1
|
Micati D, Hlavca S, Chan WH, Abud HE. Harnessing 3D models to uncover the mechanisms driving infectious and inflammatory disease in the intestine. BMC Biol 2024; 22:300. [PMID: 39736603 DOI: 10.1186/s12915-024-02092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Representative models of intestinal diseases are transforming our knowledge of the molecular mechanisms of disease, facilitating effective drug screening and avenues for personalised medicine. Despite the emergence of 3D in vitro intestinal organoid culture systems that replicate the genetic and functional characteristics of the epithelial tissue of origin, there are still challenges in reproducing the human physiological tissue environment in a format that enables functional readouts. Here, we describe the latest platforms engineered to investigate environmental tissue impacts, host-microbe interactions and enable drug discovery. This highlights the potential to revolutionise knowledge on the impact of intestinal infection and inflammation and enable personalised disease modelling and clinical translation.
Collapse
Affiliation(s)
- Diana Micati
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sara Hlavca
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
2
|
Perruchot MH, Boudry G, Mayeur-Nickel F, Grondin M, Wiart-Letort S, Giblin L, Grundy MML. In Vitro Evaluation of Intestinal Barrier Function after Exposure to Digested Pea Ingredients─Food Matrix Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39681414 DOI: 10.1021/acs.jafc.4c09963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Dietary fibers (DF) are important components of human and animal diets. However, they can decrease protein digestibility and absorption and thus the nutritional value of a food. The aim of this study was to investigate how the form of delivery of pea DF impacted the integrity of the intestinal barrier and, thereby, the potential absorption of molecules. To this end, two pea flours, with either intact or ruptured cell walls, and two controls, pea fibers and pea protein, were digested in vitro and the digesta obtained applied onto a jejunum porcine cell line (IPEC-J2 cells). Cell viability and integrity were evaluated by transepithelial electrical resistance measurement, colorimetric assay (MTS), and immunohistochemistry for tight junction proteins. Additionally, the diffusion of FITC-dextran (FD4) and lucifer yellow (LY) through the epithelial cell monolayers was monitored. The digested pea samples did not alter the IPEC-J2 viability and permeability. For instance, no difference in the diffusion of molecules either FD4 or LY across the monolayers was observed between the different digesta and the control. Similarly, no effect was observed in ZO-1 labeling intensity compared to the control. This study demonstrated that intestinal integrity was maintained whether pea cell walls were intact or ruptured.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- NUMECAN, INSERM, INRAE, Université de Rennes, Saint Gilles 35590, France
| | | | | | | | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland
| | | |
Collapse
|
3
|
Walraven T, Busch M, Wang J, Donkers JM, Duijvestein M, van de Steeg E, Kramer NI, Bouwmeester H. Elevated risk of adverse effects from foodborne contaminants and drugs in inflammatory bowel disease: a review. Arch Toxicol 2024; 98:3519-3541. [PMID: 39249550 PMCID: PMC11489187 DOI: 10.1007/s00204-024-03844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The global burden of Inflammatory bowel disease (IBD) has been rising over the last decades. IBD is an intestinal disorder with a complex and largely unknown etiology. The disease is characterized by a chronically inflamed gastrointestinal tract, with intermittent phases of exacerbation and remission. This compromised intestinal barrier can contribute to, enhance, or even enable the toxicity of drugs, food-borne chemicals and particulate matter. This review discusses whether the rising prevalence of IBD in our society warrants the consideration of IBD patients as a specific population group in toxicological safety assessment. Various in vivo, ex vivo and in vitro models are discussed that can simulate hallmarks of IBD and may be used to study the effects of prevalent intestinal inflammation on the hazards of these various toxicants. In conclusion, risk assessments based on healthy individuals may not sufficiently cover IBD patient safety and it is suggested to consider this susceptible subgroup of the population in future toxicological assessments.
Collapse
Affiliation(s)
- Tom Walraven
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Wang X, Zhu Y, Cheng Z, Zhang C, Liao Y, Liu B, Zhang D, Li Z, Fang Y. Emerging microfluidic gut-on-a-chip systems for drug development. Acta Biomater 2024; 188:48-64. [PMID: 39299625 DOI: 10.1016/j.actbio.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
The gut is a vital organ that is central to the absorption and metabolic processing of orally administered drugs. While there have been many models developed with the goal of studying the absorption of drugs in the gut, these models fail to adequately recapitulate the diverse, complex gastrointestinal microenvironment. The recent emergence of microfluidic organ-on-a-chip technologies has provided a novel means of modeling the gut, yielding radical new insights into the structure of the gut and the mechanisms through which it shapes disease, with key implications for biomedical developmental efforts. Such organ-on-a-chip technologies have been demonstrated to exhibit greater cost-effectiveness, fewer ethical concerns, and a better ability to address inter-species differences in traditional animal models in the context of drug development. The present review offers an overview of recent developments in the reconstruction of gut structure and function in vitro using microfluidic gut-on-a-chip (GOC) systems, together with a discussion of the potential applications of these platforms in the context of drug development and the challenges and future prospects associated with this technology. STATEMENT OF SIGNIFICANCE: This paper outlines the characteristics of the different cell types most frequently used to construct microfluidic gut-on-a-chip models and the microfluidic devices employed for the study of drug absorption. And the applications of gut-related multichip coupling and disease modelling in the context of drug development is systematically reviewed. With the detailed summarization of microfluidic chip-based gut models and discussion of the prospective directions for practical application, this review will provide insights to the innovative design and application of microfluidic gut-on-a-chip for drug development.
Collapse
Affiliation(s)
- Xueqi Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China
| | - Yuzhuo Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China
| | - Zhaoming Cheng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China
| | - Chuanjun Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China
| | - Yumeng Liao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Yuxin Fang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China; Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
5
|
Parente IA, Chiara L, Bertoni S. Exploring the potential of human intestinal organoids: Applications, challenges, and future directions. Life Sci 2024; 352:122875. [PMID: 38942359 DOI: 10.1016/j.lfs.2024.122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The complex and dynamic environment of the gastrointestinal tract shapes one of the fastest renewing tissues in the human body, the intestinal epithelium. Considering the lack of human preclinical studies, reliable models that mimic the intestinal environment are increasingly explored. Patient-derived intestinal organoids are powerful tools that recapitulate in vitro many pathophysiological features of the human intestine. In this review, the possible applications of human intestinal organoids in different research fields are highlighted. From physiologically relevant to intestinal disease modeling, regenerative medicine, and toxicology studies, the potential of intestinal organoids will be here presented and discussed. Despite the remarkable opportunities offered, limitations related to ethical concerns, tissue collection, reproducibility, and methodologies may hinder the full exploitation of this cell-based model into high throughput studies and clinical practice. Currently, distinct approaches can be used to overcome the numerous challenges found along the way and to allow the full implementation of this ground-breaking technology.
Collapse
Affiliation(s)
- Inês A Parente
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Linda Chiara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Simona Bertoni
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
6
|
Razavi Z, Soltani M, Pazoki-Toroudi H, Dabagh M. Microfluidic systems for modeling digestive cancer: a review of recent progress. Biomed Phys Eng Express 2024; 10:052002. [PMID: 39142294 DOI: 10.1088/2057-1976/ad6f15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Purpose. This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.Methods. This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.Results. This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.Conclusion. Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K N Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Centre for Sustainable Business, International Business University, Toronto, Canada
| | | | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, WI 53211, United States of America
| |
Collapse
|
7
|
Almalla A, Alzain N, Elomaa L, Richter F, Scholz J, Lindner M, Siegmund B, Weinhart M. Hydrogel-Integrated Millifluidic Systems: Advancing the Fabrication of Mucus-Producing Human Intestinal Models. Cells 2024; 13:1080. [PMID: 38994934 PMCID: PMC11240340 DOI: 10.3390/cells13131080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
The luminal surface of the intestinal epithelium is protected by a vital mucus layer, which is essential for lubrication, hydration, and fostering symbiotic bacterial relationships. Replicating and studying this complex mucus structure in vitro presents considerable challenges. To address this, we developed a hydrogel-integrated millifluidic tissue chamber capable of applying precise apical shear stress to intestinal models cultured on flat or 3D structured hydrogel scaffolds with adjustable stiffness. The chamber is designed to accommodate nine hydrogel scaffolds, 3D-printed as flat disks with a storage modulus matching the physiological range of intestinal tissue stiffness (~3.7 kPa) from bioactive decellularized and methacrylated small intestinal submucosa (dSIS-MA). Computational fluid dynamics simulations were conducted to confirm a laminar flow profile for both flat and 3D villi-comprising scaffolds in the physiologically relevant regime. The system was initially validated with HT29-MTX seeded hydrogel scaffolds, demonstrating accelerated differentiation, increased mucus production, and enhanced 3D organization under shear stress. These characteristic intestinal tissue features are essential for advanced in vitro models as they critically contribute to a functional barrier. Subsequently, the chamber was challenged with human intestinal stem cells (ISCs) from the terminal ileum. Our findings indicate that biomimicking hydrogel scaffolds, in combination with physiological shear stress, promote multi-lineage differentiation, as evidenced by a gene and protein expression analysis of basic markers and the 3D structural organization of ISCs in the absence of chemical differentiation triggers. The quantitative analysis of the alkaline phosphatase (ALP) activity and secreted mucus demonstrates the functional differentiation of the cells into enterocyte and goblet cell lineages. The millifluidic system, which has been developed and optimized for performance and cost efficiency, enables the creation and modulation of advanced intestinal models under biomimicking conditions, including tunable matrix stiffness and varying fluid shear stresses. Moreover, the readily accessible and scalable mucus-producing cellular tissue models permit comprehensive mucus analysis and the investigation of pathogen interactions and penetration, thereby offering the potential to advance our understanding of intestinal mucus in health and disease.
Collapse
Affiliation(s)
- Ahed Almalla
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (N.A.); (L.E.); (F.R.); (J.S.); (M.L.)
| | - Nadra Alzain
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (N.A.); (L.E.); (F.R.); (J.S.); (M.L.)
- Department of Gastroenterology, Infectious Diseases and Rheumatology (Including Nutrition Medicine), Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany;
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (N.A.); (L.E.); (F.R.); (J.S.); (M.L.)
| | - Fiona Richter
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (N.A.); (L.E.); (F.R.); (J.S.); (M.L.)
| | - Johanna Scholz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (N.A.); (L.E.); (F.R.); (J.S.); (M.L.)
| | - Marcus Lindner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (N.A.); (L.E.); (F.R.); (J.S.); (M.L.)
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology (Including Nutrition Medicine), Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany;
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (N.A.); (L.E.); (F.R.); (J.S.); (M.L.)
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany
| |
Collapse
|
8
|
Nguyen OTP, Misun PM, Hierlemann A, Lohasz C. A Versatile Intestine-on-Chip System for Deciphering the Immunopathogenesis of Inflammatory Bowel Disease. Adv Healthc Mater 2024; 13:e2302454. [PMID: 38253407 PMCID: PMC11468350 DOI: 10.1002/adhm.202302454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Indexed: 01/24/2024]
Abstract
The multifactorial nature of inflammatory bowel disease (IBD) necessitates reliable and practical experimental models to elucidate its etiology and pathogenesis. To model the intestinal microenvironment at the onset of IBD in vitro, it is important to incorporate relevant cellular and noncellular components before inducing stepwise pathogenic developments. A novel intestine-on-chip system for investigating multiple aspects of IBD's immunopathogenesis is presented. The system includes an array of tight and polarized barrier models formed from intestinal epithelial cells on an in-vivo-like subepithelial matrix within one week. The dynamic remodeling of the subepithelial matrix by cells or their secretome demonstrates the physiological relevance of the on-chip barrier models. The system design enables introduction of various immune cell types and inflammatory stimuli at specific locations in the same barrier model, which facilitates investigations of the distinct roles of each cell type in intestinal inflammation development. It is showed that inflammatory behavior manifests in an upregulated expression of inflammatory markers and cytokines (TNF-α). The neutralizing effect of the anti-inflammatory antibody Infliximab on levels of TNF-α and its inducible cytokines could be explicitly shown. Overall, an innovative approach to systematically developing a microphysiological system to comprehend immune-system-mediated disorders of IBD and to identify new therapeutic strategies is presented.
Collapse
Affiliation(s)
- Oanh T. P. Nguyen
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Patrick M. Misun
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Andreas Hierlemann
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Christian Lohasz
- Bio Engineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
9
|
Donkers JM, Wiese M, van den Broek TJ, Wierenga E, Agamennone V, Schuren F, van de Steeg E. A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome. MICROBIOME RESEARCH REPORTS 2024; 3:18. [PMID: 38841408 PMCID: PMC11149092 DOI: 10.20517/mrr.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 06/07/2024]
Abstract
Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC). Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated. Results: The supplementation of the media with inulin promoted the growth of Anaerostipes, Bifidobacterium, Blautia, and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant. Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| | - Maria Wiese
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Tim J. van den Broek
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Esmée Wierenga
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| | - Valeria Agamennone
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Frank Schuren
- Department of Microbiology & Systems Biology, TNO, Leiden 2333 BE, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Leiden 2333 BE, the Netherlands
| |
Collapse
|
10
|
Donkers JM, van der Vaart JI, van de Steeg E. Gut-on-a-Chip Research for Drug Development: Implications of Chip Design on Preclinical Oral Bioavailability or Intestinal Disease Studies. Biomimetics (Basel) 2023; 8:226. [PMID: 37366821 PMCID: PMC10296225 DOI: 10.3390/biomimetics8020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The gut plays a key role in drug absorption and metabolism of orally ingested drugs. Additionally, the characterization of intestinal disease processes is increasingly gaining more attention, as gut health is an important contributor to our overall health. The most recent innovation to study intestinal processes in vitro is the development of gut-on-a-chip (GOC) systems. Compared to conventional in vitro models, they offer more translational value, and many different GOC models have been presented over the past years. Herein, we reflect on the almost unlimited choices in designing and selecting a GOC for preclinical drug (or food) development research. Four components that largely influence the GOC design are highlighted, namely (1) the biological research questions, (2) chip fabrication and materials, (3) tissue engineering, and (4) the environmental and biochemical cues to add or measure in the GOC. Examples of GOC studies in the two major areas of preclinical intestinal research are presented: (1) intestinal absorption and metabolism to study the oral bioavailability of compounds, and (2) treatment-orientated research for intestinal diseases. The last section of this review presents an outlook on the limitations to overcome in order to accelerate preclinical GOC research.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| | - Jamie I. van der Vaart
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| |
Collapse
|
11
|
Dijk W, Villa C, Benedé S, Vassilopoulou E, Mafra I, Garrido-Arandia M, Martínez Blanco M, Bouchaud G, Hoppenbrouwers T, Bavaro SL, Giblin L, Knipping K, Castro AM, Delgado S, Costa J, Bastiaan-Net S. Critical features of an in vitro intestinal absorption model to study the first key aspects underlying food allergen sensitization. Compr Rev Food Sci Food Saf 2023; 22:971-1005. [PMID: 36546415 DOI: 10.1111/1541-4337.13097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
New types of protein sources will enter our diet in a near future, reinforcing the need for a straightforward in vitro (cell-based) screening model to test and predict the safety of these novel proteins, in particular their potential risk for de novo allergic sensitization. The Adverse Outcome Pathway (AOP) for allergen sensitization describes the current knowledge of key events underlying the complex cellular interactions that proceed allergic food sensitization. Currently, there is no consensus on the in vitro model to study the intestinal translocation of proteins as well as the epithelial activation, which comprise the first molecular initiation events (ME1-3) and the first key event of the AOP, respectively. As members of INFOGEST, we have highlighted several critical features that should be considered for any proposed in vitro model to study epithelial protein transport in the context of allergic sensitization. In addition, we defined which intestinal cell types are indispensable in a consensus model of the first steps of the AOP, and which cell types are optional or desired when there is the possibility to create a more complex cell model. A model of these first key aspects of the AOP can be used to study the gut epithelial translocation behavior of known hypo- and hyperallergens, juxtaposed to the transport behavior of novel proteins as a first screen for risk management of dietary proteins. Indeed, this disquisition forms a basis for the development of a future consensus model of the allergic sensitization cascade, comprising also the other key events (KE2-5).
Collapse
Affiliation(s)
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sara Benedé
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Emilia Vassilopoulou
- Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Mónica Martínez Blanco
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tamara Hoppenbrouwers
- Food Quality & Design, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Simona Lucia Bavaro
- Institute of Sciences of Food Production, National Research Council (Ispa-Cnr), Campus Universitario Ecotekne, Lecce, Italy
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | | | - Ana Maria Castro
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Susana Delgado
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
12
|
Doi K, Kimura H, Kim SH, Kaneda S, Wada T, Tanaka T, Shimizu A, Sano T, Chikamori M, Shinohara M, Matsunaga YT, Nangaku M, Fujii T. Enhanced podocyte differentiation and changing drug toxicity sensitivity through pressure-controlled mechanical filtration stress on a glomerulus-on-a-chip. LAB ON A CHIP 2023; 23:437-450. [PMID: 36546862 DOI: 10.1039/d2lc00941b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Podocytes, localized in the glomerulus, are a prognostic factor of proteinuria in kidney disease and are exposed to distinct physiological stimuli from basal to apical filtration flow. Research studies on drug discovery and disease modeling for glomerulopathy have developed a glomerulus-on-a-chip and studied podocyte mechanobiology to realize alternative methods to animal experiments. However, the effect of filtration stimulus on podocytes has remained unclear. Herein, we report the successful development of a user-friendly filtration culture device and system that can precisely control the filtration flow using air pressure control by incorporating a commercially available culture insert. It allows mouse podocytes to be cultured under filtration conditions for three days with a guarantee of maintaining the integrity of the podocyte layer. Using our system, this study demonstrated that podocyte damage caused by hyperfiltration resulting from glomerular hypertension, a common pathophysiology of many glomerulopathies, was successfully recapitulated and that filtration stimulus promotes the maturation of podocytes in terms of their morphology and gene expression. Furthermore, we demonstrated that filtration stimulus induced different drug responsiveness in podocytes than those seen under static conditions, and that the difference in drug responsiveness was dependent on the pharmacological mechanism. Overall, this study has revealed differentiating and pharmacodynamic properties of filtration stimulus and brings new insights into the research field of podocyte mechanobiology towards the realization of glomerulus-on-a-chip.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Kanagawa, Japan
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Shohei Kaneda
- Department of Mechanical Systems Engineering, Faculty of Engineering, Kogakuin University, Tokyo, Japan
| | - Takehiko Wada
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Takanori Sano
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
13
|
Novel 3D Flipwell system that models gut mucosal microenvironment for studying interactions between gut microbiota, epithelia and immunity. Sci Rep 2023; 13:870. [PMID: 36650266 PMCID: PMC9845379 DOI: 10.1038/s41598-023-28233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Gut mucosa consists of stratified layers of microbes, semi-permeable mucus, epithelium and stroma abundant in immune cells. Although tightly regulated, interactions between gut commensals and immune cells play indispensable roles in homeostasis and cancer pathogenesis in the body. Thus, there is a critical need to develop a robust model for the gut mucosal microenvironment. Here, we report our novel co-culture utilizing 3D Flipwell system for establishing the stratified layers of discrete mucosal components. This method allows for analyzing synchronous effects of test stimuli on gut bacteria, mucus, epithelium and immune cells, as well as their crosstalks. In the present report, we tested the immuno-stimulatory effects of sepiapterin (SEP, the precursor of the cofactor of nitric oxide synthase (NOS)-BH4) on the gut mucosal community. We previously reported that SEP effectively reprogrammed tumor-associated macrophages and inhibited breast tumor cell growth. In our co-cultures, SEP largely promoted mucus integrity, bacterial binding, and M1-like polarization of macrophages. Conversely, these phenomena were absent in control-treated cultures. Our results demonstrate that this novel co-culture may serve as a robust in vitro system to recapitulate the effects of pharmacological agents on the gut mucosal microenvironment, and could potentially be expanded to test the effects outside the gut.
Collapse
|
14
|
Singh DK, Miller CM, Orgel KA, Dave M, Mackay S, Good M. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front Pediatr 2023; 10:1107404. [PMID: 36714655 PMCID: PMC9874231 DOI: 10.3389/fped.2022.1107404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating, multifactorial disease mainly affecting the intestine of premature infants. Recent discoveries have significantly enhanced our understanding of risk factors, as well as, cellular and genetic mechanisms of this complex disease. Despite these advancements, no essential, single risk factor, nor the mechanism by which each risk factor affects NEC has been elucidated. Nonetheless, recent research indicates that maternal factors, antibiotic exposure, feeding, hypoxia, and altered gut microbiota pose a threat to the underdeveloped immunity of preterm infants. Here we review predisposing factors, status of unwarranted immune responses, and microbial pathogenesis in NEC based on currently available scientific evidence. We additionally discuss novel techniques and models used to study NEC and how this research translates from the bench to the bedside into potential treatment strategies.
Collapse
Affiliation(s)
- Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mili Dave
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Przybylla R, Mullins CS, Krohn M, Oswald S, Linnebacher M. Establishment and Characterization of Novel Human Intestinal In Vitro Models for Absorption and First-Pass Metabolism Studies. Int J Mol Sci 2022; 23:ijms23179861. [PMID: 36077251 PMCID: PMC9456142 DOI: 10.3390/ijms23179861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Commonly used intestinal in vitro models are limited in their potential to predict oral drug absorption. They either lack the capability to form a tight cellular monolayer mimicking the intestinal epithelial barrier or the expression of cytochrome P450 3A4 (CYP3A4). The aim of this study was to establish a platform of colorectal cancer patient-derived cell lines for evaluation of human intestinal drug absorption and metabolism. We characterized ten 2D cell lines out of our collection with confluent outgrowth and long-lasting barrier forming potential as well as suitability for high throughput applications with special emphasis on expression and inducibility of CYP3A4. By assessment of the transepithelial electrical resistance (TEER) the cells barrier function capacity can be quantified. Very high TEER levels were detected for HROC60. A high basal CYP3A4 expression and function was found for HROC32. Eight cell lines showed higher CYP3A4 induction by stimulation via the vitamin D receptor compared to Caco-2 cells (5.1- to 16.8-fold change). Stimulation of the pregnane X receptor led to higher CYP3A4 induction in two cell lines. In sum, we identified the two cell lines HROC183 T0 M2 and HROC217 T1 M2 as useful tools for in vitro drug absorption studies. Due to their high TEER values and inducibility by drug receptor ligands, they may be superior to Caco-2 cells to analyze oral drug absorption and intestinal drug–drug interactions. Significance statement: Selecting appropriate candidates is important in preclinical drug development. Therefore, cell models to predict absorption from the human intestine are of the utmost importance. This study revealed that the human cell lines HROC183 T0 M2 and HROC217 T1 M2 may be better suited models and possess higher predictive power of pregnane X receptor- and vitamin D-mediated drug metabolism than Caco-2 cells. Consequently, they represent useful tools for predicting intestinal absorption and simultaneously enable assessment of membrane permeability and first-pass metabolism.
Collapse
Affiliation(s)
- Randy Przybylla
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, 18057 Rostock, Germany
| | | | - Mathias Krohn
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, 18057 Rostock, Germany
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, 18057 Rostock, Germany
- Correspondence:
| |
Collapse
|
16
|
|
17
|
Doi K, Kimura H, Matsunaga YT, Fujii T, Nangaku M. Glomerulus-on-a-Chip: Current Insights and Future Potential Towards Recapitulating Selectively Permeable Filtration Systems. Int J Nephrol Renovasc Dis 2022; 15:85-101. [PMID: 35299832 PMCID: PMC8922329 DOI: 10.2147/ijnrd.s344725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Glomerulopathy, characterized by a dysfunctional glomerular capillary wall, results in proteinuria, leading to end-stage renal failure and poor clinical outcomes, including renal death and increased overall mortality. Conventional glomerulopathy research, including drug discovery, has mostly relied on animal experiments because in-vitro glomerulus models, capable of evaluating functional selective permeability, was unavailable in conventional in-vitro cell culture systems. However, animal experiments have limitations, including time- and cost-consuming, multi-organ effects, unstable reproducibility, inter-species reliability, and the social situation in the EU and US, where animal experiments have been discouraged. Glomerulus-on-a-chip, a new in-vitro organ model, has recently been developed in the field of organ-on-a-chip research based on microfluidic device technology. In the glomerulus-on-a-chip, the podocytes and endothelial cells are co-cultured in a microfluidic device with physical stimuli that mimic the physiological environment to enhance cell function to construct a functional filtration barrier, which can be assessed by permeability assays using fluorescently labeled molecules including inulin and albumin. A combination of this glomerulus-on-a chip technology with the culture technology to induce podocytes and endothelial cells from the human pluripotent stem cells could provide an alternative organ model and solve the issue of animal experiments. Additionally, previous experiments have verified the difference in the leakage of albumin using differentiated podocytes derived from patients with Alport syndrome, such that it could be applied to intractable hereditary glomerulopathy models. In this review, we provide an overview of the features of the existing glomerulus-on-a-chip systems, focusing on how they can address selective permeability verification tests, and the challenges they involved. We finally discuss the future approaches that should be developed for solving those challenges and allow further improvement of glomerulus-on-a-chip technologies.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | | | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Organ-on-a-Chip for Studying Gut-Brain Interaction Mediated by Extracellular Vesicles in the Gut Microenvironment. Int J Mol Sci 2021; 22:ijms222413513. [PMID: 34948310 PMCID: PMC8707342 DOI: 10.3390/ijms222413513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a group of membrane vesicles that play important roles in cell-to-cell and interspecies/interkingdom communications by modulating the pathophysiological conditions of recipient cells. Recent evidence has implied their potential roles in the gut–brain axis (GBA), which is a complex bidirectional communication system between the gut environment and brain pathophysiology. Despite the evidence, the roles of EVs in the gut microenvironment in the GBA are less highlighted. Moreover, there are critical challenges in the current GBA models and analyzing techniques for EVs, which may hinder the research. Currently, advances in organ-on-a-chip (OOC) technologies have provided a promising solution. Here, we review the potential effects of EVs occurring in the gut environment on brain physiology and behavior and discuss how to apply OOCs to research the GBA mediated by EVs in the gut microenvironment.
Collapse
|
19
|
Rahman S, Ghiboub M, Donkers JM, van de Steeg E, van Tol EAF, Hakvoort TBM, de Jonge WJ. The Progress of Intestinal Epithelial Models from Cell Lines to Gut-On-Chip. Int J Mol Sci 2021; 22:ijms222413472. [PMID: 34948271 PMCID: PMC8709104 DOI: 10.3390/ijms222413472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past years, several preclinical in vitro and ex vivo models have been developed that helped to understand some of the critical aspects of intestinal functions in health and disease such as inflammatory bowel disease (IBD). However, the translation to the human in vivo situation remains problematic. The main reason for this is that these approaches fail to fully reflect the multifactorial and complex in vivo environment (e.g., including microbiota, nutrition, and immune response) in the gut system. Although conventional models such as cell lines, Ussing chamber, and the everted sac are still used, increasingly more sophisticated intestinal models have been developed over the past years including organoids, InTESTine™ and microfluidic gut-on-chip. In this review, we gathered the most recent insights on the setup, advantages, limitations, and future perspectives of most frequently used in vitro and ex vivo models to study intestinal physiology and functions in health and disease.
Collapse
Affiliation(s)
- Shafaque Rahman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
| | - Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands
| | - Joanne M. Donkers
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (J.M.D.); (E.v.d.S.); (E.A.F.v.T.)
| | - Evita van de Steeg
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (J.M.D.); (E.v.d.S.); (E.A.F.v.T.)
| | - Eric A. F. van Tol
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (J.M.D.); (E.v.d.S.); (E.A.F.v.T.)
| | - Theodorus B. M. Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
- Department of Surgery, University of Bonn, 53113 Bonn, Germany
- Correspondence:
| |
Collapse
|
20
|
Wang R, Mohammadi M, Mahboubi A, Taherzadeh MJ. In-vitro digestion models: a critical review for human and fish and a protocol for in-vitro digestion in fish. Bioengineered 2021; 12:3040-3064. [PMID: 34187302 PMCID: PMC8806420 DOI: 10.1080/21655979.2021.1940769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 10/28/2022] Open
Abstract
Digestive systems in human, animals, and fish are biological reactors and membranes to digest food and extract nutrients. Therefore, static and dynamic models of in-vitro digestion systems are developed to study e.g. novel food and feed before in-vivo studies. Such models are well developed for human, but not to the same extent for animals and fish. On the other hand, recent advances in aquaculture nutrition have created several potential fish meal replacements, and the assessment of their nutrient digestibility is critical in the application as a fish meal replacement. Using an in-vitro method, the assessment of an ingredient digestibility could be faster and less expensive compared to using an in-vivo experiment. An in-vitro method has been widely used to assess food nutrient digestibility for humans; however, its application for fish is still in the early stages. Both the human and fish as monogastric vertebrates share similar gastrointestinal systems; thus, the concept from the application for humans could be applied for fish. This review aims to improve the in-vitro digestion protocol for fish by adapting the concept from then study for humans, summarizing the current available in-vitro digestion model developed for human and fish in-vitro digestion study, identifying challenges specifically for fish required to be tackled and suggesting an engineering approach to adapt the human in-vitro gastrointestinal model to fish. Protocols to conduct in-vitro digestion study for fish are then proposed.
Collapse
Affiliation(s)
- Ricky Wang
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Mahtab Mohammadi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås. Sweden
| | | |
Collapse
|
21
|
Franco YL, Da Silva L, Cristofoletti R. Navigating Through Cell-Based In vitro Models Available for Prediction of Intestinal Permeability and Metabolism: Are We Ready for 3D? AAPS J 2021; 24:2. [PMID: 34811603 PMCID: PMC8925318 DOI: 10.1208/s12248-021-00665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/23/2021] [Indexed: 01/07/2023] Open
Abstract
Traditionally, in vitro studies to quantify the
intestinal permeability of drugs have relied on two-dimensional cell culture models using human colorectal carcinoma cell lines, namely Caco-2, HT 29 and T84 cells. Although these models have been commonly used for high-throughput screening of xenobiotics in preclinical studies, they do not fully recapitulate the morphology and functionality of enterocytes found in the human intestine in vivo. Efforts to improve the physiological and functional relevance of in vitro intestinal models have led to the development of enteroids/intestinal organoids and microphysiological systems. These models leverage advances in three-dimensional cell culture techniques and stem cell technology (in addition to microfluidics for microphysiological systems), to mimic the architecture and microenvironment of the in vivo intestine more accurately. In this commentary, we will discuss the advantages and limitations of these established and emerging intestinal models, as well as their current and potential future applications for the pre-clinical assessment of oral therapies.
Collapse
Affiliation(s)
- Yesenia L Franco
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Lais Da Silva
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA.
| |
Collapse
|
22
|
Garcia-Gutierrez E, Cotter PD. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 2021; 48:463-488. [PMID: 34591726 DOI: 10.1080/1040841x.2021.1979933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Ireland
| |
Collapse
|
23
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
24
|
Kuriu S, Yamamoto N, Ishida T. Microfluidic Device Using Mouse Small Intestinal Tissue for the Observation of Fluidic Behavior in the Lumen. MICROMACHINES 2021; 12:mi12060692. [PMID: 34199306 PMCID: PMC8231847 DOI: 10.3390/mi12060692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
The small intestine has the majority of a host’s immune cells, and it controls immune responses. Immune responses are induced by a gut bacteria sampling process in the small intestine. The mechanism of immune responses in the small intestine is studied by genomic or histological techniques after in vivo experiments. While the distribution of gut bacteria, which can be decided by the fluid flow field in the small intestinal tract, is important for immune responses, the fluid flow field has not been studied due to limits in experimental methods. Here, we propose a microfluidic device with chemically fixed small intestinal tissue as a channel. A fluid flow field in the small intestinal tract with villi was observed and analyzed by particle image velocimetry. After the experiment, the distribution of microparticles on the small intestinal tissue was histologically analyzed. The result suggests that the fluid flow field supports the settlement of microparticles on the villi.
Collapse
Affiliation(s)
- Satoru Kuriu
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
- Correspondence: (S.K.); (T.I.); Tel.: +81-45-924-5468 (S.K.)
| | - Naoyuki Yamamoto
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8503, Japan;
| | - Tadashi Ishida
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
- Correspondence: (S.K.); (T.I.); Tel.: +81-45-924-5468 (S.K.)
| |
Collapse
|