1
|
Purkart R, Delem M, Ranson V, Andrey C, Versace R, Cavalli E, Plancher G. Are there unconscious visual images in aphantasia? Development of an implicit priming paradigm. Cognition 2025; 256:106059. [PMID: 39787743 DOI: 10.1016/j.cognition.2024.106059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
For some people the experience of visual imagery is lacking, a condition recently referred to as aphantasia. So far, most of the studies on aphantasia rely on subjective reports, leaving the question of whether mental images can exist without reaching consciousness unresolved. In the present study, the formation of mental images was estimated in individuals with aphantasia without explicitly asking them to generate mental images. 151 Participants performed an implicit priming task where a probe is assumed to automatically reactivate a mental image. An explicit priming task, where participants were explicitly required to form a mental image after a probe, served as a control task. While control participants showed a priming effect in both the implicit and explicit tasks, aphantasics did not show any priming effects. These results suggest that aphantasia relies on a genuine inability to generate mental images rather than on a deficit in accessing these images consciously. Our priming paradigm might be a promising tool for characterizing mental images without relying on participant introspection.
Collapse
Affiliation(s)
- Rudy Purkart
- Research Center of the Institut Universitaire de Gériatrie de Montréal (CRIUGM), Canada; Laboratoire d'Étude des Mécanismes Cognitifs (EMC), France
| | - Maël Delem
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), France
| | | | | | - Rémy Versace
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), France
| | - Eddy Cavalli
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), France
| | - Gaën Plancher
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
2
|
Chang S, Zhang X, Cao Y, Pearson J, Meng M. Imageless imagery in aphantasia revealed by early visual cortex decoding. Curr Biol 2025; 35:591-599.e4. [PMID: 39798565 DOI: 10.1016/j.cub.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025]
Abstract
Activity in the early visual cortex is thought to tightly couple with conscious experience, including feedback-driven mental imagery. However, in aphantasia (a complete lack of visual imagery), the state of mental imagery, what takes its place, or how any activity relates to qualia remains unknown. This study analyzed univariate (amplitude) and multivariate (decoding) blood-oxygen-level-dependent (BOLD) signals in primary visual cortex during imagery attempts. "Imagery" content could be decoded equally well in both groups; however, unlike in those with imagery, neural signatures in those with validated aphantasia were ipsilateral and could not be cross-decoded with perceptual representations. Further, the perception-induced BOLD response was lower in those with aphantasia compared with controls. Together, these data suggest that an imagery-related representation, but with less or transformed sensory information, exists in the primary visual cortex of those with aphantasia. Our data challenge the classic view that activity in primary visual cortex should result in sensory qualia.
Collapse
Affiliation(s)
- Shuai Chang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, South China Normal University, Guangzhou 510631, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xinyu Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yangjianyi Cao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Joel Pearson
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ming Meng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Blomkvist A. Shaping the Space: A Role for the Hippocampus in Mental Imagery Formation. Vision (Basel) 2025; 9:2. [PMID: 39846618 PMCID: PMC11755474 DOI: 10.3390/vision9010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Mental imagery is claimed to underlie a host of abilities, such as episodic memory, working memory, and decision-making. A popular view holds that mental imagery relies on the perceptual system and that it can be said to be 'vision in reverse'. Whereas vision exploits the bottom-up neural pathways of the visual system, mental imagery exploits the top-down neural pathways. But the contribution of some other neural areas remains overlooked. In this article, I explore important contributions of the hippocampus, a neural area traditionally associated with episodic memory, to mental imagery formation. I highlight evidence which supports the view that the hippocampus contributes to the spatial model used for mental imagery and argue that we can distinguish different hippocampal circuits which contribute to different kinds of imagery, such as object imagery, scene imagery, and imagery with a temporal aspect. This has significant upshots for mental imagery research, as it opens a new avenue for further research into the role of the hippocampus in a variety of imagery tasks.
Collapse
Affiliation(s)
- Andrea Blomkvist
- Centre for the Study of Perceptual Experience, Department of Philosophy, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Argueta P, Dominguez J, Zachman J, Worthington P, Kana RK. "The Giant Black Elephant with white Tusks stood in a field of Green Grass": Cognitive and brain mechanisms underlying aphantasia. Conscious Cogn 2025; 127:103790. [PMID: 39615437 PMCID: PMC11910157 DOI: 10.1016/j.concog.2024.103790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/13/2025]
Abstract
Aphantasia, a spectrum of inabilities creating and perceiving mental images, is becoming more of a focus in continued research to better understand functions of sensory perception and imagination. Current research on aphantasia is still in an era of exploration to find its underlying neural mechanisms, comorbidities and comparing levels of visual imagery to other cognitive functions. Through a systematic review, this article explores the most influential developments in aphantasia research. The search included 3 databases-PsycINFO, PubMed, and Web of Science. After a rigorous selection process, 52 studies are included in this review. The findings include new research themes across different studies such as relationships between aphantasia and diminished episodic and autobiographical memory, comorbidities including autism, attention, emotions, and neurobiological differences. By integrating diverse perspectives, this review aims to contribute to a deeper understanding of the cognitive processes underlying mental imagery and offers implications for further development in aphantasia research.
Collapse
Affiliation(s)
- Paula Argueta
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia Dominguez
- Department of Psychology, The University of Alabama, Tuscaloosa, AL, USA
| | - Josie Zachman
- Department of Psychology, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Rajesh K Kana
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Montabes de la Cruz BM, Abbatecola C, Luciani RS, Paton AT, Bergmann J, Vetter P, Petro LS, Muckli LF. Decoding sound content in the early visual cortex of aphantasic participants. Curr Biol 2024; 34:5083-5089.e3. [PMID: 39419030 DOI: 10.1016/j.cub.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Listening to natural auditory scenes leads to distinct neuronal activity patterns in the early visual cortex (EVC) of blindfolded sighted and congenitally blind participants.1,2 This pattern of sound decoding is organized by eccentricity, with the accuracy of auditory information increasing from foveal to far peripheral retinotopic regions in the EVC (V1, V2, and V3). This functional organization by eccentricity is predicted by primate anatomical connectivity,3,4 where cortical feedback projections from auditory and other non-visual areas preferentially target the periphery of early visual areas. In congenitally blind participants, top-down feedback projections to the visual cortex proliferate,5 which might account for even higher sound-decoding accuracy in the EVC compared with blindfolded sighted participants.2 In contrast, studies in participants with aphantasia suggest an impairment of feedback projections to early visual areas, leading to a loss of visual imagery experience.6,7 This raises the question of whether impaired visual feedback pathways in aphantasia also reduce the transmission of auditory information to early visual areas. We presented auditory scenes to 23 blindfolded aphantasic participants. We found overall decreased sound decoding in early visual areas compared to blindfolded sighted ("control") and blind participants. We further explored this difference by modeling eccentricity effects across the blindfolded control, blind, and aphantasia datasets, and with a whole-brain searchlight analysis. Our findings suggest that the feedback of auditory content to the EVC is reduced in aphantasic participants. Reduced top-down projections might lead to both less sound decoding and reduced subjective experience of visual imagery.
Collapse
Affiliation(s)
- Belén M Montabes de la Cruz
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QB, UK
| | - Clement Abbatecola
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QB, UK; Imaging Centre for Excellence (ICE), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G51 4LB, UK
| | - Roberto S Luciani
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QB, UK; School of Computing Science, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Angus T Paton
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QB, UK; Imaging Centre for Excellence (ICE), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G51 4LB, UK
| | - Johanna Bergmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1, Leipzig 04303, Germany
| | - Petra Vetter
- Visual & Cognitive Neuroscience Lab, Department of Psychology, University of Fribourg, Fribourg 1700, Switzerland
| | - Lucy S Petro
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QB, UK; Imaging Centre for Excellence (ICE), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G51 4LB, UK
| | - Lars F Muckli
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QB, UK; Imaging Centre for Excellence (ICE), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G51 4LB, UK.
| |
Collapse
|
6
|
Cabbai G, Racey C, Simner J, Dance C, Ward J, Forster S. Sensory representations in primary visual cortex are not sufficient for subjective imagery. Curr Biol 2024; 34:5073-5082.e5. [PMID: 39419033 DOI: 10.1016/j.cub.2024.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
The contemporary definition of mental imagery is characterized by two aspects: a sensory representation that resembles, but does not result from, perception, and an associated subjective experience. Neuroimaging demonstrated imagery-related sensory representations in primary visual cortex (V1) that show striking parallels to perception. However, it remains unclear whether these representations always reflect subjective experience or if they can be dissociated from it. We addressed this question by comparing sensory representations and subjective imagery among visualizers and aphantasics, the latter with an impaired ability to experience imagery. Importantly, to test for the presence of sensory representations independently of the ability to generate imagery on demand, we examined both spontaneous and voluntary imagery forms. Using multivariate fMRI, we tested for decodable sensory representations in V1 and subjective visual imagery reports that occurred either spontaneously (during passive listening of evocative sounds) or in response to the instruction to voluntarily generate imagery of the sound content (always while blindfolded inside the scanner). Among aphantasics, V1 decoding of sound content was at chance during voluntary imagery, and lower than in visualizers, but it succeeded during passive listening, despite them reporting no imagery. In contrast, in visualizers, decoding accuracy in V1 was greater in voluntary than spontaneous imagery (while being positively associated with the reported vividness of both imagery types). Finally, for both conditions, decoding in precuneus was successful in visualizers but at chance for aphantasics. Together, our findings show that V1 representations can be dissociated from subjective imagery, while implicating a key role of precuneus in the latter.
Collapse
Affiliation(s)
- Giulia Cabbai
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK.
| | - Chris Racey
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Julia Simner
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Carla Dance
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Sophie Forster
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| |
Collapse
|
7
|
De Brigard F. Episodic memory without autonoetic consciousness. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230410. [PMID: 39278243 PMCID: PMC11496718 DOI: 10.1098/rstb.2023.0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 09/18/2024] Open
Abstract
Ever since Tulving's influential 1985 article 'Memory and consciousness', it has become traditional to think of autonoetic consciousness as necessary for episodic memory. This paper questions this claim. Specifically, it argues that the construct of autonoetic consciousness lacks validity and that, even if it was valid, it would still not be necessary for episodic memory. The paper ends with a proposal to go back to a functional/computational characterization of episodic memory in which its characteristic phenomenology is a contingent feature of the retrieval process and, as a result, open to empirical scrutiny. The proposal also dovetails with recent taxonomies of memory that are independent of conscious awareness and suggests strategies to evaluate within- and between-individual variability in the conscious experience of episodic memories in human and non-human agents. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
|
8
|
Korda Ž, Walcher S, Körner C, Benedek M. Internal coupling: Eye behavior coupled to visual imagery. Neurosci Biobehav Rev 2024; 165:105855. [PMID: 39153584 DOI: 10.1016/j.neubiorev.2024.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Our eyes do not only respond to visual perception but also to internal cognition involving visual imagery, which can be referred to as internal coupling. This review synthesizes evidence on internal coupling across diverse domains including episodic memory and simulation, visuospatial memory, numerical cognition, object movement, body movement, and brightness imagery. In each domain, eye movements consistently reflect distinct aspects of mental imagery typically akin to those seen in corresponding visual experiences. Several findings further suggest that internal coupling may not only coincide with but also supports internal cognition as evidenced by improved cognitive performance. Available theoretical accounts suggest that internal coupling may serve at least two functional roles in visual imagery: facilitating memory reconstruction and indicating shifts in internal attention. Moreover, recent insights into the neurobiology of internal coupling highlight substantially shared neural pathways in externally and internally directed cognition. The review concludes by identifying open questions and promising avenues for future research such as exploring moderating roles of context and individual differences in internal coupling.
Collapse
Affiliation(s)
- Živa Korda
- Department of Psychology, University of Graz, Graz, Austria.
| | - Sonja Walcher
- Department of Psychology, University of Graz, Graz, Austria
| | | | | |
Collapse
|
9
|
King R, Buxton H, Tyndall I. Aphantasia and autism: An investigation of mental imagery vividness. Conscious Cogn 2024; 125:103749. [PMID: 39243493 DOI: 10.1016/j.concog.2024.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE The present study investigated whether autistic adults report different levels of mental imagery vividness than non-autistic adults, and, moreover, if autism is associated with aphantasia which is defined as a condition of reduced or absent voluntary imagery. DESIGN AND METHODS Clinically diagnosed and self-identifying autistic participants were compared with non-autistic participants in their mental imagery vividness (vision, sound, smell, taste, touch, bodily sensation and emotional feeling) and autistic traits using an online survey (N = 121). RESULTS The autistic group scored significantly lower than the non-autistic group on imagery vividness (d = -0.44), in addition to having a higher proportion of participants scoring at cut-off for aphantasia. Moreover, a similar difference was observed for the emotional feel (η2 = 0.11). CONCLUSION The vividness of visual and emotional mental imagery was on average lower for autistic individuals, with a higher proportion presenting at cut-off to be considered an aphantasic.
Collapse
Affiliation(s)
- Rachel King
- Department of Psychology, University of Chichester, UK
| | - Harry Buxton
- Department of Psychology, University of Chichester, UK
| | - Ian Tyndall
- Department of Psychology, University of Chichester, UK.
| |
Collapse
|
10
|
Reeder RR, Pounder Z, Figueroa A, Jüllig A, Azañón E. Non-visual spatial strategies are effective for maintaining precise information in visual working memory. Cognition 2024; 251:105907. [PMID: 39067318 DOI: 10.1016/j.cognition.2024.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Visual working memory content is commonly thought to be composed of a precise visual representation of stimulus information (e.g., color, shape). Nevertheless, previous research has shown that individuals represent this visual information in different formats, historically dichotomized into "verbal" and "visual" formats. With growing popular knowledge of aphantasia, or the absence of sensory mental imagery, recent studies have demonstrated that individuals with aphantasia perform similarly to individuals with typical imagery on visual working memory tasks. This suggest that the use of non-visual strategies may be sufficient to perform visual working memory tasks, which were previously thought to be strictly visual. To investigate the effects of different strategies on performance in a visual working memory task, we recruited individuals across the visual imagery spectrum and tested their ability to identify relatively small (3°), medium (6°), or large (10°) changes in the degree of orientation of gratings held in working memory. Subsequently, participants indicated the extent to which they used five different strategies: visual, spatial, verbal, semantic, and sensorimotor. Results revealed that individuals with aphantasia and typical imagery performed similarly to each other across all task difficulty levels. Individuals with typical imagery dominantly used visuospatial strategies, but surprisingly, individuals with aphantasia overwhelmingly preferred the use of non-visual spatial and sensorimotor strategies over verbal strategies. These results suggest that non-visual spatial and sensorimotor strategies can be adopted in visual working memory tasks and these strategies are equally effective as visuospatial strategies. This calls for a rethinking of the "visual" versus "verbal" dichotomy, and provides evidence for the use of other non-visual mental representations in working memory tasks.
Collapse
Affiliation(s)
- Reshanne R Reeder
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool, UK.
| | - Zoë Pounder
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | | | - Elena Azañón
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg, Halle, Germany
| |
Collapse
|
11
|
Jin F, Hsu SM, Li Y. A Systematic Review of Aphantasia: Concept, Measurement, Neural Basis, and Theory Development. Vision (Basel) 2024; 8:56. [PMID: 39330760 PMCID: PMC11437436 DOI: 10.3390/vision8030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
People with aphantasia exhibit the inability to voluntarily generate or form mental imagery in their minds. Since the term "aphantasia" was proposed to describe this, it has gained increasing attention from psychiatrists, neuroscientists, and clinicians. Previous studies have mainly focused on the definition, prevalence, and measurement of aphantasia, its impacts on individuals' cognitive and emotional processing, and theoretical frameworks synthesizing existing findings, which have contributed greatly to our understanding of aphantasia. However, there are still some debates regarding the conclusions derived from existing research and the theories that were constructed from various sources of evidence. Building upon existing endeavors, this systematic review emphasizes that future research is much needed to refine the definition and diagnosis of aphantasia, strengthen empirical investigations at behavioral and neural levels, and, more importantly, develop or update theories. These multiple lines of efforts could lead to a deeper understanding of aphantasia and further guide researchers in future research directions.
Collapse
Affiliation(s)
- Feiyang Jin
- Applied Psychology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shen-Mou Hsu
- Imaging Center for Integrated Body, Mind and Culture Research, National Taiwan University, Taipei 10617, Taiwan
| | - Yu Li
- Applied Psychology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
12
|
Nedergaard JSK, Lupyan G. Not Everybody Has an Inner Voice: Behavioral Consequences of Anendophasia. Psychol Sci 2024; 35:780-797. [PMID: 38728320 DOI: 10.1177/09567976241243004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that inner speech-the experience of thought as occurring in a natural language-is a human universal. Recent evidence, however, suggests that the experience of inner speech in adults varies from near constant to nonexistent. We propose a name for a lack of the experience of inner speech-anendophasia-and report four studies examining some of its behavioral consequences. We found that adults who reported low levels of inner speech (N = 46) had lower performance on a verbal working memory task and more difficulty performing rhyme judgments compared with adults who reported high levels of inner speech (N = 47). Task-switching performance-previously linked to endogenous verbal cueing-and categorical effects on perceptual judgments were unrelated to differences in inner speech.
Collapse
Affiliation(s)
| | - Gary Lupyan
- Department of Psychology, University of Wisconsin-Madison
| |
Collapse
|
13
|
Szubielska M, Szewczyk M, Augustynowicz P, Kędziora W, Möhring W. Adults' spatial scaling of tactile maps: Insights from studying sighted, early and late blind individuals. PLoS One 2024; 19:e0304008. [PMID: 38814897 PMCID: PMC11139347 DOI: 10.1371/journal.pone.0304008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/04/2024] [Indexed: 06/01/2024] Open
Abstract
The current study investigated spatial scaling of tactile maps among blind adults and blindfolded sighted controls. We were specifically interested in identifying spatial scaling strategies as well as effects of different scaling directions (up versus down) on participants' performance. To this aim, we asked late blind participants (with visual memory, Experiment 1) and early blind participants (without visual memory, Experiment 2) as well as sighted blindfolded controls to encode a map including a target and to place a response disc at the same spot on an empty, constant-sized referent space. Maps had five different sizes resulting in five scaling factors (1:3, 1:2, 1:1, 2:1, 3:1), allowing to investigate different scaling directions (up and down) in a single, comprehensive design. Accuracy and speed of learning about the target location as well as responding served as dependent variables. We hypothesized that participants who can use visual mental representations (i.e., late blind and blindfolded sighted participants) may adopt mental transformation scaling strategies. However, our results did not support this hypothesis. At the same time, we predicted the usage of relative distance scaling strategies in early blind participants, which was supported by our findings. Moreover, our results suggested that tactile maps can be scaled as accurately and even faster by blind participants than by sighted participants. Furthermore, irrespective of the visual status, participants of each visual status group gravitated their responses towards the center of the space. Overall, it seems that a lack of visual imagery does not impair early blind adults' spatial scaling ability but causes them to use a different strategy than sighted and late blind individuals.
Collapse
Affiliation(s)
- Magdalena Szubielska
- Faculty of Social Sciences, Institute of Psychology, The John Paul II Catholic University of Lublin, Poland
| | - Marta Szewczyk
- Faculty of Social Sciences, Institute of Psychology, The John Paul II Catholic University of Lublin, Poland
| | - Paweł Augustynowicz
- Faculty of Social Sciences, Institute of Psychology, The John Paul II Catholic University of Lublin, Poland
| | | | - Wenke Möhring
- Faculty of Psychology, University of Basel, Basel, Switzerland
- Department of Educational and Health Psychology, University of Education Schwäbisch Gmünd, Germany
| |
Collapse
|
14
|
Kay L, Keogh R, Pearson J. Slower but more accurate mental rotation performance in aphantasia linked to differences in cognitive strategies. Conscious Cogn 2024; 121:103694. [PMID: 38657474 DOI: 10.1016/j.concog.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Mental rotation tasks are frequently used as standard measures of mental imagery. However, aphantasia research has brought such use into question. Here, we assessed a large group of individuals who lack visual imagery (aphantasia) on two mental rotation tasks: a three-dimensional block-shape, and a human manikin rotation task. In both tasks, those with aphantasia had slower, but more accurate responses than controls. Both groups demonstrated classic linear increases in response time and error-rate as functions of angular disparity. In the three-dimensional block-shape rotation task, a within-group speed-accuracy trade-off was found in controls, whereas faster individuals in the aphantasia group were also more accurate. Control participants generally favoured using object-based mental rotation strategies, whereas those with aphantasia favoured analytic strategies. These results suggest that visual imagery is not crucial for successful performance in classical mental rotation tasks, as alternative strategies can be effectively utilised in the absence of holistic mental representations.
Collapse
Affiliation(s)
- Lachlan Kay
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia.
| | - Rebecca Keogh
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia; School of Psychological Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Joel Pearson
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Zeman A. Aphantasia and hyperphantasia: exploring imagery vividness extremes. Trends Cogn Sci 2024; 28:467-480. [PMID: 38548492 DOI: 10.1016/j.tics.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 05/12/2024]
Abstract
The vividness of imagery varies between individuals. However, the existence of people in whom conscious, wakeful imagery is markedly reduced, or absent entirely, was neglected by psychology until the recent coinage of 'aphantasia' to describe this phenomenon. 'Hyperphantasia' denotes the converse - imagery whose vividness rivals perceptual experience. Around 1% and 3% of the population experience extreme aphantasia and hyperphantasia, respectively. Aphantasia runs in families, often affects imagery across several sense modalities, and is variably associated with reduced autobiographical memory, face recognition difficulty, and autism. Visual dreaming is often preserved. Subtypes of extreme imagery appear to be likely but are not yet well defined. Initial results suggest that alterations in connectivity between the frontoparietal and visual networks may provide the neural substrate for visual imagery extremes.
Collapse
Affiliation(s)
- Adam Zeman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
16
|
Krempel R, Monzel M. Aphantasia and involuntary imagery. Conscious Cogn 2024; 120:103679. [PMID: 38564857 DOI: 10.1016/j.concog.2024.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Aphantasia is a condition that is often characterized as the impaired ability to create voluntary mental images. Aphantasia is assumed to selectively affect voluntary imagery mainly because even though aphantasics report being unable to visualize something at will, many report having visual dreams. We argue that this common characterization of aphantasia is incorrect. Studies on aphantasia are often not clear about whether they are assessing voluntary or involuntary imagery, but some studies show that several forms of involuntary imagery are also affected in aphantasia (including imagery in dreams). We also raise problems for two attempts to show that involuntary images are preserved in aphantasia. In addition, we report the results of a study about afterimages in aphantasia, which suggest that these tend to be less intense in aphantasics than in controls. Involuntary imagery is often treated as a unitary kind that is either present or absent in aphantasia. We suggest that this approach is mistaken and that we should look at different types of involuntary imagery case by case. Doing so reveals no evidence of preserved involuntary imagery in aphantasia. We suggest that a broader characterization of aphantasia, as a deficit in forming mental imagery, whether voluntary or not, is more appropriate. Characterizing aphantasia as a volitional deficit is likely to lead researchers to give incorrect explanations for aphantasia, and to look for the wrong mechanisms underlying it.
Collapse
Affiliation(s)
- Raquel Krempel
- Center for Logic, Epistemology and History of Science, State University of Campinas, R. Sérgio Buarque de Holanda, 251 - Cidade Universitária, Campinas, SP 13083-859, Brazil; Center for Philosophy of Science, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA.
| | - Merlin Monzel
- Department of Psychology, Personality Psychology and Biological Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany.
| |
Collapse
|
17
|
Keogh R, Pearson J. Revisiting the blind mind: Still no evidence for sensory visual imagery in individuals with aphantasia. Neurosci Res 2024; 201:27-30. [PMID: 38311033 DOI: 10.1016/j.neures.2024.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
The inability to visualise was given the name aphantasia in 2015 by Zeman and colleagues. In 2018 we published research showing that fifteen individuals who self-identified as having aphantasia also demonstrated a lack of sensory visual imagery when undergoing the binocular rivalry imagery paradigm, suggesting more than just a metacognitive difference. Here we update these findings with over fifty participants with aphantasia and show that there is evidence for a lack of sensory imagery in aphantasia. How the binocular rivalry paradigm scores relate to the vividness of visual imagery questionnaire (VVIQ) and how aphantasia can be confirmed is discussed.
Collapse
Affiliation(s)
- Rebecca Keogh
- School of Psychological Sciences, Macquarie University, Sydney, Australia; School of Psychology, UNSW, Sydney, Australia.
| | | |
Collapse
|
18
|
Dawes AJ, Keogh R, Pearson J. Multisensory subtypes of aphantasia: Mental imagery as supramodal perception in reverse. Neurosci Res 2024; 201:50-59. [PMID: 38029861 DOI: 10.1016/j.neures.2023.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Cognitive neuroscience research on mental imagery has largely focused on the visual imagery modality in unimodal task contexts. Recent studies have uncovered striking individual differences in visual imagery capacity, with some individuals reporting a subjective absence of conscious visual imagery ability altogether ("aphantasia"). However, naturalistic mental imagery is often multi-sensory, and preliminary findings suggest that many individuals with aphantasia also report a subjective lack of mental imagery in other sensory domains (such as auditory or olfactory imagery). In this paper, we perform a series of cluster analyses on the multi-sensory imagery questionnaire scores of two large groups of aphantasic subjects, defining latent sub-groups in this sample population. We demonstrate that aphantasia is a heterogenous phenomenon characterised by dominant sub-groups of individuals with visual aphantasia (those who report selective visual imagery absence) and multi-sensory aphantasia (those who report an inability to generate conscious mental imagery in any sensory modality). We replicate our findings in a second large sample and show that more unique aphantasia sub-types also exist, such as individuals with selectively preserved mental imagery in only one sensory modality (e.g. intact auditory imagery). We outline the implications of our findings for network theories of mental imagery, discussing how unique aphantasia aetiologies with distinct self-report patterns might reveal alterations to various levels of the sensory processing hierarchy implicated in mental imagery.
Collapse
Affiliation(s)
| | - Rebecca Keogh
- School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - Joel Pearson
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
19
|
Weber S, Christophel T, Görgen K, Soch J, Haynes J. Working memory signals in early visual cortex are present in weak and strong imagers. Hum Brain Mapp 2024; 45:e26590. [PMID: 38401134 PMCID: PMC10893972 DOI: 10.1002/hbm.26590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024] Open
Abstract
It has been suggested that visual images are memorized across brief periods of time by vividly imagining them as if they were still there. In line with this, the contents of both working memory and visual imagery are known to be encoded already in early visual cortex. If these signals in early visual areas were indeed to reflect a combined imagery and memory code, one would predict them to be weaker for individuals with reduced visual imagery vividness. Here, we systematically investigated this question in two groups of participants. Strong and weak imagers were asked to remember images across brief delay periods. We were able to reliably reconstruct the memorized stimuli from early visual cortex during the delay. Importantly, in contrast to the prediction, the quality of reconstruction was equally accurate for both strong and weak imagers. The decodable information also closely reflected behavioral precision in both groups, suggesting it could contribute to behavioral performance, even in the extreme case of completely aphantasic individuals. Our data thus suggest that working memory signals in early visual cortex can be present even in the (near) absence of phenomenal imagery.
Collapse
Affiliation(s)
- Simon Weber
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced NeuroimagingCharité ‐ Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Research Training Group “Extrospection” and Berlin School of Mind and Brain, Humboldt‐Universität zu BerlinBerlinGermany
- Research Cluster of Excellence “Science of Intelligence”Technische Universität BerlinBerlinGermany
| | - Thomas Christophel
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced NeuroimagingCharité ‐ Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Kai Görgen
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced NeuroimagingCharité ‐ Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Research Cluster of Excellence “Science of Intelligence”Technische Universität BerlinBerlinGermany
| | - Joram Soch
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced NeuroimagingCharité ‐ Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Institute of Psychology, Otto von Guericke University MagdeburgMagdeburgGermany
| | - John‐Dylan Haynes
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced NeuroimagingCharité ‐ Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Research Training Group “Extrospection” and Berlin School of Mind and Brain, Humboldt‐Universität zu BerlinBerlinGermany
- Research Cluster of Excellence “Science of Intelligence”Technische Universität BerlinBerlinGermany
- Department of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
- Collaborative Research Center “Volition and Cognitive Control”Technische Universität DresdenDresdenGermany
| |
Collapse
|
20
|
Arnold DH, Saurels BW, Anderson N, Andresen I, Schwarzkopf DS. Predicting the subjective intensity of imagined experiences from electrophysiological measures of oscillatory brain activity. Sci Rep 2024; 14:836. [PMID: 38191506 PMCID: PMC10774351 DOI: 10.1038/s41598-023-50760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
Most people can conjure images and sounds that they experience in their minds. There are, however, marked individual differences. Some people report that they cannot generate imagined sensory experiences at all (aphantasics) and others report that they have unusually intense imagined experiences (hyper-phantasics). These individual differences have been linked to activity in sensory brain regions, driven by feedback. We would therefore expect imagined experiences to be associated with specific frequencies of oscillatory brain activity, as these can be a hallmark of neural interactions within and across regions of the brain. Replicating a number of other studies, relative to a Resting-State we find that the act of engaging in auditory or in visual imagery is linked to reductions in the power of oscillatory brain activity across a broad range of frequencies, with prominent peaks in the alpha band (8-12 Hz). This oscillatory activity, however, did not predict individual differences in the subjective intensity of imagined experiences. For audio imagery, these were rather predicted by reductions within the theta (6-9 Hz) and gamma (33-38 Hz) bands, and by increases in beta (15-17 Hz) band activity. For visual imagery these were predicted by reductions in lower (14-16 Hz) and upper (29-32 Hz) beta band activity, and by an increase in mid-beta band (24-26 Hz) activity. Our data suggest that there is sufficient ground truth in the subjective reports people use to describe the intensity of their imagined sensory experiences to allow these to be linked to the power of distinct rhythms of brain activity. In future, we hope to combine this approach with better measures of the subjective intensity of imagined sensory experiences to provide a clearer picture of individual differences in the subjective intensity of imagined experiences, and of why these eventuate.
Collapse
Affiliation(s)
- Derek H Arnold
- Perception Lab, School of Psychology, The University of Queensland, Brisbane, Australia.
| | - Blake W Saurels
- Perception Lab, School of Psychology, The University of Queensland, Brisbane, Australia
| | - Natasha Anderson
- Perception Lab, School of Psychology, The University of Queensland, Brisbane, Australia
| | - Isabella Andresen
- Perception Lab, School of Psychology, The University of Queensland, Brisbane, Australia
| | - Dietrich S Schwarzkopf
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
- Experimental Psychology, University College London, London, UK
| |
Collapse
|
21
|
Blomkvist A, Marks DF. Defining and 'diagnosing' aphantasia: Condition or individual difference? Cortex 2023; 169:220-234. [PMID: 37948876 DOI: 10.1016/j.cortex.2023.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/16/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Research into the newly-coined 'condition' of 'aphantasia', an individual difference involving the self-reported absence of voluntary visual imagery, has taken off in recent years, and more and more people are 'self-diagnosing' as aphantasic. Yet, there is no consensus on whether aphantasia should really be described as a 'condition', and there is no battery of psychometric instruments to detect or 'diagnose' aphantasia. Instead, researchers currently rely on the Vividness of Visual Imagery Questionnaire (VVIQ) to 'diagnose' aphantasia. We review here fundamental and methodological problems affecting aphantasia research stemming from an inadequate focus on how we should define aphantasia, whether aphantasia is a pathological condition, and the extensive use of VVIQ as a 'diagnostic test' for aphantasia. Firstly, we draw attention to 'literature blindness' for visual imagery research from the 1960s-1990s concerning individual differences in visual imagery vividness. Secondly, despite aphantasia being defined as a 'condition' where voluntary visual imagery is absent as indicated by the lowest score on the VVIQ, aphantasia studies inconsistently employ samples comprised of a mixture of participants with no visual imagery and low visual imagery, and we argue that this hinders the uncovering of the underlying cause of aphantasia. Thirdly, the scores used to designate the boundary between aphantasia and non-aphantasia are arbitrary and differ between studies, compromising the possibility for cross-study comparison of results. Fourthly, the problems of 'diagnosing' aphantasia are not limited to the academic sphere, as one can 'self-diagnose' online, for example by using the variant-VVIQ on the Aphantasia Network website. However, the variant-VVIQ departs from the original in ways likely to impact validity and accuracy, which could lead people to falsely believe they have been 'diagnosed' with aphantasia by a scientifically-validated measure. Fifthly, we discuss the hypothesis that people who believe they have been 'diagnosed' with aphantasia might be vulnerable to health anxiety, distress, and stigma. We conclude with a discussion about some fundamental aspects of how to classify a disorder, and suggest the need for a new psychometric measure of aphantasia.
Collapse
Affiliation(s)
- Andrea Blomkvist
- Centre for Philosophy of Natural and Social Sciences, Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK.
| | - David F Marks
- 13200 Arles, Bouches-du-Rhône, Provence-Alpes-Côte d'Azur, France
| |
Collapse
|
22
|
Cabbai G, Brown CRH, Dance C, Simner J, Forster S. Mental imagery and visual attentional templates: A dissociation. Cortex 2023; 169:259-278. [PMID: 37967476 DOI: 10.1016/j.cortex.2023.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
There is a growing interest in the relationship between mental images and attentional templates as both are considered pictorial representations that involve similar neural mechanisms. Here, we investigated the role of mental imagery in the automatic implementation of attentional templates and their effect on involuntary attention. We developed a novel version of the contingent capture paradigm designed to encourage the generation of a new template on each trial and measure contingent spatial capture by a template-matching visual feature (color). Participants were required to search at four different locations for a specific object indicated at the start of each trial. Immediately prior to the search display, color cues were presented surrounding the potential target locations, one of which matched the target color (e.g., red for strawberry). Across three experiments, our task induced a robust contingent capture effect, reflected by faster responses when the target appeared in the location previously occupied by the target-matching cue. Contrary to our predictions, this effect remained consistent regardless of self-reported individual differences in visual mental imagery (Experiment 1, N = 216) or trial-by-trial variation of voluntary imagery vividness (Experiment 2, N = 121). Moreover, contingent capture was observed even among aphantasic participants, who report no imagery (Experiment 3, N = 91). The magnitude of the effect was not reduced in aphantasics compared to a control sample of non-aphantasics, although the two groups reported substantial differences in their search strategy and exhibited differences in overall speed and accuracy. Our results hence establish a dissociation between the generation and implementation of attentional templates for a visual feature (color) and subjectively experienced imagery.
Collapse
Affiliation(s)
- Giulia Cabbai
- School of Psychology, University of Sussex, Brighton, United Kingdom; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| | | | - Carla Dance
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Julia Simner
- School of Psychology, University of Sussex, Brighton, United Kingdom; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sophie Forster
- School of Psychology, University of Sussex, Brighton, United Kingdom; Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
23
|
Logie RH. Strategies, debates, and adversarial collaboration in working memory: The 51st Bartlett Lecture. Q J Exp Psychol (Hove) 2023; 76:2431-2460. [PMID: 37526243 PMCID: PMC10585951 DOI: 10.1177/17470218231194037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Frederic Bartlett championed the importance of individual strategy differences when remembering details of events. I will describe how long-running theoretical debates in the area of working memory may be resolved by considering differences across participants in the strategies that they use when performing cognitive tasks, and through adversarial collaboration between rival laboratories. In common with the established view within experimental cognitive psychology, I assume that adults have a range of cognitive functions, evolved for everyday life. However, I will present evidence showing that these functions can be engaged selectively for laboratory tasks, and that how they are deployed may differ between and within individuals for the same task. Reliance on aggregate data, while treating inter- and intra-participant variability in data patterns as statistical noise, may lead to misleading conclusions about theoretical principles of cognition, and of working memory in particular. Moreover, different theoretical perspectives may be focused on different levels of explanation and different theoretical goals rather than being mutually incompatible. Yet researchers from contrasting theoretical frameworks pursue science as a competition, rarely do researchers from competing labs work in collaboration, and debates self-perpetuate. These approaches to research can stall debate resolution and generate ever-increasing scientific diversity rather than scientific progress. The article concludes by describing a recent extended adversarial collaboration (the WoMAAC project) focused on theoretical contrasts in working memory, and illustrates how this approach to conducting research may help resolve scientific debate and facilitate scientific advance.
Collapse
|
24
|
Monzel M, Dance C, Azañón E, Simner J. Aphantasia within the framework of neurodivergence: Some preliminary data and the curse of the confidence gap. Conscious Cogn 2023; 115:103567. [PMID: 37708622 DOI: 10.1016/j.concog.2023.103567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Aphantasia is a neurocognitive phenomenon affecting voluntary visual imagery, such that it is either entirely absent, or markedly impaired. Using both the social and medical models of disability, this article discusses the extent to which aphantasia can be understood as a disorder or just a form of neutral neurodivergence, given that imagery plays a central role in thinking and memory for most other people. Preliminary school performance data are presented, showing that low imagery does not necessarily complicate life, especially given compensatory strategies and low societal barriers. In addition, we discuss the consequences of labelling aphantasia a disorder with regard to self- and public stigma, and we provide further data regarding a confidence gap, by which aphantasics perceive themselves as performing worse than they objectively do. We conclude that aphantasia should be understood as neutral neurodivergence and that labelling it a disorder is not only wrong, but potentially harmful.
Collapse
Affiliation(s)
- Merlin Monzel
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, Bonn, Germany.
| | - Carla Dance
- School of Psychology, Pevensey Building, University of Sussex, BN1 9QJ, UK
| | - Elena Azañón
- Department of Neurology, University Medical Center, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106 Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health, Jena-Magdeburg-Halle
| | - Julia Simner
- School of Psychology, Pevensey Building, University of Sussex, BN1 9QJ, UK
| |
Collapse
|
25
|
Dance CJ, Hole G, Simner J. The role of visual imagery in face recognition and the construction of facial composites. Evidence from Aphantasia. Cortex 2023; 167:318-334. [PMID: 37597266 DOI: 10.1016/j.cortex.2023.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 08/21/2023]
Abstract
People with aphantasia have a markedly impaired ability to form visual images in the mind's eye. Here, by testing people with and without aphantasia, we examine the relationship between visual imagery and face processing. We show that aphantasics have weaker face recognition than people with visual imagery, using both self-report (Prosopagnosia Index) and behavioural measures (Cambridge Face Memory Test). However, aphantasics nonetheless have a fully intact ability to construct facial composites from memory (i.e., composites produced using EFIT6 by aphantasics and imagers were rated as equally accurate in terms of their resemblance to a target face). Additionally, we show that aphantasics were less able than imagers to see the resemblance between composites and a target face, suggestive of potential issues with face matching (perception). Finally, we show that holistic and featural methods of composite construction using EFIT6 produce equally accurate composites. Our results suggest that face recognition, but not face composite construction, is facilitated by the ability to represent visual properties as 'pictures in the mind'. Our findings have implications for the study of aphantasia, and also for forensic settings, where face composite systems are commonly used to aid criminal investigations.
Collapse
Affiliation(s)
- Carla J Dance
- School of Psychology, Pevensey Building, University of Sussex, UK.
| | - Graham Hole
- School of Psychology, Pevensey Building, University of Sussex, UK
| | - Julia Simner
- School of Psychology, Pevensey Building, University of Sussex, UK
| |
Collapse
|
26
|
Liu J, Bartolomeo P. Probing the unimaginable: The impact of aphantasia on distinct domains of visual mental imagery and visual perception. Cortex 2023; 166:338-347. [PMID: 37481856 DOI: 10.1016/j.cortex.2023.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023]
Abstract
Different individuals experience varying degrees of vividness in their visual mental images. The distribution of these variations across different imagery domains, such as object shape, color, written words, faces, and spatial relationships, remains unknown. To address this issue, we conducted a study with 117 healthy participants who reported different levels of imagery vividness. Of these participants, 44 reported experiencing absent or nearly absent visual imagery, a condition known as "aphantasia". These individuals were compared to those with typical (N = 42) or unusually vivid (N = 31) imagery ability. We used an online version of the French-language Battérie Imagination-Perception (eBIP), which consists of tasks tapping each of the above-mentioned domains, both in visual imagery and in visual perception. We recorded the accuracy and response times (RTs) of participants' responses. Aphantasic participants reached similar levels of accuracy on all tasks compared to the other groups (Bayesian repeated measures ANOVA, BF = .02). However, their RTs were slower in both imagery and perceptual tasks (BF = 266), and they had lower confidence in their responses on perceptual tasks (BF = 7.78e5). A Bayesian regression analysis revealed that there was an inverse correlation between subjective vividness and RTs for the entire participant group: higher levels of vividness were associated with faster RTs. The pattern was similar in all the explored domains. The findings suggest that individuals with congenital aphantasia experience a slowing in processing visual information in both imagery and perception, but the precision of their processing remains unaffected. The observed performance pattern lends support to the hypotheses that congenital aphantasia is primarily a deficit of phenomenal consciousness, or that it employs alternative strategies other than visualization to access preserved visual information.
Collapse
Affiliation(s)
- Jianghao Liu
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; Dassault Systèmes, Vélizy-Villacoublay, France.
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
27
|
Beran MJ, James BT, French K, Haseltine EL, Kleider-Offutt HM. Assessing aphantasia prevalence and the relation of self-reported imagery abilities and memory task performance. Conscious Cogn 2023; 113:103548. [PMID: 37451040 DOI: 10.1016/j.concog.2023.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Aphantasia is the experience of having little to no visual imagery. We assessed the prevalence rate of aphantasia in 5,010 people from the general population of adults in the United States through self-report and responses to two visual imagery scales. The self-reported prevalence rate of aphantasia was 8.9% in this sample. However, not all participants who reported themselves as aphantasic showed low-imagery profiles on the questionnaire scales, and scale prevalence was much lower (1.5%). Self-reported aphantasic individuals reported lower dream frequencies and self-talk and showed poorer memory performance compared to individuals who reported average and high mental imagery. Self-reported aphantasic individuals showed a greater preference for written instruction compared to video instruction for learning a hypothetical new task although there were differences for men and women in this regard. Categorizing aphantasia using a scale measure and relying on self-identification may provide a more consistent picture of who lacks visual imagery.
Collapse
|
28
|
Takahashi J, Saito G, Omura K, Yasunaga D, Sugimura S, Sakamoto S, Horikawa T, Gyoba J. Diversity of aphantasia revealed by multiple assessments of visual imagery, multisensory imagery, and cognitive style. Front Psychol 2023; 14:1174873. [PMID: 37546458 PMCID: PMC10403065 DOI: 10.3389/fpsyg.2023.1174873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Aphantasia-a condition wherein individuals have a reduced or absent construction of voluntary visual imagery-is diagnosed using either the Vividness of Visual Imagery Questionnaire (VVIQ) or self-identification. However, a significant discrepancy exists between the proportions of aphantasia in the populations assessed using these two criteria. It is unclear why the reported proportions differ excessively and what percentage of people cannot form visual imagery. We investigated the replicability of the proportion of people with aphantasia using both criteria in the same population of participants. Therefore, we explored the potential causes of the discrepancy and characteristics of putative aphantasia in terms of multisensory imagery, cognitive style, and face recognition ability. First, we conducted an online sampling study (Study 1: N = 2,871) using the VVIQ, self-identification of a reduction in visual imagery, Questionnaire upon Mental Imagery (QMI), and Verbalizer-Visualizer Questionnaire (VVQ). We found that 3.7 and 12.1% fulfilled the VVIQ and self-identification criteria, respectively, roughly replicating the proportions reported in previous studies. The self-identification criterion-but not the VVIQ criterion-contains items related to face recognition; hence, we suspected that face recognition ability was factor contributing to this discrepancy and conducted another online sampling study (Study 2: N = 774). We found a significant correlation between VVIQ and face recognition ability in the control group with self-identification, but not in the group defined by low VVIQ (VVIQ ≤32). As the participants in the control group with self-identification tended to exhibit moderately high VVIQ scores but low face recognition ability, we reason that the discrepancy can be partially explained by the contamination of individual differences in face recognition ability. Additional analyses of Study 1 revealed that the aphantasia group included participants who lacked all types of sensory imagery or only visual imagery in multisensory imagery and exhibited a non-specific cognitive style. This study indicates that the VVIQ alone may be insufficient to diagnose individuals who report an inability to form visual imagery. Furthermore, we highlight the importance of multiple assessments-along with the VVIQ-to better understand the diversity of imagery in aphantasia.
Collapse
Affiliation(s)
- Junichi Takahashi
- Faculty of Human Development and Culture, Fukushima University, Fukushima, Japan
| | - Godai Saito
- Department of Psychology, Graduate School of Arts and Letters, Tohoku University, Sendai, Japan
| | - Kazufumi Omura
- Faculty of Education, Art and Science, Yamagata University, Yamagata, Japan
| | - Daichi Yasunaga
- Faculty of Letters, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Shuichi Sakamoto
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Tomoyasu Horikawa
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
| | - Jiro Gyoba
- Department of Psychology, College of Psychology and Education, Shokei Gakuin University, Natori, Japan
| |
Collapse
|
29
|
Difficulty limits of visual mental imagery. Cognition 2023; 236:105436. [PMID: 36907115 DOI: 10.1016/j.cognition.2023.105436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
While past work has focused on the representational format of mental imagery, and the similarities of its operation and neural substrate to online perception, surprisingly little has tested the boundaries of the level of detail that mental imagery can generate. To answer this question, we take inspiration from the visual short-term memory literature, a related field which has found that memory capacity is affected by the number of items, whether they are unique, and whether and how they move. We test these factors of set size, color heterogeneity, and transformation in mental imagery through both subjective (Exp 1; Exp 2) and objective (Exp 2) measures - difficulty ratings and a change detection task, respectively - to determine the capacity limits of our mental imagery, and find that limits on mental imagery are similar to those for visual short-term memory. In Experiment 1, participants rated the difficulty of imagining 1-4 colored items as subjectively more difficult when there were more items, when the items had unique colors instead of an identical color, and when they scaled or rotated instead of merely linearly translating. Experiment 2 isolated these subjective difficulty ratings of rotation for uniquely colored items, and added a rotation distance manipulation (10° to 110°), again finding higher subjective difficulty for more items, and for when those items rotated farther; the objective measure showed a decrease in performance for more items, but not for rotational degree. Congruities between the subjective and objective results suggest similar costs, but some incongruities suggest that subjective reports can be overly optimistic, likely because they are biased by an illusion of detail.
Collapse
|
30
|
Russell B, Mussap AJ. Posttraumatic stress, visual working memory, and visual imagery in military personnel. CURRENT PSYCHOLOGY 2023; 43:1-18. [PMID: 36845204 PMCID: PMC9942044 DOI: 10.1007/s12144-023-04338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
Posttraumatic stress disorder (PTSD) is characterized by disruptions to cognitive functioning. Two studies were conducted to examine the relevance of military-related PTSD to two cognitive functions - visual working memory and visual imagery. Participants were military personnel who reported their PTSD diagnosis history and completed a self-administered screening tool for PTSD, the PTSD Checklist - Military Version. In Study 1, 138 personnel also completed a memory span task and a 2-back task using colored words in which Stroop interference was introduced via the semantic content of the words. In Study 2, a separate group of 211 personnel completed measures of perceived imagery vividness and spontaneous use of visual imagery. Interference effects on working memory in PTSD-diagnosed military personnel were not replicated. However, ANCOVA and structural equation modelling revealed that PTSD-intrusions were associated with poorer working memory whereas PTSD-arousal was associated with spontaneous use of visual imagery. We interpret these results as evidence that intrusive flashbacks disrupt working memory performance not by limiting memory capacity nor by interfering directly with memory functions such as inhibition, but by adding internal noise in the form of task-irrelevant memories and emotions. Visual imagery appears to be unrelated to these flashbacks but with arousal symptoms of PTSD, perhaps in the form of flashforwards about feared/anticipated threats.
Collapse
Affiliation(s)
- Brenton Russell
- School of Psychology, Deakin University, 221 Burwood Highway, 3125 Melbourne, Australia
| | - Alexander J. Mussap
- School of Psychology, Deakin University, 221 Burwood Highway, 3125 Melbourne, Australia
| |
Collapse
|
31
|
Lupyan G, Uchiyama R, Thompson B, Casasanto D. Hidden Differences in Phenomenal Experience. Cogn Sci 2023; 47:e13239. [PMID: 36633912 DOI: 10.1111/cogs.13239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 01/13/2023]
Abstract
In addition to the many easily observable differences between people, there are also differences in people's subjective experiences that are harder to observe, and which, as a consequence, remain hidden. For example, people vary widely in how much visual imagery they experience. But those who cannot see in their mind's eye, tend to assume everyone is like them. Those who can, assume everyone else can as well. We argue that a study of such hidden phenomenal differences has much to teach cognitive science. Uncovering and describing this variation (a search for unknown unknowns) may help predict otherwise puzzling differences in human behavior. The very existence of certain differences can also act as a stress test for some cognitive theories. Finally, studying hidden phenomenal differences is the first step toward understanding what kinds of environments may mask or unmask links between phenomenal experience and observable behavior.
Collapse
Affiliation(s)
- Gary Lupyan
- Department of Psychology, University of Wisconsin-Madison
| | - Ryutaro Uchiyama
- Nanyang Technological University NTU-Cambridge Centre for Lifelong Learning and Individualised Cognition
| | - Bill Thompson
- Department of Psychology, University of California, Berkeley
| | - Daniel Casasanto
- Department of Human Development & Department of Psychology, Cornell University
| |
Collapse
|
32
|
Cushing CA, Dawes AJ, Hofmann SG, Lau H, LeDoux JE, Taschereau-Dumouchel V. A generative adversarial model of intrusive imagery in the human brain. PNAS NEXUS 2023; 2:pgac265. [PMID: 36733294 PMCID: PMC9887942 DOI: 10.1093/pnasnexus/pgac265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
The mechanisms underlying the subjective experiences of mental disorders remain poorly understood. This is partly due to long-standing over-emphasis on behavioral and physiological symptoms and a de-emphasis of the patient's subjective experiences when searching for treatments. Here, we provide a new perspective on the subjective experience of mental disorders based on findings in neuroscience and artificial intelligence (AI). Specifically, we propose the subjective experience that occurs in visual imagination depends on mechanisms similar to generative adversarial networks that have recently been developed in AI. The basic idea is that a generator network fabricates a prediction of the world, and a discriminator network determines whether it is likely real or not. Given that similar adversarial interactions occur in the two major visual pathways of perception in people, we explored whether we could leverage this AI-inspired approach to better understand the intrusive imagery experiences of patients suffering from mental illnesses such as post-traumatic stress disorder (PTSD) and acute stress disorder. In our model, a nonconscious visual pathway generates predictions of the environment that influence the parallel but interacting conscious pathway. We propose that in some patients, an imbalance in these adversarial interactions leads to an overrepresentation of disturbing content relative to current reality, and results in debilitating flashbacks. By situating the subjective experience of intrusive visual imagery in the adversarial interaction of these visual pathways, we propose testable hypotheses on novel mechanisms and clinical applications for controlling and possibly preventing symptoms resulting from intrusive imagery.
Collapse
Affiliation(s)
- Cody A Cushing
- Department of Psychology, UCLA, Los Angeles, CA, 90095, USA
| | - Alexei J Dawes
- RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan
| | - Stefan G Hofmann
- Department of Clinical Psychology, Philipps-University Marburg, 35037 Marburg, Germany
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Hakwan Lau
- RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan
| | - Joseph E LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY, 10012, USA
- Department of Psychiatry, and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, 10016, USA
| | - Vincent Taschereau-Dumouchel
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec H1N 3M5, Canada
| |
Collapse
|
33
|
Wittmann BC, Şatırer Y. Decreased associative processing and memory confidence in aphantasia. Learn Mem 2022; 29:412-420. [PMID: 36253008 PMCID: PMC9578376 DOI: 10.1101/lm.053610.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Visual imagery and mental reconstruction of scenes are considered core components of episodic memory retrieval. Individuals with absent visual imagery (aphantasia) score lower on tests of autobiographical memory, suggesting that aphantasia may be associated with differences in episodic and associative processing. In this online study, we tested aphantasic participants and controls on associative recognition and memory confidence for three types of associations encoded incidentally: associations between visual-visual and audio-visual stimulus pairs, associations between an object and its location on the screen, and intraitem associations. Aphantasic participants had a lower rate of high-confidence hits in all associative memory tests compared with controls. Performance on auditory-visual associations was correlated with individual differences in a measure of object imagery in the aphantasic group but not in controls. No overall group difference in memory performance was found, indicating that visual imagery selectively contributes to memory confidence. Analysis of the encoding task revealed that aphantasics made fewer associative links between the stimuli, suggesting a role for visual imagery in associative processing of visual and auditory input. These data enhance our understanding of visual imagery contributions to associative memory and further characterize the cognitive profile of aphantasia.
Collapse
Affiliation(s)
- Bianca C Wittmann
- Department of Psychology, Justus Liebig University, 35394 Giessen, Germany
| | - Yılmaz Şatırer
- Department of Psychology, Justus Liebig University, 35394 Giessen, Germany
| |
Collapse
|
34
|
Dawes AJ, Keogh R, Robuck S, Pearson J. Memories with a blind mind: Remembering the past and imagining the future with aphantasia. Cognition 2022; 227:105192. [PMID: 35752014 DOI: 10.1016/j.cognition.2022.105192] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/03/2022]
Abstract
Our capacity to re-experience the past and simulate the future is thought to depend heavily on visual imagery, which allows us to construct complex sensory representations in the absence of sensory stimulation. There are large individual differences in visual imagery ability, but their impact on autobiographical memory and future prospection remains poorly understood. Research in this field assumes the normative use of visual imagery as a cognitive tool to simulate the past and future, however some individuals lack the ability to visualise altogether (a condition termed "aphantasia"). Aphantasia represents a rare and naturally occurring knock-out model for examining the role of visual imagery in episodic memory recall. Here, we assessed individuals with aphantasia on an adapted form of the Autobiographical Interview, a behavioural measure of the specificity and richness of episodic details underpinning the memory of events. Aphantasic participants generated significantly fewer episodic details than controls for both past and future events. This effect was most pronounced for novel future events, driven by selective reductions in visual detail retrieval, accompanied by comparatively reduced ratings of the phenomenological richness of simulated events, and paralleled by quantitative linguistic markers of reduced perceptual language use in aphantasic participants compared to those with visual imagery. Our findings represent the first systematic evidence (using combined objective and subjective data streams) that aphantasia is associated with a diminished ability to re-experience the past and simulate the future, indicating that visual imagery is an important cognitive tool for the dynamic retrieval and recombination of episodic details during mental simulation.
Collapse
Affiliation(s)
- Alexei J Dawes
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia.
| | - Rebecca Keogh
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia; School of Psychological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sarah Robuck
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Joel Pearson
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Abstract
Aphantasia refers to the inability to summon images to one's own mind's eye, resulting in selective deficits of voluntary object imagery. In the present study, we investigated whether M. X., a case of acquired aphantasia, can still retain some form of spatial transformation processes even though he is unable to subjectively experience voluntary object imagery. M. X. and a group of control participants were asked to complete a letter mental rotation task (MRT), typically used to assess the nature of the spatial transformation, while behavioural and electrophysiological responses were recorded. M. X. was able to complete the MRTs as accurately as controls, showing the pattern of increasing RTs as a function of rotation angle typical of MRTs. However, event-related potential (ERP) results showed systematic differences between M. X. and controls. On canonical letter trials, the rotation-related negativity (RRN), an ERP component considered as the psychophysiological correlate of the spatial transformation of mental rotation (MR), was present in both M. X. and controls and similarly modulated by rotation angle. However, no such modulation was observed for M. X. on mirror-reversed letter trials. These findings suggest that, at least under specific experimental conditions, the inability to create a depictive representation of the stimuli does not prevent the engagement of spatial transformation in aphantasia. However, the ability to apply spatial transformation varies with tasks and might be accounted for by the specific type of mental representation that can be accessed.
Collapse
|
36
|
Simner J, Dance C. Dysikonesia or Aphantasia? Understanding the impact and history of names. A reply to. Cortex 2022; 153:220-223. [DOI: 10.1016/j.cortex.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
|
37
|
Driver's Visual Attention Characteristics and Their Emotional Influencing Mechanism under Different Cognitive Tasks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095059. [PMID: 35564459 PMCID: PMC9099627 DOI: 10.3390/ijerph19095059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
The visual attention system is the gateway to the human information processing system, and emotion is an important part of the human perceptual system. In this paper, the driver's visual attention characteristics and the influences of typical driving emotions on those were explored through analyzing driver's fixation time and identification accuracy to different visual cognitive tasks during driving. The results showed that: the increasing complexity of the cognitive object led to the improvement of visual identification speed. The memory and recall process increased drivers' fixation time to cognitive objects, and the recall accuracy decreased with the increase in time interval. The increase in the number of cognitive objects resulted in the driver improving the visual identification speed for the cognitive object at the end of the sequence consciously. The results also showed that: the visual cognitive efficiency was improved in the emotional states of anger and contempt, and was decreased in the emotional states of surprise, fear, anxiety, helplessness and pleasure, and the emotional state of relief had no significant effect on the visual cognitive efficiency. The findings reveal the driver's visual information processing mechanism to a certain extent, which are of great significance to understand the inner micro-psychology of driver's cognition.
Collapse
|
38
|
Kay L, Keogh R, Andrillon T, Pearson J. The pupillary light response as a physiological index of aphantasia, sensory and phenomenological imagery strength. eLife 2022; 11:72484. [PMID: 35356890 PMCID: PMC9018072 DOI: 10.7554/elife.72484] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
The pupillary light response is an important automatic physiological response which optimizes light reaching the retina. Recent work has shown that the pupil also adjusts in response to illusory brightness and a range of cognitive functions, however, it remains unclear what exactly drives these endogenous changes. Here, we show that the imagery pupillary light response correlates with objective measures of sensory imagery strength. Further, the trial-by-trial phenomenological vividness of visual imagery is tracked by the imagery pupillary light response. We also demonstrated that a group of individuals without visual imagery (aphantasia) do not show any significant evidence of an imagery pupillary light response, however they do show perceptual pupil light responses and pupil dilation with larger cognitive load. Our results provide evidence that the pupillary light response indexes the sensory strength of visual imagery. This work also provides the first physiological validation of aphantasia.
Collapse
Affiliation(s)
- Lachlan Kay
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Rebecca Keogh
- School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - Thomas Andrillon
- Institut du Cerveau - Paris Brain Institute, Sorbonne Université, Paris, France
| | - Joel Pearson
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
39
|
Pounder Z, Jacob J, Evans S, Loveday C, Eardley AF, Silvanto J. Only minimal differences between individuals with congenital aphantasia and those with typical imagery on neuropsychological tasks that involve imagery. Cortex 2022; 148:180-192. [DOI: 10.1016/j.cortex.2021.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
|
40
|
Dance CJ, Ipser A, Simner J. The prevalence of aphantasia (imagery weakness) in the general population. Conscious Cogn 2021; 97:103243. [PMID: 34872033 DOI: 10.1016/j.concog.2021.103243] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022]
Abstract
Visual mental imagery is the ability to create a quasi-perceptual visual picture in the mind's eye. For people with the rare trait of aphantasia, this ability is entirely absent or markedly impaired. Here, we aim to clarify the prevalence of aphantasia in the general population, while overcoming limitations of previous research (e.g., recruitment biases). In Experiment 1, we screened a cohort of undergraduate students (n502) using the Vividness of Visual Imagery Questionnaire (Marks, 1973) and found that 4.2% had aphantasia. To establish the reliability of our estimate, we then screened a new sample of people (n502) at an online crowdsourcing marketplace, again finding that approximately four percent (3.6%) had aphantasia. Overall, our combined prevalence from over a thousand people of 3.9% - which shows no gender bias - provides a useful index for how commonly aphantasia occurs, based on measures and diagnostic thresholds in line with contemporary aphantasia literature.
Collapse
Affiliation(s)
- C J Dance
- School of Psychology, Pevensey Building, University of Sussex, BN1 9QJ, UK.
| | - A Ipser
- School of Psychology, Pevensey Building, University of Sussex, BN1 9QJ, UK
| | - J Simner
- School of Psychology, Pevensey Building, University of Sussex, BN1 9QJ, UK
| |
Collapse
|