eye disease: a combined orbital and brain neuroimaging study. Eur Radiol 2024; 34:4516-4526. [PMID: 38112763 DOI: 10.1007/s00330-023-10309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES To investigate the pathological interplay between immunity and the visual processing system (VPS) in thyroid eye disease (TED). METHODS A total of 24 active patients (AP), 26 inactive patients (IP) of TED, and 27 healthy controls (HCs) were enrolled. Orbital magnetic resonance imaging (MRI) and resting-state functional MRI (rs-fMRI) were conducted for each participant. Multiple MRI parameters of the intraorbital optic nerve (ON) were assessed. The amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were calculated. Correlation analyses were carried out on the above parameters and clinical characteristics. RESULTS Visual functioning scores differentiated between the AP and IP groups. The ON subarachnoid space and ON sheath diameter were significantly higher in AP than in IP. Six vision-related brain regions were identified in TED patients compared with HCs, including right calcarine (CAL.R), right cuneus (CUN.R), left postcentral gyrus (PoCG.L), right middle temporal gyrus (MTG.R), left superior frontal gyrus (SFG.L), and left caudate (CAU.L). The brain activity of MTG.R, SFG.L, and CAU.L differentiated between the AP and IP groups. The correlation analysis revealed a close association among the vision-related brain regions, MRI parameters of ON, and clinical characteristics in AP and IP, respectively. CONCLUSIONS Combined orbital and brain neuroimaging revealed abnormalities of the VPS in TED, which had a close correlation with immune statuses. Vision-related brain regions in TED might be possibly altered by peripheral immunity via a direct or indirect approach. CLINICAL RELEVANCE STATEMENT The discovery of this study explained the disparity of visual dysfunction in TED patients with different immune statuses. With the uncovered neuroimaging markers, early detection and intervention of visual dysfunction could be achieved and potentially benefit TED patients. KEY POINTS • Patients with different immune statuses of thyroid eye disease varied in the presentation of visual dysfunction. • The combined orbital and brain neuroimaging study identified six altered vision-related brain regions, which had a significant correlation with the MRI parameters of the intraorbital optic nerve and immunological characteristics. • Peripheral immunity might possibly give rise to alterations in the central nervous system part of the visual processing system via a direct or indirect approach.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuting Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiyang Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyi Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Duojin Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xuefei Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
5
|
Vaccari FE, Diomedi S, De Vitis M, Filippini M, Fattori P. Similar neural states, but dissimilar decoding patterns for motor control in parietal cortex. Netw Neurosci 2024; 8:486-516. [PMID: 38952818 PMCID: PMC11146678 DOI: 10.1162/netn_a_00364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 07/03/2024] Open
Abstract
Discrete neural states are associated with reaching movements across the fronto-parietal network. Here, the Hidden Markov Model (HMM) applied to spiking activity of the somato-motor parietal area PE revealed a sequence of states similar to those of the contiguous visuomotor areas PEc and V6A. Using a coupled clustering and decoding approach, we proved that these neural states carried spatiotemporal information regarding behaviour in all three posterior parietal areas. However, comparing decoding accuracy, PE was less informative than V6A and PEc. In addition, V6A outperformed PEc in target inference, indicating functional differences among the parietal areas. To check the consistency of these differences, we used both a supervised and an unsupervised variant of the HMM, and compared its performance with two more common classifiers, Support Vector Machine and Long-Short Term Memory. The differences in decoding between areas were invariant to the algorithm used, still showing the dissimilarities found with HMM, thus indicating that these dissimilarities are intrinsic in the information encoded by parietal neurons. These results highlight that, when decoding from the parietal cortex, for example, in brain machine interface implementations, attention should be paid in selecting the most suitable source of neural signals, given the great heterogeneity of this cortical sector.
Collapse
Affiliation(s)
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy
| |
Collapse
|
6
|
Fattori P, De Vitis M, Filippini M, Vaccari FE, Diomedi S, Gamberini M, Galletti C. Visual sensitivity at the service of action control in posterior parietal cortex. Front Physiol 2024; 15:1408010. [PMID: 38841208 PMCID: PMC11151461 DOI: 10.3389/fphys.2024.1408010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The posterior parietal cortex (PPC) serves as a crucial hub for the integration of sensory with motor cues related to voluntary actions. Visual input is used in different ways along the dorsomedial and the dorsolateral visual pathways. Here we focus on the dorsomedial pathway and recognize a visual representation at the service of action control. Employing different experimental paradigms applied to behaving monkeys while single neural activity is recorded from the medial PPC (area V6A), we show how plastic visual representation can be, matching the different contexts in which the same object is proposed. We also present data on the exchange between vision and arm actions and highlight how this rich interplay can be used to weight different sensory inputs in order to monitor and correct arm actions online. Indeed, neural activity during reaching or reach-to-grasp actions can be excited or inhibited by visual information, suggesting that the visual perception of action, rather than object recognition, is the most effective factor for area V6A. Also, three-dimensional object shape is encoded dynamically by the neural population, according to the behavioral context of the monkey. Along this line, mirror neuron discharges in V6A indicate the plasticity of visual representation of the graspable objects, that changes according to the context and peaks when the object is the target of one's own action. In other words, object encoding in V6A is a visual encoding for action.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Padova, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Ugolini G, Graf W. Pathways from the superior colliculus and the nucleus of the optic tract to the posterior parietal cortex in macaque monkeys: Functional frameworks for representation updating and online movement guidance. Eur J Neurosci 2024; 59:2792-2825. [PMID: 38544445 DOI: 10.1111/ejn.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS - Université Paris-Saclay, Campus CEA Saclay, Saclay, France
| | - Werner Graf
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| |
Collapse
|
8
|
Nicolau da Costa LR, Sousa JB, Brito FAC, Igarashi Y, Gomes JMS, Lobão CA, Costa MF, Miquilini L, Souza GS. Color discrimination in fixed saturation level of patients with acute traumatic injury. Front Neurol 2024; 15:1363167. [PMID: 38660098 PMCID: PMC11039878 DOI: 10.3389/fneur.2024.1363167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Traumatic brain injury (TBI) is an important public health concern and that may lead to severe neural sequels, such as color vision deficits. Methods We evaluated the color vision of 10 TBI patients with normal cognitive function using a color discrimination test in a fixed saturation level. We also analyzed computerized tomography scans to identify the local of the brain damages. Results Four TBI patients that had lesions in brain areas of the ventral visual streams, five TBI patients had lesions inferred in brain areas of the dorsal visual stream, and one TBI patient had lesion in the occipital area. All the patients had cognitive and color vision screened and they had characterized the chromatic discrimination at high and low saturation. All participants had no significant cognitive impairment in the moment of the color vision test. Additionally, they had perfect performance for discrimination of chromatic stimulus at high saturation and similar to controls (n = 37 age-matched participants). Three of four TBI patients with lesions in the ventral brain and one patient with lesion in the occipital area had impairment of the chromatic discrimination at low saturation. All TBI patients with lesions in the dorsal brain had performance similar or slightly worse than the controls. Conclusion Chromatic discrimination at low saturation was associated to visual damage in the ventral region of the brain and is a potential tool for functional evaluation of brain damage in TBI patients.
Collapse
Affiliation(s)
- Leonardo R. Nicolau da Costa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Hospital Metropolitano de Urgência e Emergência, Belém, Brazil
| | - Joyce B. Sousa
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Brazil
| | | | - Yuzo Igarashi
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Brazil
| | | | | | | | - Leticia Miquilini
- Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Brazil
| | - Givago Silva Souza
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
9
|
Ahsan SA, Dadario NB, Dhaliwal J, Briggs RG, Osipowicz K, Ahsan SM, Chendeb K, Conner AK, O'Neal CM, Glenn CA, Sughrue ME. A parcellation-based connectomic model of hemispatial neglect. J Neuroimaging 2024; 34:267-279. [PMID: 38115162 DOI: 10.1111/jon.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Hemispatial neglect is characterized by a reduced awareness to stimuli on the contralateral side. Current literature suggesting that damage to the right parietal lobe and attention networks may cause hemispatial neglect is conflicting and can be improved by investigating a connectomic model of the "neglect system" and the anatomical specificity of regions involved in it. METHODS A meta-analysis of voxel-based morphometry magnetic resonance imaging (MRI) studies of hemispatial neglect was used to identify regions associated with neglect. We applied parcellation schemes to these regions and performed diffusion spectrum imaging (DSI) tractography to determine their connectivity. By overlaying neglect areas and maps of the attention networks, we studied the relationship between them. RESULTS The meta-analysis generated a list of 13 right hemisphere parcellations. These 13 neglect-related parcellations were predominantly linked by the superior longitudinal fasciculus (SLF) throughout a fronto-parietal-temporal network. We found that the dorsal and ventral attention networks showed partial overlap with the neglect system and included various other higher-order networks. CONCLUSIONS We provide an anatomically specific connectomic model of the neurobehavioral substrates underlying hemispatial neglect. Our model suggests a fronto-parietal-temporal network linked via the SLF supports the functions impaired in neglect and implicates various higher-order networks which are not limited to the attention networks.
Collapse
Affiliation(s)
- Syed A Ahsan
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Karol Osipowicz
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Syed M Ahsan
- Faculty of Medicine, University of New England, Armidale, New South Wales, Australia
| | - Kassem Chendeb
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Center for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Chen YH, Huang SK. The influence of pitcher handedness on pitch-calling behavior: Insights from fMRI study on baseball umpires. Psychophysiology 2024; 61:e14501. [PMID: 38217057 DOI: 10.1111/psyp.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 01/14/2024]
Abstract
This functional magnetic resonance imaging study delves into the impact of experience and pitcher handedness on the pitch-calling behavior of baseball umpires. Expert and intermediate umpires were asked to make ball/strike calls on videotaped pitches of left- and right-handed pitchers and rate their certainty for the call while undergoing scanning. Behavioral results replicated previous findings that expert umpires were more certain but not more accurate or quicker than intermediate umpires, suggesting that, as sports officials, umpires may learn to project confidence to maintain control of the game. At the neural level, expert umpires exhibited more extensive and pronounced activations within the action observation network, dorsal striatum, and cerebellum. These heightened neural responses were probably associated with their enhanced visual processing abilities for pitching action and ball trajectory, honed over years of officiating. Notably, both expert and intermediate umpires exhibited decreased accuracy when judging pitches from left-handed pitchers compared to right-handed ones. These challenges in accuracy corresponded with weaker neural activations in the aforementioned brain regions, implying difficulties in processing specific visual details of the rarely encountered left-handed pitchers. Moreover, slightly longer reaction times and reduced uncertainty were observed particularly for left-handed ball pitches, as revealed by lower activation in the right premotor cortex, highlighting issues with predictive processing. In summary, our findings shed light on the influence of pitcher handedness on the pitch-calling behavior of baseball umpires and extend the current understanding of the perceptual and decision-making behavior of sports officials.
Collapse
Affiliation(s)
- Yin-Hua Chen
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Shih-Kuei Huang
- Department of Physical Education, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
11
|
Gunia A, Moraresku S, Janča R, Ježdík P, Kalina A, Hammer J, Marusič P, Vlček K. The brain dynamics of visuospatial perspective-taking captured by intracranial EEG. Neuroimage 2024; 285:120487. [PMID: 38072339 DOI: 10.1016/j.neuroimage.2023.120487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/18/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Visuospatial perspective-taking (VPT) is the ability to imagine a scene from a position different from the one used in self-perspective judgments (SPJ). We typically use VPT to understand how others see the environment. VPT requires overcoming the self-perspective, and impairments in this process are implicated in various brain disorders, such as schizophrenia and autism. However, the underlying brain areas of VPT are not well distinguished from SPJ-related ones and from domain-general responses to both perspectives. In addition, hierarchical processing theory suggests that domain-specific processes emerge over time from domain-general ones. It mainly focuses on the sensory system, but outside of it, support for this hypothesis is lacking. Therefore, we aimed to spatiotemporally distinguish brain responses domain-specific to VPT from the specific ones to self-perspective, and domain-general responses to both perspectives. In particular, we intended to test whether VPT- and SPJ specific responses begin later than the general ones. We recorded intracranial EEG data from 30 patients with epilepsy who performed a task requiring laterality judgments during VPT and SPJ, and analyzed the spatiotemporal features of responses in the broad gamma band (50-150 Hz). We found VPT-specific processing in a more extensive brain network than SPJ-specific processing. Their dynamics were similar, but both differed from the general responses, which began earlier and lasted longer. Our results anatomically distinguish VPT-specific from SPJ-specific processing. Furthermore, we temporally differentiate between domain-specific and domain-general processes both inside and outside the sensory system, which serves as a novel example of hierarchical processing.
Collapse
Affiliation(s)
- Anna Gunia
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| | - Sofiia Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Radek Janča
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Jiří Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Petr Marusič
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Kamil Vlček
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
12
|
Przybylski L, Kroliczak G. The functional organization of skilled actions in the adextral and atypical brain. Neuropsychologia 2023; 191:108735. [PMID: 37984793 DOI: 10.1016/j.neuropsychologia.2023.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
When planning functional grasps of tools, right-handed individuals (dextrals) show mostly left-lateralized neural activity in the praxis representation network (PRN), regardless of the used hand. Here we studied whether or not similar cerebral asymmetries are evident in non-righthanded individuals (adextrals). Sixty two participants, 28 righthanders and 34 non-righthanders (21 lefthanders, 13 mixedhanders), planned functional grasps of tools vs. grasps of control objects, and subsequently performed their pantomimed executions, in an event-related functional magnetic resonance imaging (fMRI) project. Both hands were tested, separately in two different sessions, counterbalanced across participants. After accounting for non-functional components of the prospective grasp, planning functional grasps of tools was associated with greater engagement of the same, left-hemisphere occipito-temporal, parietal and frontal areas of PRN, regardless of hand and handedness. Only when the analyses involved signal changes referenced to resting baseline intervals, differences between adextrals and dextrals emerged. Whereas in the left hemisphere the neural activity was equivalent in both groups (except for the occipito-temporo-parietal junction), its increases in the right occipito-temporal cortex, medial intraparietal sulcus (area MIP), the supramarginal gyrus (area PFt/PF), and middle frontal gyrus (area p9-46v) were significantly greater in adextrals. The inverse contrast was empty. Notably, when individuals with atypical and typical hemispheric phenotypes were directly compared, planning functional (vs. control) grasps invoked, instead, significant clusters located nearly exclusively in the left hemisphere of the typical phenotype. Previous studies interpret similar right-sided vs. left-sided increases in neural activity for skilled actions as handedness dependent, i.e., located in the hemisphere dominant for manual skills. Yet, none of the effects observed here can be purely handedness dependent because there were mixed-handed individuals among adextrals, and numerous mixed-handed and left-handed individuals possess the typical phenotype. Thus, our results clearly show that hand dominance has limited power in driving the cerebral organization of motor cognitive functions.
Collapse
Affiliation(s)
- Lukasz Przybylski
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Gregory Kroliczak
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland; Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
13
|
Hu Y, Wang S, Wu L, Xi S, Wen W, Zhao C. Deficits of Visual Cortex Function in Acute Acquired Concomitant Esotropia Patients. Invest Ophthalmol Vis Sci 2023; 64:46. [PMID: 37902746 PMCID: PMC10617634 DOI: 10.1167/iovs.64.13.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/25/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose The purpose of this study was to explore the cortical deficits of patients with acquired concomitant esotropia (AACE) using the resting-state functional magnetic resonance imaging (rs-fMRI) technique. Methods Rs-fMRI signals from 25 patients with AACE and 25 matched controls were collected. The repeated-measures analysis of variance (RM-ANOVA) test and two-sample t-test were used to investigate statistical differences of the amplitudes of low-frequency fluctuation (ALFF) signals and correlation analysis was performed to validate the relationship of signal change and clinical features. Results The AACE group showed decreased ALFF in both hemispheres symmetrically (t = 0.38, P = 0.71), with peak t in both middle occipital gyrus. The ALFF signal from the upper left inferior frontal gyrus was negatively correlated with the age of onset (r = 0.62, P = 0.0008), and the ALFF signal from the right superior temporal gyrus was negatively correlated with the near work hours (r = 0.63, P = 0.0008). The ALFF signal in the left fusiform gyrus was positively correlated with both near (r = 0.48, P = 0.01) and far (r = 0.44, P = 0.03) deviation, whereas it was only positively correlated with far deviation (r = 0.44, P = 0.03) in the right. Besides, the age of onset and the near work hour were independent factors of signal changes. Conclusions Using the ALFF signal of rs-fMRI, we found functional deficits in the primary visual cortex and dorsal pathway in patients with AACE. There were functional changes in the fusiform gyrus, and the greater the deviation angle, the higher the changing level. These findings reveal the association of AACE and the visual center, giving us more clues about the treatment of AACE.
Collapse
Affiliation(s)
- Yan Hu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Shenjiang Wang
- Department of Radiology, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Lianqun Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Sida Xi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Wen Wen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Chen Zhao
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
14
|
von Gal A, Boccia M, Nori R, Verde P, Giannini AM, Piccardi L. Neural networks underlying visual illusions: An activation likelihood estimation meta-analysis. Neuroimage 2023; 279:120335. [PMID: 37591478 DOI: 10.1016/j.neuroimage.2023.120335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Visual illusions have long been used to study visual perception and contextual integration. Neuroimaging studies employ illusions to identify the brain regions involved in visual perception and how they interact. We conducted an Activation Likelihood Estimation (ALE) meta-analysis and meta-analytic connectivity modeling on fMRI studies using static and motion illusions to reveal the neural signatures of illusory processing and to investigate the degree to which different areas are commonly recruited in perceptual inference. The resulting networks encompass ventral and dorsal regions, including the inferior and middle occipital cortices bilaterally in both types of illusions. The static and motion illusion networks selectively included the right posterior parietal cortex and the ventral premotor cortex respectively. Overall, these results describe a network of areas crucially involved in perceptual inference relying on feed-back and feed-forward interactions between areas of the ventral and dorsal visual pathways. The same network is proposed to be involved in hallucinogenic symptoms characteristic of schizophrenia and other disorders, with crucial implications in the use of illusions as biomarkers.
Collapse
Affiliation(s)
| | - Maddalena Boccia
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Raffaella Nori
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Paola Verde
- Italian Air Force Experimental Flight Center, Aerospace Medicine Department, Pratica di Mare, Rome, Italy
| | | | - Laura Piccardi
- Department of Psychology, Sapienza University of Rome, Rome, Italy; San Raffaele Cassino Hospital, Cassino, FR, Italy
| |
Collapse
|
15
|
Sulpizio V, Fattori P, Pitzalis S, Galletti C. Functional organization of the caudal part of the human superior parietal lobule. Neurosci Biobehav Rev 2023; 153:105357. [PMID: 37572972 DOI: 10.1016/j.neubiorev.2023.105357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Like in macaque, the caudal portion of the human superior parietal lobule (SPL) plays a key role in a series of perceptive, visuomotor and somatosensory processes. Here, we review the functional properties of three separate portions of the caudal SPL, i.e., the posterior parieto-occipital sulcus (POs), the anterior POs, and the anterior part of the caudal SPL. We propose that the posterior POs is mainly dedicated to the analysis of visual motion cues useful for object motion detection during self-motion and for spatial navigation, while the more anterior parts are implicated in visuomotor control of limb actions. The anterior POs is mainly involved in using the spotlight of attention to guide reach-to-grasp hand movements, especially in dynamic environments. The anterior part of the caudal SPL plays a central role in visually guided locomotion, being implicated in controlling leg-related movements as well as the four limbs interaction with the environment, and in encoding egomotion-compatible optic flow. Together, these functions reveal how the caudal SPL is strongly implicated in skilled visually-guided behaviors.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Nakahashi A, Cisek P. Parallel processing of value-related information during multi-attribute decisions. J Neurophysiol 2023; 130:967-979. [PMID: 37671449 DOI: 10.1152/jn.00230.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
When choosing between options with multiple attributes, do we integrate all attributes into a unified measure for comparison, or does the comparison also occur at the level of each attribute, involving parallel processes that can dynamically influence each other? What happens when independent sensory features all carry information about the same decision factor, such as reward value? To investigate these questions, we asked human participants to perform a two-alternative forced choice reaching task in which the reward value of a target was indicated by two visual attributes-its brightness ("bottom-up," BU feature) and its orientation ("top-down," TD feature). If decisions always occur after the integration of both features, there should be no difference in the reaction time (RT) regardless of the attribute combinations that drove the choice. Counter to that prediction, RT distributions depended on the attribute combinations of given targets and the choices made by participants. RTs were shortest when both attributes were congruent or when the choice was based on the bottom-up feature, and longer when the attributes were in conflict (favoring opposite options). In conflict trials, nearly two-thirds of participants made faster decisions when choosing the option favored by the bottom-up feature than when choosing the top-down-favored option. We also observed mid-reach changes-of-mind in a subset of conflict trials, mostly changing from the bottom-up to the top-down-favored target. These data suggest that multi-attribute value-based decisions are better explained by a distributed process including competition among different features than by a competition based on a single, integrated estimate of value.NEW & NOTEWORTHY We show that during value-based decisions, humans do not always use all reward-related information to make their choice, but instead can "jump the gun" using partial information. In particular, when different sources of information were in conflict, early decisions were mostly based on fast bottom-up information, and sometimes followed by corrective changes-of-mind based on slower top-down information. This supports parallel decision processes among different information sources, as opposed to a single integrated "common currency."
Collapse
Affiliation(s)
- Ayuno Nakahashi
- Department of Neuroscience, SNC, UNIQUE, and CIRCA research groups, University of Montréal, Montreal, Quebec, Canada
| | - Paul Cisek
- Department of Neuroscience, SNC, UNIQUE, and CIRCA research groups, University of Montréal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Wang M, Tan C, Shen Q, Cai S, Liu Q, Liao H. Surface-Based Functional Alterations in Early-Onset and Late-Onset Parkinson's Disease: A Multi-Modal MRI Study. Diagnostics (Basel) 2023; 13:2969. [PMID: 37761336 PMCID: PMC10528821 DOI: 10.3390/diagnostics13182969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
This study used a surface-based method to investigate brain functional alteration patterns in early-onset Parkinson's disease (EOPD) and late-onset Parkinson's disease (LOPD) to provide more reliable imaging indicators for the assessment of the two subtypes. A total of 58 patients with Parkinson's disease were divided into two groups according to age at onset: EOPD (≤50 years; 16 males and 15 females) and LOPD (>50 years; 17 males and 10 females) groups. Two control groups were recruited from the community: young adults (YC; ≤50 years; 8 males and 19 females) and older adults (OC; >50 years; 12 males and 10 females). No significant differences were observed between the EOPD and YC groups or the LOPD and OC groups in terms of age, sex, education, and MMSE scores (p > 0.05). No statistically significant differences were observed between the EOPD and LOPD groups in terms of education, H-Y scale, UPDRS score, or HAMD score (p > 0.05). Data preprocessing and surface-based regional homogeneity (2D-ReHo) calculations were subsequently performed using the MATLAB-based DPABIsurf software. The EOPD group showed decreased 2D-ReHo values in the left premotor area and right dorsal stream visual cortex, along with increased 2D-ReHo values in the left dorsolateral prefrontal cortex. In patients with LOPD, 2D-ReHo values were decreased in bilateral somatosensory and motor areas and the right paracentral lobular and mid-cingulate. The imaging characterization of surface-based regional changes may serve useful as monitoring indicators and will help to better understand the mechanisms underlying divergent clinical presentations.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410017, China; (M.W.); (C.T.); (Q.S.); (S.C.); (Q.L.)
| |
Collapse
|
18
|
Klautke J, Foster C, Medendorp WP, Heed T. Dynamic spatial coding in parietal cortex mediates tactile-motor transformation. Nat Commun 2023; 14:4532. [PMID: 37500625 PMCID: PMC10374589 DOI: 10.1038/s41467-023-39959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Movements towards touch on the body require integrating tactile location and body posture information. Tactile processing and movement planning both rely on posterior parietal cortex (PPC) but their interplay is not understood. Here, human participants received tactile stimuli on their crossed and uncrossed feet, dissociating stimulus location relative to anatomy versus external space. Participants pointed to the touch or the equivalent location on the other foot, which dissociates sensory and motor locations. Multi-voxel pattern analysis of concurrently recorded fMRI signals revealed that tactile location was coded anatomically in anterior PPC but spatially in posterior PPC during sensory processing. After movement instructions were specified, PPC exclusively represented the movement goal in space, in regions associated with visuo-motor planning and with regional overlap for sensory, rule-related, and movement coding. Thus, PPC flexibly updates its spatial codes to accommodate rule-based transformation of sensory input to generate movement to environment and own body alike.
Collapse
Affiliation(s)
- Janina Klautke
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Celia Foster
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany.
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.
- Cognitive Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
19
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
20
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
21
|
Zhang L, Pini L, Kim D, Shulman GL, Corbetta M. Spontaneous Activity Patterns in Human Attention Networks Code for Hand Movements. J Neurosci 2023; 43:1976-1986. [PMID: 36788030 PMCID: PMC10027113 DOI: 10.1523/jneurosci.1601-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Recent evidence suggests that, in the absence of any task, spontaneous brain activity patterns and connectivity in the visual and motor cortex code for natural stimuli and actions, respectively. These "resting-state" activity patterns may underlie the maintenance and consolidation (replay) of information states coding for ecological stimuli and behaviors. In this study, we examine whether replay patterns occur in resting-state activity in association cortex grouped into high-order cognitive networks not directly processing sensory inputs or motor outputs. Fifteen participants (7 females) performed four hand movements during an fMRI study. Three movements were ecological. The fourth movement as control was less ecological. Before and after the task scans, we acquired resting-state fMRI scans. The analysis examined whether multivertex task activation patterns for the four movements computed at the cortical surface in different brain networks resembled spontaneous activity patterns measured at rest. For each movement, we computed a vector of r values indicating the strength of the similarity between the mean task activation pattern and frame-by-frame resting-state patterns. We computed a cumulative distribution function of r 2 values and used the 90th percentile cutoff value for comparison. In the dorsal attention network, resting-state patterns were more likely to match task patterns for the ecological movements than the control movement. In contrast, rest-task pattern correlation was more likely for less ecological movement in the ventral attention network. These findings show that spontaneous activity patterns in human attention networks code for hand movements.SIGNIFICANCE STATEMENT fMRI indirectly measures neural activity noninvasively. Resting-state (spontaneous) fMRI signals measured in the absence of any task resemble signals evoked by task performance both in topography and inter-regional (functional) connectivity. However, the function of spontaneous brain activity is unknown. We recently showed that spatial activity patterns evoked by visual and motor tasks in visual and motor cortex, respectively, occur at rest in the absence of any stimulus or response. Here we show that activity patterns related to hand movements replay at rest in frontoparietal regions of the human attention system. These findings show that spontaneous activity in the human cortex may mediate the maintenance and consolidation of information states coding for ecological stimuli and behaviors.
Collapse
Affiliation(s)
- Lu Zhang
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - Lorenzo Pini
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - DoHyun Kim
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
| | - Gordon L Shulman
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
- Department of Neuroscience, University of Padova, Padova, 35131, Italy
- Venetian Institute of Molecular Medicine, Padova, 35129, Italy
| |
Collapse
|
22
|
Navarro-Guerrero N, Toprak S, Josifovski J, Jamone L. Visuo-haptic object perception for robots: an overview. Auton Robots 2023. [DOI: 10.1007/s10514-023-10091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractThe object perception capabilities of humans are impressive, and this becomes even more evident when trying to develop solutions with a similar proficiency in autonomous robots. While there have been notable advancements in the technologies for artificial vision and touch, the effective integration of these two sensory modalities in robotic applications still needs to be improved, and several open challenges exist. Taking inspiration from how humans combine visual and haptic perception to perceive object properties and drive the execution of manual tasks, this article summarises the current state of the art of visuo-haptic object perception in robots. Firstly, the biological basis of human multimodal object perception is outlined. Then, the latest advances in sensing technologies and data collection strategies for robots are discussed. Next, an overview of the main computational techniques is presented, highlighting the main challenges of multimodal machine learning and presenting a few representative articles in the areas of robotic object recognition, peripersonal space representation and manipulation. Finally, informed by the latest advancements and open challenges, this article outlines promising new research directions.
Collapse
|
23
|
Rolls ET, Deco G, Huang CC, Feng J. The human posterior parietal cortex: effective connectome, and its relation to function. Cereb Cortex 2023; 33:3142-3170. [PMID: 35834902 PMCID: PMC10401905 DOI: 10.1093/cercor/bhac266] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/04/2023] Open
Abstract
The effective connectivity between 21 regions in the human posterior parietal cortex, and 360 cortical regions was measured in 171 Human Connectome Project (HCP) participants using the HCP atlas, and complemented with functional connectivity and diffusion tractography. Intraparietal areas LIP, VIP, MIP, and AIP have connectivity from early cortical visual regions, and to visuomotor regions such as the frontal eye fields, consistent with functions in eye saccades and tracking. Five superior parietal area 7 regions receive from similar areas and from the intraparietal areas, but also receive somatosensory inputs and connect with premotor areas including area 6, consistent with functions in performing actions to reach for, grasp, and manipulate objects. In the anterior inferior parietal cortex, PFop, PFt, and PFcm are mainly somatosensory, and PF in addition receives visuo-motor and visual object information, and is implicated in multimodal shape and body image representations. In the posterior inferior parietal cortex, PFm and PGs combine visuo-motor, visual object, and reward input and connect with the hippocampal system. PGi in addition provides a route to motion-related superior temporal sulcus regions involved in social interactions. PGp has connectivity with intraparietal regions involved in coordinate transforms and may be involved in idiothetic update of hippocampal visual scene representations.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, Shanghai 200602, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
24
|
Bencivenga F, Tullo MG, Maltempo T, von Gal A, Serra C, Pitzalis S, Galati G. Effector-selective modulation of the effective connectivity within frontoparietal circuits during visuomotor tasks. Cereb Cortex 2023; 33:2517-2538. [PMID: 35709758 PMCID: PMC10016057 DOI: 10.1093/cercor/bhac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research, the functional architecture of the subregions of the dorsal posterior parietal cortex (PPC) involved in sensorimotor processing is far from clear. Here, we draw a thorough picture of the large-scale functional organization of the PPC to disentangle the fronto-parietal networks mediating visuomotor functions. To this aim, we reanalyzed available human functional magnetic resonance imaging data collected during the execution of saccades, hand, and foot pointing, and we combined individual surface-based activation, resting-state functional connectivity, and effective connectivity analyses. We described a functional distinction between a more lateral region in the posterior intraparietal sulcus (lpIPS), preferring saccades over pointing and coupled with the frontal eye fields (FEF) at rest, and a more medial portion (mpIPS) intrinsically correlated to the dorsal premotor cortex (PMd). Dynamic causal modeling revealed feedforward-feedback loops linking lpIPS with FEF during saccades and mpIPS with PMd during pointing, with substantial differences between hand and foot. Despite an intrinsic specialization of the action-specific fronto-parietal networks, our study reveals that their functioning is finely regulated according to the effector to be used, being the dynamic interactions within those networks differently modulated when carrying out a similar movement (i.e. pointing) but with distinct effectors (i.e. hand and foot).
Collapse
Affiliation(s)
- Federica Bencivenga
- Corresponding author: Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy.
| | | | - Teresa Maltempo
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Alessandro von Gal
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Sabrina Pitzalis
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
| |
Collapse
|
25
|
Aggius-Vella E, Chebat DR, Maidenbaum S, Amedi A. Activation of human visual area V6 during egocentric navigation with and without visual experience. Curr Biol 2023; 33:1211-1219.e5. [PMID: 36863342 DOI: 10.1016/j.cub.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/23/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023]
Abstract
V6 is a retinotopic area located in the dorsal visual stream that integrates eye movements with retinal and visuo-motor signals. Despite the known role of V6 in visual motion, it is unknown whether it is involved in navigation and how sensory experiences shape its functional properties. We explored the involvement of V6 in egocentric navigation in sighted and in congenitally blind (CB) participants navigating via an in-house distance-to-sound sensory substitution device (SSD), the EyeCane. We performed two fMRI experiments on two independent datasets. In the first experiment, CB and sighted participants navigated the same mazes. The sighted performed the mazes via vision, while the CB performed them via audition. The CB performed the mazes before and after a training session, using the EyeCane SSD. In the second experiment, a group of sighted participants performed a motor topography task. Our results show that right V6 (rhV6) is selectively involved in egocentric navigation independently of the sensory modality used. Indeed, after training, rhV6 of CB is selectively recruited for auditory navigation, similarly to rhV6 in the sighted. Moreover, we found activation for body movement in area V6, which can putatively contribute to its involvement in egocentric navigation. Taken together, our findings suggest that area rhV6 is a unique hub that transforms spatially relevant sensory information into an egocentric representation for navigation. While vision is clearly the dominant modality, rhV6 is in fact a supramodal area that can develop its selectivity for navigation in the absence of visual experience.
Collapse
Affiliation(s)
- Elena Aggius-Vella
- The Baruch Ivcher Institute for Brain, Cognition & Technology, Reichman University, 4610101 Herzliya, Israel.
| | - Daniel-Robert Chebat
- Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, 4076414 Ariel, Israel; Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel University, 4076414 Ariel, Israel.
| | - Shachar Maidenbaum
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 8410501 Beersheba, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501 Beersheba, Israel.
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition & Technology, Reichman University, 4610101 Herzliya, Israel.
| |
Collapse
|
26
|
Priorelli M, Stoianov IP. Flexible intentions: An Active Inference theory. Front Comput Neurosci 2023; 17:1128694. [PMID: 37021085 PMCID: PMC10067605 DOI: 10.3389/fncom.2023.1128694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
We present a normative computational theory of how the brain may support visually-guided goal-directed actions in dynamically changing environments. It extends the Active Inference theory of cortical processing according to which the brain maintains beliefs over the environmental state, and motor control signals try to fulfill the corresponding sensory predictions. We propose that the neural circuitry in the Posterior Parietal Cortex (PPC) compute flexible intentions-or motor plans from a belief over targets-to dynamically generate goal-directed actions, and we develop a computational formalization of this process. A proof-of-concept agent embodying visual and proprioceptive sensors and an actuated upper limb was tested on target-reaching tasks. The agent behaved correctly under various conditions, including static and dynamic targets, different sensory feedbacks, sensory precisions, intention gains, and movement policies; limit conditions were individuated, too. Active Inference driven by dynamic and flexible intentions can thus support goal-directed behavior in constantly changing environments, and the PPC might putatively host its core intention mechanism. More broadly, the study provides a normative computational basis for research on goal-directed behavior in end-to-end settings and further advances mechanistic theories of active biological systems.
Collapse
|
27
|
Blohm G, Cheyne DO, Crawford JD. Parietofrontal oscillations show hand-specific interactions with top-down movement plans. J Neurophysiol 2022; 128:1518-1533. [PMID: 36321728 DOI: 10.1152/jn.00240.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To generate a hand-specific reach plan, the brain must integrate hand-specific signals with the desired movement strategy. Although various neurophysiology/imaging studies have investigated hand-target interactions in simple reach-to-target tasks, the whole brain timing and distribution of this process remain unclear, especially for more complex, instruction-dependent motor strategies. Previously, we showed that a pro/anti pointing instruction influences magnetoencephalographic (MEG) signals in frontal cortex that then propagate recurrently through parietal cortex (Blohm G, Alikhanian H, Gaetz W, Goltz HC, DeSouza JF, Cheyne DO, Crawford JD. NeuroImage 197: 306-319, 2019). Here, we contrasted left versus right hand pointing in the same task to investigate 1) which cortical regions of interest show hand specificity and 2) which of those areas interact with the instructed motor plan. Eight bilateral areas, the parietooccipital junction (POJ), superior parietooccipital cortex (SPOC), supramarginal gyrus (SMG), medial/anterior interparietal sulcus (mIPS/aIPS), primary somatosensory/motor cortex (S1/M1), and dorsal premotor cortex (PMd), showed hand-specific changes in beta band power, with four of these (M1, S1, SMG, aIPS) showing robust activation before movement onset. M1, SMG, SPOC, and aIPS showed significant interactions between contralateral hand specificity and the instructed motor plan but not with bottom-up target signals. Separate hand/motor signals emerged relatively early and lasted through execution, whereas hand-motor interactions only occurred close to movement onset. Taken together with our previous results, these findings show that instruction-dependent motor plans emerge in frontal cortex and interact recurrently with hand-specific parietofrontal signals before movement onset to produce hand-specific motor behaviors.NEW & NOTEWORTHY The brain must generate different motor signals depending on which hand is used. The distribution and timing of hand use/instructed motor plan integration are not understood at the whole brain level. Using MEG we show that different action planning subnetworks code for hand usage and integrating hand use into a hand-specific motor plan. The timing indicates that frontal cortex first creates a general motor plan and then integrates hand specificity to produce a hand-specific motor plan.
Collapse
Affiliation(s)
- Gunnar Blohm
- Centre of Neuroscience Studies, Departments of Biomedical & Molecular Sciences, Mathematics & Statistics, and Psychology and School of Computing, Queen's University, Kingston, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Montreal, Quebec, Canada.,Vision: Science to Applications (VISTA) program, Departments of Psychology, Biology, and Kinesiology and Health Sciences and Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| | - Douglas O Cheyne
- Program in Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - J Douglas Crawford
- Centre for Vision Research, York University, Toronto, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Montreal, Quebec, Canada.,Vision: Science to Applications (VISTA) program, Departments of Psychology, Biology, and Kinesiology and Health Sciences and Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Lowe KA, Zinke W, Cosman JD, Schall JD. Frontal eye fields in macaque monkeys: prefrontal and premotor contributions to visually guided saccades. Cereb Cortex 2022; 32:5083-5107. [PMID: 35176752 PMCID: PMC9989351 DOI: 10.1093/cercor/bhab533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal spiking was sampled from the frontal eye field (FEF) and from the rostral part of area 6 that reaches to the superior limb of the arcuate sulcus, dorsal to the arcuate spur when present (F2vr) in macaque monkeys performing memory-guided saccades and visually guided saccades for visual search. Neuronal spiking modulation in F2vr resembled that in FEF in many but not all respects. A new consensus clustering algorithm of neuronal modulation patterns revealed that F2vr and FEF contain a greater variety of modulation patterns than previously reported. The areas differ in the proportions of visuomotor neuron types, the proportions of neurons discriminating a target from distractors during visual search, and the consistency of modulation patterns across tasks. However, between F2vr and FEF we found no difference in the magnitude of delay period activity, the timing of the peak discharge rate relative to saccades, or the time of search target selection. The observed similarities and differences between the 2 cortical regions contribute to other work establishing the organization of eye fields in the frontal lobe and may help explain why FEF in monkeys is identified within granular prefrontal area 8 but in humans is identified within agranular premotor area 6.
Collapse
Affiliation(s)
- Kaleb A Lowe
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| | - Wolf Zinke
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| | - Joshua D Cosman
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| | - Jeffrey D Schall
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| |
Collapse
|
29
|
Wang Q, Wang Y, Xu W, Chen X, Li X, Li Q, Li H. Corresponding anatomical of the macaque superior parietal lobule areas 5 (PE) subdivision reveal similar connectivity patterns with humans. Front Neurosci 2022; 16:964310. [PMID: 36267237 PMCID: PMC9577089 DOI: 10.3389/fnins.2022.964310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Using the animal brain as a cross-species tool for human brain research based on imaging features can provide more potential to reveal comprehensive human brain analysis. Previous studies have shown that human Brodmann area 5 (BA5) and macaque PE are homologous regions. They are both involved in processes depth and direction information during the touch process in the arm movement. However, recent studies show that both BA5 and PE are not homogeneous. According to the cytoarchitecture, BA5 is subdivided into three different subregions, and PE can be subdivided into PEl, PEla, and PEm. The species homologous relationship among the subregions is not clear between BA5 and PE. At the same time, the subdivision of PE based on the anatomical connection of white matter fiber bundles needs more verification. This research subdivided the PE of macaques based on the anatomical connection of white matter fiber bundles. Two PE subregions are defined based on probabilistic fiber tracking, one on the anterior side and the other on the dorsal side. Finally, the research draws connectivity fingerprints with predefined homologous target areas for the BA5 and PE subregions to reveal the characteristics of structure and functions and gives the homologous correspondence identified.
Collapse
|
30
|
Vaccari FE, Diomedi S, Filippini M, Hadjidimitrakis K, Fattori P. New insights on single-neuron selectivity in the era of population-level approaches. Front Integr Neurosci 2022; 16:929052. [PMID: 36249900 PMCID: PMC9554653 DOI: 10.3389/fnint.2022.929052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, neuroscience was focused on individual neurons seen as the functional units of the nervous system, but this approach fell short over time to account for new experimental evidence, especially for what concerns associative and motor cortices. For this reason and thanks to great technological advances, a part of modern research has shifted the focus from the responses of single neurons to the activity of neural ensembles, now considered the real functional units of the system. However, on a microscale, individual neurons remain the computational components of these networks, thus the study of population dynamics cannot prescind from studying also individual neurons which represent their natural substrate. In this new framework, ideas such as the capability of single cells to encode a specific stimulus (neural selectivity) may become obsolete and need to be profoundly revised. One step in this direction was made by introducing the concept of “mixed selectivity,” the capacity of single cells to integrate multiple variables in a flexible way, allowing individual neurons to participate in different networks. In this review, we outline the most important features of mixed selectivity and we also present recent works demonstrating its presence in the associative areas of the posterior parietal cortex. Finally, in discussing these findings, we present some open questions that could be addressed by future studies.
Collapse
Affiliation(s)
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
- *Correspondence: Patrizia Fattori
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
- Matteo Filippini
| |
Collapse
|
31
|
Sulpizio V, Strappini F, Fattori P, Galati G, Galletti C, Pecchinenda A, Pitzalis S. The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion. Brain Struct Funct 2022; 227:2573-2592. [PMID: 35963915 DOI: 10.1007/s00429-022-02549-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', 00194, Rome, Italy.
| |
Collapse
|
32
|
The posterior parietal area V6A: an attentionally-modulated visuomotor region involved in the control of reach-toF-grasp action. Neurosci Biobehav Rev 2022; 141:104823. [PMID: 35961383 DOI: 10.1016/j.neubiorev.2022.104823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
In the macaque, the posterior parietal area V6A is involved in the control of all phases of reach-to-grasp actions: the transport phase, given that reaching neurons are sensitive to the direction and amplitude of arm movement, and the grasping phase, since reaching neurons are also sensitive to wrist orientation and hand shaping. Reaching and grasping activity are corollary discharges which, together with the somatosensory and visual signals related to the same movement, allow V6A to act as a state estimator that signals discrepancies during the motor act in order to maintain consistency between the ongoing movement and the desired one. Area V6A is also able to encode the target of an action because of gaze-dependent visual neurons and real-position cells. Here, we advance the hypothesis that V6A also uses the spotlight of attention to guide goal-directed movements of the hand, and hosts a priority map that is specific for the guidance of reaching arm movement, combining bottom-up inputs such as visual responses with top-down signals such as reaching plans.
Collapse
|
33
|
Rolls ET, Deco G, Huang CC, Feng J. Multiple cortical visual streams in humans. Cereb Cortex 2022; 33:3319-3349. [PMID: 35834308 DOI: 10.1093/cercor/bhac276] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
The effective connectivity between 55 visual cortical regions and 360 cortical regions was measured in 171 HCP participants using the HCP-MMP atlas, and complemented with functional connectivity and diffusion tractography. A Ventrolateral Visual "What" Stream for object and face recognition projects hierarchically to the inferior temporal visual cortex, which projects to the orbitofrontal cortex for reward value and emotion, and to the hippocampal memory system. A Ventromedial Visual "Where" Stream for scene representations connects to the parahippocampal gyrus and hippocampus. An Inferior STS (superior temporal sulcus) cortex Semantic Stream receives from the Ventrolateral Visual Stream, from visual inferior parietal PGi, and from the ventromedial-prefrontal reward system and connects to language systems. A Dorsal Visual Stream connects via V2 and V3A to MT+ Complex regions (including MT and MST), which connect to intraparietal regions (including LIP, VIP and MIP) involved in visual motion and actions in space. It performs coordinate transforms for idiothetic update of Ventromedial Stream scene representations. A Superior STS cortex Semantic Stream receives visual inputs from the Inferior STS Visual Stream, PGi, and STV, and auditory inputs from A5, is activated by face expression, motion and vocalization, and is important in social behaviour, and connects to language systems.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain.,Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
34
|
Zahnert F, Belke M, Sommer J, Oesterle J, Möschl V, Nimsky C, Knake S, Menzler K. Psychophysiological interaction analysis for the detection of stimulus-specific networks in reflex epilepsy. Epilepsia Open 2022; 7:518-524. [PMID: 35766437 PMCID: PMC9436291 DOI: 10.1002/epi4.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/25/2022] [Indexed: 11/11/2022] Open
Abstract
We report detailed functional MRI (fMRI) analyses in a patient with reflex seizures elicited by driving along a specific rural crossroad or by watching a video thereof. Semiology consisted of epigastric aura, followed by a sensory seizure of the left hand and sporadic automotor seizures. The right amygdala-region (rh-amygdala) was surgically and electroclinically confirmed as the epileptogenic zone. Presurgical task-fMRI was performed, during which videos of the driving along that specific crossroad (IC), of another crossroad (NC) or noise were presented. Independent component analysis was conducted, and one component was used to aid in selection of a seed region within the rh-amygdala for subsequent psychophysiological interaction analysis (PPI). Here, the following regions showed stronger connectivity with the rh-amygdala seed during the IC condition compared to NC: right > left visual cortex, bilateral insulae, and right secondary somatosensory cortex (S2), potentially explaining epigastric aura and left somatosensory seizure semiology. Contralateral analyses did not reproduce these results. Overall, the ictogenic stimulus elicited enhanced connectivity of the epileptogenic rh-amygdala with visual cortex and further regions of potential seizure spread (S2, insula) as a putative mechanism of ictogenesis. Our results highlight the potential of PPI in the analysis of stimulus-dependent networks in patients with reflex epilepsies to gain insight into seizure generation.
Collapse
Affiliation(s)
- Felix Zahnert
- Epilepsy Center Hesse, Department for Neurology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Marcus Belke
- Epilepsy Center Hesse, Department for Neurology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany.,LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Goethe-University Frankfurt, Frankfurt Am Main, Germany
| | - Jens Sommer
- Core Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany.,Department for Psychiatry, Philipps-University Marburg, Marburg, Germany
| | - Julia Oesterle
- Epilepsy Center Hesse, Department for Neurology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Vincent Möschl
- Institute of Neuropathology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department for Neurosurgery, University Hospital Marburg, Philipps University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Susanne Knake
- Epilepsy Center Hesse, Department for Neurology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany.,LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Goethe-University Frankfurt, Frankfurt Am Main, Germany.,Core Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Katja Menzler
- Epilepsy Center Hesse, Department for Neurology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany.,Core Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
35
|
Egomotion-related visual areas respond to goal-directed movements. Brain Struct Funct 2022; 227:2313-2328. [PMID: 35763171 DOI: 10.1007/s00429-022-02523-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Integration of proprioceptive signals from the various effectors with visual feedback of self-motion from the retina is necessary for whole-body movement and locomotion. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by goal-directed movements (as saccades or pointing) performed with different effectors (eye, hand, and foot), suggesting a role in visually guiding movements through the external environment. To achieve this aim, we used a combined approach of task-evoked activity and effective connectivity (PsychoPhysiological Interaction, PPI) by fMRI. We localized a set of six egomotion-responsive visual areas through the flow field stimulus and distinguished them into visual (pIPS/V3A, V6+ , IPSmot/VIP) and visuomotor (pCi, CSv, PIC) areas according to recent literature. We tested their response to a visuomotor task implying spatially directed delayed eye, hand, and foot movements. We observed a posterior-to-anterior gradient of preference for eye-to-foot movements, with posterior (visual) regions showing a preference for saccades, and anterior (visuomotor) regions showing a preference for foot pointing. No region showed a clear preference for hand pointing. Effective connectivity analysis showed that visual areas were more connected to each other with respect to the visuomotor areas, particularly during saccades. We suggest that visual and visuomotor egomotion regions can play different roles within a network that integrates sensory-motor signals with the aim of guiding movements in the external environment.
Collapse
|
36
|
Clarke S, Farron N, Crottaz-Herbette S. Choosing Sides: Impact of Prismatic Adaptation on the Lateralization of the Attentional System. Front Psychol 2022; 13:909686. [PMID: 35814089 PMCID: PMC9260393 DOI: 10.3389/fpsyg.2022.909686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Seminal studies revealed differences between the effect of adaptation to left- vs. right-deviating prisms (L-PA, R-PA) in normal subjects. Whereas L-PA leads to neglect-like shift in attention, demonstrated in numerous visuo-spatial and cognitive tasks, R-PA has only minor effects in specific aspects of a few tasks. The paucity of R-PA effects in normal subjects contrasts with the striking alleviation of neglect symptoms in patients with right hemispheric lesions. Current evidence from activation studies in normal subjects highlights the contribution of regions involved in visuo-motor control during prism exposure and a reorganization of spatial representations within the ventral attentional network (VAN) after the adaptation. The latter depends on the orientation of prisms used. R-PA leads to enhancement of the ipsilateral visual and auditory space within the left inferior parietal lobule (IPL), switching thus the dominance of VAN from the right to the left hemisphere. L-PA leads to enhancement of the ipsilateral space in right IPL, emphasizing thus the right hemispheric dominance of VAN. Similar reshaping has been demonstrated in patients. We propose here a model, which offers a parsimonious explanation of the effect of L-PA and R-PA both in normal subjects and in patients with hemispheric lesions. The model posits that prismatic adaptation induces instability in the synaptic organization of the visuo-motor system, which spreads to the VAN. The effect is lateralized, depending on the side of prism deviation. Successful pointing with prisms implies reaching into the space contralateral, and not ipsilateral, to the direction of prism deviation. Thus, in the hemisphere contralateral to prism deviation, reach-related neural activity decreases, leading to instability of the synaptic organization, which induces a reshuffling of spatial representations in IPL. Although reshuffled spatial representations in IPL may be functionally relevant, they are most likely less efficient than regular representations and may thus cause partial dysfunction. The former explains, e.g., the alleviation of neglect symptoms after R-PA in patients with right hemispheric lesions, the latter the occurrence of neglect-like symptoms in normal subjects after L-PA. Thus, opting for R- vs. L-PA means choosing the side of major IPL reshuffling, which leads to its partial dysfunction in normal subjects and to recruitment of alternative or enhanced spatial representations in patients with hemispheric lesions.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
37
|
Filippini M, Borra D, Ursino M, Magosso E, Fattori P. Decoding sensorimotor information from superior parietal lobule of macaque via Convolutional Neural Networks. Neural Netw 2022; 151:276-294. [PMID: 35452895 DOI: 10.1016/j.neunet.2022.03.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Despite the well-recognized role of the posterior parietal cortex (PPC) in processing sensory information to guide action, the differential encoding properties of this dynamic processing, as operated by different PPC brain areas, are scarcely known. Within the monkey's PPC, the superior parietal lobule hosts areas V6A, PEc, and PE included in the dorso-medial visual stream that is specialized in planning and guiding reaching movements. Here, a Convolutional Neural Network (CNN) approach is used to investigate how the information is processed in these areas. We trained two macaque monkeys to perform a delayed reaching task towards 9 positions (distributed on 3 different depth and direction levels) in the 3D peripersonal space. The activity of single cells was recorded from V6A, PEc, PE and fed to convolutional neural networks that were designed and trained to exploit the temporal structure of neuronal activation patterns, to decode the target positions reached by the monkey. Bayesian Optimization was used to define the main CNN hyper-parameters. In addition to discrete positions in space, we used the same network architecture to decode plausible reaching trajectories. We found that data from the most caudal V6A and PEc areas outperformed PE area in the spatial position decoding. In all areas, decoding accuracies started to increase at the time the target to reach was instructed to the monkey, and reached a plateau at movement onset. The results support a dynamic encoding of the different phases and properties of the reaching movement differentially distributed over a network of interconnected areas. This study highlights the usefulness of neurons' firing rate decoding via CNNs to improve our understanding of how sensorimotor information is encoded in PPC to perform reaching movements. The obtained results may have implications in the perspective of novel neuroprosthetic devices based on the decoding of these rich signals for faithfully carrying out patient's intentions.
Collapse
Affiliation(s)
- Matteo Filippini
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy.
| | - Davide Borra
- University of Bologna, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Cesena Campus, Cesena, Italy
| | - Mauro Ursino
- University of Bologna, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Cesena Campus, Cesena, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, Bologna, Italy
| | - Elisa Magosso
- University of Bologna, Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", Cesena Campus, Cesena, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, Bologna, Italy
| | - Patrizia Fattori
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, Bologna, Italy.
| |
Collapse
|
38
|
Drudik K, Zlatkina V, Petrides M. Morphological patterns and spatial probability maps of the superior parietal sulcus in the human brain. Cereb Cortex 2022; 33:1230-1245. [PMID: 35388402 PMCID: PMC9930623 DOI: 10.1093/cercor/bhac132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/14/2022] Open
Abstract
The superior parietal sulcus (SPS) is the defining sulcus within the superior parietal lobule (SPL). The morphological variability of the SPS was examined in individual magnetic resonance imaging (MRI) scans of the human brain that were registered to the Montreal Neurological Institute (MNI) standard stereotaxic space. Two primary morphological patterns were consistently identified across hemispheres: (i) the SPS was identified as a single sulcus, separating the anterior from the posterior part of the SPL and (ii) the SPS was found as a complex of multiple sulcal segments. These morphological patterns were subdivided based on whether the SPS or SPS complex remained distinct or merged with surrounding parietal sulci. The morphological variability and spatial extent of the SPS were quantified using volumetric and surface spatial probabilistic mapping. The current investigation established consistent morphological patterns in a common anatomical space, the MNI stereotaxic space, to facilitate structural and functional analyses within the SPL.
Collapse
Affiliation(s)
- Kristina Drudik
- Corresponding author: Kristina Drudik, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Veronika Zlatkina
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| | - Michael Petrides
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| |
Collapse
|
39
|
Frith E, Gerver CR, Benedek M, Christensen AP, Beaty RE. Neural Representations of Conceptual Fixation during Creative Imagination. CREATIVITY RESEARCH JOURNAL 2022. [DOI: 10.1080/10400419.2021.2008699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Asci F, Eusebio A, Suppa A. Are beta oscillations always anti-kinetic in Parkinson’s disease? Clin Neurophysiol 2022; 136:235-236. [DOI: 10.1016/j.clinph.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
|
41
|
Wu TY, Wang YX, Li XM. Applications of dynamic visual acuity test in clinical ophthalmology. Int J Ophthalmol 2021; 14:1771-1778. [PMID: 34804869 PMCID: PMC8569558 DOI: 10.18240/ijo.2021.11.18] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Dynamic visual acuity test (DVAT) plays a key role in the assessment of vestibular function, the visual function of athletes, as well as various ocular diseases. As the visual pathways conducting dynamic and static signals are different, DVATs may have potential advantages over the traditional visual acuity tests commonly used, such as static visual acuity, contrast sensitivity, and static perimetry. Here, we provide a review of commonly applied DVATs and their several uses in clinical ophthalmology. These data indicate that the DVAT has its unique clinical significance in the evaluation of several ocular disorders.
Collapse
Affiliation(s)
- Ting-Yi Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Yue-Xin Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Xue-Min Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
42
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
43
|
Breveglieri R, Borgomaneri S, Filippini M, De Vitis M, Tessari A, Fattori P. Functional Connectivity at Rest between the Human Medial Posterior Parietal Cortex and the Primary Motor Cortex Detected by Paired-Pulse Transcranial Magnetic Stimulation. Brain Sci 2021; 11:brainsci11101357. [PMID: 34679421 PMCID: PMC8534070 DOI: 10.3390/brainsci11101357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The medial posterior parietal cortex (PPC) is involved in the complex processes of visuomotor integration. Its connections to the dorsal premotor cortex, which in turn is connected to the primary motor cortex (M1), complete the fronto-parietal network that supports important cognitive functions in the planning and execution of goal-oriented movements. In this study, we wanted to investigate the time-course of the functional connectivity at rest between the medial PPC and the M1 using dual-site transcranial magnetic stimulation in healthy humans. We stimulated the left M1 using a suprathreshold test stimulus to elicit motor-evoked potentials in the hand, and a subthreshold conditioning stimulus was applied over the left medial PPC at different inter-stimulus intervals (ISIs). The conditioning stimulus affected the M1 excitability depending on the ISI, with inhibition at longer ISIs (12 and 15 ms). We suggest that these modulations may reflect the activation of different parieto-frontal pathways, with long latency inhibitions likely recruiting polisynaptic pathways, presumably through anterolateral PPC.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
- Correspondence: ; Tel.: +39-05-1209-1890; Fax: +39-05-1209-1737
| | - Sara Borgomaneri
- Center for Studies and Research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy;
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
| | - Alessia Tessari
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy;
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.F.); (M.D.V.); (P.F.)
- Alma Mater Research Institute for Human—Centered Artificial Intelligence (Alma Human AI), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
44
|
Vision for action: thalamic and cortical inputs to the macaque superior parietal lobule. Brain Struct Funct 2021; 226:2951-2966. [PMID: 34524542 PMCID: PMC8541979 DOI: 10.1007/s00429-021-02377-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
The dorsal visual stream, the cortical circuit that in the primate brain is mainly dedicated to the visual control of actions, is split into two routes, a lateral and a medial one, both involved in coding different aspects of sensorimotor control of actions. The lateral route, named "lateral grasping network", is mainly involved in the control of the distal part of prehension, namely grasping and manipulation. The medial route, named "reach-to-grasp network", is involved in the control of the full deployment of prehension act, from the direction of arm movement to the shaping of the hand according to the object to be grasped. In macaque monkeys, the reach-to-grasp network (the target of this review) includes areas of the superior parietal lobule (SPL) that hosts visual and somatosensory neurons well suited to control goal-directed limb movements toward stationary as well as moving objects. After a brief summary of the neuronal functional properties of these areas, we will analyze their cortical and thalamic inputs thanks to retrograde neuronal tracers separately injected into the SPL areas V6, V6A, PEc, and PE. These areas receive visual and somatosensory information distributed in a caudorostral, visuosomatic trend, and some of them are directly connected with the dorsal premotor cortex. This review is particularly focused on the origin and type of visual information reaching the SPL, and on the functional role this information can play in guiding limb interaction with objects in structured and dynamic environments.
Collapse
|
45
|
Review: Sport Performance and the Two-visual-system Hypothesis of Vision: Two Pathways but Still Many Questions. Optom Vis Sci 2021; 98:696-703. [PMID: 34310550 DOI: 10.1097/opx.0000000000001739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
SIGNIFICANCE The two-visual-system hypothesis (TVSH) provides a framework for understanding the nature of the visual information athletes are likely to rely on during competition. If valid, the framework provides a valuable means of evaluating the likely efficacy of different vision training tools that claim to improve the sport performance of athletes.The TVSH has been used to explain that many of the existing methods of testing and training vision may be ineffective to improve on-field sport performance. The TVSH suggests that the visual pathway used to control actions on-field may be different-and rely on different visual information-to the pathway often tested and trained off-field. However, the central claims of the TVSH are increasingly questioned, and this has implications for our understanding of vision and sport performance. The aim of this article is to outline the implications of the TVSH for the visual control of actions in sport. We first provide a summary of the TVSH and outline how the visual information used to control actions might differ from that usually tested. Second, we look at the evidence from studies of sports that are (and are not) consistent with the TVSH and the implications they have for training vision. Finally, we take a wider look at the impact of the TVSH on the sport sciences and other complementary theories that hold implications for training vision to improve sport performance.
Collapse
|
46
|
Zhao R, Song Y, Guo X, Yang X, Sun H, Chen X, Liang M, Xue Y. Enhanced Information Flow From Cerebellum to Secondary Visual Cortices Leads to Better Surgery Outcome in Degenerative Cervical Myelopathy Patients: A Stochastic Dynamic Causal Modeling Study With Functional Magnetic Resonance Imaging. Front Hum Neurosci 2021; 15:632829. [PMID: 34248520 PMCID: PMC8261284 DOI: 10.3389/fnhum.2021.632829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Degenerative cervical myelopathy (DCM) damages the spinal cord, resulting in long-term neurological impairment including motor and visual deficits. Given that visual feedback is crucial in guiding movements, the visual disorder may be a cause of motor deficits in patients with DCM. It has been shown that increased functional connectivity between secondary visual cortices and cerebellum, which are functionally related to the visually guided movements, was correlated with motor function in patients with DCM. One possible explanation is that the information integration between these regions was increased to compensate for impaired visual acuity in patients with DCM and resulted in better visual feedback during motor function. However, direct evidence supporting this hypothesis is lacking. To test this hypothesis and explore in more detail the information flow within the "visual-cerebellum" system, we measured the effective connectivity (EC) among the "visual-cerebellum" system via dynamic causal modeling and then tested the relationship between the EC and visual ability in patients with DCM. Furthermore, the multivariate pattern analysis was performed to detect the relationship between the pattern of EC and motor function in patients with DCM. We found (1) significant increases of the bidirectional connections between bilateral secondary visual cortices and cerebellum were observed in patients with DCM; (2) the increased self-connection of the cerebellum was positively correlated with the impaired visual acuity in patients; (3) the amplitude of effectivity from the cerebellum to secondary visual cortices was positively correlated with better visual recovery following spinal cord decompression surgery; and (4) the pattern of EC among the visual-cerebellum system could be used to predict the pre-operative motor function. In conclusion, this study provided direct evidence that the increased information integration within the "visual-cerebellum" system compensated for visual impairments, which might have importance for sustaining better motor function in patients with DCM.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China.,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Yingchao Song
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Xing Guo
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotian Yang
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoran Sun
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xukang Chen
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Yuan Xue
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
47
|
Tzvi E, Loens S, Donchin O. Mini-review: The Role of the Cerebellum in Visuomotor Adaptation. THE CEREBELLUM 2021; 21:306-313. [PMID: 34080132 PMCID: PMC8993777 DOI: 10.1007/s12311-021-01281-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
The incredible capability of the brain to quickly alter performance in response to ever-changing environment is rooted in the process of adaptation. The core aspect of adaptation is to fit an existing motor program to altered conditions. Adaptation to a visuomotor rotation or an external force has been well established as tools to study the mechanisms underlying sensorimotor adaptation. In this mini-review, we summarize recent findings from the field of visuomotor adaptation. We focus on the idea that the cerebellum plays a central role in the process of visuomotor adaptation and that interactions with cortical structures, in particular, the premotor cortex and the parietal cortex, may be crucial for this process. To this end, we cover a range of methodologies used in the literature that link cerebellar functions and visuomotor adaptation; behavioral studies in cerebellar lesion patients, neuroimaging and non-invasive stimulation approaches. The mini-review is organized as follows: first, we provide evidence that sensory prediction errors (SPE) in visuomotor adaptation rely on the cerebellum based on behavioral studies in cerebellar patients. Second, we summarize structural and functional imaging studies that provide insight into spatial localization as well as visuomotor adaptation dynamics in the cerebellum. Third, we discuss premotor — cerebellar interactions and how these may underlie visuomotor adaptation. And finally, we provide evidence from transcranial direct current and magnetic stimulation studies that link cerebellar activity, beyond correlational relationships, to visuomotor adaptation .
Collapse
Affiliation(s)
- Elinor Tzvi
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany.
| | - Sebastian Loens
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Opher Donchin
- Motor Learning Lab, Ben Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
48
|
Mascheretti S, Peruzzo D, Andreola C, Villa M, Ciceri T, Trezzi V, Marino C, Arrigoni F. Selecting the Most Relevant Brain Regions to Classify Children with Developmental Dyslexia and Typical Readers by Using Complex Magnocellular Stimuli and Multiple Kernel Learning. Brain Sci 2021; 11:brainsci11060722. [PMID: 34071649 PMCID: PMC8228080 DOI: 10.3390/brainsci11060722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence supports the presence of deficits in the visual magnocellular (M) system in developmental dyslexia (DD). The M system is related to the fronto-parietal attentional network. Previous neuroimaging studies have revealed reduced/absent activation within the visual M pathway in DD, but they have failed to characterize the extensive brain network activated by M stimuli. We performed a multivariate pattern analysis on a Region of Interest (ROI) level to differentiate between children with DD and age-matched typical readers (TRs) by combining full-field sinusoidal gratings, controlled for spatial and temporal frequencies and luminance contrast, and a coherent motion (CM) sensitivity task at 6%-CML6, 15%-CML15 and 40%-CML40. ROIs spanning the entire visual dorsal stream and ventral attention network (VAN) had higher discriminative weights and showed higher act1ivation in TRs than in children with DD. Of the two tasks, CM had the greatest weight when classifying TRs and children with DD in most of the ROIs spanning these streams. For the CML6, activation within the right superior parietal cortex positively correlated with reading skills. Our approach highlighted the dorsal stream and the VAN as highly discriminative areas between children with DD and TRs and allowed for a better characterization of the "dorsal stream vulnerability" underlying DD.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Correspondence: (S.M.); (F.A.)
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Laboratoire de Psychologie de Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Université de Paris, 75005 Paris, France
| | - Martina Villa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Tommaso Ciceri
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Cecilia Marino
- The Division of Child and Youth Psychiatry at the Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
- Correspondence: (S.M.); (F.A.)
| |
Collapse
|
49
|
Pitzalis S, Hadj-Bouziane F, Dal Bò G, Guedj C, Strappini F, Meunier M, Farnè A, Fattori P, Galletti C. Optic flow selectivity in the macaque parieto-occipital sulcus. Brain Struct Funct 2021; 226:2911-2930. [PMID: 34043075 DOI: 10.1007/s00429-021-02293-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
In humans, several neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates higher-level motion areas, like V6 and the cingulate sulcus visual area (CSv). In macaque, there are few studies on the sensitivity of V6 and CSv to egomotion compatible optic flow. The only fMRI study on this issue revealed selectivity to egomotion compatible optic flow in macaque CSv but not in V6 (Cotterau et al. Cereb Cortex 27(1):330-343, 2017, but see Fan et al. J Neurosci. 35:16303-16314, 2015). Yet, it is unknown whether monkey visual motion areas MT + and V6 display any distinctive fMRI functional profile relative to the optic flow stimulation, as it is the case for the homologous human areas (Pitzalis et al., Cereb Cortex 20(2):411-424, 2010). Here, we described the sensitivity of the monkey brain to two motion stimuli (radial rings and flow fields) originally used in humans to functionally map the motion middle temporal area MT + (Tootell et al. J Neurosci 15: 3215-3230, 1995a; Nature 375:139-141, 1995b) and the motion medial parietal area V6 (Pitzalis et al. 2010), respectively. In both animals, we found regions responding only to optic flow or radial rings stimulation, and regions responding to both stimuli. A region in the parieto-occipital sulcus (likely including V6) was one of the most highly selective area for coherently moving fields of dots, further demonstrating the power of this type of stimulation to activate V6 in both humans and monkeys. We did not find any evidence that putative macaque CSv responds to Flow Fields.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy. .,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | - Giulia Dal Bò
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carole Guedj
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | | | - Martine Meunier
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
50
|
Gamberini M, Passarelli L, Impieri D, Montanari G, Diomedi S, Worthy KH, Burman KJ, Reser DH, Fattori P, Galletti C, Bakola S, Rosa MGP. Claustral Input to the Macaque Medial Posterior Parietal Cortex (Superior Parietal Lobule and Adjacent Areas). Cereb Cortex 2021; 31:4595-4611. [PMID: 33939798 DOI: 10.1093/cercor/bhab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
The projections from the claustrum to cortical areas within and adjacent to the superior parietal lobule were studied in 10 macaque monkeys, using retrograde tracers, computerized reconstructions, and quantitative methods. In contrast with the classical view that posterior parietal areas receive afferents primarily from the dorsal and posterior regions of the claustrum, we found that these areas receive more extensive projections, including substantial afferents from the anterior and ventral regions of the claustrum. Moreover, our findings uncover a previously unsuspected variability in the precise regions of the claustrum that originate the projections, according to the target areas. For example, areas dominated by somatosensory inputs for control of body movements tend to receive most afferents from the dorsal-posterior claustrum, whereas those which also receive significant visual inputs tend to receive more afferents from the ventral claustrum. In addition, different areas within these broadly defined groups differ in terms of quantitative emphasis in the origin of projections. Overall, these results argue against a simple model whereby adjacency in the cortex determines adjacency in the sectors of claustral origin of projections and indicate that subnetworks defined by commonality of function may be an important factor in defining claustrocortical topography.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Montanari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David H Reser
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Graduate Entry Medicine Program, Monash Rural Health-Churchill, Churchill, Victoria 3842, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| |
Collapse
|