1
|
Bouret S, Paradis E, Prat S, Castro L, Perez P, Gilissen E, Garcia C. Linking the evolution of two prefrontal brain regions to social and foraging challenges in primates. eLife 2024; 12:RP87780. [PMID: 39468920 PMCID: PMC11521368 DOI: 10.7554/elife.87780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
The diversity of cognitive skills across primates remains both a fascinating and a controversial issue. Recent comparative studies provided conflicting results regarding the contribution of social vs ecological constraints to the evolution of cognition. Here, we used an interdisciplinary approach combining comparative cognitive neurosciences and behavioral ecology. Using brain imaging data from 16 primate species, we measured the size of two prefrontal brain regions, the frontal pole (FP) and the dorso-lateral prefrontal cortex (DLPFC), respectively, involved in metacognition and working memory, and examined their relation to a combination of socio-ecological variables. The size of these prefrontal regions, as well as the whole brain, was best explained by three variables: body mass, daily traveled distance (an index of ecological constraints), and population density (an index of social constraints). The strong influence of ecological constraints on FP and DLPFC volumes suggests that both metacognition and working memory are critical for foraging in primates. Interestingly, FP volume was much more sensitive to social constraints than DLPFC volume, in line with laboratory studies showing an implication of FP in complex social interactions. Thus, our data highlights the relative weight of social vs ecological constraints on the evolution of specific prefrontal brain regions and their associated cognitive operations in primates.
Collapse
Affiliation(s)
- Sebastien Bouret
- Team Motivation Brain & Behavior, ICM – Brain and Spine InstituteParisFrance
| | | | - Sandrine Prat
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Musée de l’HommeParisFrance
| | - Laurie Castro
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Musée de l’HommeParisFrance
- UMR 7206 Eco-anthropologie, CNRS – MNHN – Univ. Paris Cité, Musée de l'HommeParisFrance
| | - Pauline Perez
- Team Motivation Brain & Behavior, ICM – Brain and Spine InstituteParisFrance
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central AfricaTervurenBelgium
- Université Libre de Bruxelles, Laboratory of Histology and NeuropathologyBrusselsBelgium
| | - Cecile Garcia
- UMR 7206 Eco-anthropologie, CNRS – MNHN – Univ. Paris Cité, Musée de l'HommeParisFrance
| |
Collapse
|
2
|
Speechley EM, Ashton BJ, Foo YZ, Simmons LW, Ridley AR. Meta-analyses reveal support for the Social Intelligence Hypothesis. Biol Rev Camb Philos Soc 2024; 99:1889-1908. [PMID: 38855980 DOI: 10.1111/brv.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The Social Intelligence Hypothesis (SIH) is one of the leading explanations for the evolution of cognition. Since its inception a vast body of literature investigating the predictions of the SIH has accumulated, using a variety of methodologies and species. However, the generalisability of the hypothesis remains unclear. To gain an understanding of the robustness of the SIH as an explanation for the evolution of cognition, we systematically searched the literature for studies investigating the predictions of the SIH. Accordingly, we compiled 103 studies with 584 effect sizes from 17 taxonomic orders. We present the results of four meta-analyses which reveal support for the SIH across interspecific, intraspecific and developmental studies. However, effect sizes did not differ significantly between the cognitive or sociality metrics used, taxonomy or testing conditions. Thus, support for the SIH is similar across studies using neuroanatomy and cognitive performance, those using broad categories of sociality, group size and social interactions, across taxonomic groups, and for tests conducted in captivity or the wild. Overall, our meta-analyses support the SIH as an evolutionary and developmental explanation for cognitive variation.
Collapse
Affiliation(s)
- Elizabeth M Speechley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Benjamin J Ashton
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- School of Natural Sciences, Macquarie University, 205b Culloden Road, Sydney, NSW, 2109, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Amanda R Ridley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Steinhoff POM, Harzsch S, Uhl G. Comparative neuroanatomy of the central nervous system in web-building and cursorial hunting spiders. J Comp Neurol 2023; 532:e25554. [PMID: 37948052 DOI: 10.1002/cne.25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Spiders (Araneae) include cursorial species that stalk their prey and more stationary species that use webs for prey capture. While many cursorial hunting spiders rely on visual cues, web-building spiders use vibratory cues (mechanosensation) for prey capture. We predicted that the differences in primary sensory input between the species are mirrored by differences in the morphology/architecture of the central nervous system (CNS). Here, we investigated the CNS anatomy of four spider species, two cursorial hunters Pardosa amentata (Lycosidae) and Marpissa muscosa (Salticidae), and two web-building hunters Argiope bruennichi (Araneidae) and Parasteatoda tepidariorum (Theridiidae). Their CNS was analyzed using Bodian silver impregnations, immunohistochemistry, and microCT analysis. We found that there are major differences between species in the secondary eye pathway of the brain that pertain to first-order, second-order, and higher order brain centers (mushroom bodies [MB]). While P. amentata and M. muscosa have prominent visual neuropils and MB, these are much reduced in the two web-building species. Argiope bruennichi lacks second-order visual neuropils but has specialized photoreceptors that project into two distinct visual neuropils, and P. tepidariorum lacks MB, suggesting that motion vision might be absent in this species. Interestingly, the differences in the ventral nerve cord are much less pronounced, but the web-building spiders have proportionally larger leg neuropils than the cursorial spiders. Our findings suggest that the importance of visual information is much reduced in web-building spiders, compared to cursorial spiders, while processing of mechanosensory information requires the same major circuits in both web-building and cursorial hunting spiders.
Collapse
Affiliation(s)
- Philip O M Steinhoff
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Cytology and Evolutionary Biology, University of Greifswald, Greifswald, Germany
| | - Gabriele Uhl
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Heldstab SA, Isler K, Graber SM, Schuppli C, van Schaik CP. The economics of brain size evolution in vertebrates. Curr Biol 2022; 32:R697-R708. [PMID: 35728555 DOI: 10.1016/j.cub.2022.04.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Across the animal kingdom, we see remarkable variation in brain size. This variation has even increased over evolutionary time. Traditionally, studies aiming to explain brain size evolution have looked at the fitness benefits of increased brain size in relation to its increased cognitive performance in the social and/or ecological domain. However, brains are among the most energetically expensive tissues in the body and also require an uninterrupted energy supply. If not compensated, these energetic demands inevitably lead to a reduction in energy allocation to other vital functions. In this review, we summarize how an increasing number of studies show that to fully comprehend brain size evolution and the large variation in brain size across lineages, it is important to look at the economics of brains, including the different pathways through which the high energetic costs of brains can be offset. We further show how numerous studies converge on the conclusion that cognitive abilities can only drive brain size evolution in vertebrate lineages where they result in an improved energy balance through favourable ecological preconditions. Cognitive benefits that do not directly improve the organism's energy balance can only be selectively favoured when they produce such large improvements in reproduction or survival that they outweigh the negative energetic effects of the large brain.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany.
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sereina M Graber
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Caroline Schuppli
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany
| | - Carel P van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Comparative Socioecology Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany; Department of Evolutionary Biology and Environmental Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Daujeard C, Prat S. What Are the “Costs and Benefits” of Meat-Eating in Human Evolution? The Challenging Contribution of Behavioral Ecology to Archeology. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.834638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the omnivorous diet of most human populations, meat foraging gradually increased during the Paleolithic, in parallel with the development of hunting capacities. There is evidence of regular meat consumption by extinct hominins from 2 Ma onward, with the first occurrence prior to 3 Ma in Eastern Africa. The number of sites with cut-marked animal remains and stone tools increased after 2 Ma. In addition, toolkits became increasingly complex, and various, facilitating carcass defleshing and marrow recovery, the removal of quarters of meat to avoid carnivore competition, and allowing the emergence of cooperative (i.e., social) hunting of large herbivores. How can we assess the energy costs and benefits of meat and fat acquisition and consumption for hunter-gatherers in the past, and is it possible to accurately evaluate them? Answering this question would provide a better understanding of extinct hominin land use, food resource management, foraging strategies, and cognitive abilities related to meat and fat acquisition, processing, and consumption. According to the Optimal Foraging Theory (OFT), resources may be chosen primarily on the basis of their efficiency rank in term of calories. But, could other factors, and not only calorific return, prevail in the choice of prey, such as the acquisition of non-food products, like pelts, bone tools or ornaments, or symbolic or traditional uses? Our main goal here is to question the direct application of behavioral ecology data to archeology. For this purpose, we focus on the issue of animal meat and fat consumption in human evolution. We propose a short review of available data from energetics and ethnographic records, and provide examples of several various-sized extant animals, such as elephants, reindeer, or lagomorphs, which were some of the most common preys of Paleolithic hominins.
Collapse
|
6
|
Janavaris M, Bader L, Hansen JJ, Bödvarsdottir TB, Coleman K, Kievit P. Bedding as an Enrichment Strategy in Group-housed Mauritian Cynomolgus Macaques ( Macaca fascicularis). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:159-164. [PMID: 35140008 PMCID: PMC8956222 DOI: 10.30802/aalas-jaalas-21-000084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The research community is committed to improving the well-being of nonhuman primates by providing opportunities to express species-specific behaviors such as foraging. In the wild, macaques spend a large part of their day foraging; this behavior is greatly limited in captivity. Bedding (wood shavings substrate) has been shown to promote foraging in rhesus macaques. However, the amount of bedding needed to affect these changes is unknown. Further, few studies have examined other benefits of bedding, including its potential to reduce noise levels, which can negatively impact welfare. We examined the use of bedding substrate in male Mauritius cynomolgus macaques (2-3-y-old) living in one of 2 social groups with either a full bale of bedding (that is, approximately 6 in of substrate) or a half bale (approximately 3 in) added to the pens for 10 d, followed by 4 d without bedding. We performed focal observations on 8 monkeys biweekly for 8 wk and used a dosimeter to measure sound in the room for 42 d. As expected, monkeys spent significantly more time foraging and less time self-grooming when bedding was present than when it was not. The amount of bedding did not make a difference. The presence of bedding did not affect social grooming or aggression, although it did help to dampen sound. Both peak and mean sound levels were lower with a full bale of bedding than with no bedding. Taken together, these results suggest that bedding is an effective enrichment strategy that can improve welfare of group-housed macaques.
Collapse
Affiliation(s)
- Marissa Janavaris
- Oregon National Primate Research Center, OHSU, Beaverton, Oregon, USA
| | - Lindsay Bader
- Oregon National Primate Research Center, OHSU, Beaverton, Oregon, USA
| | | | | | - Kristine Coleman
- Oregon National Primate Research Center, OHSU, Beaverton, Oregon, USA
| | - Paul Kievit
- Oregon National Primate Research Center, OHSU, Beaverton, Oregon, USA
| |
Collapse
|
7
|
de Chevalier G, Bouret S, Bardo A, Simmen B, Garcia C, Prat S. Cost-Benefit Trade-Offs of Aquatic Resource Exploitation in the Context of Hominin Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.812804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the exploitation of aquatic fauna and flora has been documented in several primate species to date, the evolutionary contexts and mechanisms behind the emergence of this behavior in both human and non-human primates remain largely overlooked. Yet, this issue is particularly important for our understanding of human evolution, as hominins represent not only the primate group with the highest degree of adaptedness to aquatic environments, but also the only group in which true coastal and maritime adaptations have evolved. As such, in the present study we review the available literature on primate foraging strategies related to the exploitation of aquatic resources and their putative associated cognitive operations. We propose that aquatic resource consumption in extant primates can be interpreted as a highly site-specific behavioral expression of a generic adaptive foraging decision-making process, emerging in sites at which the local cost-benefit trade-offs contextually favor aquatic over terrestrial foods. Within this framework, we discuss the potential impacts that the unique intensification of this behavior in hominins may have had on the evolution of the human brain and spatial ecology.
Collapse
|
8
|
Yokoyama C, Autio JA, Ikeda T, Sallet J, Mars RB, Van Essen DC, Glasser MF, Sadato N, Hayashi T. Comparative connectomics of the primate social brain. Neuroimage 2021; 245:118693. [PMID: 34732327 PMCID: PMC9159291 DOI: 10.1016/j.neuroimage.2021.118693] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Social interaction is thought to provide a selection pressure for human intelligence, yet little is known about its neurobiological basis and evolution throughout the primate lineage. Recent advances in neuroimaging have enabled whole brain investigation of brain structure, function, and connectivity in humans and non-human primates (NHPs), leading to a nascent field of comparative connectomics. However, linking social behavior to brain organization across the primates remains challenging. Here, we review the current understanding of the macroscale neural mechanisms of social behaviors from the viewpoint of system neuroscience. We first demonstrate an association between the number of cortical neurons and the size of social groups across primates, suggesting a link between neural information-processing capacity and social capabilities. Moreover, by capitalizing on recent advances in species-harmonized functional MRI, we demonstrate that portions of the mirror neuron system and default-mode networks, which are thought to be important for representation of the other's actions and sense of self, respectively, exhibit similarities in functional organization in macaque monkeys and humans, suggesting possible homologies. With respect to these two networks, we describe recent developments in the neurobiology of social perception, joint attention, personality and social complexity. Together, the Human Connectome Project (HCP)-style comparative neuroimaging, hyperscanning, behavioral, and other multi-modal investigations are expected to yield important insights into the evolutionary foundations of human social behavior.
Collapse
Affiliation(s)
- Chihiro Yokoyama
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; University of Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - David C Van Essen
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America
| | - Matthew F Glasser
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America; Department of Radiology, Washington University Medical School, St Louis, MO, United States of America
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Vining AQ, Nunn CL, Samson DR. Enriched sleep environments lengthen lemur sleep duration. PLoS One 2021; 16:e0253251. [PMID: 34723990 PMCID: PMC8559942 DOI: 10.1371/journal.pone.0253251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/04/2021] [Indexed: 12/01/2022] Open
Abstract
Characteristics of the sleep-site are thought to influence the quality and duration of primate sleep, yet only a handful of studies have investigated these links experimentally. Using actigraphy and infrared videography, we quantified sleep in four lemur species (Eulemur coronatus, Lemur catta, Propithecus coquereli, and Varecia rubra) under two different experimental conditions at the Duke Lemur Center (DLC) in Durham, NC, USA. Individuals from each species underwent three weeks of simultaneous testing to investigate the hypothesis that comfort level of the sleep-site influences sleep. We obtained baseline data on normal sleep, and then, in a pair-wise study design, we compared the daily sleep times, inter-daily activity stability, and intra-daily activity variability of individuals in simultaneous experiments of sleep-site enrichment and sleep-site impoverishment. Over 164 24-hour periods from 8 individuals (2 of each species), we found evidence that enriched sleep-sites increased daily sleep times of lemurs, with an average increase of thirty-two minutes. The effect of sleep-site impoverishment was small and not statistically significant. Though our experimental manipulations altered inter-daily stability and intra-daily variability in activity patterns relative to baseline, the changes did not differ significantly between enriched and impoverished conditions. We conclude that properties of a sleep-site enhancing softness or insulation, more than the factors of surface area or stability, influence lemur sleep, with implications regarding the importance of nest building in primate evolution and the welfare and management of captive lemurs.
Collapse
Affiliation(s)
- Alexander Q. Vining
- Animal Behavior Graduate Group, University of California, Davis, Davis, California, United States of America
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- * E-mail: (AQV); (DRS)
| | - Charles L. Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - David R. Samson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Department of Anthropology, University of Toronto, Mississauga, Canada
- * E-mail: (AQV); (DRS)
| |
Collapse
|
10
|
Perez-Martinez CA, Leal M. Lizards as models to explore the ecological and neuroanatomical correlates of miniaturization. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Extreme body size reductions bring about unorthodox anatomical arrangements and novel ways in which animals interact with the environment. Drawing from studies of vertebrates and invertebrates, we provide a theoretical framework for miniaturization to inform hypotheses using lizards as a study system. Through this approach, we demonstrate the repeated evolution of miniaturization across 11 families and a tendency for miniaturized species to occupy terrestrial microhabitats, possibly driven by physiological constraints. Differences in gross brain morphology between two gecko species demonstrate a proportionally larger telencephalon and smaller olfactory bulbs in the miniaturized species, though more data are needed to generalize this trend. Our study brings into light the potential contributions of miniaturized lizards to explain patterns of body size evolution and its impact on ecology and neuroanatomy. In addition, our findings reveal the need to study the natural history of miniaturized species, particularly in relation to their sensory and physiological ecology.
Collapse
Affiliation(s)
| | - Manuel Leal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
11
|
Garcia C, Bouret S, Druelle F, Prat S. Balancing costs and benefits in primates: ecological and palaeoanthropological views. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190667. [PMID: 33423629 DOI: 10.1098/rstb.2019.0667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Maintaining the balance between costs and benefits is challenging for species living in complex and dynamic socio-ecological environments, such as primates, but also crucial for shaping life history, reproductive and feeding strategies. Indeed, individuals must decide to invest time and energy to obtain food, services and partners, with little direct feedback on the success of their investments. Whereas decision-making relies heavily upon cognition in humans, the extent to which it also involves cognition in other species, based on their environmental constraints, has remained a challenging question. Building mental representations relating behaviours and their long-term outcome could be critical for other primates, but there are actually very little data relating cognition to real socio-ecological challenges in extant and extinct primates. Here, we review available data illustrating how specific cognitive processes enable(d) modern primates and extinct hominins to manage multiple resources (e.g. food, partners) and to organize their behaviour in space and time, both at the individual and at the group level. We particularly focus on how they overcome fluctuating and competing demands, and select courses of action corresponding to the best possible packages of potential costs and benefits in reproductive and foraging contexts. This article is part of the theme issue 'Existence and prevalence of economic behaviours among non-human primates'.
Collapse
Affiliation(s)
- Cécile Garcia
- UMR 7206, CNRS-Muséum national d'Histoire naturelle-Université de Paris, CNRS-Musfum national d'Histoire naturelle-UPVD, Musée de l'Homme, 17 Place du Trocadéro, 75016 Paris, France
| | - Sébastien Bouret
- Institut du Cerveau (ICM), CNRS UMR 7225-INSERM U1127-UPMC UMR S 1127, Hôpital Pitié-Salpêtrière 47, boulevard de l'Hôpital, 75013 Paris, France
| | - François Druelle
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Musfum national d'Histoire naturelle-UPVD, Musée de l'Homme, 17 Place du Trocadéro, 75016 Paris, France.,Functional Morphology Laboratory, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Sandrine Prat
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Musfum national d'Histoire naturelle-UPVD, Musée de l'Homme, 17 Place du Trocadéro, 75016 Paris, France
| |
Collapse
|
12
|
Meguerditchian A, Marie D, Margiotoudi K, Roth M, Nazarian B, Anton JL, Claidière N. Baboons (Papio anubis) living in larger social groups have bigger brains. EVOL HUM BEHAV 2021. [DOI: 10.1016/j.evolhumbehav.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Sauciuc GA, Persson T. Chimpanzees Predict the Hedonic Outcome of Novel Taste Combinations: The Evolutionary Origins of Affective Forecasting. Front Psychol 2020; 11:549193. [PMID: 33192796 PMCID: PMC7646213 DOI: 10.3389/fpsyg.2020.549193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/07/2020] [Indexed: 12/02/2022] Open
Abstract
Affective forecasting–predicting the emotional outcome of never-before experienced situations–is pervasive in our lives. When facing novel situations, we can quickly integrate bits and pieces of prior experiences to envisage possible scenarios and their outcomes, and what these might feel like. Such affective glimpses of the future often steer the decisions we make. By enabling principled decision-making in novel situations, affective forecasting confers the important adaptive advantage of eluding the potentially costly consequences of tackling such situations by trial-and-error. Affective forecasting has been hypothesized as uniquely human, yet, in a recent study we found suggestive evidence of this ability in an orangutan. To test non-verbal subjects, we capitalized on culinary examples of affective forecasting and devised a behavioral test that required the subjects to make predictions about novel juice mixes produced from familiar ingredients. In the present study, we administered the same task to two chimpanzees and found that their performance was comparable to that of the previously tested orangutan and 10 humans, who served as a comparison group. To improve the comparability of human and animal performance, in the present study we also introduced a new approach to assessing if the subjects’ performance was indicative of affective forecasting, which relies exclusively on behavioral data. The results of the study open for the possibility that affective forecasting has evolved in the common ancestor of the great apes, providing Hominids with the adaptive advantage of e.g., quickly evaluating heterogeneous food patches using hedonic prediction.
Collapse
|
14
|
Waymel A, Friedrich P, Bastian PA, Forkel SJ, Thiebaut de Schotten M. Anchoring the human olfactory system within a functional gradient. Neuroimage 2020; 216:116863. [PMID: 32325207 PMCID: PMC7116082 DOI: 10.1016/j.neuroimage.2020.116863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Margulies et al. (2016) demonstrated the existence of at least five independent functional connectivity gradients in the human brain. However, it is unclear how these functional gradients might link to anatomy. The dual origin theory proposes that differences in cortical cytoarchitecture originate from two trends of progressive differentiation between the different layers of the cortex, referred to as the hippocampocentric and olfactocentric systems. When conceptualising the functional connectivity gradients within the evolutionary framework of the Dual Origin theory, the first gradient likely represents the hippocampocentric system anatomically. Here we expand on this concept and demonstrate that the fifth gradient likely links to the olfactocentric system. We describe the anatomy of the latter as well as the evidence to support this hypothesis. Together, the first and fifth gradients might help to model the Dual Origin theory of the human brain and inform brain models and pathologies.
Collapse
Affiliation(s)
- Alice Waymel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France; Hyperedge Instruments, France
| | - Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Pierre-Antoine Bastian
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Hyperedge Instruments, France
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France; King's College London, Institute of Psychiatry Psychology and Neurosciences, Department of Neuroimaging, London, UK
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| |
Collapse
|
15
|
Louail M. Feeding strategies and associated cognitive capacities among Plio-Pleistocene hominins: toward new perspectives using the ventromedial prefrontal cortex. REVUE DE PRIMATOLOGIE 2020. [DOI: 10.4000/primatologie.7157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Bouret S, Louail M, Prat S, Garcia C. À quoi pensent les singes quand ils cherchent leur nourriture ? Med Sci (Paris) 2020; 36:103-105. [DOI: 10.1051/medsci/2020003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Burkhart JC, Heilbronner SR. Cracking Down on Complexity in the Evolving Brain. Trends Cogn Sci 2019; 23:908-910. [PMID: 31601459 DOI: 10.1016/j.tics.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
Louail et al. analyzed the brains of five primate species to determine factors driving size differences. In addition to analyzing the volume of the whole brain, they considered specific brain regions. In doing so, they linked the size of the ventromedial prefrontal cortex with foraging complexity across species.
Collapse
Affiliation(s)
- Jessica C Burkhart
- Program in Ecology, Evolution, and Behavior and Lion Research Center, University of Minnesota, Twin Cities, MN 55455, USA
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Twin Cities, MN 55455, USA.
| |
Collapse
|
18
|
|
19
|
Thiebaut de Schotten M, Croxson PL, Mars RB. Large-scale comparative neuroimaging: Where are we and what do we need? Cortex 2019; 118:188-202. [PMID: 30661736 PMCID: PMC6699599 DOI: 10.1016/j.cortex.2018.11.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/26/2023]
Abstract
Neuroimaging has a lot to offer comparative neuroscience. Although invasive "gold standard" techniques have a better spatial resolution, neuroimaging allows fast, whole-brain, repeatable, and multi-modal measurements of structure and function in living animals and post-mortem tissue. In the past years, comparative neuroimaging has increased in popularity. However, we argue that its most significant potential lies in its ability to collect large-scale datasets of many species to investigate principles of variability in brain organisation across whole orders of species-an ambition that is presently unfulfilled but achievable. We briefly review the current state of the field and explore what the current obstacles to such an approach are. We propose some calls to action.
Collapse
Affiliation(s)
- Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France; Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| | - Paula L Croxson
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands.
| |
Collapse
|